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ABSTRACT
The minimum feedback arc set problem is an NP-hard prob-
lem on graphs that seeks a minimum set of arcs which, when
removed from the graph, leave it acyclic. In this work, we in-
vestigate several approximations for computing a minimum
feedback arc set with the goal of comparing the quality of the
solutions and the running times. Our investigation is mo-
tivated by applications in Social Network Analysis such as
misinformation removal and label propagation. We present
careful algorithmic engineering for multiple algorithms to
improve the scalability of each approach. In particular, two
approaches we optimize (one greedy and one randomized)
provide a nice balance between feedback arc set size and
running time complexity. We experimentally compare the
performance of a wide range of algorithms on a broad selec-
tion of large online networks including Twitter, LiveJournal,
and the Clueweb12 dataset. The experiments reveal that
our greedy and randomized implementations outperform the
other approaches by simultaneously computing a feedback
arc set of competitive size and scaling to web-scale graphs
with billions of vertices and tens of billions of arcs. Finally,
we extend the algorithms considered to the probabilistic case
in which arcs are realized with some fixed probability and
provide detailed experimental comparisons.

1. INTRODUCTION
Recently, numerous studies have been carried out on social

networks regarding the clearing or limiting of misinforma-
tion (cf. [10, 16, 27, 33]). For instance, [33] presents an
approximation algorithm for clearing misinformation from a
social network that models the network as a general directed
graph and hinges on the ability of making the input graph
acyclic first by placing guards on a subset of arcs. Here, it is
important to remove as few arcs as possible since such arcs
need to be guarded throughout the clearing process.

For another perspective on combating misinformation, [10]
considers the problem of influence limitation of a bad cam-
paign by selecting a set of seeds from where to start a good
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(limiting) campaign. This involves determining the eventual
influence of the nodes already infected by the bad campaign.
Unfortunately, computing influence is #P-hard. Nonethe-
less, if the network is a directed acyclic graph (DAG), then
as shown by [11], computing influence is linear-time solvable.
Here as well, placing guards on a subset of arcs, in effect
making the graph acyclic, allows for scalable solutions.

Another prominent area of study in Social Network Anal-
ysis that can benefit from the elimination of cycles is label
propagation [15]. The goal of label propagation is to con-
sider the labels held by a subset of users in the network and
attempt to predict the labels of the remaining users. This
prediction is useful in determining, for example, the polit-
ical leanings of users in the network or promising pairings
on a dating website. The label propagation technique of
choice is Belief Propagation (BP) [28] and it has also been
successfully applied in fraud and malware detection. Un-
fortunately, BP has known convergence problems in graphs
with cycles [15, 32] and the exact criteria for convergence is
not known [26]. As a result, alternative avenues to applying
BP directly have been explored in which an acyclic graph is
first obtained from the original network [3, 5].

Thus, for all these areas of research, having the ability
to produce acyclic graphs that very closely represent large
networks while minimizing the perturbation to the over-
all structure of the network would be highly advantageous.
This goal can be accomplished through the computation of
an appropriate feedback arc set (FAS).

A feedback arc set of a directed graph G is a subset of
arcs F of G such that removing F from G leaves an acyclic
graph. Equivalently, a feedback arc set contains at least one
arc from each cycle in G. The minimum feedback arc set
problem, a widely studied combinatorial optimization prob-
lem on graphs, seeks to minimize the size of the subset of
arcs F . The decision version of the FAS problem is shown to
be NP-complete in Karp’s seminal paper [17]. The problem
remains NP-hard on several subclasses of graphs including
tournaments [1] and Eulerian graphs [29]. Investigation into
approximation algorithms for the FAS problem [12, 14, 20]
in recent years has led to steady improvements; unfortu-
nately, the approaches that yield good approximation guar-
antees are unable to scale due to unfavorable running time
complexities.

Present day research continues to analyze datasets of in-
creasing size. This requires algorithms for computing solu-
tions to graph problems, such as FAS, to be able to scale to
handle massive input graphs. The ability to scale is most
relevant in social network analysis and web-related problems

133



where current datasets can reach billions of vertices and tens
of billions of arcs [7]. However, despite the importance of the
FAS problem and the many efforts devoted to studying it, a
complete and clear picture of the problem from an empirical
viewpoint still appears elusive with existing empirical stud-
ies being incomplete by only considering a restricted version
of the problem, for example [12], or not scaling the consid-
ered approaches to real graphs, such as [2, 9].

We carry out an extensive experimental comparison of
various algorithms for the FAS problem with runtime com-
plexity O(n2) or less that have not been compared before in
the literature on a full range of dataset sizes. The various
approaches we consider occupy the broad classes of sorting-
based, traversal-based, and randomized and fall into three
running time complexity classes: O(m+n), O(n logn), and
O(n2). In terms of scalability, we observe that it is the algo-
rithms in the O(m+ n) class that can handle graphs of bil-
lions of vertices and arcs. However, some algorithms needed
careful engineering to best be placed in a complexity class.
Our optimizations are discussed further in Section 2. In ad-
dition, we provide insights into the relative performance of
the various approaches and provide global graph properties
that indicate when the algorithms perform favourably.

Furthermore, we extend our work to the probabilistic case
in which arcs are realized with a fixed probability. We
adapt our optimized algorithms for the FAS problem to the
probabilistic case and conduct experiments on several large
datasets. We show that the expected number of arcs in a
FAS is usually a small fraction of the expected number of
total arcs in the graph.

Our goal is to significantly speed-up the computation of
a FAS and scale-up to massive graphs with tens of billions
of arcs. Furthermore, we would like to achieve this using
only a medium-range machine. In order to make the graph
footprint as small as possible, we used webgraph, a highly
efficient and actively maintained graph compression frame-
work [7].

In summary, the contributions of this paper are:

1. We present algorithmic engineering of several approaches
for computing a feedback arc set in order to improve
their scalability.

2. We present a thorough experimental study of the known
methods for computing feedback arc sets with the po-
tential to scale. For the comparison of these algo-
rithms, we focus on the parameters of running time
and feedback arc set size.

3. We provide insights into the relative performance of
the considered approaches and present global graph
properties that indicate when the algorithms perform
favourably.

4. We extend our optimized algorithms for the FAS prob-
lem to the probabilistic case and carry out further ex-
perimental comparisons.

The layout of this work is as follows. Section 2 details each
of the algorithms considered and outlines the optimizations
proposed. Section 3 presents our experimental results and
in Section 4 we offer a discussion of our results. In Section 5
we investigate the probabilistic case and Section 6 considers
related works. Finally, we conclude in section 7.

