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ABSTRACT
Several services today are annotated with points of interest (PoIs)
such as “coffee shop”, “park”, etc. A region of interest (RoI) is a
neighborhood that contains PoIs relevant to the user. In this pa-
per, we study the scenario where a user wants to identify the best
RoI in a city. The user expresses relevance through a set of key-
words denoting PoIs. Ideally, the RoI should be small enough in
size such that the user can conveniently explore the PoIs. On the
other hand, it should be as relevant as possible. How does one
balance the importance of size versus relevance? To a user ex-
ploring the RoI on foot, size is more critical. However, for a user
equipped with a vehicle, relevance is a more important factor. In
this paper, we solve this dilemma through skyline subgraph queries
on keyword-embedded road networks. Skyline subgraphs subsume
the choice of optimization function for an RoI since the optimal
RoI for any rational user is necessarily a part of the skyline set.
Our analysis reveals that the problem of computing the skyline set
is NP-hard. We overcome the computational bottleneck by propos-
ing a polynomial-time approximation algorithm called SkyGraph.
To further expedite the running time, we develop an index structure,
Partner Index, that drastically prunes the search space and provides
up to 3 orders of magnitude speed-up on real road networks over
the baseline approach. The datasets and executables are available
at http://www.cse.iitd.ac.in/~sayan/software.html.

1. INTRODUCTION
In recent years, the Internet has undergone a dramatic change

from being used mostly from desktop-based devices to being pre-
dominantly mobile-based such as smartphones and tablets. Ow-
ing to this transformation, large volumes of geo-textual objects are
available on the Web that represent points of interest (PoIs) such as
restaurants, cafes, malls, etc. [4, 24] A geo-textual object contains
the geo-location of the PoI, represented using latitude and longi-
tude, and a textual description with tags. The availability of such
rich geo-textual data can help identify regions of interest (RoIs) in
a city depending on a user’s interests. An RoI is a neighborhood,
ideally small, that contains the PoIs a user is interested in.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/08.

(a)
No. of Query Keywords

5 6 7 8 9 10

A
v
e

ra
g

e
 L

e
n

g
th

(i
n

 k
m

)

0

5

10

15

20

25

30
London
Sydney

(b)

Figure 1: (a) A motivating scenario for skyline RoI neighbor-
hoods. (b) The growth rate of neighborhood size against the
number of query keywords.

To illustrate the idea of RoI, consider Fig. 1a that shows a hy-
pothetical map with some PoIs. Suppose a visitor wants to ex-
plore this city and wants to visit a neighborhood that contains a
“mall”, “restaurant”, “bar” and “park”. Ideally, the neighborhood
should contain all of the query keywords and be as small as pos-
sible. The extent of a neighborhood can be quantified using a
number of metrics such as diameter, minimum spanning tree over
the road-network that spans the entire neighborhood, etc. Three
neighborhoods are shown in Fig. 1a. Here, N1 and N2 contain
all the query keywords. Since N2 is smaller than N1 in size, N2

is clearly preferable over N1. Notice that the third neighborhood
N3 is significantly smaller than N2. However, it does not contain
the query keyword “restaurant”. Therefore, an important question
arises: Would the user be willing to compromise on the absence of
a restaurant in exchange for a smaller neighborhood? Only the
user can answer this question. To illustrate, if one plans to explore
the neighborhood through walking, size of the neighborhood is a
critical factor. On the other hand, for those with vehicles, size may
not be as important a factor. Hence, it is desirable to present both
N2 and N3 as RoIs. However, given N2, N1 can be safely omitted.

We capture these intricacies of identifying RoIs by performing
skyline subgraph queries on keyword-embedded road networks. In-
formally, a skyline is an object that is not worse (or equal) in all the
attributes of interest than another object. Thus, while N2 is not
worse in terms of number of keywords, N3 is not worse in terms of
size. Both of them are, thus, skyline neighborhoods. The neighbor-
hood N1, on the other hand, is worse than N2 in size while being
equal in number of keywords.

In our problem, the user provides a set of query keywords, and
our goal is to compute all skyline neighborhoods in a keyword-
embedded road network. Each node in a road network represents
a location and edges correspond to roads connecting two locations.
Additionally, a node contains a set of keywords depicting the ser-
vices available in that location. A neighborhood, therefore, corre-
sponds to a subgraph of the road network. A neighborhood sub-
graph is characterized by two features: (a) the coverage depicting
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the number of query keywords covered by nodes in the subgraph,
and (b) the size of the subgraph. (We characterize the size in more
precise terms later.) A smaller size and a larger coverage is better in
the context of our problem. A neighborhood subgraph is a skyline
RoI if it is not dominated by any other neighborhood.

The interplay between the coverage of keywords and the size of
the neighborhood forms the crux of defining what is of interest to
the user. To understand this better, we study the relationship be-
tween keyword coverage and neighborhood size in two prominent
cities: London and Sydney. Specifically, we choose 1000 random
query sets of x keywords and plot the average size of the smallest
neighborhood that covers all x keywords. The size of a neighbor-
hood subgraph is defined by the length of the minimum spanning
tree (MST) on that subgraph. Further details of the datasets are pro-
vided in Sec. 6. Fig. 1b presents the results. As can be seen, the
size of the neighborhood grows exponentially with the number of
keywords. Whether this exponential increase in size is worth at the
expense of one additional keyword forms a key decision point for
any user. At the same time, the optimal trade-off between size and
coverage is an individual choice made by each user, and an effec-
tive querying system should not assume a preference function on
the user’s behalf. Skyline subgraphs fit the bill perfectly by allow-
ing the user to retain this power by not discarding any neighborhood
that has a chance of being the optimal choice.

The problem of querying RoIs based on user provided keywords
has been studied previously. However, all of the existing techniques
have at least one of the following weaknesses:
• Assumption of Euclidean space: It has often been assumed that

the PoIs are distributed in an Euclidean space [11, 25, 26]. This
assumption does not model the reality in road networks where
the movements are restricted over roads.
• Assumption of a preference function: Several techniques quan-

tify the quality of a RoI through a preference function defined
over its coverage and size [3, 4, 20, 28]. As discussed earlier, all
users may not optimize the same preference function and this
choice must be left to the user itself. Computing skyline sub-
graphs overcomes this weakness. More specifically, the optimal
answer to any monotonic preference function must lie within the
skyline set. Thus, skyline neighborhoods are more generic and
powerful since they can be used for any preference function.
Our work is also significantly different from those that aim to

identify only the optimal PoIs (single nodes) for a set of user pro-
vided keywords [6,13,14,16–19,21,23,27,29], and subsumes them.

The core contributions of our work are as follows:
• We introduce the problem of querying RoIs through skyline sub-

graphs on keyword-embedded road networks (Sec. 2).
• We prove that the problem of finding skyline neighborhoods is

NP-hard (Sec. 3). To enable fast query response times, we de-
velop a technique called SkyGraph (Sec. 4). SkyGraph derives
its efficiency by developing an approximation algorithm with
quality guarantees. The efficiency is further enhanced through
the usage of an index structure called the Partner Index (Sec. 5).
• We establish the efficiency and efficacy of SkyGraph through

a comprehensive empirical evaluation on 4 real keyword-
embedded road networks (Sec. 6). Our results demonstrate that
SkyGraph is up to 3 orders of magnitude faster than baseline
techniques and achieves quality that is close to the optimal.

2. PROBLEM FORMULATION

DEFINITION 1 (ROAD NETWORK). A road network graph
G = (V,E, τ, λ) consists of a set of nodes V that represents sites,
a set of undirected edgesE ⊆ V ×V that represents roads between

a pair of sites, a distance function τ : E → R that represents the
distance along the road, and a spatial mapping λ : V → R2 that
represents the spatial locations of the sites.

Each site v represents either a road intersection, a dead-end, or
a PoI. If it is a PoI, it is associated with a text description, i.e., a
set of keywords denoted by v.ψ. The keywords denote the type of
entities present in that site such as “restaurant”, “cafe”, “mall”, etc.
Each edge eij = (vi, vj) represents a road segment connecting the
nodes vi and vj .

