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ABSTRACT
Data visualization is an effective mechanism for identifying trends,
insights, and anomalies in data. On large datasets, however, gen-
erating visualizations can take a long time, delaying the extraction
of insights, hampering decision making, and reducing exploration
time. One solution is to use online sampling-based schemes to
generate visualizations faster while improving the displayed esti-
mates incrementally, eventually converging to the exact visualiza-
tion computed on the entire data. However, the intermediate vi-
sualizations are approximate, and often fluctuate drastically, lead-
ing to potentially incorrect decisions. We propose sampling-based
incremental visualization algorithms that reveal the “salient” fea-
tures of the visualization quickly—with a 46× speedup relative to
baselines—while minimizing error, thus enabling rapid and error-
free decision making. We demonstrate that these algorithms are
optimal in terms of sample complexity, in that given the level of in-
teractivity, they generate approximations that take as few samples
as possible. We have developed the algorithms in the context of
an incremental visualization tool, titled INCVISAGE, for trendline
and heatmap visualizations. We evaluate the usability of INCVIS-
AGE via user studies and demonstrate that users are able to make
effective decisions with incrementally improving visualizations, es-
pecially compared to vanilla online-sampling based schemes.

1. INTRODUCTION
Visualization is emerging as the most common mechanism for

exploring and extracting value from datasets by novice and expert
analysts alike. This is evidenced by the huge popularity of data vi-
sualization tools such as and PowerBI and Tableau, both of which
have 100s of millions of dollars in revenue just this year [3, 5].
And yet data visualization on increasingly large datasets, remains
cumbersome: when datasets are large, generating visualizations can
take hours, impeding interaction, preventing exploration, and de-
laying the extraction of insights [34]. One approach to generat-
ing visualizations faster is to sample a small number of datapoints
from the dataset online; by using sampling, we can view visual-
izations that incrementally improve over time and eventually con-
verge to the visualization computed on the entire data. However,
such intermediate visualizations are approximate, and often fluctu-
ate drastically, leading to incorrect insights and conclusions. The
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key question we wish to address in this paper is the following: can
we develop a sampling-based incremental visualization algorithm
that reveals the features of the eventual visualization quickly, but
does so in a manner that is guaranteed to be correct?
Illustrative Example. We describe the goals of our sampling al-
gorithms via an example. In Figure 1, we depict, in the first row,
the variation of present sampling algorithms as time progresses and
more samples are taken: at t1, t2, t4, t7, and when all of the data
has been sampled. This is, for example, what visualizing the re-
sults of an online-aggregation-like [19] approach might provide. If
a user sees the visualization at any of the intermediate time points,
they may make incorrect decisions. For example, at time t1, the
user may reach an incorrect conclusion that the values at the start
and the end are lower than most of the trend, while in fact, the op-
posite is true—this anomaly is due to the skewed samples that were
drawn to reach t1. The visualization continues to vary at t2, t4, and
t7, with values fluctuating randomly based on the samples that were
drawn. Indeed, a user may end up having to wait until the values
stabilize, and even then may not be able to fully trust the results.
One approach to ameliorate this issue would be to use confidence
intervals to guide users in deciding when to draw conclusions—
however, prior work has demonstrated that users are not able to
interpret confidence intervals correctly [14]. Moreover, the users
are subject to the same vagaries of the samples that were drawn.

Figure 1: INCVISAGE example.
Another approach, titled INCVISAGE, that we espouse in this

paper and depict in the second row is the following: at each time
point ti, reveal one additional segment for a i-segment trendline,
by splitting one of the segments for the trendline at ti−1, when the
tool is confident enough to do so. Thus, INCVISAGE is very con-
servative at t1 and just provides a mean value for the entire range,
then at t2, it splits the single segment into two segments, indicating
that the trend increases towards the end. Overall, by t7, the tool has
indicated many of the important features of the trend: it starts off
high, has a bump in the middle, and then increases towards the end.
This approach reveals features of the eventual visualization in the
order of prominence, allowing users to gain early insights and draw
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conclusions early. This approach is reminiscent of interlaced pixel-
based image generation in browsers [36], where the image slowly
goes from being blurry to sharp over the course of the rendering,
displaying the most salient features of the visualization before the
less important features. Similar ideas have also been developed in
other domains such as signal processing [43] and geo maps [13].