2. ALGORITHMS
In this section we outline the scalable approaches we con-

sider for the FAS problem. For a discussion of the various
approximations algorithms, refer to the related work in Sec-
tion 6. For most algorithms we provide pseudocode and give
the asymptotic running times. Furthermore, we discuss the
various optimizations we make to each algorithm.

The algorithm that produced the best FAS size for our
largest datasets, but whose running time needed care to
bring down to O(m + n), was GreedyFAS due to Eades,
Lin & Smyth [13]. A direct implementation of GreedyFAS
runs in O(n2) time, which is impractical for large social and
web networks since they are sparse graphs with m � n2.
To remedy this, we present an engineering of its data struc-
tures which brings its complexity to O(m+n), thus making
it scalable to the largest dataset we consider on tens of bil-
lion of arcs. Another algorithm we engineer is SortFAS of
Brandenburg & Hanauer [9]. A direct implementation of
it runs in O(n3) and we bring it down to O(n2) with our
optimized implementation. Finally, we also optimize a ran-
domized algorithm, BergerShorFAS, by Berger & Shor [4],
which computes a reasonably small FAS while running in
O(m+ n) time.

2.1 Graph Representation
We consider directed simple graphs, i.e. there are no self-

loops or multiple arcs. A graph G on n vertices and m
arcs has a vertex set V and arc set E. The vertices are
labelled 1 . . . n. Furthermore, due to the large size of the
datasets we consider, our graph data structure uses adja-
cency lists to maintain neighbour relationships. We make
use of the webgraph framework [7] which is a highly effi-
cient graph compression framework that allows accessing a
graph without fully decompressing it by providing only the
required components on the fly.

The data structure offered by webgraph is an immutable
graph. As such, all the vertex or arc removals in the consid-
ered algorithms are implemented as logical removals.

We will illustrate the algorithms using the graph shown
in Figure 1 on 8 vertices and 13 arcs. Observe that the
minimum FAS contains the single arc (3, 4).

1

2

3 4

5

6

7

8

Figure 1: An example graph with a minimum FAS of size 1.

2.2 Equivalent Formulations
The FAS problem has an equivalent formulation called the

Linear Arrangement (LA) problem. The LA problem takes
as input a directed graph G and outputs an ordering of the
vertices for which the number of arcs pointing backward
from right to left is a minimum. The backward arcs are
exactly those arcs that make up a FAS since removing them
from G leaves the graph acyclic. We make use of the LA
formulation for a subset of the approaches considered.

The dual of the FAS problem is the Maximum Acyclic
Subgraph (MAS) problem. The MAS problem takes as in-
put a directed graph G and returns the maximum acyclic
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δ(3)← δ(3)− 1

δ(5)← δ(5) + 1

δ(6)← δ(6) + 1

δ(7)← δ(7) + 1

Figure 2: Processing vertex 4 during the execution of Greedy-
FAS on the example graph.

subgraph of G. Thus, the arcs of G that do not appear in
the MAS solution are exactly the arcs that make up a min-
imum FAS for G. The SimpleFAS and BergerShorFAS (see
subsections 2.4 & 2.5) approaches are based on algorithms
for the MAS problem.

2.3 GreedyFAS
GreedyFAS was introduced by Eades, Lin & Smyth [13]

as an efficient approximation algorithm for the feedback arc
set problem. For each vertex u ∈ V , let d+(u) denote the
outdegree of u and d−(u) denote the indegree of u. In each
iteration of GreedyFAS, the algorithm removes vertices from
G that are sources or sinks followed by a vertex u for which
δ(u) = d+(u) − d−(u) is currently a maximum. If a vertex
u removed from G is a sink it is prepended to a vertex se-
quence s2, otherwise it is appended to a vertex sequence s1.
Once all the vertices of G have been removed, the sequence
s = s1s2 is returned as a linear arrangement for which the
backward arcs make up a feedback arc set. The pseudocode
for GreedyFAS is presented in Algorithm 1.

The intuition behind this approach is to greedily move all
the “sink-like” vertices to the right-side of the ordering and
all the “source-like” vertices to the left-side in an attempt
to minimize the number of arcs oriented from right to left.

As an illustrative example, consider the execution of Greedy-
FAS on the graph in Figure 1. Initially, there are no sinks
or sources so we remove the vertex u for which δ(u) is a
maximum: vertex 4. The vertex and its arcs are removed
from G and vertex 4 is appended to s1. After removing ver-
tex 4 from G a sink is created at vertex 3. As such, vertex
3 is removed from G and prepended to s2. Again, a new
sink is created at vertex 2. The process continues removing
vertices 1, 7, 5, 8, and finally 6 which are all prepended to
s2. The resulting sequence is s = s1s2 = [4, 6, 8, 5, 7, 1, 2, 3].
Thus, we can extract a feedback arc set of size 1 by observing
that this linear arrangement has only a single backward arc
from vertex 3 to 4. In Figure 2 we illustrate the execution
of GreedyFAS in its first iteration when processing vertex 4
in the example graph. We show in red and green the ver-
tices that have their δ value decremented and incremented,
respectively.

Eades, Lin & Smyth discuss the following implementation
details for their algorithm. To begin, it is convenient to
partition the vertices of G into sources, sinks, and δ-classes
as follows:

Vn−2 = {u ∈ V | d−(u) = 0; d+(u) > 0}
V−n+2 = {u ∈ V | d+(u) = 0}

Vd = {u ∈ V | d = δ(u); d+(u) > 0; d−(u) > 0}

Algorithm 1 GreedyFAS

Input: Input directed graph G = (V,E)
Output: Linear arrangement A
s1 ← ∅, s2 ← ∅
while G 6= ∅ do

while G contains a sink do
choose a sink u
s2 ← us2
G← G \ u

while G contains a source do
choose a source u
s1 ← s1u
G← G \ u

choose a vertex u for which δ(u) is a maximum
s1 ← s1u
G← G \ u

return s = s1s2

with d ∈ [−n + 3, n − 3]. Then, we can see that every
vertex u ∈ V falls into exactly one of these 2n−3 classes. For
a given directed graph G an initialization phase computes
these classes.

Each vertex class is implemented as a bin with the vertices
in each class linked together by a doubly-linked list. Then,
using the bins, we can recognize a sink, source, or vertex
u for which δ(u) is a maximum. Finally, consider how to
form G \ u. The vertex u itself can be logically removed
by eliminating it from its bin list. As a result, every vertex
v adjacent to u will either become a sink, a source, or an
element of an adjacent bin.