DEFINITION 2 (NEIGHBORHOOD). A neighborhood N in a
road network G is a connected subgraph of G. We denote the ver-
tices and edges in N as N.V and N.E respectively. The keywords
contained in N are

N.ψ = ∪∀v∈N.V v.ψ (1)

DEFINITION 3 (NEIGHBORHOOD SIZE). The size of a
neighborhood subgraph N is the length of its minimum spanning
tree (MST). Formally, if T is the MST on N , where T.E ⊆ N.E is
the set of edges contained within T , then

size(N) =
∑
∀e∈T.E

τe (2)

In an RoI query, a user U provides a set of keywords Q =
{q1, · · · , qn} as input and the “best” neighborhood N∗ in the road
network G is output as the intended RoI. Mathematically,

N∗ = arg max
N⊆G
{scoreU (N,Q)} (3)

where scoreU (N,Q) = fU 〈cov(N,Q), size(N)〉 is a function
that quantifies the quality of a neighborhood N with respect to
query Q from user U ’s perspective. The function fU is defined
over two neighborhood aspects: the coverage of N with respect to
Q, and the size ofN . While Eq. (2) defines the size ofN (note that
it is independent of Q), the coverage is defined as follows.

DEFINITION 4 (NEIGHBORHOOD COVERAGE). The cover-
age of a neighborhood N with respect to a query Q is the number
of query keywords contained in N :

cov(N,Q) = |N.ψ ∩Q| (4)

The scoring function fU changes from user to user. It is neither
practical to ask every user to provide the exact function fU , nor can
we assume the function fU on the user’s behalf. In other words, we
need to identify the best neighborhood without the explicit knowl-
edge of fU .

It can be assumed, however, that any rational user will prefer a
neighborhood that has higher coverage and a smaller size. Thus, the
quality (or score) of a neighborhood monotonically increases with
coverage and monotonically decreases with size. This observation
can be formalized as follows.

PROPERTY 1 (SCORING FUNCTION). IfN1 andN2 are two
neighborhoods such that
cov(N1, Q) = cov(N2, Q) and size(N1) < size(N2) or,
cov(N1, Q) > cov(N2, Q) and size(N1) = size(N2),
then scoreU (N1, Q) > scoreU (N2, Q).

The RoI querying problem is to identify the best neighborhood
under any possible scoring function fU that follows Property 1.
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PROBLEM 1 (ROI QUERYING). Given a set of keywords Q,
find the set of RoI neighborhoods that can potentially be the opti-
mal neighborhood for some scoring function scoreU that follows
Property 1. Mathematically,

RoIs = {N ⊆ G | ∃scoreU s.t. ∀N ′ ⊆ G,
scoreU (N,Q) ≥ scoreU (N ′, Q)} (5)

Under Property 1, Problem 1 reduces to identifying the skyline
subgraphs of G.

DEFINITION 5 (SKYLINE SUBGRAPH). A neighborhood N
is a skyline subgraph of G with respect to query Q if and only if
it is not dominated by any other neighborhood. Formally, N is a
skyline neighborhood if and only if 6 ∃N ′ ⊆ G such that
(i) cov(N ′, Q) ≥ cov(N,Q) and size(N ′) < size(N), or
(ii) cov(N ′, Q) > cov(N,Q) and size(N ′) ≤ size(N).

We next establish the universality of skyline subgraphs.

THEOREM 1 (UNIVERSALITY). For any scoring function
that follows Property 1, the neighborhood that has the highest score
must be a skyline subgraph.

PROOF. (BY CONTRADICTION.) Assume that there is a neigh-
borhood N ′ that is not a skyline but there exists a function scoreU
for which N ′ has the highest score. Since N ′ is not a skyline sub-
graph, there exists a skyline subgraph N that dominates it. There-
fore, at least one of the following conditions is true:
(i) cov(N) > cov(N ′) and size(N) ≤ size(N ′), or
(ii) cov(N) ≥ cov(N ′) and size(N) < size(N ′).
In either case, using Property 1, scoreU (N,Q) > scoreU (N ′, Q),
which is a contradiction.

Using Thm. 1, Problem 1 can be equivalently defined as follows.

PROBLEM 2 (SKYLINE NEIGHBORHOOD QUERY). Given
a set of keywords Q, identify all skyline neighborhood subgraphs.

The following conclusions follow from Thm. 1.

COROLLARY 1. If no two subgraphs are of the exact same
size, the number of skyline subgraphs for a set of query keywords
Q is at most |Q|.

While the assumption of uniqueness of every subgraph size is
theoretically not be true, in practice the chance of having two sub-
graphs of exactly the same size is extremely low. Thus, the size of
the answer set for a query Q is ≈ |Q|. This has an implication on
the efficacy of the proposed formulation. In an RoI query, the num-
ber of keywords is typically small and within 10. Consequently, our
answer set is small enough to be explored and diagnosed manually.

COROLLARY 2. The number of skyline neighborhoods in-
creases with increase in the number of dimensions if there exists
at least one dimension that always contains unique values (such as
neighborhood size in our problem).

Corollary 2 shows that adding more dimensions will lead to in-
crease in the size of the answer set size and, therefore, may not be
justified. Hence, we limit ourselves to only 2 dimensions, size and
coverage, since the utility of these two dimensions have been well
established in large volumes of work [2–9, 12–14, 16–23, 25–29].

Algorithm 1 Baseline algorithm(G,Q)

1: RoIs← ∅;
2: for all integers k in range [1, |Q|] do
3: N ← minimal sized subgraphs of coverage k
4: RoIs← RoIs ∪N
5: return RoIs

3. COMPLEXITY ANALYSIS
Alg. 1 presents the pseudocode of the baseline algorithm to solve

our problem. Given the set of query keywords Q, we iterate over
each possible coverage in the range 1 to |Q| (lines 2-5) and identify
the minimal sized subgraphs for the corresponding coverage (line
3). Since they are all guaranteed to be skylines (using Cor. 1), we
add them to the answer set.

We refer to these subgraphs as k-skyline subgraphs. Next we
show that identifying the k-skyline subgraphs reduces to the prob-
lem of k-minimum spanning tree (k-MST), which is NP-hard [10].

DEFINITION 6 (K-MST). Given a graph G = (V,E) with
non-negative edge weights, the k-MST problem is to identify the
tree of minimum weight that spans k nodes.

THEOREM 2. Identifying k-skyline subgraphs is NP-hard.

PROOF. Given an arbitrary instance of the k-MST problem, we
reduce it to an instance of the k-skyline subgraph problem through
the following procedure. Let the given graphG for k-MST problem
be the road network for our problem. Each node in the road network
is annotated with a unique keyword. In addition, we assign spatial
coordinates to each node such that the length of each edge is same
as its weight in G. Let this road network constructed from G be
called G′. Finally, let the query Q be a set of k keywords.

In G′, the k-skyline problem is to identify the smallest subgraph
of coverage k. Since each node in G′ contains an unique keyword
and the size of a subgraph is the total weight of its MST, if the
k-skyline subgraph problem is solved, the MST of the k-skyline
subgraph is same as the k-MST on G.

4. SKYGRAPH
Sec. 3 establishes that identifying skyline subgraphs is NP-hard.

Particularly, the bottleneck lies in line 3 of Alg. 1, where we need
to find the k-skyline subgraph, which is the smallest subgraph of
a specific coverage value k. Although the k-skyline problem has
connections to the k-MST problem, approximation algorithms de-
veloped for the k-MST problem cannot be applied directly for
identifying k-skyline subgraphs. Fig. 2 illustrates the reason. In
the shown network, the 3-MST is the subgraph spanning nodes
{1, 3, 4}. However, if one wants to span the three keywords of
{a, b, c}, the smallest subgraph, i.e., 3-skyline, is the subgraph
spanning nodes {1, 2}. The difference stems from the fact that
although both nodes 4 and 1 have the same value initially (covers
keyword a), once any of these nodes is included in the subgraph,
the other node is no more useful since it does not contribute any
new keyword to the coverage. Consequently, the value of a node
is dependent on the other nodes that are part of the subgraph. In
k-MST however, inclusion of every node contributes a value of 1
towards the final goal of spanning k nodes.

With this intuition in mind, we next modify and adapt an existing
algorithm for k-MST [1] for our k-skyline problem. Our algorithm
has two primary components: Merge-cluster and Connect-cluster.

4.1 Merge-Cluster
First, we describe the merge-cluster phase of the algorithm and

then we analyze its properties. Alg. 2 presents the pseudocode. The
input are number of keywords k, queryQ, and the road networkG.

The algorithm proceeds in a bottom-up manner similar to ag-
glomerative clustering. More specifically, every node in the net-
work is initially considered a cluster (line 1). A cluster is essen-
tially a subgraph of the road network G.
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Figure 2: Illustration of the difference between k-MST and k-
skyline subgraph problem. The node labels indicate the key-
words contained within it. The node IDs are indicated by the
number next to each node in bold, red-italics font. The num-
ber next to each edge denotes its length. We follow the same
convention for all subsequent graph figures.