So far, we’ve described trendlines; the INCVISAGE approach can
be applied to heatmap visualizations as well—depicted in row 4 for
the corresponding online-aggregation-like approach shown in row
3—as is typical in heatmaps, the higher the value, the darker the
color. Once again row 3—the status quo—fluctuates tremendously,
not letting analysts draw meaningful insights early and confidently.
On the other hand, row 4—the INCVISAGE approach—repeatedly
subdivides a block into four blocks when it is confident enough to
do so, emphasizing early, that the right hand top corner has a higher
value, while the values right below it are somewhat lower. In fact,
the intermediate visualizations may be preferable because users can
get the big picture view without being influenced by noise.
Open Questions. Naturally, developing INCVISAGE brings a whole
host of open questions, that span the spectrum from usability to al-
gorithmic process. First, it is not clear at what rate we should be
displaying the results of the incremental visualization algorithm.
When can we be sure that we know enough to show the ith incre-
ment, given that the (i − 1)th increment has been shown already?
How should the ith increment differ from the (i− 1)th increment?
How do we prioritize sampling to ensure that we get to the ith in-
crement as soon as possible, but with guarantees? Can we show
that our algorithm is in a sense ‘optimal’, in that it aims to take as
few samples as possible to display the ith increment with guaran-
tees? And at the same time, how do we ensure that our algorithm is
lightweight enough that computation doesn’t become a bottleneck?
How do we place the control in the user’s hands in order to control
the level of interactivity needed?

The other open questions involved are related to how users in-
terpret incremental visualizations. Can users understand and make
sense of the guarantees provided? Can they use these guarantees to
make well-informed decisions and terminate early without waiting
for the entire visualization to be generated?
Contributions. In this paper, we address all of these open ques-
tions. Our primary contribution in the paper is the notion of incre-
mentally improving visualizations that surface important features
as they are determined with high confidence — bringing a con-
cept that is commonly used in other settings, e.g., rasterization and
signal processing, to visualizations. Given a user specified inter-
activity threshold (described later), we develop incremental visual-
izations algorithms for INCVISAGE that minimizes error. We intro-
duce the concept of improvement potential to help us pick the right
improvement per increment. We find, somewhat surprisingly, that
a remarkably simple algorithm works best under a sub-Gaussian
assumption [39] about the data, which is reasonable to assume in
real-world datasets (as we show in this paper). We further demon-
strate that these algorithms are optimal in that they generate approx-
imations within some error bound given the interactivity threshold.
When users don’t provide their desired interactivity threshold, we
can pick appropriate parameters that help them best navigate the
tradeoff between error and latency. We additionally perform user
studies to evaluate the usability of an incremental visualization in-
terface, and evaluate whether users are able to make effective deci-
sions with incrementally improving visualizations. We found that
they are able to effectively determine when to stop the visualization
and make a decision, trading off latency and error, especially when
compared to traditional online sampling schemes.
Prior Work. Our work is complementary to other work in the
incremental visualization space. SampleAction [16] and online ag-
gregation [19] both perform online sampling to depict aggregate

values, along with confidence-interval style estimates to depict the
uncertainty in the current aggregates. However, these approaches
prevent users from getting early insights since they need to wait
for the values to stabilize. As we will discuss later, our approach
can be used in tandem with online aggregation based approaches.
IFOCUS [28], PFunk-H [11], and ExploreSample [46] are other
approximate visualization algorithms targeted at generating visual-
izations rapidly while preserving perceptual insights. IFOCUS em-
phasizes the preservation of pairwise ordering of bars in a bar chart,
as opposed to the actual values; PFunk-H uses perceptual functions
from graphical perception research to terminate visualization gen-
eration early; ExploreSample approximates scatterplots, ensuring
that overall distributions and outliers are preserved. An early paper
by Hellerstein et al. [20] proposes CLOUDS, a similar technique
of progressive rendering for scatterplots by using index statistics
to depict estimates of density before the data records are actually
fetched. Lastly, M4 [25] uses rasterization to reduce the dimension-
ality of a time series without impacting the resulting visualization.
None of these methods emphasize revealing features of visualiza-
tions incrementally.
Outline. The outline of the remainder of this paper is as follows: in
Section 2, we formally define the incremental visualization prob-
lem. Section 3 outlines our incremental visualization algorithm
while Section 4 details the system architecture of INCVISAGE. In
Section 5, we summarize the experimental results and the key take-
aways. Then we present the user study design and outcomes in
Section 6 (for usability) and 7 (for comparison to traditional online
sampling schemes). Section 8 describes other related works.

2. PROBLEM FORMULATION
In this section, we first describe the data model, and the visual-

ization types we focus on. We then formally define the problem.

2.1 Visualizations and Queries
Data and Query Setting. We operate on a dataset consisting of
a single large relational table R. Our approach also generalizes to
multiple tables obeying a star or a snowflake schemata but we fo-
cus on the single table case for ease of presentation. As in a tradi-
tional OLAP setting, we assume that there are dimension attributes
and measure attributes—dimension attributes are typically used as
group-by attributes in aggregate queries, while measure attributes
are the ones typically being aggregated. For example, in a prod-
uct sales scenario, day of the year would be a typical dimension
attribute, while the sales would be a typical measure attribute.

