
Remember Where You Came From: On The Second-Order
Random Walk Based Proximity Measures

Yubao Wu, Yuchen Bian, Xiang Zhang
Department of Electrical Engineering and Computer Science, Case Western Reserve University

{yubao.wu, yuchen.bian, xiang.zhang}@case.edu

ABSTRACT
Measuring the proximity between different nodes is a fun-
damental problem in graph analysis. Random walk based
proximity measures have been shown to be effective and
widely used. Most existing random walk measures are based
on the first-order Markov model, i.e., they assume that the
next step of the random surfer only depends on the current
node. However, this assumption neither holds in many real-
life applications nor captures the clustering structure in the
graph. To address the limitation of the existing first-order
measures, in this paper, we study the second-order random
walk measures, which take the previously visited node in-
to consideration. While the existing first-order measures
are built on node-to-node transition probabilities, in the
second-order random walk, we need to consider the edge-
to-edge transition probabilities. Using incidence matrices,
we develop simple and elegant matrix representations for
the second-order proximity measures. A desirable property
of the developed measures is that they degenerate to their
original first-order forms when the effect of the previous
step is zero. We further develop Monte Carlo methods to
efficiently compute the second-order measures and provide
theoretical performance guarantees. Experimental results
show that in a variety of applications, the second-order mea-
sures can dramatically improve the performance compared
to their first-order counterparts.

1. INTRODUCTION
A fundamental problem in graph analysis is to measure

the proximity (or closeness) between different nodes. It
serves as the basis of many advanced tasks such as ranking
and querying [22, 25, 11, 27], community detection [2, 26],
link prediction [21, 19], and graph-based semi-supervised
learning [29, 28].

Designing effective proximity measures is a challenging
task. The simplest notation of proximity is based on the
shortest path or the network flow between two nodes [6].
Random walk based measures have recently been shown to
be effective and widely used in various applications. The ba-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 1
Copyright 2016 VLDB Endowment 2150-8097/16/09.

smart phone flight
Figure 1: An example of the web domain graph

sic idea is to allow a surfer to randomly explore the graph.
The probabilities of the nodes being visited by the random
surfer are used to measure the importance of the nodes or
the similarity between different nodes. The most commonly
used random walk based proximity measures include PageR-
ank [22], random walk with restart [25], and SimRank [11].

Most existing random walk measures are based on the
first-order Markov model [15], i.e., they assume the next
node to be visited only depends on the current node and is
independent of the previous step. However, this assumption
does not hold in many real-life applications. For example,
consider the clickstream data which records the sequences
of web domains visited by individual users [3]. The existing
first-order random walk measures assume that the next page
a user will visit only depends on the current page and is
independent on the previous page the user has visited. This
is clearly not true.

Figure 1 shows a subgraph of the real-life web domain
graph1[17]. Each node in the graph represents a domain, and
two domains share an edge if there are hyperlinks between
them. The domains in the graph form two communities.
The domains in the left community are about smart phones,
and those in the right community are about flights. Suppose
the random surfer is currently on google.com and the previ-
ously visited node is apple.com, i.e., the surfer came from the
smart phone community. The existing first-order random
walk measures do not consider where the surfer came from
and the transition probability only depends on the edges in-
cident to the current node. Based on this assumption and
the graph topology, in the next step, the probabilities to visit
att.com and delta.com are 2.4×10 5 and 3.1×10 5 respec-
tively. That is, the surfer has a higher probability to visit
a domain about flight even though she just visited a smart
phone domain. However, using the real-life clickstream data
(collected from comScore Inc.), given that the previous node
is apple.com, the probabilities to visit att.com and delta.com
are 8.5×10 4 and 3.7×10 6 respectively. That is, the proba-
bility to visit a smart phone domain is more than 200 times
higher than the probability to visit a flight domain.

1
The entire graph is publicly available at http://webdatacommons.org

13

basketball football

Figure 2: An example of the Twitter follower network

Figure 3: An example of the research collaboration network

As another example, consider the Twitter follower net-
work. Figure 2 shows a subgraph of the real Twitter follower
network. The users form two communities, the basketball
community on the left and the football community on the
right. If the NBA player LeBron James (@KingJames) posts
a tweet, it is likely to be propagated among the users in the
basketball community instead of the football community.
Similarly, if the Pittsburgh Steelers (@steelers) post a tweet,
it is likely to be propagated in the football community.
The real tweet cascade data supports this intuition: given
that the tweet is from @KingJames, the transition prob-
abilities from @espn to @NBA and from @espn to @NFL
are 5.6× 10 2 and 2.1× 10 4 respectively. However, using
the first-order random walk, the transition probabilities are
both 4.5× 10 3. That is, the probabilities to go to both
communities are similar.

In the examples above, the visiting sequences are recorded
in the network flow data. When such data is not available, it
is still important to know where the surfer came from. Con-
sider the local community detection problem, whose goal
is to find a community nearby a given query node [2, 26].
Using the DBLP data2, Figure 3 shows three different re-
search communities involving Prof. Jiawei Han at UIUC.
The authors in the left community are senior researchers in
the core data mining research areas. The authors in the up-
per right community have published many works on social
media mining. The authors in the lower right community
mostly collaborate on information retrieval. Suppose that
the random surfer came from the left community, e.g., from
Prof. Wei Wang, and is currently at node Prof. Jiawei Han.
Intuitively, in the next step, the surfer should walk to a node
in the left community, since the authors in this communi-
ty are more similar to Prof. Wei Wang. However, using
the first-order random walk model, the probabilities of the
surfer walking into the three communities are similar.

To address the limitation of the existing first-order ran-
dom walk based proximity measures, in this paper, we inves-
tigate the second-order random walk measures, which take
the previously visited node into consideration. We systemat-
ically study the theoretical foundations of the second-order
measures. Specifically, the existing first-order measures are
all built on the node-to-node transition probabilities, which
can be defined using the adjacency matrix of the graph.
To take the previous step into consideration, in the second-
order random walk, we need to consider edge-to-edge tran-

2
The data is publicly available at http://dblp.uni-trier.de/xml/

sition probabilities. We show that such probabilities can
be conveniently represented by incidence matrices of the
graph [15]. Based on these mathematical tools, we develop
simple and elegant matrix representations for the second-
order measures including PageRank [22], random walk with
restart [25], SimRank [11], and SimRank* [27], which are
among the most widely used proximity measures. A de-
sirable property of the developed second-order measures is
that they can degenerate to their original first-order forms
when the effect of the previous step is zero. Furthermore,
to efficiently compute the second-order measures, we design
Monte Carlo algorithms, which effectively simulate paths of
the random surfer and estimate proximity values. We for-
mally prove that the estimated proximity value is sharply
concentrated around the exact value and converges to the
exact value when the sample size is large. We perform exten-
sive experiments to evaluate the effectiveness of the devel-
oped second-order measures and the efficiency of the Monte
Carlo algorithms using both real and synthetic networks.

2. RELATED WORK
In the first-order random walk, a random surfer explores

the graph according to the node-to-node transition prob-
abilities determined by the graph topology. If the random
walk on the graph is irreducible and aperiodic, there is a sta-
tionary probability for visiting each node [15]. Various ran-
dom walk based proximity measures have been developed,
among which PageRank [22], random walk with restart [25],
SimRank [11], and SimRank* [27] have gained significant
popularity and been extensively studied. In PageRank, in
addition to following the transition probability, at each time
point, the surfer also has a constant probability to jump to
any node in the graph. Random walk with restart is the
query biased version of PageRank: at each time point, the
surfer has a constant probability to jump to the query n-
ode. SimRank is based on the intuition that two nodes are
similar if their neighbors are similar. The SimRank value
between two nodes measures the expected number of step-
s required before two surfers, one starting from each node,
meet at the same node if they walk in lock-step. SimRank*
is a variant of SimRank, which allows the two surfers not to
walk in lock-step.

Very limited work has been done on the second-order ran-
dom walk measure. In [24], the authors study memory-
based PageRank, which considers the previously visited
node. However, the developed measure does not degenerate
to the original PageRank when the effect from the previous
node is zero. Along the same line, multilinear PageRank
[9] also tries to generalize PageRank to the second-order.
It approximates the probability of visiting an edge by the
product of the probabilities of visiting its two end nodes.
This may not be reasonable, e.g., the probability of visit-
ing a nonexistent edge would be non-zero. Both methods
are specifically designed for PageRank and do not apply to
other measures.

