
Truss-based Community Search:
a Truss-equivalence Based Indexing Approach

Esra Akbas Peixiang Zhao
Department of Computer Science

Florida State University
Tallahassee, Florida 32306

akbas@cs.fsu.edu zhao@cs.fsu.edu

ABSTRACT
We consider the community search problem defined upon a
large graph G: given a query vertex q in G, to find as out-
put all the densely connected subgraphs of G, each of which
contains the query v. As an online, query-dependent variant
of the well-known community detection problem, commu-
nity search enables personalized community discovery that
has found widely varying applications in real-world, large-
scale graphs. In this paper, we study the community search
problem in the truss-based model aimed at discovering all
dense and cohesive k-truss communities to which the query
vertex q belongs. We introduce a novel equivalence relation,
k-truss equivalence, to model the intrinsic density and co-
hesiveness of edges in k-truss communities. Consequently,
all the edges of G can be partitioned to a series of k-truss
equivalence classes that constitute a space-efficient, truss-
preserving index structure, EquiTruss. Community search
can be henceforth addressed directly upon EquiTruss with-
out repeated, time-demanding accesses to the original graph,
G, which proves to be theoretically optimal. In addition,
EquiTruss can be efficiently updated in a dynamic fashion
when G evolves with edge insertion and deletion. Experi-
mental studies in real-world, large-scale graphs validate the
efficiency and effectiveness of EquiTruss, which has achieved
at least an order of magnitude speedup in community search
over the state-of-the-art method, TCP-Index.

1. INTRODUCTION
Modern science and technology have witnessed in the past

decade a proliferation of complex data that can be naturally
modeled and interpreted as graphs. In real-world networked
applications, the underlying graphs oftentimes exhibit fun-
damental community structures supporting widely varying
interconnected processes. Community detection has thus be-
come one of the most well-studied problems in graph man-
agement and analytics, the objective of which is to identify
densely-knitted subgraphs revealing latent and critical com-
munity structures of graphs [35, 20]. Existing community

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

detection methods focus primarily on discovering communi-
ties in an a-priori, top-down manner with only reference to
the input graph. As a result, all communities have to be
exhaustively identified, thus incurring expensive time/space
cost and a huge amount of fruitless computation, if only a
fraction of them are of special interest to end-users.

In many real-world occasions, people are more interested
in the communities pertaining to a given vertex. For ex-
ample, in a social network, a user is typically more curi-
ous about the communities she participates in rather than
all the communities of the entire graph [29]. This query-
dependent variant of community detection is usually referred
to as the community search problem, the objective of which
is to identify dense subgraphs containing the query vertex [8,
13, 11, 7, 29]. Community search admits an online, bottom-
up process for community detection desirable especially in
real-world, large graphs. Furthermore, it opens the door
to personalized community discovery, and has thus found a
wide range of applications in expert recommendation and
team formation [36], personal context discovery [4], social
contagion modeling [32], and gene/protein regulation [29].

In this paper, we consider community search based on the
truss model [5]. Given a graph G, a k-truss (k ≥ 2) is the
largest subgraph of G with each constituent edge contained
in at least (k − 2) triangles. There have been numerous
dense-subgraph notions proposed thus far towards modelling
real-world community structures, including clique or quasi-
clique [6, 31], k-core [25, 1], k-truss [11, 33], and nucleus [26],
to name a few. Our choice of k-truss as the underlying com-
munity model is influenced by the following important facts:
(1) as opposed to primitive vertices/edges, the higher-order
graph motif, triangle, is exploited as building blocks to quan-
tify the strong and stable relationships in communities [2].
As a result, the high-density and cohesiveness of real-world
communities can be encoded in k-truss with strong theo-
retical guarantees (more details will be elaborated in Sec-
tion 2.2); (2) k-truss enables a comprehensive modelling of
multiple, overlapping communities in G. By tuning the pa-
rameter k, we can derive a collection of k-truss communities
that form an inclusive, dense-graph hierarchy representing
the cores of G at varied levels of granularity [26]; (3) dis-
covering all k-trusses from G is polynomially tractable [33],
while most existing dense-graph models render the commu-
nity search problem NP-hard [13, 6]. As a consequence, k-
truss has been extensively employed for community search
in real-world networked applications [12, 14, 13, 11, 33].

Example 1. Figure 1(a) presents a toy graph G. Given
a query vertex v7, the k-truss communities (k = 3, 4, 5) con-

1298

mailto:akbas@cs.fsu.edu
mailto:zhao@cs.fsu.edu

1

2 3

4

5 6

7

8

9 10

11

(a) Graph G

1

2 3

4

5 6

7

8

9 10

11

(b) k-truss communities for v7
Figure 1: Truss-based communities for v7 in G

taining v7 are illustrated in Figure 1(b). For instance, when
k = 5, each edge in the 5-truss community is contained in
at least 3 different triangles. By tuning the values of k, we
generate a series of dense and cohesive community struc-
tures pertaining to v7. �

Searching k-truss communities based simply on the defi-
nition becomes immediately prohibitive as it incurs a lot of
random exploration and wasteful edge accesses in the graph.
The state-of-the-art solution, TCP-Index [11], indexes the
pre-computed k-trusses in a series of maximum spanning
trees (MSTs) for community search. Unfortunately, each
edge of G might be maintained in multiple MSTs, making
TCP-Index redundant and excessively large, typically several
times larger than G. On the other hand, k-truss commu-
nities have to be reconstructed online from MSTs during
community search, thus involving costly, repeated accesses
to G and making community search extremely inefficient, es-
pecially in real-world, massive graphs (The analysis on the
limitations of TCP-Index will be detailed in Section 2.2).

In this paper, we propose a novel graph indexing solution
to the truss-based community search problem in real-world,
large-scale graphs. Our main idea is to introduce a new con-
cept of k-truss equivalence among edges of a graph: given
two edges e and e′ of G, they are k-truss equivalent if and
only if they belong to the same k-truss, and are further con-
nected by a series of triangles in a strong sense (modeled by
the notion of k-triangle connectivity in Definition 9). Intu-
itively, if e belongs to a k-truss community w.r.t. a query
vertex v, so does e′. We prove that k-truss equivalence is an
equivalence relation, such that all the edges of G can be par-
titioned to at most one equivalence class based on k-truss
equivalence. We further design a truss-equivalence based
index, EquiTruss, which is a summarized graph G = (V, E)
consisting of a super-node set, V, and a super-edge set, E ;
each super-node ν ∈ V represents an equivalence class of
edges based on k-truss equivalence, and there exists a super-
edge (ν, µ) ∈ E if the edges partitioned to the super-node ν
and µ (ν, µ ∈ V), respectively, are connected via triangles in
G. We prove that community search can be carried out di-
rectly upon EquiTruss without repeated accesses to the orig-
inal graph G, and its time complexity is solely determined
by the actual size of output, which is theoretically optimal.
In addition, EquiTruss is amenable to efficient, dynamic up-
date when the underlying graph G evolves in terms of edge
insertion and deletion. We examine, both theoretically and
experimentally, the efficiency and effectiveness of EquiTruss,
which has achieved at least an order of magnitude speedup
for community search, in comparison to the state-of-the-art
method, TCP-Index. Furthermore, EquiTruss provides sim-
ple yet powerful community search functionalities in large-
scale graphs, and thus can be effectively employed in the
studies of real-world networked data. We summarize the
contributions of EquiTruss as follows,

• We introduce a novel notion, k-truss equivalence, to
capture the intrinsic relationship of edges in truss-
based communities. Based on this new concept, we can
partition any graph G into a series of truss-preserving
equivalence classes for community search (Section 3);

• We design and develop a truss-equivalence based in-
dex, EquiTruss, that is space-efficient, cost-effective,
and amenable to dynamic changes in the graph G.
More importantly, community search can be performed
directly upon EquiTruss without costly revisits to G,
which is theoretical optimal (Section 4);

• We carry out extensive experimental studies in real-
world, large-scale graphs, and compare EquiTruss with
the state-of-the-art solution, TCP-Index. Experimental
results demonstrate that EquiTruss is smaller in size,
faster to be constructed and maintained, and admits
at least an order of magnitude speedup for community
search in large graphs (Section 5);

The remainder of the paper is organized as follows. In
Section 2, we formulate the truss-based community search
problem and discuss the related work. In particular, we ex-
amine the state-of-the-art solution, TCP-Index, and analyze
its weaknesses. In Section 3, we introduce a novel notion, k-
truss equivalence, for truss-based community modeling and
search. We present the truss-equivalence based indexing so-
lution, EquiTruss, in Section 4. Experimental studied and
key findings are reported in Section 5, followed by conclud-
ing remarks in Section 6.

2. BACKGROUND
In this section, we discuss the preliminary concepts for

the community search problem in graphs. A primer of ter-
minologies and notations in this paper is briefed in Table 1.
We also elaborate on related work with a special focus on
the state-of-the-art solution, TCP-Index [11], and discuss its
limitations for community search.

2.1 Preliminaries
We consider in this paper an undirected, connected, sim-

ple graph G = (VG, EG), where VG is a set of vertices, and
EG ⊆ VG × VG is a set of edges. Given a vertex v ∈ VG, we
denote the set of neighboring vertices of v as NG(v), where
NG(v) = {u|u ∈ VG : (u, v) ∈ EG}, and the degree of v
is d(v) = |NG(v)|. We use dmax to denote the maximum
degree of vertices in G. A triangle ∆uvw is a cycle of length
three comprising three distinct vertices u, v, w ∈ VG. Based
on triangles, we define the following key concepts,

Definition 1 (Edge Support). The support of an edge
e = (u, v) ∈ EG, denoted as supG(e), is the number of tri-
angles with e as a constituent edge, i.e., supG(e) = |{∆uvw :
w ∈ VG}|.