INCVISAGE supports two kinds of visualizations: trendlines and
heatmaps. These two types of visualizations can be translated to
aggregate queries QT and QH respectively:

QT = SELECT Xa, AVG(Y) FROM R

GROUP BY Xa ORDER BY Xa, and
QH = SELECT Xa, Xb, AVG(Y) FROM R

GROUP BY Xa, Xb ORDER BY Xa, Xb

Here, Xa and Xb are dimension attributes in R, while Y is a mea-
sure attribute being aggregated. The trendline and heatmap visu-
alizations are depicted in Figure 1. For trendlines (query QT ),
the attribute Xa is depicted along the x-axis while the aggregate
AVG(Y) is depicted along the y-axis. On the other hand, for
heatmaps (query QH ) the two attributes Xa and Xb are depicted
along the x-axis and y-axis, respectively. The aggregate AVG(Y)
is depicted by the color intensity for each block (i.e., each Xa, Xb
combination) of the heatmap. The complete set of queries that are
supported by INCVISAGE can be found in Section 3.5—we focus
on the simple setting for now.

Note that we are implicitly focusing onXa andXb that are ordi-
nal, i.e., have an order associated with them so that it makes sense
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to visualize them as a trendline or a heatmap. As we will demon-
strate subsequently, this order is crucial in letting us approximate
portions of the visualization that share similar behavior.
Sampling Engine. We assume that we have a sampling engine
that can efficiently retrieve random tuples fromR corresponding to
different values of the dimension attribute(s) Xa and/or Xb (along
with optional predicates from a WHERE). Focusing on QT for
now, given a certain value of Xa = ai, our engine provides us a
random tuple that satisfiesXa = ai. Then, by looking up the value
of Y corresponding to this tuple, we can get an estimate for the av-
erage of Y for Xa = ai. Our sampling engine is drawn from Kim
et al. [28] and maintains an in-memory bitmap on the dimension
attributes, allowing us to quickly identify tuples matching arbitrary
conditions [29]. Bitmaps are highly compressible and effective for
read-only workloads [30, 44, 45], and have been applied recently
to sampling for approximate generation of bar charts [28].

Thus, given our sampling engine, we can retrieve samples of Y
given Xa = ai (or Xa = ai ∧Xb = bi for heatmaps). We call the
multiset of values of Y corresponding to Xa = ai across all tuples
to be a group. This allows us to say that we are sampling from a
group, where implicitly we mean we are sampling the correspond-
ing tuples and retrieving the Y value.
Next, we describe our problem of incrementally generating visual-
izations more formally. We focus on trendlines (i.e., QT ); the cor-
responding definitions and techniques for heatmaps are described
in our extended technical report [2].

2.2 Incremental Visualizations
From this point forward, we describe the concepts in the context

of our visualizations in row 2 of Figure 1.
Segments and k-Segment Approximations. We denote the cardi-
nality of our group-by dimension attribute Xa as m, i.e., |Xa| =
m. In Figure 1, this value is 36. At all time points over the course
of visualization generation, we display one value of AVG(Y) cor-
responding to each group xi ∈ Xa, i ∈ 1 . . .m—thus, the user
is always shown a complete trendline visualization. To approxi-
mate our trendlines, we use the notion of segments that encompass
multiple groups. We define a segment as follows:
Definition 1. A segment S corresponds to a pair (I, η), where η is
a value, while I is an interval I ⊆ [1,m] spanning a consecutive
sequence of groups xi ∈ Xa.
For example, the segment S ([2, 4], 0.7) corresponds to the interval
of xi corresponding to x2, x3, x4, and has a value of 0.7. Then, a
k-segment approximation of a visualization comprises k disjoint
segments that span the entire range of xi, i = 1 . . .m. Formally:
Definition 2. A k-segment approximation is a tupleLk =

(
S1, . . .,

Sk
)

such that the segments S1, . . . , Sk partition the interval [1,m]
into k disjoint sub-intervals.
In Figure 1, at t2, we display a 2-segment approximation, with seg-
ments ([1, 30], 0.4) and ([31, 36], 0.8); and at t7, we display a 7-
segment approximation, comprising ([1, 3], 0.8), ([4, 14], 0.4), . . .,
and ([35, 36], 0.7). When the number of segments is unspecified,
we simply refer to this as a segment approximation.
Incrementally Improving Visualizations. We are now ready to
describe our notion of incrementally improving visualizations.
Definition 3. An incrementally improving visualization is defined
to be a sequence of m segment approximations, (L1, . . . , Lm),
where the ith item Li, i > 1 in the sequence is a i-segment approx-
imation, formed by selecting one of the segments in the (i − 1)-
segment approximation Li−1, and dividing that segment into two.