3. THE SECOND-ORDER RANDOM WALK
In this section, we study the foundation of the second-

order random walk. The first-order random walk is based on
node-to-node transition probabilities. In the second-order
random walk, we need to consider edge-to-edge transition

14

Table 1: Main symbols

symbols definitions

G(V,E) directed graph Gwith node set V and edge set E

Ii , Oi set of in-/out-neighbor nodes of node i

n,m,σ number of nodes; number of edges; σ=
∑
i∈V |Ii| · |Oi|

B n×m incidence matrix, [B]i,u=1 : u is an out-edge of i

E m×n incidence matrix, [E]u,i=1 : u is an in-edge of i

wi,j , wi weight of edge (i, j); out-degree of i : wi=
∑
j∈Oiwi,j

W m×m diagonal matrix, [W]u,u=wi,j if edge u=(i, j)

D n×n diagonal matrix, [D]i,i=wi
pi,j transition probability from node i to j

pi,j,k transition prob. from j to k if the surfer came from i

pu,v transition prob. from edge u to v, p(i,j),(j,k) =pi,j,k

P n×n node-to-node transition matrix, [P]i,j=pi,j

H n×m node-to-edge transition matrix, [H]i,(i,j) =pi,j

M m×m edge-to-edge transition matrix, [M]u,v=pu,v
ri,j , ri ri,j : proximity value of node i w.r.t. node j; ri=ri,q

r,R r : n×1 vector, ri=ri; R : n×nmatrix, [R]i,j=ri,j
su, s(i,j) proximity value of edge u or (i, j) w.r.t. query node q

su,v proximity value between edges u and v

s,S s :m×1 vector, su=su; S :m×m matrix, [S]u,v=su,v

(a) a toy graph (b) the line graph

Figure 4: An example graph and its line graph

probabilities. The main symbols used in this paper and
their definitions are listed in Table 1.

3.1 The Edge-to-Edge Transition Probability
Consider the first-order random walk, where a surfer walks

from node i to j with probability pi,j . Let Xt be a random
variable representing the node visited by the surfer at time
point t. The node-to-node transition probability pi,j can be
represented as a conditional probability P[Xt = j|Xt 1 = i].
Let rtj = P[Xt = j] represent the probability of the surfer

visiting node j at time t. We have rtj =
∑
i∈Ij pi,j · r

t 1
i ,

where Ij is the set of in-neighbors of j.
Now consider the second-order random walk. We need to

consider where the surfer came from, i.e., the node visited
before the current node. We use pi,j,k to represent the tran-
sition probability from node j to k given that the previous
step was from node i to j, i.e., pi,j,k = P[Xt 1 = k|Xt 1 = i,
Xt=j] = P[Xt=j,Xt 1 =k|Xt 1 = i,Xt=j].

Let Yt = (i, j) represent the joint event (Xt 1 = i,Xt = j),
i.e., the surfer is at node i at time (t−1) and at node j at
time t. Then, the second-order transition probability can
be written as pi,j,k=P[Yt 1 =(j,k)|Yt=(i, j)], which can be
interpreted as the transition probability between edges: let
u=(i, j) be the edge from node i to j, and v=(j,k) be the
edge from node j to k, we can rewrite pi,j,k as pu,v.

Probability pi,j,k can be treated as the node-to-node tran-
sition probability in the line graph of the original graph. For
example, Figures 4(a) and 4(b) show an example graph and
its line graph. The second-order transition probability p4,2,1

in Figure 4(a) is the same as the first-order transition prob-
ability pe,b in Figure 4(b).

Let st(i,j) =P[Yt=(i, j)] denote the probability of visiting
edge (i, j) between time (t−1) and t. We have that

st 1
(j,k) =

∑
i∈Ij pi,j,k ·s

t
(i,j)

In the following, we introduce incidence matrices, which
will be used as building blocks in the second-order random
walk measures.

3.2 Incidence Matrices as the Basic Tool
A graph can be represented by its adjacency matrix A,

whose element [A]i,j represents the weight of edge (i, j).
Let D denote the diagonal matrix with [D]i,i being the out-
degree of node i. In the first-order random walk, the node-
to-node transition matrix can be represented as P=D 1A.
In the second-order random walk, instead of using the adja-
cency matrix, we will use incidence matrices [15].

The incidence matrices B and E represent the out-edges
and in-edges of the nodes respectively. In matrix B, each
row represents a node and each column represents an edge.
In matrix E, each row represents an edge and each column
represents a node. The elements in matrices B and E are
defined as follows.

[B]i,u=

{
1 , if edge u is an out-edge of node i ,
0 , otherwise .

[E]u,i =

{
1 , if edge u is an in-edge of node i ,
0 , otherwise .

For example, the incidence matrices of the graph in Figure
4(a) are

B=

a b c d e f
1
2
3
4
5

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]
, and E =

a b c d e f
1
2
3
4
5

[
0 1 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

]
.

Note that in the above definitions, the orders of nodes and
edges are consistent in B and E.

The incidence matrices can be conveniently used to re-
construct other commonly used matrices in graph analytics.
For example, let W be a diagonal matrix with [W]u,u be-
ing the weight of edge u, then the adjacency matrix can be
represented by the incidence matrices as A=BWE. The
out-degree matrix D can be represented as D=BWB .

Let H denote the node-to-edge transition probability ma-
trix, with [H]i,u representing the probability that the surfer
will go through an out-edge u of node i, i.e.,

[H]i,u=

{
wu/wi , if edge u is an out-edge of node i ,
0 , otherwise ,

where wu is the weight of edge u, and wi is the out-degree
of node i. H can be represented using incidence matrices
as H=D 1BW. The node-to-node transition probability
matrix can then be represented as P=HE .

3.3 Obtaining Edge Transition Probabilities
In the first-order random walk, the element pi,j in the

node-to-node transition matrix P is calculated as pi,j=
wi,j

wi
,

where wi,j and wi are the weight of edge (i, j) and out-degree
of node i respectively.

In the second-order random walk, we use M to represent
the edge-to-edge transition matrix, with element pu,v=pi,j,k,
where u=(i, j) and v=(j,k). Next, we discuss two different
ways to obtain the edge-to-edge transition probability.

Utilizing Network Flow Data: In many applications, the
information on the node visiting sequences is available. For

15

example, as discussed in Section 1, we may know the se-
quences of web domains browsed by different users, or we
may have the tweet cascade information. In this case, we
can break each sequence into trigrams, i.e., segments con-
sisting of two consecutive edges [24]. For example, sequence
i→j→k→ l can be broken into two trigrams, i→j→k and
j→k→ l.

To obtain the second-order transition probability, recall
that pi,j,k is the conditional probability of visiting edge (j,k)
given that the previously visited edge is (i, j). Let γi,j,k be
the number of trigrams i→j→k. pi,j,k can be calculated as

pi,j,k=
γi,j,k∑
l∈Oj

γi,j,l
,

where Oj is the set of out-neighbor nodes of j. That is, pi,j,k
is the proportion of i→ j→k trigrams in all trigrams with
(i, j) being the first edge.

When the network flow data is not available, we can use
the following approach to obtain pi,j,k .

Autoregressive Model : By taking the previous step in-
to consideration, the autoregressive model calculates the
second-order transition probability as follows [23]

pi,j,k=
pi,j,k∑
l∈Oj

pi,j,l
,

where pi,j,k=(1−α)pj,k+αpi,k. The parameter α (0≤α<1)
is a constant to control the strength of effect from the pre-
vious step. If α= 0, the second-order transition probabili-
ty degenerates to the first-order transition probability, i.e.,
pi,j,k=pj,k .

The edge-to-edge transition matrix M based on the au-
toregressive model can be represented using incidence ma-
trices. Let

M′ = (1−α)EH + α(EB)�(B PE) ,

where � denotes the Hadamard (entry-wise) product. Then
M is the row normalized M′ such that

∑
v pu,v=1. If α=0,

it degenerates to the first-order form and we have M=EH .