Definition 2 (Subgraph Trussness). Given a sub-
graph G′(V ′, E′) ⊆ G, the trussness of G′, denoted as τ(G′),
is the largest integer k (k ≥ 2), such that τ(G′) = argmaxk
{supG′(e) ≥ k − 2 : ∀e ∈ E′}.

Consider a subgraph G′ ⊆ G. If τ(G′) = k and there
exists no super-graph G′′ of G′ (G′ ⊆ G′′ ⊆ G) such that
τ(G′′) = τ(G′) = k, G′ is referred to as a maximal k-
truss, or k-truss for short. Given a fixed value of k, there

1299

Table 1: A primer of terminologies and notations
Notation Decription

G = (VG, EG) A undirected, simple graph G
G = (V, E) A summarized graph G in EquiTruss
u, v, w, x, y, z Vertices in VG of G

ν, µ, ψ Super-nodes in V of G
NG(v) The set of neighboring vertices of v ∈ VG
∆uvw A triangle formed by vertices u, v, w
sup(e) The support of e, e ∈ EG

τ(G′), τ(e) The trussness of a graph G′, or an edge e
∆s ←→ ∆t, e1 ←→ e2 ∆s and ∆t (e1 and e2) are triangle connected

∆s
k←→ ∆t, e1

k←→ e2 ∆s and ∆t (e1 and e2) are k-triangle connected

e1
k
= e2 Edges e1 and e2 are k-truss equivalent

exists only one k-truss in G due to its maximality, while a
k-truss is not necessarily a connected graph. Therefore, the
classic definition of k-truss is not suitable to directly model
real-world communities that are both densely and cohesively
connected. To tackle this issue, the triangle-connectivity
constraint is further imposed upon k-truss:

Definition 3 (Triangle Adjacency). Given two tri-
angles ∆1 and ∆2 in G, they are adjacent if ∆1 and ∆2

share a common edge; that is, ∆1 ∩∆2 6= ∅.
Definition 4 (Triangle Connectivity). Consider two

triangles ∆s and ∆t in G. They are connected, denoted as
∆s ←→ ∆t, if there exist a sequence of n triangles ∆1, . . . ,∆n

in G (n ≥ 2), such that ∆s = ∆1, ∆t = ∆n, and for
1 ≤ i < n, ∆i ∩∆i+1 6= ∅.
Analogously, for any two edges e, e′ ∈ EG, they are triangle-
connected, denoted as e ←→ e′, if and only if (1) e and e′

belong to the same triangle, i.e., e, e′ ∈ ∆, or (2) e ∈ ∆s,
e′ ∈ ∆t, s.t. ∆s ←→ ∆t. To this end, the truss-based com-
munity can be defined as follows,

Definition 5 (k-truss Community). Given a graph
G and an integer k ≥ 31, a subgraph G′ ⊆ G is a k-truss
community if it satisfies the following conditions: (1) G′ is
a k-truss; (2) ∀e, e′ ∈ EG′ , e←→ e′.

Example 2. Given the toy graph G as shown in Fig-
ure 1(a), we consider a subgraph G′ induced by the set of
vertices {v7, v8, v9, v10, v11}. We note that for each edge e
in G′, we have supG′(e) = 3 meaning that e is involved in
at least three different triangles. As a result, the subgraph
trussness of G′, τ(G′), is 5, and G′ is actually a 5-truss
community because for any pair of edges in G′, they are
triangle connected. For example, (v7, v8) ←→ (v10, v11), be-
cause (v7, v8) ∈ ∆7,8,11, (v10, v11) ∈ ∆8,10,11, and ∆7,8,11 ∩
∆8,10,11 = {(v8, v11)}. �

It has been well recognized that triangle is a fundamental,
higher-order graph motif representing a strong and stable re-
lationship in graphs [2, 16], and the community modelling
based on triangles, rather than primitive vertices/edges, re-
sults in more accurate communities in real-world graphs [2,
11]. In Definition 5, the high-density and cohesiveness of
communities are guaranteed, respectively: condition (1) en-
sures the community is a densely-connected subgraph mod-
eled by k-truss, and condition (2) ensures all edges within a
community are cohesively connected via strong and stable
triangle motifs. Furthermore, this truss-based community
definition allows a vertex to participate in multiple com-
munities [11]. We finally define the truss-based community
search problem as follows,
1In the classic k-truss definition, k = 2 indicates a degraded
case where a (sub)graph has no triangles involved. Such a
graph is neither densely nor cohesively connected, and thus
is omitted in our discussion.

Definition 6 (k-truss community search). Given a
graph G(VG, EG), a query vertex q ∈ VG, and an integer
k ≥ 3, find all k-truss communities containing q.

2.2 Related Work
Community search. As a query-dependent variant of

the well-known community detection problem, community
search is to find cohesive and densely connected subgraphs
involving a given query vertex (or a set of query vertices) in
a graph. Community search was first explored when com-
munities were modeled as k-core (each vertex in a k-core
has its degree no less than k) with distance and size con-
straints, rendering the problem NP-hard [29]. Online search
of overlapping communities for a query vertex in terms of α-
adjacency γ-quasi-k-cliques was further proposed [7], while
the resultant communities may not be cohesively connected,
compared with truss-based communities [11]. Influential
community search, which is not query-dependent, aims to
discover top-r most influential k-core communities [21]. Lo-
cal community search [34, 1, 7] is to identify k-cores that
contain query vertices and also maximize/minimize some
goodness metric of communities, such as density, modular-
ity, and graph conductance. However, many “free-rider”
vertices irrelevant to the query vertex are inevitably re-
turned for some goodness metrics. Furthermore, only a sin-
gle community is identified, which fails to account for the
real-world cases where a query vertex may participate in dif-
ferent communities. Community search was also examined
in attributed graphs [9, 12] and spatial graphs [8].

Truss. Dense, cohesive subgraphs are critical components
revealing potential community structures of real-world, mas-
sive graphs. There has been a rich literature in modelling
and quantification of dense and cohesive graphs, including
clique or quasi-clique [6, 31], k-core [25, 1, 15], and nu-
cleus [26, 27]. All the aforementioned models except k-core
suffer from the computational intractability problem [28],
whereas k-core may result in incohesive subgraphs [37, 5].
Truss is defined on the higher-order graph motif, triangle,
and enjoys numerous advantages in community modelling
and computation [5]: a k-truss is a (k− 1)-core but not vice
versa [5]; a k-truss is (k−1)-edge-connected: any deletion of
fewer than (k − 1) edges will not disconnect a k-truss; a k-
truss with n vertices has its diameter no more than b 2n−2

k
c;

that is, a k-truss is diameter-bounded [13]. All these prop-
erties are critical indicators of good communities [28]. In
addition, k-truss based communities exhibit an inclusive hi-
erarchy representing cores of a graph at different levels of
granularity; that is, a k-truss is contained in a (k− 1)-truss
for k ≥ 3. When augmented with the triangle connectiv-
ity constraint, k-truss can account for the more practical
case where a vertex may belong to multiple k-truss com-
munities, which is consistent with sociological studies [11,
10]. In [5], the authors designed polynomial algorithms to
find k-trusses from a graph and extended the methods to
MapReduce. An improved algorithm was further proposed
based on triangle enumeration in O(|EG|3/2) time [33]. A
similar I/O-efficient algorithm for k-truss computation was
designed and facilitated by graph database technologies [37].
A parallel method, PETA, can detect local k-trusses within
a few iterations, and it has the same complexity as corre-
sponding serial algorithms [28].

Due to its advantages in community modeling and com-
putation, truss has been extensively applied for community

1300

search. In [13], community search was reformulated as an
NP-hard problem that identifies a closest k-truss community
with the minimum diameter and the largest k containing a
set of query vertices. A greedy algorithm with compact in-
dexes was proposed for approximate solutions. Truss has
also been extended for community search in probabilities
graphs [14] and attributed graphs [12].

Graph Summarization. As the scale and complexity of
graphs increase, graph summarization techniques have been
explored toward simplifying massive graphs into succinct
and quality-preserving summaries for significant reduction
in graph storage and computation cost [17]. GraSS [19] sum-
marizes graphs by greedily grouping vertices into a proba-
bilistic adjacency matrix, upon which neighborhood queries
can be efficiently approximated. In [24], graphs are summa-
rized to super-nodes and super-edges with guaranteed re-
construction error. The compressed summary is used to ap-
proximate queries including adjacency, degree, eigenvector
centrality, and subgraph counting. In [22], the authors de-
vised greedy and randomized algorithms to compress graphs
with bounded minimum discription length (MDL) errors.
VOD [17] is a vocabulary-based graph summarization method
aimed at minimizing the information-theoretic encoding cost
of graphs. SNAP [30] groups vertices based on attributes,
and iteratively splits groups until reaching the maximum
attribute- and relationship-compatible grouping.

Graph summarization is problem-driven, and typically op-
timized toward application-dependent objectives. However,
there exist no prior graph summarization methods for the
community search problem, as addressed in this paper. To
our knowledge, no existing research has explored the intrin-
sic relationships of edges within k-truss communities, which
lead to the summarized, community-preserving index, Equi-
Truss, as proposed in this paper.

TCP-Index. The state-of-the-art solution to truss-based
community search is TCP-Index (Triangle Connectivity Pre-
served Index) [11], which maintains trussness values and
triangle-adjacency information of the pre-computed k-trusses
into a group of tree-structured indexes. Specifically, for each
vertex x ∈ VG, we consider the vertex-centric ego-net Gx,
where VGx = NG(x) and EGx = {(y, z)|(y, z) ∈ EG, y, z ∈
NG(x)}. The edge (y, z) ∈ EGx is further assigned a weight
w indicating that a triangle ∆xyz arises in a k-truss com-
munity (w ≥ k). Given the weighted graph Gx, a maximum
spanning tree (MST), Tx, is identified, and all Tx’s (∀x ∈ VG)
constitute TCP-Index of G. We note that, for any two ver-
tices connected through a series of edges with weights no less
than k in Tx, they belong to the same k-truss community.
Namely, the community structures are losslessly compressed
in TCP-Index. However, during community search, a series
of costly, decompression-like operations have to be under-
taken online in both TCP-Index and the original graph G
to fully reconstruct edges of resultant k-truss communities.
For instance, if any edge (u, v) ∈ Tx is in a k-truss com-
munity, we have to examine both Tu and Tv in TCP-Index,
and revisit G to find missing edges of the community, thus
inevitably incurring expensive computational cost.