Thus, the segment approximations that comprise an incremen-
tally improving visualization have a very special relationship to
each other: each one is a refinement of the previous, revealing one

new feature of the visualization and is formed by dividing one of
the segments S in the i-segment approximation into two new seg-
ments to give an (i+ 1)-segment approximation: we call this pro-
cess splitting a segment. The group within S ∈ Li immediately
following which the split occurs is referred to as a split group. Any
group in the interval I ∈ S except for the last group can be chosen
as a split group. As an example, in Figure 1, the entire second row
corresponds to an incrementally improving visualization, where the
2-segment approximation is generated by taking the segment in the
1-segment approximation corresponding to ([1, 36], 0.5), and split-
ting it at group 30 to give ([1, 30], 0.4) and ([31, 36], 0.8). There-
fore, the split group is 30. The reason why we enforce two neigh-
boring segment approximations to be related in this way is to ensure
that there is continuity in the way the visualization is generated,
making it a smooth user experience. If, on the other hand, each
subsequent segment approximation had no relationship to the pre-
vious one, it could be a very jarring experience for the user with
the visualizations varying drastically, making it hard for them to be
confident in their decision making.
Underlying Data Model and Output Model. To characterize
the performance of an incrementally improving visualization, we
need a model for the underlying data. We represent the underly-
ing data as a sequence of m distributions D1, . . . , Dm with means
µ1, . . . , µm where, µi = AVG(Y) for xi ∈ Xa. To generate our
incrementally improving visualization and its constituent segment
approximations, we draw samples from distributions D1, . . . , Dm.
Our goal is to approximate the mean values (µ1, . . . , µm) while
taking as few samples as possible.

The output of a k-segment approximation Lk can be represented
alternately as a sequence of values (ν1, . . . , νm) such that νi is
equal to the value corresponding to the segment that encompasses
xi, i.e., ∀xi∈Sjνi = ηj , where Sj(I, ηj) ∈ Lk. By comparing
(ν1, . . . , νm) with (µ1, . . . , µm), we can evaluate the error corre-
sponding to a k-segment approximation, as we describe later.
Incrementally Improving Visualization Generation Algorithm.
Given our data model, an incrementally improving visualization
generation algorithm proceeds in iterations: at the ith iteration, this
algorithm takes some samples from the distributions D1, . . . , Dm,
and then at the end of the iteration, it outputs the i-segment approx-
imation Li. We denote the number of samples taken in iteration i
as Ni. When Lm is output, the algorithm terminates.

2.3 Characterizing Performance
There are multiple ways to characterize the performance of in-

crementally improving visualization generation algorithms.
Sample Complexity, Wall-Clock Time and, Interactivity. The
most straightforward way to evaluate performance is by measuring
the samples taken in each iteration k, Nk, i.e., the sample complex-
ity. Since the time taken to acquire the samples is proportional to
the number of samples in our sampling engine (as shown in [28]),
this is a proxy for the time taken in each iteration. Another way to
evaluate performance is to measure the wall-clock time per itera-
tion.

Recent work has identified 500ms as a “rule of thumb” for in-
teractivity in exploratory visual data analysis [34], beyond which
analysts end up getting frustrated, and as a result explore fewer hy-
potheses. To enforce this rule of thumb, we can ensure that our
algorithms take only as many samples per iteration as is feasible
within 500ms — a time budget. We also introduce a new metric
called interactivity that quantifies the overall user experience:

λ =

∑m
k=1Nk × (m− k + 1)

k′

whereNk is the number of samples taken at iteration k and k′ is the
number of iterations where Nk > 0. The larger the λ, the smaller
the interactivity: this measure essentially captures the average wait-
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ing time across iterations where samples are taken. We explore the
measure in detail in Section 3.4 and 5.5.
Error Per Iteration. Since our incrementally improving visual-
ization algorithms trade off taking fewer samples to return results
faster, it can also end up returning segment approximations that are
incorrect. We define the `2 squared error of a k-segment approxi-
mation Lk with output sequence (ν1, . . . , νm) for the distributions
D1, . . . , Dm with means µ1, . . . , µm as

err(Lk) =
1

m

m∑
i=1

(µi − νi)2 (1)

We note that there are several reasons a given k-segment ap-
proximation may be erroneous with respect to the underlying mean
values (µ1, . . . , µm): (1) We are representing the data using k-
segments as opposed to m-segments. (2) We use incremental re-
finement: each segment approximation builds on the previous, pos-
sibly erroneous estimates. (3) The estimates for each group and
each segment may be biased due to sampling.

These types of error are all unavoidable — the first two reasons
enable a visualization that incrementally improves over time, while
the last one occurs whenever we perform sampling: (1) While a
k-segment approximation does not capture the data exactly, it pro-
vides a good approximation preserving visual features, such as the
overall major trends and the regions with a large value. Moreover,
computing an accurate k-segment approximation requires fewer
samples and therefore faster than an accurate m-segment approx-
imation. (2) Incremental refinement allows users to have a fluid
experience, without the visualization changing completely between
neighboring approximations. At the same time, is not much worse
in error than visualizations that change completely between ap-
proximations, as we will see later.

2.4 Problem Statement
The goal of our incrementally improving visualization genera-

tion algorithm is, at each iteration k, generate a k-segment approx-
imation that is not just “close” to the best possible refinement at that
point, but also takes the least number of samples to generate such
an approximation. Further, since the decisions made by our algo-
rithm can vary depending on the samples retrieved, we allow the
user to specify a failure probability δ, which we expect to be close
to zero, such that the algorithm satisfies the “closeness” guarantee
with probability at least 1− δ.
Problem 1. Given a query QT , and the parameters δ, ε, design an
incrementally improving visualization generation algorithm that, at
each iteration k, returns a k-segment approximation while taking
as few samples as possible, such that with probability 1− δ, the er-
ror of the k-segment approximation Lk returned at iteration k does
not exceed the error of the best k-segment approximation formed
by splitting a segment of Lk−1 by no more than ε.