Next, it joins the two clusters, Ci, Cj , that minimizes the ratio

r =
d(Ci, Cj)

min{unique(Ci, Cj), unique(Cj , Ci)}
(6)

where, d(Ci, Cj) = min
∀vi∈Ci,∀vj∈Cj

{shortestPath(vi, vj)} (7)

unique(Ci, Cj) =|{Ci − Cj} ∩Q| (8)

Essentially, we want to merge clusters that are close to each other
and after merging them the total coverage increases by a large mar-
gin. Thus, the numerator of r (Eq: 6) is minimized if the distance
between two clusters is low. On the other hand, the denominator is
maximized ifCi andCj have high coverage and low overlap among
the keywords covered (the min component ensures low overlap).

Joining clustersCi andCj creates a new clusterC whereC.V =
Ci.V ∪ Cj .V and C.E = {e = (vi, vj) ∈ G.E|vi, vj ∈ C.V }.
Ci and Cj are then discarded and C is added to the set of clusters
(line 4). This process continues iteratively till a cluster of coverage
at least k/4 is created. The maximum possible coverage of a cluster
created through MERGE-CLUSTER is less than k/2.

THEOREM 3. The size of the cluster produced by MERGE-
CLUSTER is at most (2k/4− 1)4 log k times the size of the optimal
k-skyline subgraph OPT.

PROOF. Theorem 3 follows directly from the following 2 lem-
mas, whose proofs are in the Appendix.

LEMMA 1. Let R be the largest ratio that has been observed
in MERGE-CLUSTER (Eq. 6 in Alg. 2) till it terminates. Then any
cluster C of coverage p has size less than (2k/4 − 1)Rp.

PROOF. Refer to Appendix A.

LEMMA 2. MERGE-CLUSTER never uses a ratio (Eq. 6)
larger than (8L log2 k)/k where L is the size of the optimal k-
skyline subgraph OPT.

PROOF. Refer to Appendix B.
An obvious question that arises is: Why stop MERGE-CLUSTER

at k/4? We take this decision purely from a theoretical standpoint:
the quality guarantee provided by Thm. 3 does not hold if we let
MERGE-CLUSTER run till k (Lemma 2 is violated). Further details
are provided in Appendix C.

Algorithm 2 MERGE-CLUSTER

Input: QueryQ containing k keywords, GraphG
Output: Subgraph C of coverage at least k/4
1: Initially, each node is considered as a cluster
2: while all clusters have coverage less than k/4 do
3: C ← Join clusters Ci and Cj that minimize Eq. (6)
4: Remove Ci and Cj and add C
5: return C

(a) Road Network (b) Subgraph extracted by
CONNECT-CLUSTER

Figure 3: (a) A sample road network where the node with the
dashed boundary is a fork node (node id 2). (b) The subgraph
extracted by CONNECT-CLUSTER on the query keyword set
{a, b, c, d}. Here dk = 12 corresponding to node ID 7 contain-
ing the keyword ‘d’.

4.2 Connect-Cluster
To attain the target coverage of k, we devise the next algorithm

called CONNECT-CLUSTER. Alg. 3 provides the pseudocode.
In addition to k, query keywords Q and the road network G,

CONNECT-CLUSTER also takes a node v ∈ G as input. Consider-
ing v as the root node, CONNECT-CLUSTER finds the shortest path
to each of the query keywords from v. Let the distance to the kth

farthest query keyword from v be dk (line 1). CONNECT-CLUSTER
extracts the dk-hop subgraph S ⊆ G around v that contains all
nodes and edges within distance dk from v (line 2). An example of
the extracted subgraph is shown in Fig. 3.

On S, MERGE-CLUSTER is performed iteratively (lines 5-9).
Each iteration produces a cluster C′ of some coverage k′, k′ < k
(line 6). C′ is stored and nodes contained in it are removed from
S (as well as edges between these nodes) so that they are not con-
sidered in any of the subsequent iterations (line 7). Furthermore,
the produced cluster is “connected” to the cluster combination pro-
duced so far (line 9). The iterations of MERGE-CLUSTER continue
till the coverage of this combined cluster is at least k.

To analyze the quality of the subgraph produced by CONNECT-
CLUSTER, we first make the assumption that the root node v, which
is an input to the algorithm, is also part of the optimal k-skyline
subgraph OPT. Under this assumption, the following lemma holds.

LEMMA 3. dk ≤ L, where L is the size of OPT.

PROOF. By definition, dk is the distance of the kth nearest query
keyword from the v. Thus, dk is the minimum size that has to be
added to the size of OPT.

THEOREM 4. The size of the tree C produced by CONNECT-
CLUSTER is at most O(2k(log k)2) times the size of the optimal
k-skyline subgraph OPT.

Algorithm 3 CONNECT-CLUSTER

Input: Root node v, QueryQ of size k, GraphG
Output: Cluster C
1: dk ← distance to the kth farthest query keyword from v
2: S ← all nodes and edges within radius dk from v
3: C ← ∅ //set of clusters found by MERGE-CLUSTER
4: Q′ ← Q
5: while COV (C, Q) < k do
6: C′ ← MERGE-CLUSTER(k, S,Q′)
7: Remove subgraph C′ from S.
8: Remove keywords covered in C′ fromQ′

9: C ← Join C with C′ through the shortest path
10: return C
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(a) C (b) CQ

Figure 4: (a) The minimum spanning tree covering all keyword
nodes in Fig. 3b. (b) 3-skyline subgraph corresponding to Q =
{a, d, e} on the subgraph rooted at Node 1.

PROOF. First, we analyze the number of MERGE-CLUSTER it-
erations in a single instance of CONNECT-CLUSTER. If k′ is the
number of query keywords covered by the invocations of MERGE-
CLUSTER so far, then in the next invocation, the number of query
keywords covered by MERGE-CLUSTER ≥ (k − k′)/4. So, the
maximum number of iterations of MERGE-CLUSTER algorithm is
at most O(log 4

3
k).

From Theorem 3, the size of each cluster returned by MERGE-
CLUSTER is O(2k log k) times the size of OPT. Thus, the total
size of all clusters returned by MERGE-CLUSTER isO(2k log k)×
O(log k) = O(2k(log k)2) times the size of OPT. Denoting L
as the size of OPT, the size of the tree produced by CONNECT-
CLUSTER is therefore, cLk(log k)2 + H , where H is the total
size of paths used to connect the clusters produced by MERGE-
CLUSTER, and c is some constant.

Let Ci and Ci+1 be the clusters produced by MERGE-CLUSTER
in two consecutive iterations. From our construction of S (line 1-2
in Alg. 3), its diameter is at most 2dk. Thus, the size of the path
connecting Ci with Ci+1 is at most 2dk. Extending this further,
the size of H is at most 2dk log k. Combining all these results, the
total size of the tree C produced by CONNECT-CLUSTER is

Size(C) ≤ cL2k(log k)2 + 2dk log k

≤ cL2k(log k)2 + 2L log k (∵ dk ≤ L from Lemma 3)

= O(2k(log k)2) times the size of OPT. �

4.3 SkyGraph Algorithm
The theoretical guarantees provided by CONNECT-CLUSTER as-

sumes that the root node is part of the optimal k-skyline subgraph.
This assumption can be easily removed by the following algorithm.
1. N = {nodes containing at least one query keyword}
2. Iterate over each node v ∈ N and compute the tree returned by

CONNECT-CLUSTER on v
3. Return the smallest tree returned by CONNECT-CLUSTER

across all nodes in N
It is easy to see that the quality guarantee of Theorem 4 holds for

this algorithm since we iterate over all keyword containing nodes.
Here on, we use the term k-skyline subgraph to refer to the smallest
tree returned by SkyGraph.

4.3.1 Time Complexity
With the quality guarantees in place, we next analyze the time

complexity of the SkyGraph algorithm. We denote the number of
nodes in the network with n.
Merge-Cluster: Initially, all nodes are clusters on their own. Be-
fore the iterations start, for each cluster, we store the cluster that
provides the minimum ratio if merged with. This pre-processing

step requires O(n2) time. In each iteration, finding the global min-
imum ratio requires O(n) time. Once two clusters are merged, the
minimum ratio for the newly formed cluster is computed in an-
other O(n) time by comparing across all existing clusters. Since
there are O(n) iterations, the total time taken by a single call to
MERGE-CLUSTER is O(n2).
Connect-Cluster: From our proof in Theorem 4, we know there
will be O(log k) invocation of MERGE-CLUSTER (line 5). Since
the computational cost of MERGE-CLUSTER supersedes the cost
of all other operation in CONNECT-CLUSTER, the time complexity
is bounded by O(log k(n2)).
Overall: Since CONNECT-CLUSTER is run on each node (O(n))
containing a query keyword, the overall time complexity of Sky-
Graph is O(n3 log k) ≈ O(n3) as k � n.