The limitations of TCP-Index are summarized as follows:
(1) given any k-truss community of G, its constituent edges
have to be examined and maintained redundantly in dif-
ferent MSTs, thus rendering the construction of TCP-Index
extremely time-consuming and the resultant index exces-
sively large; (2) during community search, a costly truss-

reconstruction process has to been undertaken by repeated
accesses to both TCP-Index and G, thus making commu-
nity search inefficient; (3) when G evolves, the dynamic
maintenance of TCP-Index becomes complicated and time-
consuming. For instance, when a new edge is inserted to G
or an existing edge is removed from G, a significant frac-
tion of MSTs in TCP-Index need to be updated accordingly,
which is time-consuming. As a result, TCP-Index may fail
in supporting online, efficient community search especially
in real-world, massive graphs.

3. TRUSS EQUIVALENCE
To systematically address the limitations of TCP-Index

and enable efficient community search, we propose a new
notion, k-truss equivalence, to characterize a fundamental
equivalence relation for edges that are strongly connected in
a k-truss community. As a consequence, a truss-equivalence
based index, EquiTruss, can be developed that is theoreti-
cally optimal for community search. To start with, we con-
sider a preprocessing step to decompose an input graph G
into k-trusses (k ≥ 2). Given an edge e ∈ EG, we first define
edge trussness of e as follows,

Definition 7 (Edge Trussness). The trussness of an
edge e ∈ EG, denoted as τ(e), is the maximum subgraph
trussness of a subgraph G∗ ⊆ G that involves e as a con-
stituent edge, i.e., τ(e) = maxG∗⊆G{τ(G∗) : e ∈ EG∗}.

It is important to note that a (maximal) k-truss of G
consists of all the edges with edge trussness no less than
k. We thus can apply a truss decomposition algorithm [33],
as detailed in Algorithm 1, to compute edge trussness and
discover all k-trusses from G. The algorithm starts with
an initialization step to compute edge supports in O(|E|1.5)
time using existing triangle enumeration methods [23, 18]
(Line 1). After the initialization, for k starting from 2, we
iteratively select the edge e∗(u, v) with the lowest support
(Line 5), assign the edge trussness k to e∗, and remove it
from G (Line 11). Meanwhile, we decrement the support of
all the other edges forming triangles with e∗, and reorder
them based on their new edge support (Lines 7-10). This
process continues until all the edges with edge support no
greater than (k − 2) are removed from G (Line 4). If there
are still edges left in G, we increment k by one to process
the edges with edge trussness (k + 1) (Lines 12 − 14). The
time complexity of Algorithm 1 is O(|EG|1.5) and its space
complexity is O(|VG|+ |EG|) [33].

Example 3. We apply Algorithm 1 in the graph G (Fig-
ure 1(a)) to compute edge trussness for all edges of G, and
the results are presented in Figure 2. Edges with different
edge trussness values are illustrated in different colors. �

We further define a stronger triangle-connectivity con-
straint: k-triangle connectivity, as follows,

Definition 8 (k-triangle). Given a triangle ∆uvw ⊆
G, if edge trussnesses of all the three constituent edges are
no less than k, i.e., min{τ(u, v), τ(v, w), τ(u,w)} ≥ k, ∆uvw

is denoted as a k-triangle.

Definition 9 (k-triangle connectivity). Given two
k-triangles ∆s and ∆t in G, they are k-triangle connected,

denoted as ∆s
k←→ ∆t, if there exists a sequence of n ≥ 2

k-triangles ∆1, . . . ,∆n s.t. ∆s = ∆1, ∆t = ∆n, and for
1 ≤ i < n, ∆i ∩∆i+1 = {e|e ∈ EG} and τ(e) = k.

1301

Algorithm 1: Truss Decomposition

Input: A graph G(VG, EG)
Output: The edge trussness τ(e) for each e ∈ EG

1 Computer sup(e) for each edge e ∈ EG;
2 Sort all edges in the non-decreasing order of their support;
3 k ← 2;
4 while ∃e ∈ EG, sup(e) ≤ (k − 2) do
5 e∗(u, v)← arg mine∈EG

sup(e);
6 assume w.l.o.g. d(u) ≤ d(v);
7 foreach w ∈ N(u) and (v, w) ∈ EG do
8 sup(u,w)← sup(u,w)− 1;
9 sup(v, w)← sup(v, w)− 1;

10 Reorder (u,w) and (v, w) w.r.t. new edge support;

11 τ(e∗)← k, remove e∗ from EG;

12 if ∃e ∈ EG then
13 k ← k + 1;
14 goto Step 4;

15 return {τ(e)|e ∈ EG};

Example 4. Consider the graph G as shown in Figure 2,
and two 4-triangles ∆4,5,7 and ∆6,8,11. They are 4-triangle
connected as there are two 4-triangles ∆5,6,7 and ∆6,7,8, such
that ∆4,5,7 ∩ ∆5,6,7 = {(5, 7)}, ∆5,6,7 ∩ ∆6,7,8 = {(6, 7)},
∆6,7,8 ∩∆6,8,11 = {(6, 8)}, and edges trussness values of all
these edges are 4. However, the two 3-triangles ∆1,4,5 and
∆3,4,7 are not 3-triangle connected.

Intuitively, if ∆s
k←→ ∆t, the two k-triangles, ∆s and ∆t,

are connected by a series of k-triangles with a chain of join
edges (common edges shared by consecutive triangles) that
have the edge trussness k. Analogously, we say two edges

e, e′ ∈ EG are k-triangle connected, denoted as e
k←→ e′, if

and only if (1) e and e′ belong to the same k-triangle, or (2)

e ∈ ∆s, e
′ ∈ ∆t, s.t. ∆s

k←→ ∆t. To this end, we define a
new relation, k-truss equivalence, upon EG, as follows,

Definition 10 (k-truss equivalence). Given any two
edges e1, e2 ∈ EG, they are k-truss equivalent (k ≥ 3), de-

noted as e1
k
= e2, if and only if (1) τ(e1) = τ(e2) = k, and

(2) e
k←→ e′.

Theorem 1. k-truss equivalence is an equivalence rela-
tion upon EG.

Proof. k-truss equivalence is a binary relation defined
upon EG, and we prove the following key properties of an
equivalence relation for k-truss equivalence:
Reflexivity. Consider an edge e0 ∈ EG, s.t. τ(e0) = k.
Based on Definition 7, there exists at least one subgraph
G∗(V ∗, E∗) ⊆ G such that e0 ∈ E∗, and ∀e ∈ E∗, τ(e) ≥ k.
Since k ≥ 3, there exists at least one k-triangle ∆ ⊆ G∗ such

that e0 ∈ ∆. Namely, e0
k
= e0;

Symmetry. Consider two edges e1, e2 ∈ EG, e1
k
= e2. That

is, τ(e1) = τ(e2) = k, and either of the following cases holds:
(1) e1 and e2 are in the same k-triangle; (2) there exist two
k-triangles ∆1 and ∆2, such that e1 ∈ ∆1, e2 ∈ ∆2, and

∆1
k←→ ∆2. For case (1), as e2 is located in the same k-

triangle as e1, so e2
k
= e1. For case (2), note that k-triangle

connectivity is symmetric, so ∆2
k←→ ∆1. Namely, e2

k
= e1.

Transitivity. Consider three edges e1, e2, e3 ∈ EG, s.t. e1
k
=

e2 and e2
k
= e3. Namely τ(e1) = τ(e2) = τ(e3) = k, and

1

2 3

4

5 6

7

8

9 10

11 5truss edge

4truss edge

3truss edge

Figure 2: k-truss edges in the graph G

either of the following cases holds: (1) there exist two k-
triangles ∆1 and ∆2, such that e1, e2 ∈ ∆1 and e2, e3 ∈ ∆2.
If ∆1 = ∆2, e1 and e3 are located in the same k-triangle, so

e1
k
= e3. Otherwise, ∆1∩∆2 = {e2} and τ(e2) = k, so ∆1

k←→
∆2. Therefore, e1

k
= e3; (2) there exist m(≥ 2) k-triangles

∆l1 , . . . ,∆lm in G, s.t. e1 ∈ ∆l1 , e2 ∈ ∆lm , and all the edges
joining these m consecutive k-triangles are with the same
edge trussness, k. Meanwhile, there exist n(≥ 2) k-triangles
∆t1 , . . . ,∆tn in G s.t. e2 ∈ ∆t1 , e3 ∈ ∆tn and all the edges
joining these n k-triangles are with the same edge trussness,

k. If ∆lm = ∆t1 , we know that ∆l1
k←→ ∆tn through a series

of (m + n − 1) adjacent k-triangles ∆l1 , . . . ,∆lm , . . . ,∆tn .
Otherwise, we know that ∆lm∩∆t1 = {e2} and τ(e2) = k, so

∆l1
k←→ ∆tn through a series of (m+n) adjacent k-triangles

∆l1 , . . . ,∆lm ,∆t1 , . . . ,∆tn . Therefore, e1
k
= e3.