3. VISUALIZATION ALGORITHMS
In this section, we gradually build up our solution to Problem 1.

We start with the ideal case when we know the means of all of
the distributions up-front, and then work towards deriving an error
guarantee for a single iteration. Then, we propose our incremen-
tally improving visualization generation algorithm ISplit assuming
the same guarantee across all iterations. We further discuss how
we can tune the guarantee across iterations in Section 3.4. We can
derive similar algorithms and guarantees for heatmaps [2]. All the
proofs can be found in the technical report [2].

3.1 Case 1: The Ideal Scenario
We first consider the ideal case where the means µ1, . . . , µm of

the distributionsD1, . . . , Dm are known. Then, our goal reduces to
obtaining the best k-segment approximation of the distributions at

iteration k, while respecting the refinement restriction. Say the in-
crementally improving visualization generation algorithm has ob-
tained a k-segment approximation Lk at the end of iteration k.
Then, at iteration (k+1), the task is to identify a segment Si ∈ Lk
such that splitting Si into two new segments T andU minimizes the
error of the corresponding (k + 1)-segment approximation Lk+1.
We describe the approach, followed by its justification.
Approach. At each iteration, we split the segment Si ∈ Lk into
T and U that maximizes the quantity |T |·|U||Si|·m

(µT − µU )2. Intu-
itively, this quantity—defined below as the improvement potential
of a refinement—picks segments that are large, and within them,
splits where we get roughly equal sized T and U , with large differ-
ences between µT and µU .
Justification. The `2 squared error of a segment Si (Ii, ηi), where
Ii = [p, q] and 1 ≤ p ≤ q ≤ m, for the distributions Dp, . . . , Dq
with means µp, . . . , µq is err(Si) = 1

|Si|
∑
j∈Si (µj − ηi)2. Here,

|Si| = q − p+ 1 and denotes the number of groups (distributions)
encompassed by segment Si. When the means of the distributions
are known, err(Si) will be minimized if we represent the value of
segment Si as the mean of the groups encompassed by Si, i.e., set-
ting ηi = µSi =

∑
j∈Si µj/|Si| minimizes err(Si). Therefore, in

the ideal scenario, the error of the segment Si is

err(Si) =
1

|Si|
∑
j∈Si

(µj − ηi)2 =
1

|Si|
∑
j∈Si

µ2j − µ2Si (2)

Then, using Equation 1, we can express the `2 squared error of the
k-segment approximation Lk as follows:

err(Lk) =
1

m

m∑
i=1

(µi − νi)2 =

k∑
i=1

|Si|
m

err(Si)

Now, Lk+1 is obtained by splitting a segment Si ∈ Lk into two
segments T and U . Then, the error of Lk+1 is:

err(Lk+1) = err(Lk)−
|Si|
m

err(Si) +
|T |
m

err(T ) +
|U |
m

err(U)

= err(Lk)−
|T | · |U |
|Si| ·m

(µT − µU )2.

We use the above expression to define the notion of improvement
potential. The improvement potential of a segment Si ∈ Lk is the
minimization of the error of Lk+1 obtained by splitting Si into T
and U . Thus, the improvement potential of segment Si relative to
T and U is

∆(Si, T, U) =
|T | · |U |
|Si| ·m

(µT − µU )2 (3)

For any segment Si = (Ii, ηi), every group in the interval Ii except
the last one can be chosen to be the split group (see Section 2.2).
The split group maximizing the improvement potential of Si, min-
imizes the error of Lk+1. The maximum improvement potential of
a segment is expressed as follows:

∆?(Si) = max
T,U⊆Si

∆(Si, T, U) = max
T,U⊆Si

|T | · |U |
|Si| ·m

(µT − µU )2

Lastly, we denote the improvement potential of a given Lk+1 by
φ(Lk+1, Si, T, U), where φ(Lk+1, Si, T, U) = ∆(Si, T, U). There-
fore, the maximum improvement potential of Lk+1, φ?(Lk+1) =
maxSi⊆Lk ∆?(Si). When the means of the distributions are known,
at iteration (k+1), the optimal algorithm simply selects the refine-
ment corresponding to φ?(Lk+1), which is the segment approxi-
mation with the maximum improvement potential.

3.2 Case 2: The Online-Sampling Scenario
We now consider the case where the means µ1, . . . , µm are un-

known. Similar to the previous case, we want to identify a segment
Si ∈ Lk such that splitting Si into T and U results in the maxi-
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mum improvement potential. We will first describe our approach
for a given iteration assuming samples have been taken, then we
will describe our approach for selecting samples.