Note that in addition to the two methods discussed above,
other methods, such as calculating the edge similarity based
on the line graph [20], can also be applied to calculate the
edge-to-edge transition probability. In this paper, we only
focus on the two methods discussed here.

3.4 Matrix Form
Next we represent the second-order random walk in its

matrix form. Let st denote the edge visiting probability
vector between time points (t−1) and t, i.e., stu=st(i,j) (u=
(i, j)). We have

st 1 = M st .

If M is primitive, st converges according to the Perron-
Frobenius theorem [15]. Let s= limt→∞st denote the edge
stationary probability. After having s, the node stationary
probability is simply the sum of all in-edge stationary prob-
abilities, i.e., r=E s .

In the following, we show how to generalize the commonly
used proximity measures to their second-order forms. Ta-
ble 2 summarizes recursive equations of these measures in
their first-order and second-order forms. In the table, RW,
PR, RR, SR, and SS are shorthand notations for random
walk, PageRank, random walk with restart, SimRank, and
SimRank* respectively.

Table 2: Recursive equations of various measures

first-order second-order

RW r=P r
s=M s

r=E s

PR r=cP r+(1− c)1/n
s=cM s+(1− c)H 1/n

r=cE s+(1− c)1/n

RR r=cP r+(1− c)q
s=cM s+(1− c)H q

r=cE s+(1− c)q

SR R=cPRP +(1− c)I
S=cMSM +(1− c)EE

R=cHSH +(1− c)I

SS R= c
2

(PR+RP)+(1−c)I

S= c
2

(MS+SM)+(1− c)EE

R′= c
2
MR′+ c

2
SH +(1− c)E

R= c
2

(HR′+(R′) H)+(1−c)I

(a) first-order (b) second-order

Figure 5: The jumping process in PageRank

4. THE SECOND-ORDER PAGERANK
In the first-order PageRank, the surfer has a probability

of c to follow the node-to-node transition probabilities, and
a probability of (1−c) to randomly jump to any node in the
graph. Figure 5(a) illustrates the jumping process.

The matrix form of the first-order PageRank is r=cP r +
(1− c)1/n , where r is the node visiting probability vector,
P is the node-to-node transition matrix, and 1 is a vector
of all 1’s.

Similarly, in the second-order PageRank, the surfer has a
probability of c to follow the edge-to-edge transition prob-
abilities, and a probability of (1− c) to randomly jump to
any node in the graph. Its matrix form can be written as
st 1 =cM st+(1−c)v, where v is the vector corresponding
to the jumping process. To determine v, we consider the
jumping process in further details.

Figure 5(b) shows the jumping process in the second-order
PageRank. At time point (t−1), starting from node i, with
probability c, the surfer first visits node j and then k by
following the second-order transition probability pi,j,k, and
with probability (1− c), the surfer randomly jumps to any
node x first and then visits node y. After jumping, the
effect of the previous step is lost, thus pi,x,y = px,y, which
is the first-order transition probability. Since the sum of
probabilities to jump to node x is (1−c)/n, the probability
of visiting edge (x,y) between time points t and (t+1) is
(1− c)px,y/n. Thus we have v = H 1/n, where H is the
node-to-edge transition matrix introduced in Section 3.2.
Finally, we have

st 1 = cM st +(1−c)H 1/n .

Theorem 1. In the second-order PageRank, if the out-
degree of every node is non-zero, there is a unique edge
stationary distribution, i.e., limt→∞ s

t
u = su, where su is a

constant.

Proof. Since the probability distribution vector st sums
to 1, i.e., 1 st=1, we have

st 1 =
(
cM + (1−c)

n H 1n×m
)
st ,

16

where 1n×m is an n×m matrix of all 1’s. The matrix T=
cM + (1−c)

n H 1n×m is primitive since T is irreducible and
has positive diagonal elements [15]. Since the out-degree of
every node is non-zero, every column of T sums to 1. Thus,
1 is an eigenvalue of T. By the Perron-Frobenius theorem
[15], there is a unique edge stationary distribution and the
power method converges.

The node stationary distribution r can be obtained from
the edge stationary distribution s. The stationary probabil-
ity of node i equals c times the sum of the edge stationary
probabilities on the in-edges of i, plus an additional jumping
probability (1−c)/n. The formula of r is given in Table 2.

Random walk with restart is the query biased version of
PageRank. In random walk with restart, instead of jumping
to every node uniformly, the surfer jumps to the given query
node q. Thus, for random walk with restart, the jumping
vector is v=H q, where qq=1, and qi=0 if i 6=q.

The developed second-order PageRank and random walk
with restart degenerate to their original first-order forms
when the second-order transition probability is the same as
the first-order transition probability, i.e., when pi,j,k=pj,k .
Please see Appendix A [1] for the proofs.

5. THE SECOND-ORDER SIMRANK
In SimRank, the random walk process involves two ran-

dom surfers [11]. Next, we first give the preliminary of Sim-
Rank and discuss its representation based on meeting paths.

5.1 SimRank and Meeting Paths
The intuition behind SimRank is that two nodes are sim-

ilar if their in-neighbors are also similar. Let ri,j denote the
SimRank proximity value between nodes i and j. SimRank
is defined as

ri,j =

{
1 , if i=j ,

c
|Ii|·|Ij |

∑
k∈Ii

∑
l∈Ij rk,l , if i 6=j ,

where Ii denotes the set of in-neighbors of node i, and c∈
(0,1) is a constant.

The SimRank value ri,j measures the expected number of
steps required before two surfers, one starting at node i and
the other at node j, meet at the same node if they randomly
walk backward, i.e., from a node to one of its in-neighbor
nodes, in lock-step [11].

Since walking backward is counter-intuitive, in the follow-
ing, we study SimRank in the reverse graph, which is ob-
tained by reversing the direction of every edge in the original
graph. In the reverse graph, the two random surfers walk
forward to a meeting node, and SimRank can be defined as

ri,j =

{
1 , if i=j ,

c
|Oi|·|Oj |

∑
k∈Oi

∑
l∈Oj

rk,l , if i 6=j ,

where Oi denotes the set of out-neighbors of node i in the
reverse graph.

In matrix form, the above recursive definition can be de-
noted as R=cPRP +(1−c)I, where matrix R records prox-
imity values for all node pairs with [R]i,j =ri,j [18, 27, 13].

SimRank values can also be represented as the weighted
sum of probabilities of visiting all meeting paths [27].

Definition 1. [Meeting Path]A meeting path φ of length
{a,b} between nodes i and j in a graph G(V,E) is a sequence
of nodes, denoted as z0→ z1→ ·· · → za← ·· · ← zb 1← zb,

such that i= z0, j= zb, (zt 1,zt)∈E for t= 1,2, · · · ,a, and
(zt,zt 1)∈E for t=a+1,a+2, · · · , b.

A meeting path of length {a,b} is symmetric if b=2a, such
as the meeting path 4→2→1←3←5 in Figure 4(a).

A meeting path φ : i= z0→ z1→·· ·→ za←·· ·← zb 1←
zb= j can be decomposed into two paths ρ1 : i= z0→ z1→
·· ·→ za and ρ2 : j= zb→ zb 1→·· ·→ za. In the first-order
random walk, starting from i, the probability to visit path
ρ1 is P[ρ1] =

∏a
t 1 pzt 1,zt . Similarly, starting from j, the

probability to visit path ρ2 is P[ρ2] =
∏b
t a 1 pzt,zt 1

. The
probability for the two surfers to visit φ and meet at node
za is thus P[φ]=P[ρ1] ·P[ρ2].

Let Φa,bi,j denote the set of all meeting paths of length

{a,b} between nodes i and j, and P[Φa,bi,j] be the sum of

probabilities of visiting the meeting paths in Φa,bi,j . We have
the following lemma [27].

Lemma 1. P[Φa,bi,j]=[Pa(P)b a]i,j

Thus the SimRank value ri,j can be represented as

ri,j =(1−c)
∑∞
t 0 c

tP[Φt,2ti,j]=(1−c)
∑∞
t 0 c

t[Pt(P)t]i,j (1)

That is, ri,j is the weighted sum of probabilities of visiting
all symmetric meeting paths between nodes i and j. In
matrix form, we have

R=(1−c)
∑∞
t 0 c

tPt(P)t .