Given an edge e ∈ EG, τ(e) = k, the set Ce = {e′|e′ k
=

e, e′ ∈ EG} defines an equivalence class of e w.r.t. k-truss
equivalence, and the set of all equivalence classes forms a
mutually exclusive and collectively exhaustive partition of
EG. In particular, any equivalence class Ce consists of edges
with the same edge trussness, k, that are also k-triangle
connected, making Ce a k-truss community by definition.

4. TRUSS-EQUIVALENCE BASED INDEX
Based on k-truss equivalence, we design and develop a

graph-structured index, EquiTruss (Section 4.1), which sup-
ports community search with theoretically optimal perfor-
mance (Section 4.2). In addition, EquiTruss allows incre-
mental update when G changes dynamically (Section 4.3).

4.1 Index Design and Construction
According to k-truss equivalence, all the edges of the graph

G are partitioned into a series of mutually exclusive equiva-
lence classes, each of which represents a k-truss community.
We thus design a truss-equivalence based index, EquiTruss,
as a summarized graph G = (V, E), where V is a super-
node set and E is a super-edge set, E ⊆ V × V. A super-
node ν ∈ V represents a distinct equivalence class Ce where
e ∈ EG, and a super-edge (µ, ν) ∈ E , where µ, ν ∈ V, indi-
cates that the two equivalence classes are triangle-connected;
that is, ∃e ∈ µ and ∃e′ ∈ ν, s.t. e ←→ e′. It is important to
recognize that EquiTruss is a community-preserving graph
summary, where all k-truss communities are completely en-
coded in super-nodes, and the triangle connectivity across
different communities is exactly maintained in super-edges,
thus making all the information critical to community search
readily available in EquiTruss. Furthermore, each edge e of
G is maintained in exactly one super-node representing its
k-truss equivalence class, Ce. In comparison to TCP-Index
where e has to be maintained redundantly in multiple MSTs,
EquiTruss is significantly more succinct and space-efficient.

1302

ν1

ν2 ν3

ν4

ν5

ν1 (k = 3)

(1, 5)

ν2 (k = 4)

(1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4)

ν3 (k = 3)

(3, 7), (3, 9)

ν4 (k = 4)

(4, 5), (4, 6), (4, 7), (5, 6),
(5, 7), (6, 7), (6, 8), (6, 11)

ν5 (k = 5)

(7, 8), (7, 9), (7, 10), (7, 11), (8, 9),
(8, 10), (8, 11), (9, 10), (9, 11), (10, 11)

Figure 3: Truss-equivalence based index, EquiTruss

Example 5. The truss-equivalence based index, EquiTruss,
of the graph G (Figure 1(a)) is shown in Figure 3. It con-
tains 5 super-nodes representing k-truss equivalence classes
for edges in G, as tabulated in Figure 3. For example, the
super-node ν2 represents a 4-truss community with 6 edges:
they are 4-triangle connected, and have the same edge truss-
ness value of 4. Meanwhile, there are 6 super-edges in Eq-
uiTruss depicting triangle connectivity between super-nodes
(k-truss communities).

Given the graph G, we construct the truss-equivalence
based index, EquiTruss, in Algorithm 2. In the initialization
phase (Lines 1-7), we first call Algorithm 1 to compute edge
trussness for each edge e ∈ EG (Line 1), then reallocate
edges to different sets, Φk, in terms of edge trussness (Lines
5-6). Given e ∈ EG, we maintain two auxiliary data struc-
tures: processed is a Boolean variable indicating whether e
has been examined in index construction, and is initialized
to FALSE (Line 3); list is a set of super-node identifies,
each of which represents a previously explored super-node,
µ, where τ(µ) < k, and µ is triangle-connected to the cur-
rent super-node, ν (τ(ν) = k), via the edge e. The e.list is
initialized as an empty set (Line 4). We then examine all
the edges of G in a non-decreasing order of edge trussness
from Φ3 to Φkmax consecutively (Line 8). When selecting an
edge e ∈ Φk, we create a new super-node ν corresponding to
the equivalence class Ce of e (Lines 10-12). Using e = (u, v)
as an initial seed, we traverse G (in BFS) to identify all
the edges k-truss equivalent to e by exploring its incident
k-triangles (Line 20-23), and add them to the super-node ν.
Meanwhile, we also check if there exists some super-node µ
in e.list, where τ(µ) < τ(ν) = k, and µ is triangle-connected
to ν through e. If so, we create a super-edge (µ, ν) in the
index (Lines 17-19). Given any k-triangle, if there exists an
edge e′ with τ(e′) > k, the identifier of the current super-
node ν will be subscribed to e′.list as ν is triangle-connected
to the super-node to which e′ belongs, and a super-edge will
be created when e′ is processed (Lines 31-33). After e and
all its incident triangles are examined, e is removed from
both Φk and EG (Line 24), ensuring that each edge e be-
longs to at most one k-truss equivalence class represented
by the super-node ν.

Theorem 2. EquiTruss can be constructed in O(|EG|1.5)
time and O(|EG|) space by Algorithm 2.

Proof. In the initialization phase of Algorithm 2 (Lines
1-7), the truss decomposition costs O(|EG|1.5) time. In the
index construction phase (Lines 8-24), for each edge e =
(u, v) ∈ EG, we consider all the triangles ∆uvw that involve
e in order to identify the k-truss equivalent edges. Then e
is eliminated from Φk and EG, making each triangle ∆uvw

examined only once. The procedure ProcessEdge takes O(1)
time. So the index construction of EquiTruss is equivalent
to enumerating all triangles from G in O(|EG|1.5) time.

Given an edge e ∈ EG, the size of e.list is equivalent to
the number of super-nodes, µ, where τ(µ) < τ(e), and µ is

Algorithm 2: Index Construction for EquiTruss

Input: A graph G(VG, EG)
Output: EquiTruss: G(V, E)

/* Initialization */
1 Truss Decomposition (G);
2 foreach e ∈ EG do
3 e.processed ← FALSE;
4 e.list ← ∅;
5 if τ(e) = k then
6 Φk ← Φk ∪ {e};

7 snID ← 0 ; /* Super-node ID initialized to 0 */
/* Index Construction */

8 for k ← 3 to kmax do
9 while ∃e ∈ Φk do

10 e.processed = TRUE;
11 Create a super-node ν with ν.snID ← ++snID;
12 V ← V ∪ {ν} ; /* A new super-node for Ce */
13 Q.enqueue(e) ;
14 while Q 6= ∅ do
15 e(u, v)← Q.dequeue();
16 ν ← ν ∪ {e} ; /* Add e to super-node ν */
17 foreach id ∈ e.list do
18 Create a super-edge (ν, µ) where µ is an

existing super-node with µ.snID = id;
19 E ← E ∪ {(ν, µ)} ; /* Add super-edge */

20 foreach w ∈ N(u) ∩N(v) do
21 if τ(u,w) ≥ k and τ(v, w) ≥ k then
22 ProcessEdge(u,w);
23 ProcessEdge(v, w);

24 Φk ← Φk − {e}; E ← E − {e};

25 return G(V, E);

26 Procedure ProcessEdge(u, v)
27 if τ(u, v) = k then /* k-triangle connectivity */
28 if (u, v).processed = FALSE then
29 (u, v).processed = TRUE;
30 Q.enqueue(u, v);

31 else /* τ(u, v) > k */
32 if snID 6∈ (u, v).list then
33 (u, v).list ← (u, v).list ∪ {snID};

triangle connected to the super-node to which e belongs. So
e.list takes at most O(|EG|) space. Once e is processed, it
will be removed from G and the space of e.list is released.
So the space complexity of Algorithm 2 is O(|EG|).

In practice, EquiTruss is built offline before community
search is performed, so it can be constructed efficiently from
real-world, massive graphs. Meanwhile, EquiTruss is signifi-
cantly more space-efficient than TCP-Index, as there are no
redundant edges maintained in the index.

4.2 Community Search on EquiTruss
After EquiTruss is constructed from G, community search

can be carried out directly on EquiTruss without repeated
accesses to G, which is detailed in Algorithm 3. First of all,
we find from the index G the super-nodes within which the
query vertex q is located. We use a hash structure H : VG →
2V to maintain this information, where H(u) = {ν1, . . . , νl}
as long as there exists some edge (u, v) ∈ νi(1 ≤ i ≤ l),
where u, v ∈ VG. We remark H can be efficiently built as a
by-product in index construction. Starting from each super-
node ν ∈ H(q) with τ(ν) ≥ k, we traverse G in a BFS
fashion, and for each unexplored, neighboring super-node
µ with τ(µ) ≥ k, the edges within µ will be added to the

1303

Algorithm 3: Community Search Based on EquiTruss

Input: G(V, E), the truss value k ≥ 3, the query vertex q
Output: A: all k-truss communities containing q

/* Initialization */
1 foreach ν ∈ V do
2 ν.processed ← FALSE;

3 l← 0 ;
/* BFS traversal for community search */

4 foreach ν ∈ H(q) do
5 if τ(ν) ≥ k and ν.processed = FALSE then
6 ν.processed ← TRUE;
7 l← l + 1; Al ← ∅;
8 Q← ∅; Q.enqueue(ν);
9 while Q 6= ∅ do

10 ν ← Q.dequeue();
11 Al ← Al ∪ {e|e ∈ ν};
12 foreach (ν, µ) ∈ E do
13 if τ(µ) ≥ k and µ.processed = FALSE then
14 µ.processed ← TRUE;
15 Q.enqueue(µ);

16 return {A1, . . . ,Al};

k-truss community, Al. In the end, each Al represents a
k-truss community in which q is involved.

Theorem 3. Given a query vertex q ∈ VG and the truss
value k, Algorithm 3 correctly computes all k-truss commu-
nities containing v.