4.3.2 Connection to k-MST Approximation [1]
The SkyGraph algorithm has a similar flow to the algorithm pro-

posed in [1]. However, since the contribution to coverage by a node
is dependent on the other nodes already added to the subgraph, sev-
eral changes are required to [1]. First, the ratio being minimized in
line 3 of Alg. 2 has been modified to capture the dependence among
nodes. This leads to a different proof for Theorem 3. Furthermore,
CONNECT-CLUSTER algorithm is different (Alg. 3, line 8) result-
ing in a different bound for Theorem 4.

5. INDEX STRUCTURE
The most expensive component of the SkyGraph algorithm is

the need to run CONNECT-CLUSTER on each node of the network
that contains a query keyword. Furthermore, if the subgraph S
on which CONNECT-CLUSTER is run is large (line 2 in Alg. 3),
then the subsequent calls to MERGE-CLUSTER would also be ex-
pensive. Notice that the larger the radius of this subgraph S, the
less are the chances of S containing a “small” k-skyline subgraph
within it. This result follows directly from Lemma 4 since the ra-
dius dk of S is a lower bound to the size of the k-skyline subgraph
returned by CONNECT-CLUSTER. The above two observations re-
veal that most of the execution time is likely to be spent on those
CONNECT-CLUSTER calls that are unlikely to be part of the answer
set. Can we devise a filter of low computation cost that prunes
out most of those CONNECT-CLUSTER calls that are guaranteed
to not provide the k-skyline subgraph? We answer this question
by computing fast lower bounds on the size of the tree returned
by CONNECT-CLUSTER. The computation of the lower bound is
facilitated by an index structure called Partner Index.

5.1 Partner Index
Let u be a root node and S the subgraph around u that contains

all nodes and edges within some radius r. Furthermore, let C be
the minimum spanning tree containing all keyword nodes in S. For
each keyword in C, we now introduce the concept of a partner node
and partner distance.

DEFINITION 7 (PARTNER NODE AND PARTNER DISTANCE).
The partner node of a keyword w is the closest node in C (in terms

Table 1: Partner nodes and distances for keywords in C
(Fig. 4a).

Keyword Partner Nodes for C Partner Node in CQ
a (2, fork, 1) (2, fork, 1)
b (8, e, 4) NA
c (8, e, 4) NA
d (4, e, 3) (4, e, 3)
e (7, d, 3) (7, d, 3)
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of edge weight distance) that either contains a keyword different
from w or is a fork node, i.e., a node with degree ≥ 3, from any
node containing w. The distance to the partner node is termed
partner distance.

In essence, the partner distance is the minimum distance that
needs to be covered to connect a keyword to the minimum span-
ning tree. Since partner node and partner distance come in pairs,
we represent them as a tuple p = (Node ID, keyword/Fork, Partner
distance). Furthermore, p.ID, p.keyword, and p.dist denote the
node ID, keyword, and partner distance associated with tuple p.

EXAMPLE 1. Let us revisit the network in Fig. 3a. Let radius
r = 12 and node 1 with keyword ‘a’ be the root node. Con-
sequently, the 12-hop subgraph S is identical to the network in
Fig. 3b. The smallest tree C spanning all keyword nodes in S is
shown in Fig. 4a. Column 2 in Table 1 presents the partner node
and partner distance for each keyword in S (or C). Note that we
store a partner node for each keyword in C and not each keyword
node. Thus, there is only one entry for keyword ‘e’ even though two
nodes contain ‘e’. Note that both node 7 (keyword node) and node
2 (fork node) are at a distance of 3 from a node containing ‘e’. We
break ties arbitrarily.

Now, we define a function called partnerSize(C), which is a
lower bound on the size of C.

DEFINITION 8 (PARTNERSIZE). Let PC be the set of
(unique) tuples occurring as a partner node. The partnerSize is
the combined distance to some keyword in C.

partnerSize(C) =
∑
∀p∈PC

p.dist (9)

EXAMPLE 2. Let us revisit the partner nodes and distances of
C, shown in column 2 of Table 1. PC = {(2,fork,1), (8,e,4), (4,e,3),
(7,d,3)}. Thus, partnerSize(C) = 11. Note that size(C) = 19.

The fact that the partner size is less than the size of the minimum
spanning tree is not a coincidence, but a property.

LEMMA 4. partnerSize(C) ≤ size(C)

PROOF. Proof by contradiction. Assume partnerSize(C) >
size(C). Since C is the minimum spanning tree covering all key-
word nodes, every keyword node must be connected by a path to
another keyword node or a fork node. Since partnerSize(C) >
size(C), there exists some keyword w in C with a partner distance
greater than the length of the path that joins the corresponding key-
word node to another keyword node or a fork node. However, from
the definition of partner distance, this is a contradiction.

While the above lemma provides us a lower bound, it is not use-
ful since it considers all keywords in C. In our problem, we need
to consider only the query keywords provided by the user. Sup-
pose we have constructed the minimum spanning tree C covering
all keyword nodes within radius r from root node u and the resul-
tant partner nodes and distances. Can this information be used to
obtain a lower bound on the size of the tree returned by CONNECT-
CLUSTER on node u with some query set Q? Our analysis reveals
that a lower bound can be obtained if Q ⊆ K, where K is the set
of all keywords in C.

Before we derive the formal proof, we first discuss the intuition
behind this bound. Consider Fig. 4b that shows the spanning tree
C covering the query set Q = {a, d, e}. Q is a subset of keywords
that occur in C of Fig. 4a. Column 3 in Table 1 shows the partner

distance table for the keywords in Q. Notice that all of the partner
distances for the keywords in Q are same as that for C shown in
column 2. This result is not a coincidence. If Q is a subset of
the keywords in C, then the partner distance for any keyword in
Q will be at least the partner distance of the same keyword in C.
This follows from the fact that any path that is feasible to connect a
keyword node in Q to the minimum spanning tree, is also feasible
in the spanning tree of C. The formal proof for this is as follows.

LEMMA 5.
∑
∀p∈PCQ

p.distC ≤
∑
∀p∈PCQ

p.distCQ .

PCQ is the set of tuples in the partner distance table for CQ, which
is the minimum spanning tree covering all keywords in Q.

PROOF BY CONTRADICTION. Assume, there exists a query key-
word p.keyword in CQ, such that p.distCQ < p.distC .

Let node X contain the keyword p.keyword in CQ. Since
all keyword containing nodes in CQ are also present in C, for
p.distCQ < p.distC , there must exist a shorter path that joins node
X to some fork node or keyword node in CQ than the path that
joins X in C. The length of the path joining X to CQ is stored as
the partner distance for p.keyword. However, then this path would
be used to join node X to C as well since, otherwise, C is not a
minimum spanning tree. This is a contradiction. Hence,

∀p ∈ PCQ , p.distC ≤ p.distCQ
or,

∑
∀p∈PCQ

p.distC ≤
∑

∀p∈PCQ

p.distCQ �

THEOREM 5.
∑
∀p∈PCQ

p.distC ≤ size(CQ).

PROOF. Combining Lemmas 4 and 5, we get the proof.

Theorem 5 gives us the platform to compute a lower bound on
the tree returned by CONNECT-CLUSTER using the pre-computed
partner distances. To apply Theorem 5 on any node of the network,
we construct the partner distance table for every keyword node.
This together constitutes the partner index.

5.1.1 Complexity Analysis
Time Complexity: The partner distance table is maintained as a
HashMap. Consequently, computing the lower bound to a tree re-
turned by CONNECT-CLUSTER requires O(k) time where k is the
number of keywords.
Storage Complexity: Let W be the set of all unique keywords
in the road network. Since the partner distance table at each node
could have at mostW keywords, the storage complexity for a single
partner distance table is O(W ). Since we store at most n partner
distance tables with respect to each keyword containing node in the
network, the total storage complexity is O(nW ).

5.2 Querying Algorithm using Partner Index
Empowered by the Partner Index, we complete the pipeline of

the SkyGraph algorithm by presenting the querying procedure.
The pseudocode is presented in Alg. 4. Similar to the baseline

algorithm (Alg. 1), we compute the k-skyline subgraph for each
value of k in the range [1, |Q|] for a given set of query keywords Q
(lines 2-3). Without Partner Index, the k-skyline subgraph is com-
puted by executing CONNECT-CLUSTER on all nodes containing a
query keyword and then returning the globally smallest tree.