5.2 Visiting Meeting Paths in the Second-Order
To develop the second-order SimRank, we need to know

the probability of visiting the meeting paths in the second-
order. Consider the second-order visiting probability of path
ρ1 : i=z0→z1→·· ·→za. Starting from node i, in the first
step, the surfer follows the first-order transition probabili-
ty, and then in the subsequent steps, the surfer follows the
second-order transition probabilities. Thus in the second-
order random walk, starting from i, the probability to vis-
it path ρ1 is M[ρ1] = pz0,z1

∏a 1
t 1

pzt 1,zt,zt 1
. Similarly, the

probability to visit path ρ2 is M[ρ2]=pzb,zb 1

∏b 1
t a 1

pzt 1,zt,zt 1
.

The probability for the two surfers to visit the meeting path
φ and meet at node za is M[φ]=M[ρ1] ·M[ρ2].

Let M[Φa,bi,j]=
∑

φ∈Φ
a,b
i,j M[φ] be the sum of probabilities of

visiting the meeting paths in Φa,bi,j in the second-order. The

following lemma shows how to compute M[Φa,bi,j] for different
cases.

Lemma 2.

M[Φa,bi,j]=

Ii,j , if 0=a=b ,

[HMa 1E]i,j , if 0<a=b ,

[E (M)b 1H]i,j , if 0=a<b,

[HMa 1EE (M)b a 1H]i,j , if 0<a<b.

Please see Appendix B [1] for the proof.

Lemma 1 for the first-order random walk is a special case
of Lemma 2 when the second-order transition probability is
the same as the first-order transition probability.

Lemma 3. If pi,j,k=pj,k, we have that M[Φa,bi,j]=P[Φa,bi,j] .

Please see Appendix B [1] for the proof.

Replacing P[Φt,2ti,j] by M[Φt,2ti,j] in Equation (1), we have
the second-order SimRank proximity

ri,j =(1−c)
∑∞
t 0 c

tM[Φt,2ti,j] .

17

Theorem 2. The matrix form for the second-order Sim-
Rank is {

S = cMSM + (1−c)EE

R = cHSH +(1−c)I

Please see Appendix C [1] for the proof.

Theorem 3. There exists a unique solution to the second-
order SimRank.

Proof. From the recursive equation of S, we have

S=(1−c)
∑∞
t 0 c

tMtEE (M)t

Let S(η) =(1−c)
∑η
t 0 c

tMtEE (M)t. Lemma 5 in Appen-

dix C shows that ‖S−S(η)‖max≤cη 1 for any η (η≥0). The
convergence of the series follows directly from Lemma 5 and
limη→∞ c

η 1 =0 (0<c<1). Thus, S exists.
Next, we prove that S is unique. Suppose that S and S′

are two solutions and we have{
S = cMSM + (1−c)EE

S′ = cMS′M + (1−c)EE

Let ∆=S−S′ be the difference. We have ∆=cM∆M . Let
|∆u,v|=‖∆‖max for some u,v∈E. We have

‖∆‖max = |∆u,v| = c ·
∣∣[M]u,: ·∆ ·([M]v,:)

∣∣
≤ c

∑
x∈Ou

∑
y∈Ov

pu,x ·pv,y ·
∣∣[∆]x,y

∣∣
≤ c

∑
x∈Ou

∑
y∈Ov

pu,x ·pv,y ·‖∆‖max = c ·‖∆‖max ,

where Ou denotes the set of out-neighbor edges of edge u.
Since 0<c<1, we have that ‖∆‖max =0 and S=S′. Thus,
S is unique.

Given that S exists and is unique, R also exists and is
unique.

SimRank* [27] is a variant of SimRank that considers non-
symmetric meeting paths. Following a similar approach, we
can develop the matrix form for the second-order SimRank*.
The equations are summarized in Table 2.

The second-order SimRank degenerates to its original first-
order form when the second-order transition probability is
the same as the first-order transition probability. Please see
Appendix A [1] for the proof.

6. COMPUTING ALGORITHMS
In this section, we discuss how to efficiently compute the

developed second-order measures. We first study the power
iteration method which utilizes the recursive definitions to
compute the exact proximity values. This method needs to
iterate over the entire graph thus the complexity is high. To
speed up the computation, we develop Monte Carlo method-
s, which are randomized algorithms and provide a trade-off
between accuracy and efficiency. We formally prove that the
estimated value (1) converges to the exact proximity value
when the sample size is large, and (2) is sharply concentrat-
ed around the exact value.

6.1 The Power Iteration Method
Given the recursive equations in Table 2, we can apply

the power iteration methods to compute the second-order
measures. For example, the power method computes the
second-order PageRank as follows

st=

{
H 1/n, if t=0 ,

cM st 1 +(1−c)H 1/n, if t>0 .

Algorithm 1 The MC algorithm for the first-order RR [8]

Input: G(V,E), query node q, decay factor c, sample size π
Output: estimated proximity vector r̃

1: for each node i∈V do r̃i←0; // initialization

2: repeat π times
3: a←generate a random number following the geometric

distribution P[A=a]=(1−c) ·ca;
4: z0←q; bSuccess← true;
5: for t←1 to a do
6: if |Ozt 1 |=0 then bSuccess← false, break;
7: zt← randomly pick a node from Ozt 1 according to

the first-order transition probability;
8: if bSuccess= true then r̃za← r̃za+1;
9: for each node i∈V do r̃i← r̃i/π; // normalization

Let s be the converged edge stationary vector. We can then
compute node stationary vector r=cE s + (1−c)1/n .

Time Complexity : Let σ=
∑
i∈V |Ii|·|Oi| denote the num-

ber of second-order transition probabilities, i.e., the number
of non-zero elements in matrix M. In each iteration, the
matrix-vector product M st 1 needs O(σ) time. Suppose
that the power method needs β iteration to converge. It
runs in O(βσ) time for the second-order PageRank. Simi-
larly, the power method for the second-order random walk
with restart also runs in O(βσ) time.

The power iteration method computes the second-order
SimRank as follows

S(t) =

{
(1−c)EE , if t=0 ,

cMS(t 1)M +(1−c)EE , if t>0 .

Let S be the converged edge proximity matrix. We then
compute the node proximity matrix as R=cHSH +(1−c)I .

Time Complexity: In each iteration, the matrix-matrix
products MS(t 1)M need O(mσ) time, where m is the num-
ber of edges in the graph and σ is the number of non-zero
elements in M. Suppose that the power method needs β it-
eration to converge. It runs in O(βmσ) time for the second-
order SimRank. Similarly, the power method for the second-
order SimRank* also runs in O(βmσ).

6.2 The Monte Carlo Method
Monte Carlo (MC) methods have been recently studied

to compute the first-order random walk with restart [8] and
SimRank [7]. Next, we develop MC methods to compute the
second-order random walk with restart and SimRank, and
provide the theoretical analysis for the developed methods.

6.2.1 Computing Random Walk with Restart
To illustrate the basic idea, we begin with the MC algo-

rithm for the first-order random walk with restart [8], which
is shown in Algorithm 1. It is based on the following series
expansion of random walk with restart

ri = (1−c)
∑∞
t 0 c

tP[Φ0,t
i,q] = (1−c)

∑∞
t 0 c

tP[Φt,tq,i]

That is, the proximity ri can be represented as the weight-
ed sum of probabilities of visiting all paths from node q
to i. The longer the path length t, the smaller the weight
(1−c) · ct. Based on this interpretation, in line 3 of Al-
gorithm 1, the MC method determines the path length a
based on the geometric distribution. Then, starting from
the query node q, the algorithm simulates a path of length
a in lines 4∼7. When simulating a path, at each time point
t (1≤ t≤a), the algorithm randomly picks an out-neighbor

18

Algorithm 2 The MC algorithm for the second-order RR

Input: G(V,E), query node q, decay factor c, sample size π
Output: estimated proximity vector r̃

1: for each node i∈V do r̃i←0; // initialization

2: repeat π times
3: a←generate a random number following the geometric

distribution P[A=a]=(1−c) ·ca;
4: z0←q; bSuccess← true;
5: for t←1 to a do
6: if |Ozt 1 |=0 then bSuccess← false, break;
7: if t=1 then zt← randomly pick a node from Ozt 1

according to the first-order transition probability;
8: else zt←randomly pick a node from Ozt 1 according

to the second-order transition probability;
9: if bSuccess= true then r̃za← r̃za+1;
10:for each node i∈V do r̃i← r̃i/π; // normalization

of the previous node zt 1 to visit according to the first-order
transition probability. The algorithm stops when the sim-
ulated path reaches length a or there is no out-neighbor to
pick. The algorithm repeats this process π times, where π is
the number of paths to be simulated. The proximity value
of node i is estimated as the fraction of the π paths that end
at i.