Proof. According to Algorithm 3, each set Ai(1 ≤ i ≤ l)
satisfies the following conditions: (1) the query vertex q is
located in Ai; (2) for each edge e ∈ Ai, τ(e) ≥ k; (3) all the
edges inAi are triangle-connected. Therefore, Ai is a k-truss
with constituent edges triangle-connected. We then prove
that all Ai(1 ≤ i ≤ l) are maximal by way of contradiction.
Assume otherwise there exists at least one set Ai which is
not maximal; that is, there exists a subgraph A′ ⊆ G, s.t.
Ai ⊂ A′ and A′ is one of the community search results
satisfying the aforementioned conditions. As a consequence,
there exists at least one edge e ∈ A′ \A, s.t. τ(e) ≥ k, and e
is triangle connected to every edge in A′, but is not triangle
connected to any edge in A. Because the query vertex q is
located in both A and A′, there exists at least one incident
edge of q, denoted as (q, u), where u ∈ VG, s.t. τ(q, u) ≥ k
and (q, u) ∈ A. As A ⊂ A′, the edge (q, u) is also in A′, i.e.
(q, u) ∈ A′. Therefore, (q, u) is triangle connected to the
edge e, which contradicts with the fact that any edge of A,
including (q, u), is not triangle connected to e.

Example 6. Consider the graph G shown in Figure 1(a),
the truss value k = 4, and the query vertex v4. Based on
Algorithm 3, We first find from EquiTruss (in Figure 3) the
super-nodes ν2 and ν4 that contain v4. Starting from ν2, we
recognize that τ(ν2) = 4 ≥ k, so all the edges within ν2 are in
the first community A1. However, ν2’s neighboring super-
nodes ν1 and ν3 are disqualified because τ(ν1) = τ(ν3) =
3 < k. We then start with the second super-node ν4. As
τ(ν4) = 4 > k, all the edges within ν4 are in the second
community A2. Furthermore, since (ν4, ν5) ∈ E and τ(ν5) =
5, ν5 is also qualified and all the edges within ν5 are in the
community A2 as well. The whole community search process
is illustrated in Figure 4(a) and the community search results
including A1 (colored in red) and A2 (colored in green) are
presented in Figure 4(b).

ν2

ν1

ν3

ν4

ν5

(a) Community search
on EquiTruss

41

2 3

5 6

7

8

9 10

11

(b) 4-truss communities of vertex 4

Figure 4: The two 4-truss communities for the query
vertex v4, including A1 with edges in red color and
A2 with edges in green color.

Theorem 4. The time complexity of Algorithm 3 is de-
termined solely by the size of the resultant k-truss commu-
nities, i.e., O(|

⋃l
i=1Ai|).

Proof. In Algorithm 3, each edge of Ai is accessed only
once when reported as output. For any edge in the super-
node ν where τ(ν) < k, it is not even accessed in the algo-
rithm. As a result, the time complexity of Algorithm 3 is
O(|

⋃l
i=1Ai|), which is exactly the time used for listing all

the edges in the resultant k-truss communities from G.
Based on Theorem 4, we note that Algorithm 3 is opti-

mal as returning all the edges of the k-truss communities
requires Ω(|

⋃l
i=1Ai|) time, and Algorithm 4 achieves this

lower-bound by visiting each edge of the resultant commu-
nities exactly once. It is also worth mentioning that, in
Algorithm 3, we do not need to revisit the original graph G,
and it suffices to simply leverage EquiTruss for community
search. In comparison to TCP-Index that needs repeated ac-
cesses to G for community recovery, our method, EquiTruss,
is significantly more efficient.

4.3 Dynamic Maintenance of EquiTruss
Real-world graphs are not static but dynamically evolving

all the time. In this section, we examine how EquiTruss can
be dynamically updated in accordance with the evolution
of G. We consider two cases of changes in G: edge inser-
tion and edge deletion, as vertex insertion/delection can be
treated as a series of insertions/deletions for incident edges
of the vertex to be inserted/deleted.

Inserting a new edge e∗ = (u, v) in G may create a set of
new triangles {∆uvw : w ∈ N(u)∩N(v)}, thus resulting in an
increment of edge support for (u,w) and (v, w) by 1. Mean-
while, for any subgraph G′ that contains the triangle ∆uvw,
its subgraph trussness, τ(G′), may increase as well because
τ(G′) = mine∈EG′ {supG′(e) + 2} (a variant of Definition 2).
Furthermore, edge trussness of the edges in G′ may also
increase because τ(e) = maxG′⊆G{τ(G′) : e ∈ E(G′)} (Def-
inition 7). As a result, a chain of edge-trussness increases
may arise in G, requiring EquiTruss be updated accordingly.
Similarly, deleting an existing edge e∗ = (u, v) from G may
trigger a chain of edge-trussness decreases. In the following,
we will first identify the affected super-nodes of EquiTruss
in the presence of edge insertion/deletion in G, and then
design dynamic update algorithms for EquiTruss.

4.3.1 Affected Super-nodes in EquiTruss
We use τ(e) and τ̂(e) to denote the trussness of e ∈ EG

before and after an edge is inserted or deleted, respectively,
into G. The affected super-nodes in EquiTruss are deter-
mined in the presence of an edge insertion or deletion, re-
spectively, as follows:

1304

1

2 3

4

5 6

7

8

9 10

11

(a) Edge Insertion

ν1 ν2 ν3

τ(ν1) = 3 τ(ν2) = 4 τ(ν3) = 5

(b) Updated G
Figure 5: (a) Insert a new edge (v4, v9) in G; (b) The
updated G in EquiTruss.

Edge Insertion. According to existing theoretical re-
sults [11], we note that inserting a new edge e∗ = (u, v) may
trigger edge-trussness increases as follows: ∀e ∈ EG ∪ {e∗}
with τ(e)(= k) < τ̂(e), where τ̂(e) is the upper bound of

τ(e) after e∗ is inserted, if e
k←→ e∗ holds, the trussness of

e may be updated as τ̂(e) = τ(e) + 1. The following the-
orem indicates the super-nodes of EquiTruss to be affected
presumably due to an edge insertion:

Theorem 5. Consider an inserted edge e∗ = (u, v) and
w ∈ N(u) ∩ N(v). We use e to denote either (w, u) or

(w, v). For any k-triangle ∆uvw where k < τ̂(e), the follow-
ing super-nodes in EquiTruss may be updated: {ν|ν ∈ V, e ∈
ν, τ(e) = k}. Note e can be either (w, u) or (w, v) (or both)
with the edge trussness k. �

Proof. Consider a k-triangle ∆uvw that contains e∗. We
assume w.l.o.g. that e = (w, u) and τ(e) = k < τ̂(e). Based
on the aforementioned results, for any edge e′ that is k-
triangle connected to e, its edge trussness, τ(e′), may be

updated. However, because e′
k←→ e, e′ belongs to the equiv-

alence class of e, Ce, which is exactly represented by the
super-node ν in EquiTruss, where e ∈ ν.

According to Theorem 5, when a new edge e∗ is inserted
to G, all the edges with a potential edge-trussness increase,
except e∗, are contained in the affected super-nodes of Equi-
Truss. As a result, we avoid re-examining the original graph
G to find the affected edges, and hence save significant com-
putational cost.

Example 7. We insert a new edge (v4, v9) in G, as pre-

sented in Figure 5(a), and τ̂(v4, v9) = 4. We examine two
triangles ∆4,7,9 and ∆3,4,9 where the edge (v4, v9) is involved.
First, because τ(v4, v7) = 4 and τ(v7, v9) = 5, which are no

less than τ̂(v4, v9) = 4, both the edges (v4, v7) and (v7, v9)
(together with their k-triangle connected edges) are not up-
dated. However, in the triangle ∆3,4,9, we have τ(v3, v4) = 4
and τ(v3, v9) = 3 < 4. We recognize that the super-node
ν3 (in Figure 3) involves the edge (v3, v9), so ν3 will be af-
fected after the insertion of (v4, v9), As a result, all the edges
within ν3 including (v3, v7), (v3, v9), and the newly inserted
edge (v4, v9), will be re-examined as their edge trussness may
increase, based on Theorem 5. Figure 5(b) illustrates the up-
dated summarized graph G in EquiTruss after the insertion
of the edge (v4, v9) in G. �

Edge Deletion. When an edge e∗ = (u, v) is deleted
from G, we recognize analogously that a chain of edge-
trussness decreases may arise as follows: for any edge e ∈
EG\{e∗} with τ(e)(= k) ≤ τ(e∗), if e

k←→ e∗ holds, the

1

2 3

4

5 6

7

8

9 10

11

(a) Edge Deletion

ν1

ν2

ν3

ν4

τ(ν1) = 4

τ(ν2) = 3

τ(ν3) = 5

τ(ν4) = 3

(b) Updated G
Figure 6: (a) Delete an edge (6, 7) from the graph G;
(B) The updated G in EquiTruss.

trussness of e may be updated as τ̂(e) = τ(e)− 1. The fol-
lowing theorem indicates the super-nodes of EquiTruss to be
affected presumably due to an edge deletion:

Theorem 6. Consider an edge e∗ = (u, v) to be deleted
from G, and e∗ ∈ ν where ν is a super-node of EquiTruss
containing e∗. The following super-nodes of EquiTruss may
be updated: {ν} ∪ {µ|τ(µ) < τ(e∗), µ ∈ V, (µ, ν) ∈ E}.

Proof. Given any edge e ∈ EG\{e∗} s.t. τ(e)(= k) ≤
τ(e∗), we consider the following cases: (1) if e, e∗ are in
the same k-triangle and k < τ(e∗), e belongs to another
super-node µ (τ(µ) = k) that is triangle connected to ν to
which e∗ belongs, so µ and ν are neighboring super-nodes in
EquiTruss, and µ may be updated; (2) if e, e∗ are in the same

k-triangle and k = τ(e∗), or e
k←→ e∗, e and e∗ belong to the

same super-node ν, which may be updated. Therefore, when
e∗ is deleted from G, the super-node ν and its neighboring
super-nodes µ, where τ(µ) < τ(e∗), may be updated.