We improve this approach in Alg. 5 by first computing the lower
bound to CONNECT-CLUSTER on each of the nodes containing
query keyword (lines 2-6). This information is stored as a tuple of
the form 〈u, lb(u)〉, where u is a node containing a query keyword,
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Algorithm 4 SkyGraph(G, Q, Partner Index pIndex)

1: RoIs← ∅;
2: for all integers k in range [1, |Q|] do
3: N ← getSkyline(k,G,Q, pIndex)
4: RoIs← RoIs ∪N
5: return RoIs

Algorithm 5 getSkyline(k, G, Q, pIndex)

1: PQ← empty min-heap
2: for all node u ∈ G.V do
3: dk ← distance to kth farthest query keyword from u
4: if dk ≤ pIndex.r then
5: lb(u)← compute lower bound using pIndex
6: PQ.insert(〈u,max{lb(u), dk}〉)
7: θ ←∞
8: T ← ∅ // stores smallest spanning tree found so far
9: while PQ.top().lb < θ and PQ is not empty do
10: u← PQ.pop().node
11: C ← CONNECT-CLUSTER(u, k,G,Q)
12: if size(C) < θ then
13: T ← C
14: θ ← size(C)
15: return T

and lb(u) is the lower bound to the tree returned by CONNECT-
CLUSTER on u as the root node (line 6). If Theorem 5 is not appli-
cable on u due to violation of the constraint dk ≤ r, then lb(u) is
set to dk based on Lemma 3 (lines 4-6).

Following the computation of lower bounds, all the tuples are
inserted in a min heap, PQ. The most promising node with the
smallest lower bound is first explored, i.e., this node is supplied as
the root node to CONNECT-CLUSTER, which returns a tree span-
ning k query words (lines 10-11). The size of this tree is stored as
a threshold θ, which is subsequently employed to prune the search
space (lines 12-14). The next most promising node is then popped
from the heap PQ and checked if its lower bound is smaller than θ
(line 12). If this check passes, CONNECT-CLUSTER is executed on
this node and θ is updated to the size of the smallest spanning tree
found so far (lines 13-14). If the check fails, then we are guaran-
teed that none of the unexplored nodes can return a smaller span-
ning tree than what we have already found. Hence, the computation
ends for the current value of k (first condition in line 9).

The process is then repeated with the remaining values of k.

6. EXPERIMENTS
In this section, we benchmark the proposed algorithms and es-

tablish the efficiency and efficacy of SkyGraph.

6.1 Experimental Setup
All experiments are implemented in Java and performed on a

machine with Intel(R) Xeon(R) 2.5GHz CPU E5-2609 with 512
GB RAM running Ubuntu 14.04. All experiments are repeated 100
times for consistency and the average is reported.

Unless specifically mentioned, the number of query keywords,
i.e., |Q|, is set to a random size between 4 and 10. Nevertheless,
we have benchmarked the proposed system with query size of up to
10. The choice of the query keywords themselves is an important
factor and we have experimented with various selection models,
which will be discussed later in this section. Our default selection
procedure is frequency proportional sampling. More specifically,
if a keyword (or PoI) is found more frequently in the city, then its
chances of being a query keyword is higher.

SkyGraph requires only one internal parameter, which is the ra-
dius parameter used to construct the Partner Index. We set the ra-
dius to 15Km, since for city-level queries, an RoI with a diameter

Table 2: Datasets used to benchmark SkyGraph.

City # nodes # edges # keyword
nodes

# unique
keywords Bounding Box

London(L) 209,407 282,268 87,346 56,648 lat∈[51.342, 51.648]
lon ∈[-0.448, 0.205]

Sydney(S) 236,041 317,266 23,103 14,063 lat∈[149.724, 151.880]
lon ∈[-34.286, -33.250]

Dublin(D) 62,975 82,730 1351 170 lat∈[53.033, 53.777]
lon ∈[-7.348, -5.192]

California(C) 1,752,951 2,157,459 172,197 399,238 lat∈[32.524, 42.112]
lon ∈[-114.130, -124.406]

of 30Km is likely to span almost the entire city. For all experi-
ments in this section, we employ the usage of 2-hop indexing for
fast shortest path computations [15].

6.1.1 Datasets
We use real-life datasets from three large metropolitan cities in

our experiments. The details of the datasets are listed in Table 2.
The road network of the cities have been extracted from Open-
StreetMaps (OSM)1. The bounding box for most major cities are
provided by OSM in their website. We use this bounding box to
extract the road network of the chosen city. The geo-textual objects
are crawled from both OSM and Google Places to obtain as many
keywords as possible. A geo-textual objects is represented as a tu-
ple composed of geographical location and a list of keywords, such
as “restaurant”, “park” etc. The geographical location is the lati-
tude and longitude of the place. Each object is mapped to its nearest
node on the road network according to Euclidean distance. The Eu-
clidean distance between two locations is calculated by converting
the latitude and longitude pairs to the UTM (Universal Transverse
Mercator coordinate system) format, using World Geodetic System
84 specification.

6.2 Efficiency and Scalability
Figs. 5a-5b show the time taken to find the skyline neighbor-

hoods as the number of query keywords is varied. We present the
time taken by SkyGraph both with the help of Partner Index (in-
dexed) as well as without it (unindexed). Note that the 2-hop label
index is used in both cases and the only source of difference in the
running time is the usage of Partner Index.

This experiment reveals several key aspects of the SkyGraph al-
gorithm. First, across both Sydney and London, the running time
is less than 3 seconds when boosted by Partner Index. Even in Cal-
ifornia, which contains more than 1.7 million nodes, the running
time is only 13 seconds. This establishes that SkyGraph can be
operationalized on any major city of the world. Second, Partner In-
dex plays a major role in boosting the efficiency of the system. On
average, Partner Index prunes more than 96% of the nodes in the
network where the execution of CONNECT-CLUSTER is entirely
skipped. Consequently, a 1000 times speed-up is achieved.

Other than the number of query keywords, the choice of the
query keywords themselves play a role in the efficiency of the sys-
tem. We next present results to understand this relationship better.

The basic question we ask in this experiment is the following:
How does the frequency of a query keyword impact the running
time? Since Connect-cluster needs to be run on all nodes containing
a query keyword, a high frequency keyword would result in a large
number of CONNECT-CLUSTER executions. On the other hand,
if the query keywords are rare, then the existence probability of a
small neighborhood (or subgraph) containing them is low. In other

11. Go to http://www.openstreetmap.org/. 2. Search for the desired
city (or state). 3. Click on export to get bounding box. 4. Extract
the sub-network within that bounding box using OSM API.
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Figure 5: (a-b) Growth rate of querying time against the number of query keywords. (c-d) Growth rate of querying time against the
frequency of the query keywords. (e-f) The change in cluster (subgraph) sizes on which CONNECT-CLUSTER is executed against the
frequency of the query keywords. (g) Growth rate of running time against network size. (h) Profiling the time spent on MERGE-
CLUSTER and CONNECT-CLUSTER as the network size is varied. (i) The impact of network size on the sizes of the clusters (sub-
graphs) on which CONNECT-CLUSTER is executed.

words, CONNECT-CLUSTER needs to be run on a large subgraph
and thereby significantly driving up the running time.

Figs. 5c-5d answer the above questions. To understand the im-
pact of frequency, we extract the top-250 and top-150 most fre-
quent keywords from London and Sydney, which constitutes 88%
and 82% of all keywords in the two datasets respectively. Next,
we group them into sets of 10 query keywords, where the top-10
query keywords are the 10 most frequent keywords and the key-
words numbered from 241 to 250 are the least frequent keywords
(in London). In Figs. 5c-5d, a value 50 in the x-axis corresponds
to the query set containing keywords in the range top-40 to top-50
most frequent. As can be seen clearly, the running time increases
with decrease in frequency. This behavior stems from the fact that
when the query keywords are rare, larger subgraphs are required
to span them. To establish this concretely, we study the subgraph
sizes on which CONNECT-CLUSTER is executed as the frequency
of query keywords is lowered in Figs 5e-5f. As expected, the sub-
graph sizes grow with decrease in frequency and thereby clearly
indicating the reason behind the increase in running time.

Next, we study the impact of network size on running time. To-
wards that end, we extract sub-networks from the London, Syd-
ney and California datasets. To construct a sub-network of London
containing X nodes, we pick a random node in the London net-
work and expand through breadth first exploration till X nodes are
added. This construction procedure ensures that when we further
grow the network from X nodes to some X + ∆ nodes, the previ-
ous network of size X is a subgraph of the X + ∆-sized network.
Whenever we add a node to the sub-network, we also add the key-
words contained within that node. The same procedure is followed
to construct sub-networks of Sydney and California as well.