We can extend this MC algorithm to compute the second-
order random walk with restart as shown in Algorithm 2. It
is based on the series expansion

ri = (1−c)
∑∞
t 0 c

tM[Φ0,t
i,q] = (1−c)

∑∞
t 0 c

tM[Φt,tq,i]

That is, the proximity ri can be represented as the weighted
sum of probabilities of visiting all paths from node q to i
in the second-order random walk. The difference between
Algorithm 1 and Algorithm 2 is how to sample a path. In
lines 5∼7 of Algorithm 1, at each step, the algorithm picks
an out-neighbor with the first-order transition probability.
In lines 5∼ 8 of Algorithm 2, only in the first step, i.e.,
when t= 1, the algorithm picks an out-neighbor with the
first-order transition probability. Then the algorithm picks
out-neighbors with the second-order transition probabilities
when simulating subsequent steps.

Theorem 4 shows that when the sample size is large, the
estimated proximity r̃i converges to the exact proximity ri.
Theorem 5 shows that the error is bounded by a term that
is exponentially small in terms of the sample size.

Theorem 4. The estimated proximity r̃i converges to the
exact proximity ri when π→∞.

Proof. In Algorithm 2, if we successfully sample a path
ending at node i, we will increase r̃i by 1; otherwise, r̃i is

unchanged. Let S(d)
i be a Bernoulli random variable denot-

ing the incremental value of r̃i at the d-th iteration (lines

3∼9). Random variables S(1)
i , S(2)

i , · · · , S(π)
i are independent

and identically distributed. Let Si be a Bernoulli random

variable following the same distribution as S(d)
i ’s. Lemma 6

in Appendix D [1] shows that the expected value of Si equals
the exact proximity ri, i.e., E[Si] = ri .

Let Si= 1
π

∑π
d 1 S

(d)
i be the sample average, which repre-

sents the estimated proximity r̃i. By the law of large num-
bers, if the sample size π→∞, Si converges to the expected
value E[Si] = ri .

Theorem 5. For any ε>0, we have that

P[|r̃i−ri|≥ε] ≤ 2 ·exp(−2πε2)

Algorithm 3 The basic MC algorithm for the first-order SR [7]

Input: G(V,E), query node q, decay factor c, sample size π,
maximum length η

Output: estimated proximity vector r̃

1: for each node i∈V do // process each node individually

2: r̃i←0; // initialization

3: repeat π times // sample π pairs of paths

4: sample a path q= z0→z1→ ·· · →zη starting from q;
5: sample a path i = z′0→z′1→ ·· · →z′η starting from i;

// find the common node with the smallest offset

6: for t= 0 to η do if zt= z′t then r̃i← r̃i+ ct, break;
7: r̃i← r̃i/π; // normalization

Proof. Following the notations defined in the proof of

Theorem 4, random variables S(1)
i ,S(2)

i , · · · ,S(π)
i are indepen-

dent and bounded by interval [0,1]. By Hoeffding’s inequal-
ity [10], we can prove this theorem.

Time Complexity : Generating a random number costs
O(1) time. Since the path length a follows the geometric dis-
tribution, the average length is (1− c)

∑∞
a 0ac

a= c/(1− c).
When sampling a path, at each step, the algorithm randomly
picks an out-neighbor, which costs O(ξ) on average, where
ξ= 1

n

∑
i∈V |Oi| denotes the average out-degree. Thus, on

average, sampling a path costs O(ξc/(1− c)) time. Sam-
pling π paths costs O(πξc/(1−c)) time. Initialization and
normalization cost O(n) time. In total, Algorithm 2 runs in
O(πξc/(1−c)+n) time.

The MC algorithm developed here is readily applicable to
compute the second-order PageRank. Let PR(i) denote the
PageRank value of node i, and RRj(i) denote the random
walk with restart proximity of node i when j is the query.

Theorem 6. PR(i) = 1
n

∑
j∈V RRj(i)

Proof. The proof is similar to that of the linearity theo-
rem [12]. We omit the proof here due to the space limit.

Based on this theorem, we can use Algorithm 2 to compute
the random walk with restart proximity vector for each node.
The average of all vectors is the estimated PageRank vector.

6.2.2 Computing SimRank
The basic MC algorithm for computing the first-order

SimRank is proposed in [7], which is shown in Algorithm
3. It is based on the original interpretation of SimRank
[11], i.e., the proximity ri measures the expected number of
steps required before two surfers, one starting at the query
node q and the other at node i, meet at the same node if
they randomly walk on the reverse graph in lock-step.

As shown in Algorithm 3, the algorithm proposed in [7]
directly simulates the meeting paths of the two surfers. For
each node i, it simulates two paths of length η, one starting
from node q and one from i. It then scans these two paths
to determine whether there is a common node. The fraction
of the sampled paths that do have a common node is used
as the estimated proximity value for node i.

Algorithm 3 estimates the proximity of each node i indi-
vidually and samples a fixed number of paths for each node.
This method usually needs to simulate a large number of
meeting paths to achieve an accurate estimation since not
all simulated paths may have common nodes. The paths
that do not have common nodes can only be used in the
denominator in the estimated proximity value.

19

Algorithm 4 The proposed MC algorithm for the first-order SR

Input: G(V,E), query node q, decay factor c, sample size π,
maximum length η, matrix X

Output: estimated proximity vector r̃

1: for each node i∈V do r̃i←0; // initialization

2: repeat π times // sample π meeting paths

3: a←generate a random number following the geometric
distribution P[A=a]=(1−c) ·ca;

4: if a>η then continue;
5: [bSuccess,z2a, δ]←SampleOneMeetingPath(q,a,X);

6: if bSuccess= true then r̃z2a← r̃z2a+δ;

7: for each node i∈V do r̃i← r̃i/π; // normalization

Algorithm 5 [bSuccess,z2a,δ]←SampleOneMeetingPath(q,a,X)

1: z0←q; bSuccess← true; // start from the query node

2: for t←1 to a do // sample the first half

3: if |Ozt 1 |=0 then bSuccess← false, return;

4: zt← randomly pick a node from Ozt 1 according to the
first-order transition probability;

5: for t←(a+1) to 2a do // sample the second half

6: if |Izt 1|=0 or [X]zt 1,2a t 1=0 then bSuccess←false, return;

7: zt← randomly pick a node from Izt 1 according to the

probability pzt,zt 1 · [X]zt,2a t/[X]zt 1,2a t 1;

8: δ← [X]za,a/[X]z2a,0 ;

Algorithm 6 ComputeNodeVisitingProbabilities()

Input: G(V,E), transition matrix P, maximum length η
Output: n×(η+1) matrix X

1: [X]:,0←1/n; // begin from the uniform probability distribution

2: for t←1 to η do [X]:,t←P [X]:,t 1;

Next, we propose a new sampling strategy to compute
the SimRank values. Our sampling method estimates the
proximity values for all the nodes at the same time. Every
simulated path is guaranteed to contribute to the numerator
of some node and to the denominators of all nodes. Experi-
mental results show that compared to the previous method,
our sampling method needs several orders of magnitude less
simulated paths to achieve the same accuracy.

For simplicity, next, we illustrate the key idea of the de-
veloped sampling strategy for the first-order SimRank. It
can be easily extended to the second-order SimRank.

Algorithm 4 shows the overall procedure of the proposed
algorithm, which is based on the series expansion

ri = (1−c)
∑∞
t 0 c

tP[Φt,2ti,q] = (1−c)
∑∞
t 0 c

tP[Φt,2tq,i]

That is, the proximity ri can be represented as the weighted
sum of probabilities of visiting all meeting paths of length
{t,2t} between nodes q and i.