We optimized the GreedyFAS implementation into the
following two versions. In the first version, referred to as
dllFAS, we implement custom doubly-linked lists for the
bins in order to directly manipulate the list nodes and alle-
viate a bottleneck suffered by generic (library) lists. When
moving a vertex to an adjacent bin we must first delete the
vertex from its current list. In a generic list this deletion
requires a linear pass over the list to find the appropriate
list node to delete. Only then can we add the vertex to the
bin corresponding to its updated vertex class. In the worst
case, the size of a bin could be O(n). In order to facilitate
moving a vertex to an adjacent bin in O(1) time, we main-
tain an array containing each individual list node of every
vertex in G. As such, we are able to manipulate the node’s
previous and next node references directly and complete the
update efficiently regardless of the size of each bin.

In the second version, referred to as ArrayFAS, we do
away with the doubly-linked lists all together by maintaining
three flat arrays that mimic the behaviour of the lists. The
first array, bins, maintains the tail of bin i. That is, at
position i in array bins we store the vertex currently at the
tail of the doubly-linked list for bin i. The remaining two
arrays, prev and next, contain information regarding the
node references for the list node corresponding to vertex i.
That is, at position i in array prev (next) we store the index
of the vertex that is before (after) vertex i in i’s vertex class
bin. ArrayFAS aims to further reduce the space overhead
and initialization time required by GreedyFAS. By tightly
packing the data structure in flat arrays we allow for better
memory management and achieve more efficient execution.
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In conclusion, we analyze the complexity of forming G\u.
The vertex u itself can be logically removed in O(1) time by
eliminating it from its bin list. Then, the update for every
vertex v adjacent to u moving to an adjacent bin requires
O(1) time for each arc incident to u. As such, GreedyFAS
runs in time O(m + n) and uses O(m + n) space. It has
an approximation guarantee of 1

2
|E| − 1

6
|V | but we observe

in the experiments that the size of the FAS produced is
drastically smaller than the size suggested by the worst-case
bound.

2.3.1 GreedyAbsFAS
In [12] a variation of GreedyFAS was proposed in which

the greedy selection of a vertex is determined by the abso-
lute value of the degree difference, max(|d+(u) − d−(u)|),
and the vertex is treated as a sink or source depending on
whether the outdegree is greater than the indegree or vice
versa. Unlike our GreedyFAS implementation where only
the current maximum δ-class needs to be tracked, the im-
proved algorithm must maintain both the maximum and
minimum δ-classes that are currently occupied in order to
efficiently make successive greedy selections for vertex pro-
cessing. However, the approach did not offer a significant
performance improvement as the difference between the FAS
size computed by each approach was always less than 1%,
often much less.

2.4 SimpleFAS
SimpleFAS is based on a very simple 2-approximation al-

gorithm for the MAS problem. First, we fix an arbitrary
permutation P of the vertices of G. Then, we construct
two subgraphs L and R, containing the arcs (u, v) where
u < v in P and those where u > v in P , respectively. Af-
ter this construction, both L and R are acyclic subgraphs
of G, and at least one of them is at least half the size of
the maximum acyclic subgraph. Therefore, we can return
m − max(|L|, |R|) as the size of a feedback arc set for G.
The runtime complexity of SimpleFAS is O(m+ n).

2.5 BergerShorFAS
BergerShorFAS is based on an approximation algorithm

for the MAS problem due to Berger & Shor [4]. The algo-
rithm begins by choosing a random permutation P of the
vertices of G. Then, the vertices are processed in order ac-
cording to P as follows. When processed, if a vertex has
more incoming arcs than outgoing ones, the incoming arcs
are removed from the graph and added to a set E′ and the
outgoing arcs are removed from the graph and discarded. If
there are at least as many outgoing arcs as incoming arcs,
instead the outgoing arcs are added to E′ and the incom-
ing arcs are discarded and removed from G. When all the
vertices have been processed, G′ = (V,E′) is returned as an
acyclic subgraph. Therefore, the arcs from E \ E′ make up
a feedback arc set.

The intuition behind the above approach is as follows.
At each step, selecting either the incoming or the outgoing
arcs but not both ensures that the resulting graph is acyclic.
Moreover, choosing at each step the set of arcs of bigger size,
ensures that resulting acyclic graph has a large number of
edges.

This randomized approach runs in time O(m + n) and
produces an acyclic subgraph containing at least (1/2 +
Ω(1/

√
dmax))|E| arcs, where dmax is the maximum vertex

1
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E′ ← E′ ∪ {(1, 3), (2, 3), (8, 3)}

Figure 3: Processing vertex 3 during the execution of the Berger-
Shor algorithm on the example graph.

degree of G. In our experiments, BergerShorFAS far out-
performs the worst-case bound provided.

As an illustrative example, consider the execution of Berger-
Shor algorithm on the graph in Figure 1 with an initial or-
dering of [3, 6, 4, 8, 7, 1, 2, 5]. First, we process vertex 3 and
observe that it has one outgoing arc and three incoming arcs.
Thus, we add the incoming arcs (1, 3), (2, 3), and (8, 3) to
E′ before removing them and the outgoing arc (3, 4) from G.
Next, we process vertex 6 adding the arcs (6, 5) and (6, 8)
to E′. This process continues adding the arcs (4, 5), (4, 7),
(8, 2), (7, 1), and (1, 2) to E′. Finally, we can return the arcs
E \ E′ = [(3, 4), (4, 6), (5, 7)] as a feedback arc set of size 3.
In Figure 3 we illustrate the execution of the algorithm when
processing vertex 3 in the example graph G.

In Algorithm 2, we give BergerShorFAS, which adapts the
above algorithm to compute the feedback arc set, F , directly
without first computing E′. We do this because maintaining
E′ is more memory demanding than maintaining F .1

Algorithm 2 BergerShorFAS

Input: Input directed graph G = (V,E)
Output: A feedback arc set for G

Fix an arbitrary permutation P of the vertices of G
F ← ∅
for all vertices v processed in order based on P do

if inDegree(v) > outDegree(v) then
F ← F ∪ {(v, u) : u ∈ G.succ(v)}

else
F ← F ∪ {(u, v) : u ∈ G.pred(v)}

E ← E \ ({(v, u) : u ∈ G.succ(v)} ∪
{(u, v) : u ∈ G.pred(v)})

return F

Notice that the BergerShorFAS algorithm manipulates
the graph data structure during its execution by deleting
arcs. However, since we use the webgraph framework, our
graph data structure is in an immutable compressed state
and therefore we are unable to delete parts of the graph
in this way. Instead, we observe that in each iteration, all
the arcs going-to or leaving-from a vertex v are deleted. In
essence this amounts to deleting v itself. As such, in each
iteration, we label vertices as deleted, but do not physically
remove them from graph. We consider only those vertices
that have not been labelled as deleted in the execution of
the algorithm.