Fig. 5g presents the results for query sets of sizes 5 and 10. For 5
query keywords, we do not observe much variation in the running
time. However, for 10 query keywords, the running time decreases
initially and then starts increasing again. The plot reveals that there
is a “sweet spot” when it comes to the network size.

This behavior seems counter-intuitive at first. To further inves-
tigate, we plot a bar graph to profile the relative time spent in the
MERGE-CLUSTER and CONNECT-CLUSTER algorithms as shown
in Fig. 5h. We find that the majority of the time is spent in the
CONNECT-CLUSTER algorithm. After the MERGE-CLUSTER al-
gorithm returns the clusters, the CONNECT-CLUSTER algorithm
joins these clusters to compute the connected k-skyline subgraph.
The distance between two clusters C1 and C2 is the all pairs short-
est distance between a node belonging to C1 and a node belonging
to C2. If the sizes of the clusters returned by MERGE-CLUSTER
algorithm are large, then a large number of shortest path computa-
tions need to be performed to determine optimal connecting path.

To establish that large cluster sizes are indeed the reason behind
this behavior, in Fig. 5i, we plot the total sum of cluster sizes for the
100 test cases corresponding to each network size. We observe that
the sum of cluster sizes decreases with network size. This justifies
the large amount of time consumed by the CONNECT-CLUSTER
algorithm and in turn the high running time for smaller networks.

This result brings us to an obvious question: Why are the clus-
ter sizes large when the network sizes are small? The answer is
tied to the frequency of the query keywords and how keywords are
typically distributed in a city. Both in London and Sydney, there
are certain pockets, such as the downtown region, with high den-
sity of keywords (or PoIs). If these pockets are not included in
the sub-network, most keywords go into the “rare” category. Now,
recall from our earlier analysis that when the query keywords are
rare, larger subgraphs are required to span them all. Consequently
we observe this counter-intuitive behavior. When the size of the
network increases, it brings in more keyword nodes and the pos-
sibility of a small region that is densely populated with the query
keywords. The “sweet spot” spot is, therefore, the scenario where
the entire road network is not too large, but it encompasses the
keyword-dense regions. A similar effect is also visible in Califor-
nia, but not as pronounced as London and Sydney.
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Figure 6: (a-b) Growth rate of running time against the number of keywords in the network. |K| denotes total number of keywords
(c) Variation in memory footprint against the network size and (d-f) number of keywords. (g) Comparison of the sizes of the skyline
subgraphs retrieved by SkyGraph and the optimal brute-force algorithm. (h) Comparison of running time of SkyGraph and the
optimal algorithm (i) Comparison of skyline subgraph sizes between SkyGraph and the modified k-MERGE-CLUSTER algorithm.
(j) Comparison of the running time of SkyGraph and k-MERGE-CLUSTER algorithm.

We next focus on the relationship between the total number of
keywords in a network to the running time. Figs. 6a, 6b show the
variation of running time with respect to the number of keywords
for various datasets.

To construct a road network containing X keywords, we ran-
domly select X keywords from the entire set; all remaining key-
words are deleted. Next, to grow to larger set of X + ∆ keywords,
we add an additional ∆ keywords while retaining the previous X
keywords. This procedure ensure that each larger set of keywords
is a superset of all the smaller sets of keywords.

As visible in Figs. 6a, 6b, for 5 query keywords the change in
querying time is minimal. For 10 query keywords, initially, the
running time decreases slightly, and then starts to increase again.
The reason is similar to our analysis of running time with growth
in network size. When the number of keywords is less, the clus-
ter returned by MERGE-CLUSTER are large and consequently, the
running time increases.

6.3 Memory Consumption
After thoroughly establishing the efficiency of the SkyGraph al-

gorithm, we next focus on analyzing its memory footprint. The
primary driving force behind memory consumption of SkyGraph
algorithm is the Partner Index. Note, that we also employ 2-hop la-
bel index structure [15] to index shortest path queries. In our next
set of experiments, we analyze the impact of these index structures
on the memory consumption.

First, we evaluate the growth rate of memory consumption
against the network size in the London, Sydney and California
datasets. Fig. 6c presents the results. The network size is increased
in the same manner as in our scalability experiments against the
network size (Fig. 5g). As expected the memory consumption in-
creases with network size. Our theoretical analysis in Sec 5.1.1
derives a O(nW ) storage complexity where n is the number of
nodes in the network and W is the number of unique keywords.
Consequently, the linear growth rate in the storage complexity of
partner index with respect to the network size is expected.

An interesting observation in Fig. 6c is that London consistently
consumes more memory than Sydney. This is due to the fact that
London has more number of keywords. Thus, the W factor in the
O(nW ) complexity of Partner Index drives up the storage cost of
London. With increase in network size, the number of keywords
in the network also increases. Consequently, the gap in the storage
of London and Sydney also increases. This behavior is more con-
cretely established in Fig. 6d and Fig. 6e, where we observe the ef-
fect of the number of keywords on memory consumption. Observe
that in California the proportion of memory consumption from 2-
hop index is much larger than London and Sydney(Fig. 6f). This
follows from the fact that keyword density in California is lower
than in urban regions such as London and Sydney.

6.4 Comparison with the Optimal
In this section, we compare the quality and running time of Sky-

Graph with the optimal algorithm of exponential computation cost.
Fig. 6g compares the size of the actual k-skyline to the subgraph
returned by SkyGraph. In other words, we empirically verify the
approximation quality of the proposed k-skyline subgraph algo-
rithm. Since computing the optimal k-skyline subgraph is NP-Hard
even on the smallest of networks, the running time is exorbitantly
high. Nonetheless, to obtain some intuition, we extract 10 sub-
graphs spanning 20 nodes from each of the four road networks
in Table 2 so that the optimal solution can be computed within 5
hours. The optimal technique does not scale for subgraphs of size
greater than 20 because the number of subgraphs is exponential in
the number of nodes in the road network graph. We observe that
SkyGraph is able to find a neighborhood that is within 1.25 times
the size of the optimal neighborhood for all query set sizes. The
ratio of the size of the neighborhood found by SkyGraph to that of
the optimal neighborhood increases with the increase in the num-
ber of query keywords covered. This result follows our theoretical
analysis where the approximation quality is expected to deteriorate
with increase in k. Nonetheless, this deterioration is mild.

Fig. 6h compares the running time to find all the skyline sub-
graphs covering 4 to 10 query keywords in different networks by
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the optimal algorithm to SkyGraph. Even in a small 20 node sub-
graph, SkyGraph is 5 orders of magnitude faster than the optimal
algorithm.

6.5 Varying Parameter k in Merge-Cluster
A question that we raised earlier in Sec. 6.4 was what if we try

to find the k-skyline subgraph by allowing the MERGE-CLUSTER
algorithm to run until k query keywords are discovered instead of
k/4. We call this modified MERGE-CLUSTER algorithm the k-
Merge-Cluster algorithm.

First, we compare the size of the k-skyline subgraphs retrieved
by MERGE-CLUSTER when we let it run till a coverage of k. Fig. 6i
presents the results. The value of k is varied from 5 to 10. For
the k-MERGE-CLUSTER algorithm, the average size of the skyline
subgraphs is slightly larger than the k/4 version used by SkyGraph.

While the quality is comparable for both versions of MERGE-
CLUSTER, a major difference is observed in their running times.
Fig. 6j presents the running time as the number of query keywords
grows. We observe that for both cities the k-MERGE-CLUSTER
algorithm is slower by up to 2 orders of magnitude.

In k-MERGE-CLUSTER, when trying to cover q query keywords,
as the coverage of a cluster Ci becomes k-1, to get the final query
keyword only one more unique query keyword is required. But
due to the coverage of the cluster being k-1, the denominator of
the ratio Eq. 6 that we are trying to minimize with respect to some
other clusterCj ,min{unique(Ci, Cj), unique(Cj , Ci)} tends to
become 0 as the cluster Ci contains all but 1 query keyword. This
leads to a high number of iterations in k-MERGE-CLUSTER where
clusters of coverage of 1 or 2 query keywords are merged, thereby
leading to increased running time.