3.2.1 Selecting the Refinement Given Samples
Approach. Unfortunately, since the means are unknown, we can-
not measure the exact improvement potential, so we minimize the
empirical improvement potential based on samples seen so far. Anal-
ogous to the previous section, we simply pick the refinement that
maximizes |T |·|U||Si|·m

(µ̃T − µ̃U )2, where the µ̃s are the empirical es-
timates of the means.
Justification. At iteration (k + 1), we first draw samples from the
distributionsD1, . . . , Dm to obtain the estimated means µ̃1, . . .,µ̃m.
For each Si ∈ Lk, we set its value to ηi = µ̃Si =

∑
j∈Si µ̃j/|Si|,

which we call the estimated mean of Si. For any refinement Lk+1

of Lk, we then let the estimated improvement potential of Lk+1 be

φ̃(Lk+1, Si, T, U) =
|T |
m
µ̃

2
T +
|U |
m
µ̃

2
U −
|S|
m
µ̃

2
Si

=
|T | · |U |
|Si| ·m

(µ̃T − µ̃U )
2

For simplicity we denote φ(Lk+1, Si, T, U) and φ̃(Lk+1, Si, T, U)

as φ(Lk+1) and φ̃(Lk+1), respectively.
Our goal is to get a guarantee for err(Lk+1) relative to err(Lk).

Instead of a guarantee on the actual error err, for which we would
need to know the means of the distributions, our guarantee is in-
stead on a new quantity, err′, which we define to be the empirical
error. Given Si = (Ii, ηi) and Equation 2, err′ is defined as fol-
lows: err′(Si) = 1

|Si|
∑
j∈Si µ

2
j − η2i . Although err′(Si) is not

equal to err(Si) when ηi 6= µS , err′(Si) converges to err(Si)
as ηi gets closer to µS (i.e., as more samples are taken). Simi-
larly, the error of k-segment approximation err′(Lk) converges to
err(Lk). We show experimentally (see Section 5) that optimizing
for err′(Lk+1) gives us a good solution of err(Lk+1) itself.

To derive our guarantee on err′, we need one more piece of ter-
minology. At iteration (k+1), we define T (I, η), where I = [p, q]
and 1 ≤ p ≤ q ≤ m to be a boundary segment if either p or q is
a split group in Lk. In other words, at the iteration (k + 1), all the
segments in Lk and all the segments that may appear in Lk+1 after
splitting a segment are called boundary segments. Next, we show
that if we estimate the boundary segments accurately, then we can
find a split which is very close to the best possible split.
Theorem 1. If for every boundary segment T of the k-segment ap-
proximation Lk, we obtain an estimate µ̃T of the mean µT that sat-
isfies

∣∣µ̃ 2
T − µ 2

T

∣∣ ≤ εm
6|T | , then the refinementL†k+1 ofLk that max-

imizes the estimated value φ̃(L†k+1) will have error that exceeds the
error of the best refinement L∗k+1 of Lk by at most err′(L†k+1) −
err′(L∗k+1) ≤ ε.

3.2.2 Determining the Sample Complexity
To achieve the guarantee for Theorem 1, we need to retrieve a

certain number of samples from each of the distributions.
Approach. Perhaps somewhat surprisingly, we find that we need
to draw a constant C =

⌈
288 a σ2

ε2m
ln
(
4m
δ

)⌉
from each distribu-

tion Di to satisfy the requirements of Theorem 1. (We will de-
fine these parameters subsequently.) Thus, our sampling approach
is remarkably simple—and is essentially uniform sampling—plus,
as we show in the next subsection, other approaches cannot pro-
vide significantly better guarantees. What is not simple, however,
is showing that taking C samples allows us to satisfy the require-
ments for Theorem 1. Another benefit of uniform sampling is that
we can switch between showing our segment approximations or
showing the actual running estimates of each of the groups (as in
online aggregation [19])—for the latter purpose, uniform sampling
is trivially optimal.

Justification. To justify our choice, we assume that the data is gen-
erated from a sub-Gaussian distribution [39]. Sub-Gaussian distri-
butions form a general class of distributions with a strong tail decay
property, with its tails decaying at least as rapidly as the tails of a
Gaussian distribution. This class encompasses Gaussian distribu-
tions as well as distributions where extreme outliers are rare—this
is certainly true when the values derive from real observations that
are bounded. We validate this in our experiments. Therefore, we
represent the distributions D1, . . . , Dm by m sub-Gaussian distri-
butions with mean µi and sub-Gaussian parameter σ.

Given this generative assumption, we can determine the number
of samples required to obtain an estimate with a desired accuracy
using Hoeffding’s inequality [21]. Given Hoeffding’s inequality
along with the union bound, we can derive an upper bound on the
number of samples we need to estimate the mean of each group.
Lemma 1. For a fixed δ > 0 and a k-segment approximation of the
distributions D1, . . . , Dm represented by m independent random
samples x1, . . . , xm with sub-Gaussian parameter σ2 and mean
µi ∈ [0, a] if we draw C =

⌈
288 a σ2

ε2m
ln
(
4m
δ

)⌉
samples uniformly

from each xi, then with probability at least 1 − δ,
∣∣µ̃ 2
T − µ 2

T

∣∣ ≤
εm
6|T | for every boundary segment T of Lk.