Instead of simulating meeting paths starting from both
nodes q and i, we only simulate paths starting from q. Algo-
rithm 5 shows the procedure to sample a meeting path. For
a meeting path φ : q=z0→z1→·· ·→za←·· ·←z2a 1←z2a=i,
when simulating the first half of the path, we simply follow
the first-order transition probability. Since the second half
of the meeting path is in reverse order, we need to pick in-
neighbors of the visited nodes. To do that, we need to know
the probability of visiting in-neighbors. We can use Bayes’
theorem to calculate these probabilities.

Let Xt be a random variable representing the node visited
by the surfer at time t. Suppose that node j is an in-neighbor
of k, i.e., j∈Ik. We have

P[Xt 1=j|Xt=k]=
P[Xt 1=j]

P[Xt=k]
·P[Xt=k|Xt 1=j]=

P[Xt 1=j]

P[Xt=k]
·pj,k

Thus to calculate the probability of visiting in-neighbors,
we only need the prior probability of visiting each node.
Algorithm 6 computes these probabilities and stores them
in an n× (η+1) matrix X in the preprocessing stage, with
[X]j,t = P[Xt = j], where η is the maximum length of the
simulated paths.

Let r̂i = (1− c)
∑η
t 0 c

tP[Φt,2tq,i] be the SimRank value we
try to estimate. Next, we show that our sampling strategy
gives accurate estimation of r̂i .

Theorem 7. The estimated proximity r̃i converges to r̂i
when π→∞.

Proof. In Algorithm 4, if we successfully sample a path
ending at node i, we will increase r̃i by δ; otherwise, r̃i is
unchanged. For different sampled paths, the corresponding

value δ may be different. Let R(d)
i be a random variable

denoting the incremental value of r̃i at the d-th iteration

(lines 3∼ 6). Random variables R(1)
i ,R(2)

i , · · · ,R(π)
i are in-

dependent and identically distributed. Let Ri be a random

variable following the same distribution as R(d)
i ’s. Lemma

7 in Appendix D [1] shows that the expected value of Ri
equals the truncated proximity r̂i, i.e., E[Ri] = r̂i .

Let Ri= 1
π

∑π
d 1R

(d)
i be the sample average, which repre-

sents the estimated proximity r̃i. By the law of large num-
bers, if the sample size π→∞, Ri converges to the expected
value E[Ri] = r̂i .

Theorem 8. For any ε>0, we have that

P[r̃i−r̂i≤−ε]≤exp(−πε
2

2nri
) and P[r̃i−r̂i≥ε]≤exp(−πε2

2nri+2nε/3
).

Proof. Following the notations defined in the proof of

Theorem 7, random variables R(1)
i ,R(2)

i , · · · ,R(π)
i are inde-

pendent and bounded by interval [0, δ] ⊆ [0,n]. Lemma 7
in Appendix D [1] shows that the expected value of R2

i is
bounded from above by nri , i.e., E[R2

i]≤nri . Thus, we have

that
∑π
d 1E[(R(d)

i)2]≤πnri . By Theorem 14 in Appendix
D [1], we can prove this theorem.

Time Complexity : Since the path length a follows the ge-
ometric distribution, the average length is (1−c)

∑∞
a 0 2aca=

2c/(1− c). When sampling a path in Algorithm 5, at each
step, the algorithm randomly picks an out-neighbor or in-
neighbor, which costs O(ψ) time on average, where ψ =
1

2n

∑
i∈V
(
|Ii| + |Oi|

)
denotes the average degree. Thus, on

average, sampling a path costs O(ψc/(1− c)). Sampling π
paths costs O(πψc/(1−c)). Initialization and normalization
cost O(n). In total, Algorithm 4 runs in O(πψc/(1−c)+n)
time. Algorithm 6 runs in O(mη) time.

The proposed MC algorithm is readily applicable to the
second-order SimRank. The only difference is that in the
second-order SimRank, we need to follow the second-order
transition probability when sampling meeting paths. The-
orems 7 and 8 also apply when we follow the second-order
transition probability.

7. EXPERIMENTAL RESULTS
In this section, we perform comprehensive experimental

evaluations on the developed methods. To evaluate the effec-
tiveness of the developed second-order proximity measures,

20

Figure 6: Ranking accuracy Figure 7: Query accuracy

we use both networks with and without the data flow infor-
mation. We also evaluate the efficiency of proposed com-
puting methods on large real and synthetic networks.

All programs are written in C++, and all experiments are
performed on a server with 32G memory, Intel Xeon 3.2GHz
CPU, and Redhat OS.

7.1 Networks with Data Flow Information
We first evaluate the effectiveness of the second-order mea-

sures using networks with data flow information.

7.1.1 Web Domain Network with Clickstream Data
In the web domain network, each node represents a do-

main, and an edge is weighted by the number of hyperlinks
between pages contained in the two connected domains. The
web graph was gathered in 2012 and is publicly available at
http://webdatacommons.org/hyperlinkgraph/ [17]. It contains
463,824 domains and 6,285,354 edges.

Clickstream data records the sequences of domains visited
by different users [3]. The clickstream data is obtained from
comScore Inc. It contains 5,000 users’ clickstreams recorded
over 6 months in 2012. The total number of visits is 62.4
million. Each domain was visited 135 times on average.

We first evaluate the domain ranking results of PageRank
(PR). The original first-order PR [22], multilinear PR [9],
memory PR [24], and our second-order PR (PR2) are used
for comparison. PR uses the first-order transition probabil-
ity. Multilinear PR approximates the stationary probability
of an edge by the product of stationary probabilities of its
two end nodes. Memory PR and PR2 use the second-order
transition probabilities based on the frequencies of the tri-
grams in the clickstream data as discussed in Section 3.3.

We use Alexa’s top domains (http://alexa.com/topsites)
as the reference to evaluate the ranking results of the select-
ed measures. The Normalized Discounted Cumulative Gain
(NDCG) is used as the evaluation metric [27]. The NDCG

value at position k is NDCGk=β
∑k
i 1(2

s(i)−1)/ log2(1+ i),
where s(i) is the score of the i-th node and β is a normal-
izing factor to ensure the NDCG value of the ground-truth
ordering to be 1. We use NDCG100 to evaluate the top-100
ranked domains of the selected measures. A retrieved do-
main gets a score of 1 if it appears in the top-100 domains
in Alexa’s top domains; otherwise, it gets a score of 0.

In addition to using Alexa’s top domains as the reference,
we also hired 10 human evaluators to manually evaluate the
retrieved domains. An evaluator gives an importance score
(ranging from 1 to 5, with 5 being the most important) to
each retrieved domain. For each domain, the average score
of all evaluators is used as its final score. NDCG100 is then
calculated as the evaluation metric.

Figure 6 shows the NDCG scores of the selected methods.
As we can see, using both Alexa’s top domains and human
evaluators as references, the second-order measures, PR2,
memory PR and multilinear PR, perform better than the

(a) AUC (b) Precision10

Figure 8: Link prediction on the Twitter follower network

original first-order PR. Among the second-order measures,
PR2 and memory PR have higher accuracy than multilinear
PR, since the second-order transition probabilities used in
PR2 and memory PR are obtained from the network flow
data while the probabilities used in multilinear PR are es-
timated from the first-order transition probabilities. The
better performance of PR2 over memory PR indicates that
the jumping strategy in PR2 is more effective than the uni-
form jumping strategy in memory PR.

Next, we evaluate the effectiveness of the proposed mea-
sures for the top-k query problem. The evaluated measures
include the first-order random walk with restart (RR), Sim-
Rank (SR) and SimRank* (SS) and their second-order forms
developed in this paper. We randomly select a web domain
as the query node, and retrieve the top-20 most relevant
domains using the selected measures. We repeat the ex-
periment 100 times. Since there is no ground truth about
the proximities between the query nodes and the retrieved
nodes, we use the 10 human evaluators to evaluate the rel-
evance of retrieved domains. The relevance score ranges
from 1 to 5 with 5 being the most relevant. The average
score of all evaluators is used as the final score for a domain.
NDCG20 then is calculated as the evaluation metric.