1In applications, once a feedback arc set F is computed,
using the webgraph API, we can generate a new immutable
compressed graph not containing the arcs in F in only a
single pass over the original graph G while consulting F .
This process needs memory mainly to hold F .
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Furthermore, instead of marking both vertices and arcs
as deleted, we only mark when a vertex is deleted and infer
if an arc is deleted by checking to see if either endpoint has
been labelled as deleted. In this way, we are able to achieve
an equivalence with only a single auxiliary data structure of
size O(n) as opposed to two data structures of size O(n) and
O(m), respectively, if we labelled arcs as well. We maintain
the status of a vertex, deleted or present, via a bit set to
minimize the space overhead.

2.6 dfsFAS
The hallmark algorithm for graph traversals, depth-first

search (DFS), can be used to compute a feedback arc set.
Removing all the back arcs of a depth-first traversal ensures
the resulting graph is acyclic. We follow the standard ver-
tex colouring approach to identifying the back arcs. The
runtime complexity of dfsFAS is O(m+ n).

Note, if the number of back arcs exceeds half the number
of arcs in G, we can instead return the complementary arcs
as a FAS since the back arcs of a DFS cannot contain a cycle.
Recall that in the DFS ordering a back arc points from a
vertex with a higher label to a smaller one. Therefore, by
transitivity, we cannot have a cycle among back arcs.

Observe that DFS has the ability to output a FAS as a
side effect of its execution, but at no point in the execution
does it make any intelligent decisions which act to minimize
the resulting FAS size.

2.7 KwikSortFAS
The KwikSortFAS heuristic, originally introduced by Ailon

et al. [1] as a 3-approximation algorithm for the FAS prob-
lem on tournaments, was later extended by Brandenburg &
Hanauer [9] as a heuristic for general directed graphs.

Brandenburg and Hanauer [9] extend several classical sort-
ing algorithms to heuristics for the FAS problem using the
underlying idea that the vertices of a directed graph G can
be treated as items to be sorted into a favourable linear ar-
rangement based on the number of back arcs induced. These
sorting-based approaches are applied to an initial linear ar-
rangement and output a sorted linear arrangement.

The motivation for KwikSortFAS is based on the classical
sorting algorithm Quicksort. The algorithm uses the 3-way
partition variant of Quicksort due to it being highly adap-
tive in the case of sorting with many equal keys. In our
application, two vertices without an arc connecting them
are treated as equal when making a comparison and thus
we have many equal items. Our implementation follows the
optimized version due to Sedgewick and Wayne [31] which
only uses O(logn) additional space.

The application of Quicksort to the vertices of G is im-
plemented as follows. Given a starting linear arrangement,
we move the vertices to the left or to the right relative to a
random pivot element based on whether there is an arc to
or from the pivot. The algorithm then proceeds recursively.
We put the pivot vertex and the vertices equal to it, with no
arc from or to the pivot, in the middle and recurse on the
left, middle, and right subsets. Note that unlike in the case
of sorting numbers, we need to recurse on the middle since
these vertices, though equal to the pivot, could have arcs
between them and hence may not be equal to each other.
When ties must be broken, in the case where the remaining
vertices are disconnected, their order is left unaltered. The
pseudocode for KwikSortFAS is presented in Algorithm 3.

1 2 3 4 5 6 7 8

3 1 2 4 8 5 6 7

L M R

Figure 4: Initial recursive step of KwikSortFAS on the example.

Algorithm 3 KwikSortFAS

Input: Linear arrangement A, vertex lo, vertex hi
if lo < hi then

lt← lo, gt← hi, i← lo
p← random pivot in range [lo, hi]
while i ≤ gt do

if arc (i, p) exists then
swap(lt, i)
lt← lt+ 1, i← i+ 1

else if arc (p, i) exists then
swap(i, gt)
gt← gt− 1

else
i← i+ 1

KwikSortFAS(A, lo, lt− 1)
if at least one swap was made then

KwikSortFAS(A, lt, gt)

KwikSortFAS(A, gt+ 1, hi)

As an illustrative example, consider the execution of Kwik-
SortFAS on the graph in Figure 1 with an initial ordering
of [1, 2, 3, 4, 5, 6, 7, 8]. In the first level of recursion we ran-
domly select vertex 4 as the pivot. This places vertex 3 to
the left, vertices 1, 2, 4, and 8 in the middle and vertices 5,
6, and 7 to the right. We show this step in Figure 4. Now
we recurse on each part.

The resulting sorted ordering after the recursive calls re-
turn is [3, 1, 8, 2, 4, 5, 6, 7]. Thus, we can extract a feedback
arc set of size 6 by observing that this linear arrangement
has six backward arcs.

The runtime complexity of O(n logn) for KwikSortFAS
assumes that arc membership can be tested in constant time,
i.e. when the graph is represented with an adjacency ma-
trix. However, given that our graph data structure uses an
adjacency list we must search the adjacency list in order to
test for the presence of an arc. Conveniently, the adjacency
list for each vertex is kept in sorted order and therefore we
can utilize a binary search to test for the presence of an arc
in G. With an adjacency list representation, the runtime
complexity becomes O(n logn log(dmax)) where dmax is the
maximum vertex degree in G.

Furthermore, since KwikSortFAS is randomized, each run
may yield a different result. To this end, as presented in [9],
we also consider KwikSort200FAS which runs KwikSortFAS
200 times on random initial linear arrangements and takes
the best result.

2.8 InsertionSortFAS
The Insertion Sort-based approaches are “monotone”, that

is they always output a linear arrangement with at most
the same number of backward arcs as the input linear ar-
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1 2 3 4 6 5 7 8

1 8 2 3 4 6 5 7

Figure 5: Iteration 8 of SortFAS on the example graph.

rangement and thus they can be applied repeatedly until
convergence. The resulting algorithms are indicated by *.

2.8.1 SortFAS
SortFAS is equivalent to sorting by insertion for the linear

arrangement problem. The vertices are processed in order
according to an ordering of the vertices, (v1 . . . vn). In the
i-th iteration vi is inserted at the optimal position among
the already sorted set of the first i − 1 vertices. In case of
a tie the leftmost position is taken. The optimal position is
defined as the position with the least number of backward
arcs induced by vi. Notice that only the arcs between vi and
the first i− 1 vertices are relevant in the i-th iteration.

As an illustrative example, consider the execution of Sort-
FAS on the graph in Figure 1 with an initial ordering of
[1, 2, 3, 4, 5, 6, 7, 8]. In the first iteration, the single vertex 1
is trivially sorted. In the second iteration, vertex 2 is in-
serted to the right of vertex 1, i.e. its position is unchanged,
as there is an arc from vertex 1 to 2 and thus swapping their
locations would induce a backward arc. This behaviour con-
tinues in iterations 3 through 5. Then, in iteration 6 we in-
sert vertex 6 in between vertices 4 and 5 as this placement in-
duces 0 backward arcs. In iteration 7 we again leave vertex 7
in place. Finally, in iteration 8, we insert vertex 8 in between
vertices 1 and 2 which reduces the number of backward arcs
induced from 2 to 1. The resulting sorted arrangement is
[1, 8, 2, 3, 4, 6, 5, 7]. Thus, we can extract a feedback arc set
of size 2 by observing that this linear arrangement has two
backward arcs: (7, 1) and (6, 8). In Figure 5 we show the
execution of SortFAS in iteration 8 to provide some insight
into the selection of the position that induces the least num-
ber of backward arcs. In this iteration, we see that vertex
8 in its original location induced two backward arcs, (8, 2)
and (8, 3) shown in red, and after it is inserted at position
2, it only induces a single backward arc, (6, 8).