3.2.3 Deriving a Lower bound
We can derive a lower bound for the sample complexity of any

algorithm for Problem 1:
Theorem 2. Say we have a dataset D of m groups with means
(µ1, µ2, . . . , µm). Assume there exists an algorithm A that finds a
k-segment approximation which is ε-close to the optimal k-segment
approximation with probability 2/3. For sufficiently small ε, A
draws Ω(

√
k/ε2) samples.

The theorem states that any algorithm that outputs a k-segment
approximation which is ε-close to a dataset has to draw O(

√
k/ε2)

samples from the dataset.

3.3 The ISplit Algorithm
Given the parameters ε and δ, our incrementally improving visu-

alization generation algorithm ISplit maintains the same guarantee
of error (ε) in generating the segment approximations in each it-
eration. Theorem 1 and Lemma 1 suffice to show that the ISplit
algorithm is a greedy approximator, that, at each iteration identifies
a segment approximation that is at least ε close to the best segment
approximation for that iteration.

Data: Xa, Y, δ, ε
1 Start with the 1-segment approximator L = (L1).
2 for k = 2, . . . ,m do
3 Lk−1 = (S1, . . . , Sk−1).
4 for each Si ∈ Lk−1 do
5 for each group q ∈ Sp do
6 Draw C samples uniformly. Compute mean µ̃q

end
7 Compute µ̃Si = 1

|Si|
∑
q∈Si

µ̃q

end
8 Find (T, U) = argmaxi;T,U⊆Si

|T |·|U|
|Si|·m

(µ̃T − µ̃U )2.
9 Update Lk+1 = S1, . . . , Si−1, T, U, Si+1, . . . , Sk .

end
Algorithm 1: ISplit

The parameter ε is often difficult for end-users to specify. There-
fore, in INCVISAGE, we allow users to instead explicitly specify an
expected time budget per iteration, B—as explained in Section 2.3,
the number of samples taken determines the time taken per itera-
tion, so we can reverse engineer the number of samples from B.
Using Lemma 1, we can compute the corresponding ε. Another
way of setting B is to use standard rules of thumb for interactivity
(see Section 2.3).
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Table 1: Expressions for error and interactivity for different sampling approaches. Here, A = 288 a σ2

m2 ln
(
4m
δ

)
Approach decrease parameter Tk Error Interactivity

Linear Decrease β N1k − k (k−1) β
2 A

∑m
k=1

1
Tk

N1

(
m− k′−1

2
N1
m

)
+ β

6

[
2k′2 − 3k′ + 1− 3mk′ + 3m

]
Geometric Decrease α N1

αk−1

αk−1(α−1)
A
∑m
k=1

1
Tk

N1
m

[
m (α−1)αm+αm−1

(α−1)2 αm−1

]
Constant Sampling α = 1, or β = 0 kN1

A·Hm
N1

N1 (m+1)
2

All-upfront — Tk=1 = N1 and Tk>1 = 0 A·m
N1

mN1

3.4 Tuning ε Across Iterations
So far, we have considered only the case where the algorithm

takes the same number of samples C per group across iterations
and does not reuse the samples across different iterations. If we
instead reuse the samples drawn in previous iterations, the error at
iteration k is ε2k = 288 a σ2

mkC
ln
(
4m
δ

)
, where k C is the total num-

ber of samples drawn so far. Therefore, the decrease in the error
up to iteration k, εk, from the error up to iteration (k − 1), εk−1,
is
√

(k − 1)/k, where εk =
√

(k − 1)/k εk−1. This has the fol-
lowing effect: later iterations both take the same amount of time as
previous ones, and produce only minor updates of the visualization.
Sampling Approaches. This observation indicates that we can ob-
tain higher interactivity with only a small effect on the accuracy
of the approximations by considering variants of the algorithm that
decrease the number of samples across iterations instead of draw-
ing the same number of samples in each iteration. We consider
three natural approaches for determining the number of samples
we draw at each iteration: linear decrease (i.e., reduce the number
of samples by β at each iteration), geometric decrease (i.e., divide
the number of samples by α at each iteration), and all-upfront (i.e.,
non-interactive) sampling. To compare these different approaches
to the constant (uniform) sampling approach and amongst each
other, we first compute the total sample complexity, interactivity,
and error guarantees of each of them as a function of their other
parameters. Letting Tk denote the total number of samples drawn
in the first k iterations, the interactivity of a sampling approach de-
fined in Section 2.3 can be written as: λ =