6.6 Comparison with Existing Techniques
None of the existing techniques solve the skyline-subgraph prob-

lem in their native form. In this section, we explore possibilities of
adopting LCMSR [2], the closest technique to our problem, and
benchmark its performance. LCMSR [2] aims to find the smallest
region in the road network whose size in terms of the minimum
spanning tree is lesser that a user-given constraint and that best
matches the query keywords. LCMSR expands a region greedily
starting from a single node based on a preference function. The
preference function is a weighted linear combination of subgraph
size and coverage. µ is the weightage given to subgraph size and
1−µ is the weightage for coverage. At each step, LCMSR chooses
the node providing highest marginal gain. This process of expan-
sion continues till the size constraint is violated. We explore two
adaptations of the LCMSR query for our skyline subgraph problem.
• LCMSR-k: In contrast to our problem where we need to iden-

tify the smallest subgraph for each value of k (number of query
keywords covered), LCMSR aims to find the smallest subgraph
containing all query keywords. Thus, for a given set of query key-
words Q, we perform LCMSR queries for each possible subset of
k query keywords where k ∈ [1, |Q|]. LCMSR-k terminates when
the desired coverage is reached. Note, that LCMSR-k does not nec-
essarily find the smallest subgraph of coverage k. It is a heuristic
where the preference function guides the expansion strategy. We
set µ = 0.2 since LCMSR [2] reports best quality at this value.
• LCMSR-µ: In LCMSR, a small µ results in an expansion

strategy where coverage of keywords is of higher importance; a
larger µ puts more emphasis on keeping the subgraph size small.
Thus, instead of explicitly tuning k, we vary µ from 0.1, 0.2, . . . ,
1.0, resulting in 10 pre-defined preference functions. A subgraph
is returned for each value of µ, and we consolidate them to find the
smallest subgraph for each unique coverage value.

Fig. 7a shows the running times of LCMSR-k, LCMSR-µ and
SkyGraph against the number of query keywords in London and
Sydney. SkyGraph outperforms LCMSR-k and LCMSR-µ by up
to 3 orders and 2 orders of magnitude respectively. LCMSR-
k is expensive since the LCMSR query needs to be performed
on each possible subset of the query keywords. LCMSR-µ is
relatively faster, but still slower than SkyGraph, since for each
query, it needs to be run 10 times corresponding to each value of
µ ∈ [0.1, 0.2, · · · , 1].

As we mentioned earlier, the value of µ in LCMSR-k is set to
0.2 since to optimize quality. To investigate the impact of µ on
LCMSR-k, we compare its running time to SkyGraph across vari-
ous values in Fig. 7b. As can be seen, there is minimal variance
in the running time. This is consistent with results reported in
LCMSR [2].

Finally, we evaluate the quality of subgraphs returned by
LCMSR-k and LCMSR-µ. Fig. 7c shows the growth rate of sub-
graph size against keyword coverage. LCSMR keeps expanding
the neighbourhood till the required number of keywords are cov-
ered. When the number of query keywords to be covered is less,
the expansion stops early, whereas for higher number of query key-
words covered, the expansion continues longer, leading to larger
neighbourhoods Since LCMSR is not designed to identify skyline
subgraphs, even when adopted for our problem, the quality suffers.

6.7 Dimensions more than Two
Although we have considered only two dimensions to charac-

terize a neighborhood subgraph so far, additional dimensions such
as diameter, ratings, popularity, etc. can be easily incorporated
as well. We next show how diameter can be handled through our
framework.

When the diameter is added as the third dimension, we use dk,
the distance to kth farthest query keyword from root node u (line 3,
Algorithm 3), as the lower bound for the diameter of the k-skyline
instead of the bound obtained from the partner index. Fig. 7d shows
that we are able to report the skyline neighborhoods within a rea-
sonable running time of less than 16 seconds.

We also explore whether the diameter of the k-skyline provides
any additional information over the two features already used. To
this end, we take answers from 100 skyline neighborhood queries
and then generate two ranked lists by sorting the answers of each
query based on the diameter and its size. Then, we compute the
Spearman’s rank correlation coefficient between the lists. Fig. 7e
shows that the Spearman’s rank correlation coefficient varies be-
tween 0.89 and 0.93 for London and Sydney. This indicates that
diameter and size are correlated and adding diameter as the third
dimension may not be much useful.

The above results however should not be generalized to other
features (e.g., popularity, ratings) since each feature brings in their
own complexity issues and characteristics. Any comment on the
scalability and utility of additional dimensions can be made only
after a thorough investigation by incorporating each one of them.
We leave this aspect of our work as a future study.

7. RELATED WORK
Queries on geo-textual databases can be broadly classified into

the following two types.
Point of Interest (PoI) Queries: These queries retrieve a set
of PoIs, characterized by keywords and spatial attributes, from a
geo-textual database instead of a region. Some queries assume
a Boolean preference function for the keywords such as Boolean
range queries [12] and Boolean k-NN queries [5, 9], and require
all the query keywords to be covered. In k-NN queries [2, 7, 8], a
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Figure 7: (a) Comparison of the running time between SkyGraph and LCMSR. (b) Variation of running time against µ for LCMSR.
(c) Comparison of skyline subgraph sizes between SkyGraph and LCMSR. (d) Running time against number of query keywords for
3-dimensional skyline neighborhoods. (e) Average Spearman’s rank correlation between diameter and length of k-MST.

weighted preference function is used to assign a relative importance
between a distance function and a textual relevance function. Some
works [2, 3, 8, 9, 20, 25, 26] assume an underlying Euclidean space
while others assume a spatial network to estimate the cost of cov-
ering the query keywords more realistically [4, 6, 7, 22]. Recently,
Zheng et al. addressed the problem of learning the user’s prefer-
ence automatically in [28]. Our problem differs from these works
in that it finds a region, rather than a list of objects, that covers all
or a subset of the query keywords.
Region of Interest (RoI) Queries: Most of the papers dealing with
these queries assume the distance between two objects to be the
Euclidean distance. The m-closest keywords (mCK) query finds a
group of objects such that they cover all query keywords and have
the smallest diameter, which is defined as the largest distance be-
tween any pair of objects in the group [11, 25, 26]. The spatial
group keyword query (SGK) [3,20] is similar to the mCK query. In
addition to diameter, it also the considers the distance to a query
location in the preference function. The weakness of these queries
is that they return a region in the form of a geometric shape like
a circle or a rectangle and consider the underlying space to be Eu-
clidean. The road network distance between PoIs is a more accurate
measure. Cao et al. propose the length constrained maximum-sum
region (LCMSR) query that retrieves regions that are subgraphs of
a road network graph [4]. The query returns a minimum spanning
tree whose length is lesser than a size constraint given by a user
and that maximizes a tf-idf based coverage function based on the
number of query keywords in the region. However, this technique
assumes the knowledge of a preference function which constraints
the balance between relevance and neighborhood size. Our work
does not depend on such a preference function and, therefore, pro-
vides a more flexible solution. Technically, our problem reduces to
skyline subgraph queries in keyword-annotated graphs, a problem
that has not been solved earlier.

8. CONCLUSIONS
In this paper, we studied the problem of identifying the best

Region of Interest (RoI) for a given a set of user provided query
keywords. Two factors influence the quality of an RoI: its rele-
vance and size. While it is reasonable to assume that a smaller size
and higher relevance is always preferred, the relative importance of
these two factors vary from user to user. We propose a framework
called SkyGraph where the best RoI would be part of the answer
set regardless of the user’s preference function. This remarkable
property is achieved by leveraging the power of skyline subgraph
queries on keyword-embedded road networks. Since the problem is
NP-hard, we developed an approximation algorithm with provable
quality guarantees. To enable fast response times, SkyGraph was
boosted by an indexing technique called Partner Index. Extensive

experiments on large road networks established the efficiency and
efficacy of the proposed techniques.

9. REFERENCES
[1] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation

guarantees for minimum-weight k-trees and prize-collecting salesmen. In
STOC, pages 277–283, 1995.

[2] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant
spatial web objects. PVLDB, 3(1-2):373–384, 2010.

[3] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword
querying. In SIGMOD, pages 373–384. ACM, 2011.

[4] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving regions of interest for
user exploration. PVLDB, 7(9):733–744, 2014.

[5] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for processing
top-k spatial boolean queries. In SSDBM, pages 87–95. Springer, 2010.

[6] H.-J. Cho and C.-W. Chung. An efficient and scalable approach to cnn queries
in a road network. In PVLDB, pages 865–876. VLDB Endowment, 2005.

[7] H.-J. Cho, S. J. Kwon, and T.-S. Chung. Alps: an efficient algorithm for top-k
spatial preference search in road networks. Knowledge and Information
Systems, 42(3):599–631, 2015.

[8] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant
spatial web objects. PVLDB, 2(1):337–348, 2009.

[9] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In
ICDE, pages 656–665. IEEE, 2008.