Now, while the runtime of a traditional Insertion Sort is
O(n2), we must take care in the analysis when considering
sorting graph vertices. In particular, in a standard Insertion
Sort, we repeatedly compare the item at position i to the
left until a smaller value is reached. The comparison done at
each stage is typically a simple arithmetic operation, as in
the case of integer values, but requires more thought when
comparing two vertices in G. A naive approach is to consider
inserting vi at each of the possible i− 1 locations. However,
this would require a pass over the first i−1 vertices to count
the number of back arcs induced for each of the i−1 possible
locations. The resulting sum is

∑n
i=1(i− 1)2 ∈ O(n3).

Instead, we engineer a more sophisticated approach that
can identify the optimal location of vi using a single pass

over the i− 1 possible locations. We begin by initializing a
counter variable to zero. Then, for each possible location,
j, we determine if there is an arc from vi to vj and from vj
to vi. We increment, or decrement, the counter variable if
the arc from vi to vj , or vj to vi, is present, respectively.
This process assumes that vi and vj will swap locations and
keeps tracks via the counter variable whether or not any
current arcs between vi and vj would switch direction by
inserting vi at position j. For example, if there is currently a
backward arc from vi to vj then, if vi is inserted at position j,
the arc will become a forward arc. Thus, incrementing and
decrementing the counter variable indicates the potential
loss or gain of a backward arc. Therefore, we can identify the
minimum value achieved by the counter variable and record
the value of j for which this minimum was achieved to use as
the optimal location to insert vi at since the minimum value
of the counter variable corresponds to the location which
induces the least number of backward arcs. The pseudocode
for SortFAS is presented in Algorithm 4.

Algorithm 4 SortFAS

Input: Linear arrangement A
for all vertices v in A do

val← 0, min← 0, loc← position of v
for all positions j from loc− 1 down to 0 do

w ← vertex at position j
if arc (v, w) exists then

val← val − 1
else if arc (w, v) exists then

val← val + 1

if val ≤ min then
min← val, loc← j

insert v at position loc

The above implementation of SortFAS has a runtime com-
plexity of O(n2) under the assumption that arc membership
can be tested in constant time. With an adjacency list im-
plementation the runtime complexity of SortFAS becomes
O(n2 log(dmax)). Furthermore, SortFAS is monotone which
yields the additional algorithm SortFAS*.

2.8.2 SiftFAS
SiftFAS, similar to SortFAS, is equivalent to two-sided

Insertion Sort for the linear arrangement problem since we
can place a vertex v, not only in the first i − 1 positions,
but on either side of v’s current location. Here, in the i-
th iteration, vi is inserted at the optimal position across the
entire current linear arrangement and in the case of a tie the
leftmost position is taken. Additionally, the same technique
used for SortFAS to determine the optimal location to insert
vi can be utilized to ensure the running time is equivalent
to that of a traditional two-sided insertion sort.

SiftFAS also has a runtime complexity of O(n2) and is
monotone which yields the additional algorithm SiftFAS*.
Similiar to SortFAS, the runtime complexity given for Sift-
FAS assumes constant time arc testing. For an adjacency list
representation, the runtime complexity is O(n2 log(dmax)).

3. EXPERIMENTS
In this section, we present our experimental results. All of

our algorithms are implemented in Java (available at https:
//github.com/stamps/FAS) and tested on a machine with

138



dual 6 core 2.10GHz Intel Xeon CPUs, 32GB RAM and
running Ubuntu 14.04.2.

The network statistics for all of the datasets we consider
are shown in Table 1. We obtained the datasets from Lab-
oratory of Web Algorithmics.2 We divide the datasets by
horizontal lines according to their size, small (S), medium
(M), large (L), and extra-large (XL).

The algorithms are summarized in Table 2. The last col-
umn gives the sizes of the datasets that each algorithm can
handle. The SimpleFAS and dfsFAS approaches serve as
baseline algorithms in our experiments.

The measures of effectiveness in our experiments are the
FAS size defined as the number of arcs in a FAS output by a
particular algorithm and the algorithm efficiency measured
in running time. Our goal is to keep both parameters as
small as possible.

Name |V | |E| Size (Gb)

word assoc 10,617 72,172 0.235
enron 69,244 276,143 0.721
uk-2007 100,000 3,050,615 1.764
cnr-2000 325,557 3,216,152 3.328
uk-2002 18,520,486 298,113,762 220.945
arabic-2005 22,744,080 639,999,458 342.399
uk-2005 39,459,925 936,364,282 514.289
webbase-2001 118,142,155 1,019,903,190 1,207.959
twitter-2010 41,652,230 1,468,365,182 5,286.142
clueweb12 978,408,098 42,574,107,469 23,830.734

Table 1: Dataset Statistics

3.1 Small Datasets
The small datasets we consider are the word assoc net-

work with 10,617 vertices and 72,172 arcs, and the enron
dataset with 69,244 vertices and 276,143 arcs.

First, we plot the size of the FAS computed by each of
the algorithms considered in Figures 6a and 6b. We ob-
serve that dfsFAS, SimpleFAS, and the KwikSort-based al-
gorithms perform the worst compared to the rest of the al-
gorithms. GreedyFAS and Insertion Sort-based algorithms
perform well, with feedback arc sets in the range 17-25% for
word assoc and 12-20% for enron. Both SortFAS* and Sift-
FAS* required 4 iterations to converge. We see that even
though the best algorithm with respect to the size of FAS is
SortFAS*, GreedyFAS is very close. BergerShorFAS com-
puted a feedback arc set that was 25% and 17% of the size
of the network for word assoc and enron, respectively.

Second, we plot the runtimes achieved by each algorithm
in Figures 6c and 6d. Note that the runtime plots use a log-
arithmic scale, illustrating how much faster the non-sorting
based algorithms execute. Each of the sorting based al-
gorithms, with the exception of KwikSortFAS, required at
least 70 seconds to complete on the word assoc network.
The difference is even more severe on the enron network
where dfsFAS, SimpleFAS, BergerShorFAS, KwikSortFAS,
and GreedyFAS each complete in about 2 seconds followed
by a jump up to 257 seconds for KwikSort200FAS, 1,628
for SortFAS, 3,456 for SiftFAS, 6,847 seconds for SiftFAS*
with 2 iterations, and 8,429 seconds for SortFAS* with 5
iterations.