According to Theorem 6, if an existing edge e∗ is deleted
from G, only the super-node ν that contains e∗ and ν’s
neighboring super-nodes µ, where τ(µ) < τ(e∗), need to
be re-examined for update. We thus save significant com-
putational cost for exploring the whole graph G in order to
identify the affected edges, as has been done in TCP-Index.

Example 8. We delete the edge (v6, v7) from G, as shown
in Figure 6(a). As τ(v6, v7) = 4, and the edge (v6, v7) be-
longs to the super-node ν4 (Figure 3), all the edges within
ν4 may be affected. Indeed, all the edges (v4, v5), (v4, v6),
(v4, v7), (v5, v6), (v5, v7), (v6, v8), and (v6, v11) within ν4
have their edge trussness decreased by 1. As the edge (v6, v7)
is not located within any k-triangle where k < 4, we can omit
examining the adjacent super-nodes of ν4 as they will not be
affected by the deletion of (v6, v7). Figure 6(b) illustrates the
updated summarized graph G in EquiTruss after the deletion
of the edge (v6, v7) from G. �

4.3.2 Dynamic Update for EquiTruss
For an edge insertion/deletion, we denote the set of af-

fected edges in G as E′, and the set of affected super-nodes
in EquiTruss as V ′. Once E′ and V ′ are identified, we can
update EquiTruss accordingly to reflect the changes in G.
We first focus on the vertex set V ′ comprising all the par-
ticipant vertices of E′, V ′ = {u, v|u, v ∈ VG, (u, v) ∈ E′},
and examine the induced subgraph G[V ′] w.r.t. V ′, which
has the following important properties: (1) all the affected
edges are within G[V ′], and the recomputation of truss-
ness for affected edges is confined to G[V ′]; (2) if there
exists any edge e ∈ EG[V ′]\E′, referred to as a boundary
edge, its edge trussness τ(e) does not change during edge
insertion/deletion. Furthermore, for any edge e1 ∈ EG[V ′]

1305

Algorithm 4: Dynamic Update for EquiTruss

Input: The affected edge set E′, the affected super-node set
V ′, the summarized graph G in EquiTruss

Output: The updated EquiTruss

1 G′ ← G ;
2 foreach ν ∈ V ′ do
3 G′ ← G′ − {ν} ;

4 V ′ = {u, v|u, v ∈ V, (u, v) ∈ E′};
5 δG ← Index-Construction(G[V ′]) ; /* Call Algorithm 2 */
6 G′ ← G′ ∪ δG ;
7 foreach ν ∈ VδG do
8 if (ν, µ) ∈ EG′ and (τ(ν) = τ(µ)) then
9 Merge (ν, µ) ; /* Merge super-nodes ν, µ */

10 return G′;

11 Procedure Merge(ν, µ)
12 foreach e ∈ µ do
13 ν ← ν ∪ {e};
14 foreach (µ, ψ) ∈ EG′ do
15 if (ν, ψ) 6∈ EG′ then
16 EG′ ← EG′ ∪ {(ν, ψ)};

17 VG′ ← VG′\{µ};

and e2 ∈ EG\G[V ′] such that e1 is triangle-connected to e2,
i.e. e1 ←→ e2, there must be at least one triangle involving
boundary edges among the triangles connecting e1 and e2.
As a result, when updating EquiTruss, we can use boundary
edges to reconstruct super-edges between the super-nodes
derived within G[V ′] and out of G[V ′], respectively.

Algorithm 4 presents the key steps for dynamic updates
of EquiTruss in the presence of edge insertion/deletion in G.
First of all, we remove all the affected super-nodes, together
with their incident super-edges, from G (Lines 2-3). We
then identify the induced subgraph G[V ′] from the affected
edge set E′, and recompute the index, δG , for the subgraph
G[V ′] by calling Algorithm 2 (Lines 4-5). We note that every
affected edge with a potential trussness change due to an
edge insertion/deletion is within G[V ′]. Therefore, we only
recompute edge trussness for the edges in G[V ′], excluding
boundary edges, thus generating a set of new super-nodes.
Furthermore, as boundary edges well preserve the triangle-
connectivity information between the edges in and out of
G[V ′], respectively, the super-edges can be reconstructed
correspondingly during the execution of Algorithm 2. As a
result, the updated EquiTruss is augmented with δG (Line 6).
However, we recognize that some newly created super-node
ν may have the same trussness with another existing super-
node µ, τ(ν) = τ(µ) = k, which are triangle connected
as well. That is, ν and µ may be k-triangle connected if
there exists a boundary edge e, τ(e) = k, satisfying that
e ∈ ν and e ∈ µ. If so, we merge two super-nodes ν and
µ in G′ as follows: first of all, we insert all the edges e ∈ µ
into the super-node ν (Lines 12-13); we then create a super-
edge (ν, ψ) if there exists any super-edge (µ, ψ), where ψ is
another super-node in G′ s.t. ψ 6= ν and ψ 6= µ (Lines 14-16);
finally, we remove µ and all its incident super-edges from G′

(Line 17). To this end, the super-node ν comprises all the
edges that are initially in either ν or µ with edge trussness
k, and also are k-triangle connected.

4.3.3 Bulk Update for EquiTruss
In real-world graphs, edge insertion and deletion may arise

in a batch or streaming mode within a short time window.

Table 2: Graph statistics (K = 103 and M = 106)
Network |VG| |EG| dmax kmax

Amazon 335K 926K 549 7
DBLP 317K 1M 342 114

LiveJournal 4M 35M 14,815 352
Orkut 3.1M 117M 33,313 78

UK-2002 18.6M 298.1M 194,955 944

Updating EquiTruss serially for each individual edge inser-
tion or deletion becomes immediately laborious and ineffi-
cient. We extend our dynamic update algorithms of Equi-
Truss in support of bulk update. First of all, we identify
the affected edges of G using the same algorithms for indi-
vidual edge insertion/deletion. We then combine all such
edges till the end of the time window (e.g., every hour), and
update EquiTruss once by Algorithm 4. Since there exist
overlapping effected regions due to edge insertion/deletion,
the bulk update of EquiTruss is significantly faster than up-
dating EquiTruss repeatedly right after each individual edge
is inserted/deleted in G, as witnessed in our experimental
studies in Section 5.3.

5. EXPERIMENTS
In this section, we report our experimental studies for

community search in real-world graphs. We compare our
truss-equivalence based indexing approach, EquiTruss, with
the state-of-the-art solution, TCP-Index [11]. In addition,
we also implement a brute-forth community search method,
Index-Free, which leverages no index structures for commu-
nity search: given a query vertex q, Index-Free starts with
each incident edge (q, ui) of q where τ(q, ui) ≥ k, and carries
out a BFS-like exploration for all the edges that are triangle
connected to (q, ui). The algorithm iterates until all k-truss
communities relevant to q are identified by definition. To
this end, Index-Free can be used as a baseline for community
search in our experimental studies. All the algorithms are
implemented in Java and the experiments are performed on
a Linux server running Ubuntu 14.04 with two Intel 2.3GHz
ten-core CPUs and 256GB memory.

Datasets. We consider five real-world graphs, which have
been widely adopted in the studies of community search and
detection, and are publicly available in the Stanford Network
Analysis Project (SNAP)2 and the UF Sparse Matrix Col-
lection3. The general statistics of these graphs are reported
in Table 2, where dmax denotes the maximum vertex degree,
and kmax denotes the maximum edge trussness in G.

5.1 Index Construction
We start with the experiments to construct the indexes

from graphs. This process is typically performed offline be-
fore community search is carried out. Once the indexes
are built, they will reside in main memory and serve as
an efficient vehicle to facilitate community search in large
graphs. We focus on two evaluation metrics in our exper-
imental studies: (1) the time spent for index construction,
and (2) the space consumed for the overall index structures
in memory. We compare our approach EquiTruss with TCP-
Index, and the experimental results are reported in Table 3
(For the baseline method, Index-Free, no index is pre-built
so there are no corresponding results reported).

2snap.stanford.edu/data/index.html
3www.cise.ufl.edu/research/sparse/matrices/LAW/
uk-2002.html

1306

snap.stanford.edu/data/index.html
www.cise.ufl.edu/research/sparse/matrices/LAW/uk-2002.html
www.cise.ufl.edu/research/sparse/matrices/LAW/uk-2002.html

Table 3: Index construction time (in seconds) and
space cost (in megabytes) of EquiTruss and TCP-Index,
together with graph sizes (in megabytes).

Index Space (MB) Construction Time (Sec.)
Graph Graph Size (MB)

EquiTruss TCP-Index EquiTruss TCP-Index

Amazon 17.50 7.60 32.86 1.7 5.72
DBLP 18.54 9.93 44.64 2.5 15.34

LiveJournal 598.40 428 1,367.40 345.4 1496.24
Orkut 1,896.80 1,687 3,164.72 2,160 31,558

UK-2002 4,336.46 1,484.90 16,324.54 2,288 26632

From Table 3, we recognize that the truss-equivalence
based index, EquiTruss, can be constructed more efficiently
than TCP-Index from all graphs. The speedup ranges from
3.36x in the Amazon graph up to 14.61x in the Orkut graph.
Meanwhile, EquiTruss takes significantly less space cost than
TCP-Index, ranging from 1.88x less in the Orkut graph up to
11x less in the UK-2002 graph, and the index sizes are consis-
tently smaller than graph sizes. The main reason is that each
edge of G is partitioned to at most one super-node in Equi-
Truss; that is, there is no redundant information maintained
in EquiTruss. In contrast, the same edge may occur redun-
dantly in multiple maximum spanning trees originated from
different vertices of G in TCP-Index, thus resulting in sig-
nificantly larger index structures (several times larger than
original graphs) and more index construction time. In con-
sequence, EquiTruss can be constructed more efficiently with
less space cost than TCP-Index in large graphs.