Figure 7 shows the accuracy of the selected measures in
their first-order and second-order forms. We can see that
each second-order measure is more accurate than its first-
order counterpart. The second-order measures utilize the
real clickstream data to compute the second-order transition
probabilities. Since the clickstream data faithfully reflects
the similarity among the domains, by leveraging such in-
formation, the second-order measures can dramatically im-
prove the accuracy of the results.

7.1.2 Twitter Network with Tweet Cascade Data
A node in the Twitter follower network represents a us-

er and an edge (i, j) represents that user j follows user i.
The Twitter follower network used in our experiments was
crawled on November 2014. The network contains 231,624
nodes and 3,214,581 edges. We query the timeline from
December 2014 to February 2015 of each user once per day
to monitor the tweet cascades. The second-order transition
probabilities are computed based on frequency of the tri-
grams in these tweet cascades.

We use the link prediction accuracy to evaluate the ef-
fectiveness of the second-order measures. For a given query
node, the top ranked nodes that are not followers of the
query node are predicted to follow the query node. The fol-
lowers newly emerged from March to May 2015 are used as
the ground truth to evaluate the predicted results.

We use AUC (area under the ROC curve) and Precision
to evaluate the accuracy [21]. AUC can be interpreted as
the probability that a randomly chosen user that newly fol-

21

lows the query node is given a higher score than a randomly
chosen user that does not follow the query node. Precision
is defined as Precisionk=k′/k, where k is the total number
of predicted users, and k′ is the number of users that actu-
ally started to follow the query node. We randomly pick 103

query nodes and report the average.
Figure 8(a) shows the AUC values of the first-order and

second-order RR, SR, and SS. We can observe that the
second-order measures improve the AUC values by 23 ∼
28% compared to their first-order counterparts. Figure 8(b)
shows the Precision10 values. Similarly, the second-order
measures outperform the first-order measures consistently.
The real tweet cascade data reflects how tweets propagate
among different users and provides more accurate transi-
tion information than the network topology alone does. The
second-order measures use such information thus have bet-
ter performance.

7.2 Networks without Data Flow Information
When the network data flow information is not avail-

able, we use three different applications, including local com-
munity detection, link prediction, and graph-based semi-
supervised learning, to evaluate the effectiveness of the de-
veloped second-order proximity measures. We use the au-
toregressive model discussed in Section 3.3 to obtain the
second-order transition probabilities.

7.2.1 Local Community Detection
The goal of local community detection is to find the com-

munity near a given query node [2, 26]. Intuitively, the
identified local community should contain the nodes having
large proximity to the query node. We use the query bi-
ased densest connected subgraph (QB) method [26] and the
PageRank-Nibble (NB) method [2] to evaluate the developed
second-order measure. For a given query node, both QB and
NB compute the node proximity values and use them to find
a set of top-ranked nodes as the identified local community.
Both methods use the first-order random walk with restart
(RR) as their proximity measure. We simply replace the
first-order RR with the proposed second-order RR (RR2)
in QB and NB. All other parts in QB and NB remain the
same as the original algorithms. The second-order transi-
tion probability is computed by the autoregressive model
and the default setting for α is 0.2.

We use F-score and consistency [26] as the evaluation met-
rics. F-score measures the accuracy of the detected com-
munity with regard to the ground-truth community labels.
Consistency measures the standard deviation of F-scores of
the identified communities when different nodes in the same
community are used as the query nodes. A high consistency
value indicates that the method tends to find the same local
community no matter which node in it is used as the query.
We randomly pick 103 query nodes and report the average.

We first use real networks to evaluate the performance of
the second-order measure. Table 3 shows the statistics of
real networks. These datasets are provided with ground-
truth community memberships and are publicly available at
http://snap.stanford.edu.

Figure 9(a) shows the F-scores on these networks. QB
with RR2 outperforms QB with RR for 26∼44%. NB with
RR2 outperforms NB with RR for 18∼62%. Using RR2, the
random surfer is more likely to be trapped within the local

Table 3: Statistics of real networks

datasets abbr. #nodes #edges #communities

Amazon AZ 334,863 925,872 151,037

DBLP DP 317,080 1,049,866 13,477

Youtube YT 1,134,890 2,987,624 8,385

LiveJournal LJ 3,997,962 34,681,189 287,512

(a) F-score (b) consistency

Figure 9: F-scores and consistency values on real networks

(a) the QB method (b) the NB method

Figure 10: Tuning the parameter α (Amazon network, RR2)

(a) the QB method (b) the NB method

Figure 11: F-scores on synthetic networks

community containing the query node, since it takes the pre-
vious step of the surfer into consideration. This results that
the nodes in the local community have larger proximity val-
ues than the nodes outside the community. It helps improve
the accuracy of the local community detection methods.

Figure 9(b) shows the consistency results. QB with RR2

outperforms QB with RR for 3∼ 11%. NB with RR2 out-
performs NB with RR for 8∼15%. High consistency is im-
portant for local community detection, since the identified
communities should be similar even if different nodes in the
same community are used as the query. The higher consis-
tency value of RR2 demonstrates that it better captures the
community structures.

Next we evaluate the sensitivity of RR2 with respect to
the tuning parameter α. Figure 10(a) shows the F-scores of
QB with RR2 on the Amazon network for different α values.
We can see that the performance is stable when varying α.
When α=0.2, QB has the best performance. Figure 10(b)
shows the results of NB with RR2. A similar trend can be
observed. Note that when α= 0, RR2 degenerates to RR
and has the same performance as RR.

In addition to real networks, we also generate a collection
of synthetic networks using the graph generator in [14] to
evaluate the developed second-order measures. The number
of nodes in the network is 220 and the number of edges is 107.
The network generating model contains a mixing parameter
µ, which indicates the proportion of a node’s neighbors that
reside in other communities. By tuning µ, we can vary the

22

Figure 12: Link prediction on the
co-author network

Figure 13: Graph-based
semi-supervised learning

clearness of the community structure: the boundaries be-
tween different communities become less clear for larger µ
values.

Figure 11 shows the F-scores on synthetic networks when
using QB and NB to detect the local communities. As we
can see, RR2 achieves better performance than RR consis-
tently. Moreover, the performance gap between RR2 and
RR becomes larger for larger µ. This demonstrates that
RR2 is more robust to the noise in the networks than RR.
The reason is that in RR2 the random surfer is likely to
stay in the same community rather than to walk across the
boundary of the community.

7.2.2 Link Prediction
We further evaluate the link prediction accuracy of the

second-order measures using the DBLP co-author network.
A node in the network represents an author and the edge
weight represents the number of papers that two connected
authors have co-authored. We select the papers published in
the database conferences including SIGMOD, VLDB, ICDE,
EDBT, ICDT, and PODS, and data mining conferences in-
cluding KDD, ICDM, SDM, PKDD, and PAKDD, from 2004
to 2013. The papers published in 2004 to 2008 are used
to construct the training network, which contains 146,527
nodes and 426,835 edges. The papers published in 2009 to
2013 are used to obtain the newly emerged links among the
authors, which are used as the ground truth for testing.

The left figure in Figure 12 shows the AUC values. We
can see that the second-order measures improve the AUC
value by 9∼16% compared to the first-order measures. The
right figure shows the Precision10 values. The second-order
measures improve the Precision10 value by 24∼47%. Since
the second-order measures better capture the community
structure in the network, they can significantly improve the
link prediction accuracy.

7.2.3 Graph-Based Semi-Supervised Learning
In graph-based semi-supervised learning, a graph is con-

structed to connect similar data objects [29]. The goal is to
predict the unknown class labels using the partially labeled
data.

We use the USPS dataset, which contains 9,298 images
of handwritten digits from 0∼ 9 [16, 28]. A weighted k-
NN graph is constructed with k=20. We use the Gaussian
kernel [29] to compute the edge weight wi,j if i is within
j’s k nearest neighbors or vice versa. We randomly pick 20
nodes as labeled nodes and make sure that there is at least
one labeled node for each class. The label of the nearest
neighbor is used as the predicted class label for unlabeled
nodes. We repeat this process 103 times and report the
average classification accuracy.