2http://law.di.unimi.it/datasets.php

In summary, on the small datasets, the feedback arc set of
minimum size was computed by SortFAS*, followed closely
by GreedyFAS. On the other hand, the latter was more than
one order of magnitude faster than the former. As such,
GreedyFAS provides simultaneously a good quality FAS and
a small running time.

3.2 Medium Datasets
The medium datasets we consider are the uk-2007 net-

work containing 100,000 vertices and 3,050,615 arcs and the
cnr-2000 network containing 325,557 vertices and 3,216,152
arcs. On the medium sized datasets, the SortFAS and Sift-
FAS algorithms and their converging versions fail to com-
plete in a reasonable amount of time and are therefore omit-
ted from the following plots.

First, we plot the size of the FAS computed by each of
the algorithms considered in Figures 7a and 7b. We see
that the dfsFAS, SimpleFAS, and the KwikSort based algo-
rithms perform the worst. For the uk-2007 network, dfsFAS
and SimpleFAS compute a feedback arc set in the range 47-
50% of the size of the network, while the KwikSort based
algorithms compute feedback arc sets in the range 24−26%.
In contrast, GreedyFAS and BergerShorFAS achieve impres-
sively small feedback arc sets of 10% and 13%, respectively.
We observe very similar results for the cnr-2000 network.

Second, we plot the runtimes achieved by each algorithm
in Figures 7c and 7d. Again, we employ a logarithmic scale
to best illustrate the substantial gap in runtimes among the
tested algorithms.

We observe that the KwikSort-based algorithms are from
one to several orders of magnitude slower than the non-
sorting-based algorithms. The latter all completed in un-
der 3 seconds on both networks with dfsFAS, SimpleFAS,
and BergerShorFAS each about a second quicker than the
GreedyFAS implementations.

In summary, on the medium datasets, as we move beyond
the capabilities of the Insertion Sort-based algorithms, we
observe the feedback arc set of minimum size being com-
puted by GreedyFAS, followed by BergerShorFAS. With re-
spect to runtimes, dfsFAS, SimpleFAS, and BergerShorFAS
narrowly beat GreedyFAS, with all algorithms running in a
very reasonable amount of time.

3.3 Large and Extra-Large Datasets
The largest, or web-scale, datasets we consider are uk-

2002, arabic-2005, uk-2005, webbase-2001, twitter-2010, and
clueweb12. On these datasets, the KwikSort-based algo-
rithms fail to complete in a reasonable amount of time and
are therefore omitted from the following plots, leaving us
with only those algorithms that run linear in the number of
arcs and vertices of the graph.

We plot the size of the FAS computed by each of the
algorithms considered in Figure 8 (left-half) and the run-
times achieved by each algorithm in Figure 8 (right-half).
On these datasets we observe a consistent trade-off between
running time and feedback arc set size. dfsFAS and Simple-
FAS complete the quickest across all the datasets, followed
closely by BergerShorFAS and then by GreedyFAS.

On clueweb12 because of its massive size, only the array-
based implementation of GreedyFAS could run with the
available memory.

GreedyFAS trades running time for feedback arc set qual-
ity. It outperforms all of the tested algorithms on every
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Algorithm Abbrev. Section Complexity Problem Type Dataset-Size

SortFAS Sort 2.8 O(n2) LA Sorting S
SortFAS* Sort* 2.8 O(n2) LA Sorting S
SiftFAS Sift 2.8 O(n2) LA Sorting S
SiftFAS* Sift* 2.8 O(n2) LA Sorting S
KwikSortFAS KS 2.7 O(n logn) LA Sorting S, M
KwikSortFAS200 KS200 2.7 O(n logn) LA Sorting S, M
GreedyFAS (dll) G-dll 2.3 O(m+ n) LA Greedy S, M, L
GreedyFAS (array) G-arr 2.3 O(m+ n) LA Greedy S, M, L, XL
SimpleFAS Simple 2.4 O(m+ n) MAS Randomized S, M, L, XL
BergerShorFAS BS 2.5 O(m+ n) MAS Randomized S, M, L, XL
dfsFAS DFS 2.6 O(m+ n) - Traversal S, M, L, XL

Table 2: Algorithms considered
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Figure 6: FAS size (left-half) and running time (right-half) for small datasets. The resulting FAS size is given as a percentage of the
total number of arcs in the corresponding graph.
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Figure 7: FAS size (left-half) and running time (right-half) for medium datasets. The resulting FAS size is given as a percentage of
the total number of arcs in the corresponding graph.

dataset with respect to the FAS size. The dfsFAS and Sim-
pleFAS algorithms produce unacceptably large feedback arc
sets that are approximately 50% of the size of the network
while GreedyFAS is around 15% on average. Furthermore,
GreedyFAS beats its closest competitor, BergerShorFAS, by
about 4%.

Remarkably, on clueweb12, a dataset of more than 42 bil-
lion arcs, GreedyFAS achieves an impressive 3.6% FAS size,
compared to BergerShorFAS with 16%. Being able to scale
greedyFAS to such an extra-large dataset is a significant
contribution of this paper.

4. DISCUSSION
In this section, we summarize and discuss the most im-

portant results of the presented experiments. In particular,
we provide insight into the expected and actual performance
of the algorithms both independently and relative to each
other.

First, we discuss when we expect each approach to per-
form well independently and provide global graph properties
that suggest when a particular approach will perform well.

Both the GreedyFAS and BergerShorFAS approaches ben-
efit when there are many source and sink-like vertices present
in G. Therefore, indication of when they will perform well
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Figure 8: FAS size (left-half) and running time (right-half) for large and extra-large datasets. The resulting FAS size is given as a
percentage of the total number of arcs in the corresponding graph.

can be extracted from the δ-values of the top-k vertices. Re-
call that during the execution of BegerShorFAS the vertices
are processed in a random order. However, since the top-
k vertices have such large neighbourhoods, we expect the
neighbourhood of a top-k vertex u when it is processed to
be similar to its initial neighbourhood. It is unlikely that
a significant fraction of u’s neighbours have been removed
from G by the time u is processed due to the sheer number
of them. Therefore, we can look at the δ-values of the top-k
vertices as an indication of whether or not a large number
of arcs will be added to the FAS from such vertices. Note
that for the networks considered, the top 1% of vertices by
degree comprise, on average, 60% of the arcs of the entire
network with a peak of 98% for twitter-2010. Thus, if the
δ-values for these vertices are favorable (|δ| � 0) then we
can expect a small fraction of the top-k vertices arc’s to be
included in the FAS. In Table 3 we show the percentage of
total arcs accounted for by the top 1% of vertices and the
distribution of their skews defined as the lesser of the inde-
gree and outdegree of a vertex u as a fraction of u’s total
degree. Note, a small skew corresponds to a large absolute
δ-value and a very source/sink-like vertex.