5.2 Community Search
Once the indexes are built, we can use them to support

community search in graphs. Here we consider two differ-
ent experimental settings. In the first set of experiments,
we select queries with varied vertex-degrees, as community
patterns vary significantly for vertices with different degrees:
high-degree vertices are typically involved in large and dense
communities, while low-degree vertices oftentimes partici-
pate in communities that are small and sparse. For each
graph, we sort vertices in a non-increasing order w.r.t. ver-
tex degrees, and partition them into ten equal-width buckets
based on degree percentiles. For instance, the first bucket
contains the top 10% high-degree vertices in G. We then
randomly select 100 vertices from each bucket as queries and
report the average runtime for community search in each
bucket. We set the truss value k = 4 in Amazon, k = 5 in
DBLP, k = 6 in LiveJournal, k = 10 in Orkut, and k = 10 in
UK-20024. The community search performance is reported
in Figure 7.

We have the following experimental findings in different
real-world graphs: (1) The baseline method, Index-Free, is
the least efficient algorithm for community search, which
is typically orders of magnitude slower than EquiTruss es-
pecially in large graphs. In Orkut, for queries in high or
medium vertex-degree percentile buckets (< 70%), commu-
nity search cannot finish within 3 hours. The primary rea-
son is that each community search incurs exhaustive BFS
exploration and costly triangle-connectivity evaluation that
are extremely time-demanding in large graphs. As a result,

4We explore the full range of values for k in different graphs
and recognize that in small or medium-size graphs, such as
Amazon or DBLP, high values of k lead to very few, or even
no, communities as most edges in these graphs have small
edge trussness. Meanwhile, similar experimental findings
have been witnessed with different values of k, and thus are
omitted for the sake of brevity.

Index-Free without deliberate indexing schemes becomes in-
feasible for community search in real-world graphs; (2) It
typically takes more time to search communities for high-
degree vertices than low-degree vertices. When queries are
drawn from low-degree percentile buckets, the search time
drops steadily for all methods. Specifically, When the de-
gree percentiles are 70% or higher in DBLP, LiveJournal,
and UK-2002, the runtime reduces significantly as there are
very few k-truss communities for low-degree vertices; (3) For
all vertex-degree percentile buckets in different graphs, Eq-
uiTruss outperforms TCP-Index in community search with at
least an order of magnitude speedup. In the largest UK-2002
graph, we recognize this speedup can be as large as two or-
ders of magnitude, and in most real-world graphs, EquiTruss
can find k-truss communities in realtime. However, TCP-
Index becomes significantly slow especially in large graphs,
such as LiveJournal (more than 10 seconds per query), and
Orkut (more than 100 seconds per query).

In the second set of experiments, by tuning the parameter
k, we examine the runtime for community search in differ-
ent graphs. In each graph, we generate two query sets: 100
high-degree vertices drawn at random from the first 30% de-
gree percentile buckets, and 100 low-degree vertices drawn
at random from the remaining 70% buckets. We denote
community search by EquiTruss using two different query
sets as EquiTruss-H and EquiTruss-L, respectively. Analo-
gously, we have TCP-H and TCP-L for TCP-Index, and Free-
H and Free-L for Index-Free using different query sets. The
experimental results are presented in Figure 8. We recog-
nize that for most values of k in all graphs, EquiTruss is
the most efficient community search method that is at least
an order of magnitude faster than TCP-Index for both high-
degree and low-degree queries. The primary reason is that,
in TCP-Index, repeated accesses to the original graph G are
required to reconstruct communities from maximum span-
ning trees of the index. In EquiTruss, however, a simple
traverse on the graph-structured index suffices for commu-
nity search without revisiting G. The performance gap be-
comes more significant in large graphs, such as Orkut and
UK-2002, because repeated accesses to G turn out to be
extremely time consuming. These experiments again verify
the clear advantages of EquiTruss for community search and
conform with the theoretical results of the proposed algo-
rithms. On the other hand, Index-Free is the least efficient
method for community search, and simply becomes infea-
sible in large graphs (In Orkut, there are no performance
results reported, as Index-Free cannot finish within 3 hours).

5.3 Dynamic Maintenance of Indexes
We further evaluate the performance for dynamic main-

tenance of indexes when the underlying graph evolves with
new edges inserted and existing edges deleted. For each
graph, we randomly insert 1, 000 new edges or delete 1, 000
existing edges, and update the indexes, including EquiTruss
and TCP-Index, after each edge insertion/deletion. For the
bulk update of EquiTruss, these 1, 000 edge insertions/dele-
tions are treated in one batch within a time window, and
EquiTruss is updated once at the end of the time window.
The time reported is the average time of these 1, 000 edge
updates. All experiments are repeated 20 times and the
performance results are presented in Figure 9.

For edge insertion shown in Figure 9(a), EquiTruss outper-
forms TCP-Index in dynamic update of indexes in all graphs.

1307

 0.01

 0.02

 0.04

 0.1

 0.2

 0.4

 1
 1.5

10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

(m
s)

degree rank (%)

Index-Free
TCP-Index
EquiTruss

(a) Amazon

10-1

100

101

102

103

104

10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

(m
s)

degree rank (%)

Index-Free
TCP-Index
EquiTruss

(b) DBLP

100

101

102

103

104

10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

(s
ec

.)

degree rank (%)

Index-Free
TCP-Index
EquiTruss

(c) LiveJournal

100

101

102

103

104

10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

(s
ec

.)

degree rank (%)

Index-Free
TCP-Index
EquiTruss

(d) Orkut

10-4

10-3

10-2

10-1

100

101

102

10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

(s
ec

.)

degree rank (%)

Index-Free
TCP-Index
EquiTruss

(e) UK-2002

Figure 7: Community search performance in different vertex-degree percentile buckets

10-3

10-2

10-1

100

101

3 4 5 6

Av
er

ag
e

tim
e

(m
s)

Truss (k)

EquiTruss-H
TCP-H
Free-H

EquiTruss-L
TCP-L
Free-L

(a) Amazon

10-3
10-2
10-1
100
101
102
103
104
105

4 5 6 7

Av
er

ag
e

tim
e

(m
s)

Truss (k)

EquiTruss-H
TCP-H
Free-H

EquiTruss-L
TCP-L
Free-L

(b) DBLP

10-1

100

101

102

103

104

105

106

5 6 7 8

Av
er

ag
e

tim
e

(s
ec

.)

Truss (k)

EquiTruss-H

TCP-H

Free-H

EquiTruss-L

TCP-L

Free-L

(c) LiveJournal

 10

 20

 40

 100

 200

 400

 1000

5 6 7 8 9 10

Av
er

ag
e

tim
e

(s
ec

.)

Truss (k)

EquiTruss-H
TCP-H

EquiTruss-L
TCP-L

(d) Orkut

10-3
10-2
10-1
100
101
102
103
104
105
106

5 6 7 8 9 10

Av
er

ag
e

tim
e

(s
ec

.)

Truss (k)

EquiTruss-H

TCP-H

Free-H

EquiTruss-L

TCP-L

Free-L

(e) UK-2002

Figure 8: Community search performance for different truss values of k

The primary reason is that the affected edges due to edge in-
sertion are confined within a small fraction of super-nodes in
EquiTruss, so the recomputation of the edge trussness and
reconstruction of the index structures are restricted to a
small induced subgraph spanned by affected edges. In con-
trast, TCP-Index has to explore a significantly larger portion
of G for index update, thus incurring significant overhead.
Furthermore, the bulk update of EquiTruss is the most ef-
ficient method, because all the affected edge are computed
in a batch mode, and the real update of the index is car-
ried out only once, thus saving a lot of computational cost
and attaining an order of magnitude speedup for dynamic
maintenance of EquiTruss.

For edge deletion shown in Figure 9(b), EquiTruss again
outperforms TCP-Index for dynamic maintenance of indexes.
In particular, the bulk update method for EquiTruss achieves
an order of magnitude speedup in dynamic index update
across all real-world graphs.

5.4 Effectiveness Analysis in DBLP
In previous studies [14, 13, 11], k-truss has resulted in

more accurate community structures than k-core [3] and
clique/quasi-clique based models [6]. We note that Equi-
Truss generates identical k-truss communities as TCP-Index,
so it leads to the same effectiveness results (in terms of F-1
measure) [11], which are therefore omitted for the sake of
brevity. Instead, we perform case studies in DBLP to show-
case the power of EquiTruss in modeling research communi-
ties and supporting community search in academic graphs.
We focus on the scholars in the four designated areas based
on their publication records: DB (database), IR (informa-
tion retrieval), ML (machine learning), and DM (data min-

10-2

10-1

100

101

102

103

Amazon DBLP LiveJournal Orkut UK-2002

Av
er

ag
e

tim
e

(m
s)

Graphs

Bulk-Update EquiTruss TCP-Index

(a) Edge Insertion

10-1

100

101

102

103

Amazon DBLP LiveJournal Orkut UK-2002

Av
er

ag
e

tim
e

(m
s)

Graphs

Bulk-Update EquiTruss TCP-Index

(b) Edge Deletion

Figure 9: Dynamic maintenance of EquiTruss and
TCP-Index in the presence of edge insertion/deletion

ing), and visualize the summarized graph G of EquiTruss, as
shown in Figure 10(a). The summarized graph G provides
a macroscopic profile of the original collaboration graph at
the granularity of communities: each super-nodes represents
a k-truss community (7 ≤ k ≤ 27) and each super-edge de-
picts the triangle-connectivity between communities. If we
want to “zoom in” to some or all communities in order to
find microscopic collaborative patterns at the granularity
of vertices/edges of the original graph, we can unfold both
super-nodes and super-edges in G, and the detailed com-
munity structures are shown in Figure 10(b). Therefore,
EquiTruss itself can be of special interest in visualizing large
graphs with both schematic views in terms of k-truss com-
munities, and detailed connectivity information at the finest
resolution of vertices and edges.