Figure 13 shows the classification accuracy using RR, SR,
and SS in the first-order and second-order forms. We can see
that the second-order measures outperform their first-order

Table 4: Statistics of synthetic networks

large
#nodes 1×220 2×220 4×220 8×220

#edges 1×107 2×107 4×107 8×107

small
#nodes 1×210 2×210 4×210 8×210

#edges 1×104 2×104 4×104 8×104

(a) RR2 (b) SR2

Figure 14: Running time on real networks

(a) RR2 (b) SR2

Figure 15: Running time on synthetic networks

counterparts. The second-order measures take the commu-
nity structure in the k-NN graph into account thus have
better performance than the first-order measures.

7.3 Efficiency Evaluation
We evaluate the efficiency of the proposed Monte Car-

lo (MC) methods on real and synthetic networks. Table 3
shows the statistics of real networks. The synthetic graphs
are based on the R-MAT model [4]. We use the graph gener-
ator available at https://github.com/dhruvbird/GTgraph and
its default parameters to generate two series of graphs with
different sizes. Table 4 shows the statistics. The algorithms
for PR and SS have similar performance as those for RR
and SR respectively. Thus, we focus on RR and SR.

In the MC methods, we set the parameter η = 20 and
π=4n, where n denotes the number of nodes in the graph.
Let r and r̃ denote the exact and estimated proximity vec-
tors respectively. The error of the MC method is defined as
Error =‖r− r̃‖1/‖r‖1, where ‖r‖1 =

∑
i |ri| denotes the sum

of absolute values.
Figure 14(a) shows the running time of the power iteration

method and the developed MC algorithm for RR2 on real
networks. We can see that the MC method is 1∼2 orders
of magnitude faster than the power method. Note that in
these experiments, the error of the MC method is less than
10 2. Thus with little loss in accuracy, the MC algorithm
can dramatically improve the running time. Figure 14(b)
shows the running time of the MC method for SR2. The
power method for SR2 is prohibitive on these large networks.
Thus, its running time is omitted. We can see that the MC
method can process large graphs within seconds.

Figure 15(a) shows the running time of the algorithms for
RR2 on large synthetic networks. Similarly, the MC method
is 1∼2 orders of magnitude faster than the power method.

23

(a) real network, LiveJournal (b) synthetic network, 220 nodes

Figure 16: Error versus running time (first-order SimRank)

The power method for SR2 is prohibitive on large net-
works, thus we report the results on small networks. Note
that the proposed MC method is applicable on large net-
works. Since the power method computes all-pairs proxim-
ity, to compare with the power method, we use each node
as the query node and call the MC method. In this way, we
also compute all-pairs proximity using the MC method. We
then report the overall running time. Figure 15(b) shows
the running time on synthetic networks. We can see that
the MC method is 1∼2 orders of magnitude faster than the
power method. The error of the MC method is also less than
10 2 in all these experiments.

We further compare the sampling strategy in the MC
method developed in [7] and our sampling strategy described
in Algorithm 5. Recall that the method in [7] samples meet-
ing paths starting from the query node q and every other
node i, while our method samples the meeting paths all
starting from the query node. We compare the running time
that the two methods need to take to achieve the same ac-
curacy. When varying the number of sampled paths, the
running time and accuracy of the two methods will change
correspondingly. For each setting, we repeat the query 103

times with randomly picked query nodes and report the av-
erage running time and error.

Figure 16(a) shows the error versus running time on the
LiveJournal network. We can see that to achieve the same
accuracy, the proposed method is about 3 orders of magni-
tude faster than the previous method. This demonstrates
the advantage of the proposed sampling strategy. Figure
16(b) shows the error versus running time on the synthetic
graph with 220 nodes. A similar trend can be observed.

8. CONCLUSIONS
Designing effective proximity measures for large graphs

is an important and challenging task. Most existing ran-
dom walk based measures only use the first-order transition
probability. In this paper, we investigate the second-order
random walk measures which can capture the cluster struc-
tures in the graph and better model real-life applications.
We provide rigorous theoretical foundations for the second-
order random walk and develop second-order forms for com-
monly used measures. We further develop effective Monte
Carlo methods to compute these measures. Extensive exper-
imental results demonstrate that the second-order measures
can effectively improve the accuracy in various applications,
and the developed Monte Carlo methods can significantly
speed up the computation with little loss in accuracy.

Acknowledgements. This work was partially supported
by the National Science Foundation grants IIS-1162374, CA-
REER, and the NIH grant R01GM115833.

9. REFERENCES
[1] http://www.robwu.net .
[2] R. Andersen, F. Chung, and K. Lang. Local graph partition-

ing using PageRank vectors. In FOCS, pp. 475–486, 2006.
[3] R. E. Bucklin and C. Sismeiro. Click here for internet insight:

Advances in clickstream data analysis in marketing. Journal
of Interactive Marketing, 23(1):35–48, 2009.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recur-
sive model for graph mining. In SDM, pages 442–446, 2004.

[5] F. Chung and L. Lu. Complex graphs and networks, chapter
Old and new concentration inequalities. AMS, 2006.

[6] S. Cohen, B. Kimelfeld, and G. Koutrika. A survey on prox-
imity measures for social networks. In Search Computing,
pages 191–206, 2012.

[7] D. Fogaras and B. Rácz. Scaling link-based similarity search.
In WWW, pages 641–650, 2005.

[8] D. Fogaras, B. Rácz, K. Csalogány, et al. Towards scaling
fully personalized PageRank: Algorithms, lower bounds, and
experiments. Internet Mathematics, 2(3):333–358, 2005.

[9] D. F. Gleich, L.-H. Lim, and Y. Yu. Multilinear PageRank.
SIAM Journal on Matrix Analysis and Applications, 2015.

[10] W. Hoeffding. Probability inequalities for sums of bounded
random variables. JASA, 58(301):13–30, 1963.

[11] G. Jeh and J. Widom. SimRank: A measure of structural-
context similarity. In KDD, pages 538–543, 2002.

[12] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, pages 271–279, 2003.

[13] M. Kusumoto, T. Maehara, and K. Kawarabayashi. Scalable
similarity search for SimRank. InSIGMOD, pp.325-336,2014.

[14] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark
graphs for testing community detection algorithms. Physical
Review E, 78(4):046110, 2008.

[15] A. N. Langville and C. D. Meyer. Google’s PageRank and
beyond: The science of search engine rankings, chapter The
mathematics guide. Princeton University Press, 2006.

[16] Y. LeCun, B. E. Boser, et al. Handwritten digit recognition
with a back-propagation network. In NIPS, 1990.

[17] O. Lehmberg, R. Meusel, and C. Bizer. Graph structure in
the web: Aggregated by pay-level domain. In WebSci, pages
119–128, 2014.

[18] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast
computation of SimRank for static and dynamic information
networks. In EDBT, pages 465–476, 2010.

[19] D. Liben-Nowell and J. Kleinberg. The link-prediction prob-
lem for social networks. JASIST, 58(7):1019–1031, 2007.

[20] S. Lim, S. Ryu, S. Kwon, K. Jung, and J.-G. Lee.
LinkSCAN*: Overlapping community detection using the
link-space transformation. In ICDE, pages 292–303, 2014.

[21] L. Lü and T. Zhou. Link prediction in complex networks: A
survey. Physica A, 390(6):1150–1170, 2011.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. 1999.

[23] A. E. Raftery. A model for high-order Markov chains. J. of
the Royal Statistical Society: Series B, pages 528–539, 1985.

[24] M. Rosvall, A. V. Esquivel, A. Lancichinetti, et al. Memory
in network flows and its effects on spreading dynamics and
community detection. Nature Commun., 5(4630), 2014.

[25] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. In ICDM, pages 613–622, 2006.

[26] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local community
detection: On free rider effect and its elimination. PVLDB,
8(7):798–809, 2015.

[27] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is
simpler: Effectively and efficiently assessing node-pair simi-
larities based on hyperlinks. PVLDB, 7(1):13–24, 2013.

[28] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised
learning using Gaussian fields and harmonic functions. In
ICML, pages 912–919, 2003.

[29] X. Zhu and A. Goldberg. Introduction to semi-supervised
learning, chapter Graph-based semi-supervised learning.
Morgan & Claypool Publishers, 2009.

24