Unlike traditional numerical sorting problems, where there
is a total ordering on the data, a difficulty in applying sort-
ing techniques to the FAS problem is a lack of transitivity
which sorting algorithms are designed to exploit. In fact,
real-world networks are far from exhibiting a total ordering
because of their sparsity. Consider the KwikSortFAS algo-
rithm, in which the order of equal vertices is left unaltered.

We can expect that in sparse graphs there will be many
vertices determined to be equal in each iteration which can
lead to poor performance since large subsections of the or-
dering will not be modified in a meaningful way. This fact
is highlighted in Table 3 where the fraction of iterations of
KwikSortFAS for which the size of the equal items is greater
than 90% of the total vertices in G is presented.

Second, we will discuss how we expect the various ap-
proaches to perform relative to each other and compare this
to the experimental results.

As mentioned previously, BergerShorFAS and GreedyFAS
both function around δ-values, but GreedyFAS has a dis-
tinct advantage in that it updates the δ-values during ex-
ecution. This leads to better decision making by ensuring
the processing of the most sink and source-like vertices first.
Furthermore, notice that BergerShorFAS always adds some
number of arcs to the FAS for non-source/sink vertices. In
contrast, GreedyFAS has the potential to avoid adding arcs
to the FAS depending on the previous vertices added to the
vertex ordering. That is, GreedyFAS may append a non-
source/sink vertex u to the ordering for which all outgoing
arcs point to vertices to the right of u in the ordering and
all incoming arcs point to vertices to the left of u. Thus, we
expect GreedyFAS to outperform BergerShorFAS which is
exactly what we observe in our experiments.

In comparing GreedyFAS and the sorting-based approaches,
notice that GreedyFAS can be considered a 2-sided selec-
tion sort. However, GreedyFAS relies less on the transitiv-
ity property since it makes local greedy choices. Therefore,
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Name Ftopk s ≤ 0.1 s ∈ (0.1, 0.4) s ≥ 0.4 f ≤ 0.1 f ∈ (0.1, 0.4) f ≥ 0.4 L-|M |
word assoc 19.40 0.3208 0.6792 0.0 0.5402 0.3552 0.1348 0.4789
enron 74.30 0.3035 0.4682 0.2298 0.8577 0.0924 0.0557 0.5156
uk-2007 63.42 0.8250 0.1690 0.0060 0.5242 0.3730 0.1277 0.3750
cnr-2000 62.40 0.4104 0.3853 0.2061 0.3779 0.3590 0.3001 0.5059
uk-2002 60.98 0.7086 0.1664 0.1253 0.4088 0.4242 0.2048 -
arabic-2005 79.94 0.5414 0.1296 0.3292 0.4303 0.4359 0.1671 -
uk-2005 41.98 0.2748 0.4491 0.2769 0.3969 0.4238 0.2146 -
webbase-2001 60.16 0.5291 0.2749 0.1977 0.3846 0.3723 0.2872 -
twitter-2010 98.23 0.2049 0.3683 0.4271 0.3143 0.4365 0.2913 -
clueweb12 59.19 0.4920 0.3025 0.2058 0.5249 0.3675 0.1299 -

Table 3: Additional Dataset Statistics. The fraction (in %) of total arcs accounted for by the top-k vertices is given by Ftopk while the
skew of the top-k vertices is given by s. The fraction of vertices added to the FAS in each iteration of BS is given by f . Finally, L-|M |
represents the fraction of recursive iterations in KS that have |M | > 0.9n.

in sparse networks, we expect GreedyFAS to outperform the
other sorting-based approaches which happens to be the case
with the exception of the SortFAS* algorithm.

Finally, we investigated the effect of two graph properties
related to social networks: power-law degree distribution
and the small-world phenomenom. We constructed syn-
thetic networks using iGraph in the R programming lan-
guage on 10,000 vertices according to the preferential at-
tachment model [8] for power-law degree distribution and
the Watts-Strogatz model [34] for the small-world effect. In
the Watts-Strogatz model we vary the re-wiring probability
from 5−25% and observe a linear decrease in the size of the
FAS output by both GreedyFAS and BergerShorFAS. The
FAS computed by GreedyFAS ranges from 39 − 27% and
43− 36% for BergerShorFAS. Observe that such a decrease
lines up with our intuition since re-wiring leads to larger |δ|-
values for the vertices of G. In the preferential attachment
model we did not observe any meaningful difference across
a wide range of parameter values.

5. THE PROBABILISTIC CASE
Traditionally, much of the investigation into the FAS prob-

lem from the practitioner’s perspective has focused on the
unweighted case. However, large datasets often contain in-
formation that is uncertain (probabilistic) in nature. For
example, in large social networks, the arc probability may
denote the accuracy of a link prediction [25], or the influence
of one user on another, e.g., in viral marketing [19]. Un-
certainty can also be injected intentionally for obfuscating
the identity of users for privacy reasons [6]. Our confidence
in such relations is commonly quantified using probability,
and we say that the relation exists with a probability of ex-
istence p. In this section, we consider probabilistic graphs
(also called uncertain graphs), whose arcs are labeled with
a probability of existence. Probabilistic graphs have been
used extensively in modeling, for example, communication
networks, social networks, protein interaction networks, and
regulatory networks in biological systems.

More formally, let G = (V,E, p) be a probabilistic graph,
where p : E → [0, 1] is the function that assigns a probabil-
ity of existence to each arc e ∈ E. Following the literature
(cf. [22, 24]), we assume that the existence of different arcs
are mutually independent events. A probabilistic graph is a
probability distribution over 2m deterministic graphs, each
of which is a subgraph of the directed graph (V,E). The set
of possible deterministic graphs is called the set of “possible
worlds” of G. In a probabilistic graph, the expected number
of arcs in a possible world G = (V,EG) of G is given by

E(|EG|) =
∑

e∈E p(e). Thus, removing a feedback arc set
from a probabilistic graph G ensures that all possible worlds
of G will be acyclic with the exact weight associated with a
particular world’s feedback arc set depending on the exact
composition of arcs that are realized. Then, we can compute
the expected number of arcs in a FAS F as

∑
e∈F p(e).