We then perform a community search for Michael Stone-
braker in the DBLP graph with the truss values of k to
be 7 and 8, respectively, and the k-truss communities in
which Michael Stonebraker is involved are presented in Fig-
ure 11(a) and (b), respectively. We recognize that Mike is
involved in three 7-truss communities: the first one (col-
ored in yellow) represents collaborators in database commu-
nity; the second one (colored in blue) represents collabora-
tors mainly from U.C. Berkeley; and the last one (colored
in green) represents other collaborators primarily from the
industry. When k is set 8, the third community dissolves,
meaning Mike is more closely tied to the first two communi-
ties, represented by two 8-trusses. As a result, by tuning k,
we can query a series of communities with different density
and cohesiveness, which is vital for personalized community
search in massive graph analysis and studies.

6. CONCLUSIONS
In this paper, we studied the truss-based community search

problem in large graphs. We proposed a truss-equivalence
based indexing approach, EquiTruss, to simplifying an in-
put graph into a space-efficient, truss-preserving summa-
rized graph based on an innovative notion of k-truss equiv-
alence. We proved that, with the aid of EquiTruss, com-
munity search can be efficiently performed directly upon
EquiTruss without costly, repeated accesses to the original
graph, and our EquiTruss-based community search method
is theoretically optimal. We further designed efficient dy-
namic maintenance methods for EquiTruss in the presence of

1308

(a) The summarized graph (b) All k-truss communities

Figure 10: (a) The summarized graph in EquiTruss
for the DBLP four-area graph. (b) All k-truss com-
munities (7 ≤ k ≤ 27) in the DBLP four-area graph.

edge insertion and deletion, extending its utility into real-
world dynamic graphs. We conducted extensive experimen-
tal studies in real-world large-scale graphs, and the results
have validated both the efficiency and effectiveness of the
proposed community search method, EquiTruss, in compar-
ison to the state-of-the-art algorithm, TCP-Index.

Acknowledgement
This work was supported in part by the National Science
Foundation under Grant No.1743142. Any opinions, find-
ings, and conclusions in this paper are those of the author(s)
and do not necessarily reflect the funding agencies.

7. REFERENCES
[1] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Efficient

and Effective Community Search. Data Min. Knowl. Discov.,
29(5):1406–1433, 2015.

[2] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order
Organization of Complex Networks. Science,
353(6295):163–166, 2016.

[3] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core
Decomposition of Uncertain Graphs. In KDD’14, pages
1316–1325, 2014.

[4] T. Chakraborty, S. Patranabis, P. Goyal, and A. Mukherjee.
On the Formation of Circles in Co-authorship Networks. In
KDD’15, pages 109–118, 2015.

[5] J. Cohen. Trusses: Cohesive Subgraphs for Social Network
Analysis. NSA:Technical report, 2008.

[6] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online
Search of Overlapping Communities. In SIGMOD’13, pages
277–288, 2013.

[7] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local Search of
Communities in Large Graphs. In SIGMOD’14, pages
991–1002, 2014.

[8] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective
Community Search over Large Spatial Graphs. Proc. VLDB
Endow., 10(6):709–720, 2017.

[9] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective Community
Search for Large Attributed Graphs. Proc. VLDB Endow.,
9(12):1233–1244, 2016.

[10] F. Harary and D. R. White. The Cohesiveness of Blocks In
Social Networks: Node Connectivity and Conditional Density.
Sociological Methodology, 31(1):305–359, 2001.

[11] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying
K-truss Community in Large and Dynamic Graphs. In
SIGMOD’14, pages 1311–1322, 2014.

[12] X. Huang and L. V. S. Lakshmanan. Attribute truss community
search. Proc. VLDB Endow., 10(9):949 – 960, 2017.

[13] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng.
Approximate Closest Community Search in Networks. Proc.
VLDB Endow., 9(4):276–287, 2015.

[14] X. Huang, W. Lu, and L. V. Lakshmanan. Truss
Decomposition of Probabilistic Graphs: Semantics and
Algorithms. In SIGMOD’16, pages 77–90, 2016.

[15] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo. K-core
Decomposition of Large Networks on a Single PC. Proc. VLDB
Endow., 9(1):13–23, 2015.

Michael Stonebraker

Mitch Cherniack

Anurag Maskey

David Maier

Eduardo F. Galvez

Daniel J. Abadi

Ying Xing
Nesime Tatbul

Stanley B. Zdonik

Alex Rasin

Rasin A Singer M. Hatoun
Ugur Cetintemel

Wenjuan Xing

Yanif Ahmad

Olga Papaemmanouil

Adam Batkin
Samuel Madden

Xuedong Chen
Nga Tran

Ashok K. Chandra

Umeshwar Dayal

Surajit Chaudhuri

Moshe Y. Vardi

Jim Gray

Gio Wiederhold

Mybrid Spalding

Vuk Ercegovac

Chris Olston

Michael Chu
Alexander Aiken

Allison Woodruff

Mark Lin

(a) 7-truss

Daniel J. Abadi

Alex Rasin

Ying Xing

Rasin A Singer
M. Hatoun

Ugur Cetintemel

Anurag Maskey

Nesime Tatbul

Stanley B. Zdonik

Eduardo F. Galvez

Michael Stonebraker
Mitch Cherniack

Wenjuan Xing

Yanif Ahmad

Olga Papaemmanouil

Bradley Berg

Adam Batkin

Samuel Madden

Xuedong Chen

Edmond Lau
Nga Tran

Mybrid Spalding

Vuk Ercegovac
Chris Olston

Michael Chu
Alexander Aiken

Allison Woodruff

Mark Lin

(b) 8-truss

Figure 11: 7-truss community and 8-truss commu-
nity for the query “Michael Stonebraker”

[16] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu. OPT: A New
Framework for Overlapped and Parallel Triangulation in
Large-scale Graphs. In SIGMOD’14, pages 637–648, 2014.

[17] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos.
Summarizing and Understanding Large Graphs. Stat. Anal.
Data Min., 8(3):183–202, 2015.

[18] M. Latapy. Main-memory Triangle Computations for Very
Large (Sparse (Power-law)) Graphs. Theor. Comput. Sci.,
407(1-3):458–473, 2008.

[19] K. LeFevre and E. Terzi. GraSS: Graph Structure
Summarization. In SDM, 2010.

[20] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical
Comparison of Algorithms for Network Community Detection.
In WWW’10, pages 631–640, 2010.

[21] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential Community
Search in Large Networks. Proc. VLDB Endow., 8(5):509–520,
2015.

[22] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
Summarization with Bounded Error. In SIGMOD’08, pages
419–432, 2008.

[23] M. Ortmann and U. Brandes. Triangle Listing Algorithms:
Back from the Diversion. In Proceedings of the Meeting on
Algorithm Engineering & Expermiments, pages 1–8, 2014.

[24] M. Riondato, D. Garćıa-Soriano, and F. Bonchi. Graph
Summarization with Quality Guarantees. Data Min. Knowl.
Discov., 31(2):314–349, 2017.

[25] A. E. Sariyuce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and
U. V. Catalyurek. Incremental K-core Decomposition:
Algorithms and Evaluation. The VLDB Journal,
25(3):425–447, 2016.

[26] A. E. Sariyüce and A. Pinar. Fast Hierarchy Construction for
Dense Subgraphs. Proc. VLDB Endow., 10(3):97–108, 2016.

[27] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V. Catalyurek.
Finding the Hierarchy of Dense Subgraphs Using Nucleus
Decompositions. In WWW’15, pages 927–937, 2015.

[28] Y. Shao, L. Chen, and B. Cui. Efficient Cohesive Subgraphs
Detection in Parallel. In SIGMOD’14, pages 613–624, 2014.

[29] M. Sozio and A. Gionis. The Community-search Problem and
How to Plan a Successful Cocktail Party. In KDD’10, pages
939–948, 2010.

[30] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation
for graph summarization. In SIGMOD’08, pages 567–580, 2008.

[31] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli.
Denser Than the Densest Subgraph: Extracting Optimal
Quasi-cliques with Quality Guarantees. In KDD’13, pages
104–112, 2013.

[32] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg.
Structural Diversity in Social Contagion. Proceedings of the
National Academy of Sciences, 109(16):5962–5966, 2012.

[33] J. Wang and J. Cheng. Truss Decomposition in Massive
Networks. Proc. VLDB Endow., 5(9):812–823, 2012.

[34] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust Local Community
Detection: On Free Rider Effect and Its Elimination. Proc.
VLDB Endow., 8(7):798–809, 2015.

[35] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
Community Detection in Networks: The State-of-the-art and
Comparative Study. ACM Comput. Surv., 45(4):43:1–43:35,
2013.

[36] J. Zhang, P. S. Yu, and Y. Lv. Enterprise Employee Training
via Project Team Formation. In WSDM’17, pages 3–12, 2017.

[37] F. Zhao and A. K. H. Tung. Large Scale Cohesive Subgraphs
Discovery for Social Network Visual Analysis. Proc. VLDB
Endow., 6(2):85–96, 2012.

1309

	Introduction
	Background
	Preliminaries
	Related Work

	Truss Equivalence
	Truss-Equivalence Based Index
	Index Design and Construction
	Community Search on EquiTruss
	Dynamic Maintenance of EquiTruss
	Affected Super-nodes in EquiTruss
	Dynamic Update for EquiTruss
	Bulk Update for EquiTruss

	Experiments
	Index Construction
	Community Search
	Dynamic Maintenance of Indexes
	Effectiveness Analysis in DBLP

	Conclusions
	References