[10] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In focs,
volume 96, pages 302–309, 1996.

[11] T. Guo, X. Cao, and G. Cong. Efficient algorithms for answering the m-closest
keywords query. In SIGMOD, pages 405–418. ACM, 2015.

[12] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (sk)
queries in geographic information retrieval (gir) systems. In SSDBM, pages
16–16. IEEE, 2007.

[13] H. Hu, D. L. Lee, and V. Lee. Distance indexing on road networks. In PVLDB,
pages 894–905. VLDB Endowment, 2006.

[14] H. Hu, D. L. Lee, and J. Xu. Fast nearest neighbor search on road networks. In
EDBT, pages 186–203. Springer, 2006.

[15] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu. Hop doubling label indexing
for point-to-point distance querying on scale-free networks. PVLDB,
7(12):1203–1214, 2014.

[16] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search for
spatial network databases. In VLDB, pages 840–851, 2004.

[17] K. C. Lee, W.-C. Lee, and B. Zheng. Fast object search on road networks. In
EDBT, pages 1018–1029. ACM, 2009.

[18] K. C. Lee, W.-C. Lee, B. Zheng, and Y. Tian. Road: A new spatial object search
framework for road networks. TKDE, 24(3):547–560, 2012.

[19] B. Liao, M. L. Yiu, Z. Gong, et al. Beyond millisecond latency nn search on
commodity machine. TKDE, 27(10):2618–2631, 2015.

[20] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective spatial
keyword queries: a distance owner-driven approach. In SIGMOD, pages
689–700. ACM, 2013.

[21] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial
network databases. In PVLDB, pages 802–813. VLDB Endowment, 2003.

[22] J. B. Rocha-Junior and K. Nørvåg. Top-k spatial keyword queries on road
networks. In EDBT, pages 168–179. ACM, 2012.

[23] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance
browsing in spatial databases. In SIGMOD, pages 43–54. ACM, 2008.

[24] S. Srivastava, S. Pande, and S. Ranu. Geo-social clustering of places from
check-in data. In ICDM, pages 985–990, 2015.

[25] D. Zhang, Y. M. Chee, A. Mondal, A. K. Tung, and M. Kitsuregawa. Keyword
search in spatial databases: Towards searching by document. In ICDE, pages
688–699. IEEE, 2009.

1392



[26] D. Zhang, B. C. Ooi, and A. K. Tung. Locating mapped resources in web 2.0. In
ICDE, pages 521–532. IEEE, 2010.

[27] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li.
Keyword-aware continuous knn query on road networks. In ICDE, pages
871–882. IEEE, 2016.

[28] K. Zheng, H. Su, B. Zheng, S. Shang, J. Xu, J. Liu, and X. Zhou. Interactive
top-k spatial keyword queries. In ICDE, pages 423–434. IEEE, 2015.

[29] R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient index for knn
search on road networks. In CIKM, pages 39–48. ACM, 2013.

APPENDIX
A Proof of Lemma 1

PROOF. Suppose, we merge two clusters Ci and Cj to form a
cluster C such that min{unique(Ci, Cj), unique(Cj , Ci)} = p.
Then, from Eq. 6,

d(Ci, Cj) = r ×min{unique(Ci, Cj), unique(Cj , Ci)}
≤ Rp since R ≥ r

In other words, there exists a path of length at most Rp between
Ci and Cj . Thus, if the sizes of Ci and Cj are Si and Sj respec-
tively, then size(C) ≤ Si + Sj + Rp. This follows from the fact
that we can create a spanning tree on C by simply merging the
MSTs on Ci and Cj through a path of length at most Rp. Since
initially all clusters are single nodes of size 0, the maximum size of
a cluster can be defined through the following recurrence.

Size(C0) = 0 (10)
Size(Cl) = 2× Size(Cl−1) +Rp (11)

Here, Cl denotes the maximum possible size of a cluster that
have undergone l merges. Solving this recurrence, we get

size(Cl) = (2l − 1)Rp (12)

For any Ci and Cj that are merged, min{unique(Ci, Cj),
unique(Cj , Ci)} is at least 1. Thus, there can be at most k/4
merges in any cluster provided by MERGE-CLUSTER. Therefore,
for a cluster of coverage p, the maximum size is (2k/4 − 1)Rp. �

B Proof of Lemma 2
PROOF BY CONTRADICTION. Assume that the above statement

is false. This means in some particular iteration of the MERGE-
CLUSTER algorithm, R > (8L log2 k)/k. We next perform two
tasks.
1. From the k-skyline subgraph OPT, in an arbitrary manner we

remove all duplicate occurrences of keywords. Note we only
delete the keyword and not the node. Following this operation,
no query keyword in OPT is present more than once. The size
of OPT remains unaffected.

2. Next, we extract all clusters that share at least one keyword node
with OPT. We denote this set of clusters by C.

3. Finally, we distribute clusters in C into log2 k buckets such
that bucket i contains all clusters where the number of key-
word nodes that overlap with OPT is in range (k/2i, k/2i+1],
i ≥ 2. Recall, that no cluster can exceed a coverage of k/4 in
the MERGE-CLUSTER algorithm. Thus, all overlapping clusters
would be restricted among the above buckets.

We observe that there must exist at least one bucket that contains
more than one cluster since if every bucket contains exactly one
cluster, then the maximum overlap with OPT achieved by merging
all these clusters is

∑∞
i=2 k/2

i < k/2. Thus, more than k/2 key-
words from OPT remain to be covered, which means there is at least
one bucket that has two clusters. Since we need to distribute more
than k/2 keywords among log2 k buckets, from pigeonhole prin-
ciple, there is at least one bucket with two clusters that has more

Figure 8: Illustration of the sub-optimality of Merge-Cluster.

than k
2 log2 k

keywords. Let us say that this bucket contains clus-
ters of overlap size in the range (2p, p]. In this bucket, the distance
between any two clusters d(Ci, Cj) ≥ Rp since both Ci and Cj
contains subgraphs C′i and C′j respectively that overlap with OPT
and unique(C′i, C

′
j) > p. This means that if we draw balls of ra-

dius Rp
2

around any two clusters in this bucket, these balls will not
overlap. Furthermore, since the maximum overlap with OPT of any
cluster is 2p, there are at least k

2 log2 k
÷ 2p clusters in this bucket.

The minimum length of OPT is the gap between all these clusters.
In other words,

L ≥ Rp

2
× k

2 log2 k
× 1

2p
(13)

or, R ≤ 8L log2 k

k
(14)

The above result contradicts our assumption. Hence, proved. �

C Why not run Merge-Cluster till k?

COROLLARY 3. Lemma 2 does not hold for k
4−ε , ε > 0.

PROOF: For any value, k
4−ε , ε > 0, point 3 in the proof of Lemma 2

is violated and hence it does not hold.
To understand how sub-optimal MERGE-CLUSTER can get if we

let it run till k, we derive the following theorem.

THEOREM 6. If we let Merge-Cluster run till k, in the worst
case, the subgraph returned is at least O( 2k

k
) times the size of the

optimal. In other words, the worst-case quality is O(f(n)), where
f(n) ∈ Ω( 2k

k
).

PROOF. Consider Fig. 8, which follows a generic pattern. First,
all nodes containing keyword ki is connected to all nodes con-
taining keyword kj where j > i. Second, all edges of the form
(ki, kj), j > i has distance 1+(i−1)ε, where ε is a small positive
number. Suppose the query contains the keywords {k1, k2, k3}.
The optimal answer is the subgraph spanning nodes {1, 2, 3} of
length≈ 2. However, the subgraph returned by MERGE-CLUSTER
if we let it run till k, which is 3 in this case, is {1, 2, 3, 4} of size
≈ 3. This follows from the fact that MERGE-CLUSTER would first
form clusters by joining all nodes containing k1 to their adjacent
nodes, followed by connecting k2 to nodes containing ki, i > 2
and so on. Let us now consider the query set {k1, k2, k3, k4}. In
this case, the optimal subgraph spans the nodes {1, 2, 3, 5} (high-
lighted in glowing red color) of size ≈ 3. In contrast, MERGE-
CLUSTER returns the entire graph in Fig. 8 resulting in a size of
≈ 7. When Fig. 8 is generalized for k keywords, the ratio of the
size of the subgraph returned by MERGE-CLUSTER to that of the
optimal grows at 2k−1−1

k−1
= O( 2k

k
).

While Theorem 6 provides a lower bound on the worst-case guar-
antee of MERGE-CLUSTER, it is not the worst-case guarantee it-
self. This is a limitation of our work, which requires further study.
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