5.1 Algorithms
We investigate adaptations of the most promising class

of algorithms from the previous section to apply to proba-
bilistic graphs since, to the best of our knowledge, there are
no specialized algorithms for the weighted feedback arc set
problem in the literature that run in linear time. We con-
sider thoseO(m+n) algorithms that present the opportunity
to take arc probabilities into consideration during execution.
For example, we do not consider SimpleFAS since it has no
opportunity to take actions based on arc probabilities. On
the other hand, we consider versions of the GreedyFAS and
BergerShorFAS algorithms for probabilistic graphs.

5.1.1 Probabilistic Greedy (pG)
Recall that in the standard GreedyFAS approach we com-

pute a delta class, δ(u), for each vertex u ∈ G. In the
unweighted case, by definition, δ(u) only takes on integer
values and therefore we have an exact expression for the
number of possible δ-classes. However, in the probabilistic
case, a natural extension to the original approach would be
to compute δ(u) as w+(u)−w−(u) where w+(u) and w−(u)
are the sum of the out and in-probabilities of u, respectively.
As such, δ(u) gives the expected difference of the outdegree
from the indegree of u.

Unfortunately, the above adaptation of δ(u) leads to the
set of possible δ-class values as being any real value in the
range [3−n, n− 3]. Instead, we introduce the concept of an
approximate δ-class where we maintain the exact δ(u) value
for each vertex u ∈ G, but place u in the approximate δ(u)-
class computed by bw+(u) − w−(u)c. Using the concept of
approximate δ-classes we are able to maintain the logic of
the original GreedyFAS. However, we must take care when
deleting a vertex v from G. In GreedyFAS, a neighbour v of
u has its δ-class incremented or decremented when forming
G\u, whereas in the probabilistic case we only move v to an
adjacent δ-class if the probability on the arc (u, v) changes
the exact δ(v) value enough to cross the threshold into a
different approximate δ-class.
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Figure 9: Expected FAS sizes (left-half) and running time (right-half) for probabilistic versions of algorithms. The resulting expected
FAS size is given as a percentage of the total number of expected arcs in the corresponding graph.

5.1.2 Probabilistic Berger-Shor (pBS)
The probabilistic version of BergerShorFAS follows a nat-

ural extension by altering its decision function for updating
set F to incorporate the probabilities on the arcs. Here,
when processing a vertex u, if the expected number of outgo-
ing arcs (as computed by the sum of probabilities of outgoing
arcs) is greater than or equal to the sum of the probabilites
of the incoming arcs, then the incoming arcs are removed
from G and added to F while the outgoing arcs are removed
from G and discarded. If the sum of the probabilities of
the incoming arcs is greater, instead the incoming arcs are
discarded and the outgoing arcs are added to F . After pro-
cessing each vertex, the arcs in F form a probabilistic FAS
in which the expected number of arcs for a possible world is∑

e∈F p(e).

5.2 Experiments
The measures of effectiveness in the probabilistic case are

expected FAS size defined as the expected number of arcs in
a FAS output by a particular probabilistic FAS algorithm
and the efficiency measured in running time, both of which
we aim to minimize.

Due to the increased storage size of a probabilistic graph
from the requirement of storing arc probabilities in addition
to the network structure, we consider the medium datasets
and a subset of the large datasets. We construct probabilis-
tic versions of the datasets by randomly assigning probabil-
ities in the range [0, 1] to the arcs of each graph. In Figure
9 (left-half) we plot the ratio of the expected size of the
FAS to the expected number of arcs in a possible world, i.e.
the sum of the probabilities of the FAS against the sum of
the probabilities of the arcs in the graph, while Figure 9
(right-half) shows the running times.

We observe that the adapted algorithms for GreedyFAS
and BergerShorFAS see an improvement in terms of the ex-
pected FAS size for several datasets compared to the un-
weighted case. For example, for GreedyFAS, the improve-
ment is around 8% (= 1 − 12/13) on cnr-2000 and arabic-
2005, 7% (= 1 − 15/16) on webbase-2001, and 6% (= 1 −
15/16) on uk-2005.

The additional information available leads to the algo-
rithms choosing feedback arc sets that contain low probabil-
ity arcs resulting in a smaller expected value.

6. RELATED WORK
Up until now, the theory community has focused on achiev-

ing the best possible approximation ratios for the FAS prob-
lem with less emphasis on the running time of the resulting
algorithms. The first approximation algorithm for the FAS
problem was given by Leighton and Rao [23] with an approx-
imation ratio of O(log2 n) by using an O(logn) approxima-
tion algorithm for balanced cuts. The authors appealed to
linear programming techniques to show that the problem can
be solved in polynomial time. This approach was improved
by Klein, Stein, & Tardos [21] to a O(m2 logm) expected
time randomized algorithm. The current best known ap-
proximation algorithm, due to [14], for computing the mini-
mum feedback arc set has a ratio O(logn log logn) and runs
in O(n2M(n) log2 n) time, where M(n) denotes the com-
plexity of matrix multiplication.

Recent work on the FAS problem has led to advances on
tournament graphs (see [12] for a survey). The restricted
problem admits a polynomial-time approximation scheme
due to Kenyon-Mathieu & Schudy [20]. Furthermore, a
subexponential fixed parameter algorithm for the weighted
version was given by Karpinski & Schudy [18].

A body of work also exists that investigates various heuris-
tics for computing a minimum feedback arc set. Saab [30]
provides a divide-and-conquer heuristic based on graph par-
titions and strongly connected components. However, the
costly subalgorithms required by this approach preclude it
from being considered in this paper. Finally, there are the
heuristics considered in this paper: GreedyFAS [13], Inser-
tionSortFAS & KwikSortFAS [9], and BergerShorFAS [4].

7. CONCLUSIONS
To conclude, we presented a thorough experimental inves-

tigation into the FAS problem. We presented highly opti-
mized implementations of GreedyFAS, BergerShorFAS, and
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the sorting-based heuristics. Within each of the three com-
plexity classes of algorithms we observe an overall trend
showing a trade off between scalability and quality. We
observe an approximate maximum scalability of 300K arcs
for the O(n2) algorithms, 3.5M arcs for the O(n logn) al-
gorithms, and 50B arcs for the O(m + n) algorithms. We
achieve approximate FAS sizes of 3-20%, 23-40%, and 11-
17% for the best algorithms of the O(m + n), O(n logn),
and O(n2) runtime categories, respectively. GreedyFAS and
BergerShorFAS provide the best balance between scalability
and quality. GreedyFAS is the algorithm that produces al-
ways either the smallest or a very close second smallest FAS
size while being a fast algorithm in general. In particular
our G-arr implementation scales to the biggest dataset we
consider, clueweb12, with more than 42 billion arcs.

In addition, we can look to the skew of the top-k ver-
tices as an indication of when the GreedyFAS and Berg-
erShorFAS algorithms are expected to perform favourably.
For the sorting-based approaches, we can use the sparsity of
G as an indication of the expected performance.
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