∑m
k=1 Tk
k′ , where k′

is the number of iterations where we draw non-zero samples. The
error guarantees we consider are, as above, the average error over
all iterations. This error guarantee is

err =
m∑
i=1

ε2k
m

=
m∑
i=1

288 a σ2

m2Tk
ln
(
4m
δ

)
= 288 a σ2

m2 ln
(
4m
δ

) m∑
i=1

1
Tk

We provide evidence that the estimated err and λ are similar to err
and λ on real datasets in Section 5.5.2. We are now ready to derive
the expressions for both error and interactivity for the sampling
approaches mentioned earlier.
Expressions for Error and Interactivity. The analytical expres-
sions of both interactivity and error for all of these four approaches
are shown in Table 1 and derived in the technical report [2]. For
succinctness, we have left the formulae for error for geometric and
linear decrease as is without simplification; on substituting Tk into
the expression for Error, we obtain fairly complicated formulae:
these expressions are provided in the technical report [2].
Comparing the Sampling Approaches. We first examine the all-
upfront sampling approach. We find that the all-upfront sampling
approach is strictly worse than constant sampling (which is a spe-
cial case of linear and geometric decrease).
Theorem 3. If for a setting of parameters, a constant sampling
approach and an all-upfront sampling approach have the same in-
teractivity, then the error of constant sampling is strictly less than
the error of all-upfront sampling.

Our experimental results in Section 5.5 suggests that the geomet-
ric decrease approach with the optimal choice of parameter α∗ has
better error than not only the all-upfront approach but the linear de-
crease and constant sampling approaches as well. This remains an

open question, but when we fix the initial sample complexity N1

(which is proportional to the bound on the maximum time taken
per iteration as provided by the user), we can show that geometric
decrease with the right choice of parameter α does have the optimal
interactivity among the three interactive approaches.
Theorem 4. GivenN1, the interactivity of geometric decrease with
parameter α∗ = (N1 − 1)1/(m−1) is strictly better than the inter-
activity of any linear decrease approach and constant sampling.
The proof is established by first showing that for both linear and
geometric decrease, the optimal interactivity is obtained for an ex-
plicit choice of decrease parameter that depends only on the initial
number of samples and the total number of iterations.
Lemma 2. In geometric sampling with a fixed N1, α∗ = (N1 −
1)1/(m−1) has the optimal interactivity and it has smaller error
than all of the geometric sampling approaches with α > α∗.
Lemma 3. In linear sampling with a fixed N1, β∗ = (N1 −
1)/(m− 1) has the optimal interactivity and it has strictly smaller
error than all of the linear sampling approaches with β > β∗.

Optimal α and Knee Region. As shown in Lemma 2, given N1,
we can compute the optimal decrease parameter α∗, such that any
value of α > α∗ results in higher error and lesser interactivity
(higher λ). This behavior results into the emergence of a knee
region in the error-interactivity curve which is confirmed in our
experimental results (see Section 5.5). Essentially, starting from
α = 1 any value α ≤ α∗ has smaller error than any value α > α∗.
Therefore, for any given N1 there is an optimal region [1, α∗]. For
example, for N1 = 25000, the optimal range of α is [1, 1.028].
By varying α along the optimal region one can either optimize for
error or interactivity. For example, starting with α = 1 as α→ α∗

we trade accuracy for interactivity.

3.5 Extensions
The ISplit algorithm (Algorithm 1) for queries with the AVG

aggregate can also be extended to support COUNT and SUM—
see details in [2].

3.5.1 The COUNT Aggregate Function
Given that we know the total number of tuples in the database,

estimating the COUNT aggregate function essentially corresponds
to the problem of estimating the fraction of tuples τi that belong to
each group i. We focus on the setting below when we only use our
bitmap index. We note that approximation techniques for COUNT
queries have also been studied previously [8, 24], for the case when
no indexes are available.

Using our sampling engine, we can estimate the fractions τi by
scanning the bitmap index for each group. When we retrieve an-
other sample from group i, we can also estimate the number of
tuples we needed to skip over to reach the tuple that belongs to
group i—the indices allow us to estimate this information directly,
providing us an estimate for τi, i.e., τ̃i.
Theorem 5. With an expected total number of samples Ccount =
m + dγ−2 ln(2m/δ)/2e, the τ̃i, ∀i can be estimated to within a
factor γ, i.e., |τ̃i − τi| ≤ γ holds with probability at least 1− δ.

Essentially, the algorithm takes as many samples from each group
until the index of the sample is ≥ dγ−2 ln(2m/δ)/2e. We can
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show that overall, the expected number of samples is bounded above
by Ccount. Since this number is small, we don’t even need to in-
crementally estimate or visualize COUNT.

3.5.2 The SUM Aggregate Function
There are two settings we consider for the SUM aggregate func-

tion: when the group sizes (i.e., the number of tuples in each group)
are known, and when they are unknown.
Known Group Sizes. A simple variant of Algorithm 1 can also
be used to approximate SUM in this case. Let ni be the size of
group i and κ = maxj nj . As in the original setting, the algorithm
computes the estimate µ̃i of the average of the group. Then s̃i =
ni µ̃i is an estimate on the sum of each group i, namely si, that is
used in place of the average in the rest of the algorithm. We have:

Theorem 6. Assume we have Ci = d 288a
2σ2mn2

i
ε2κ2 ln 4m

δ
e samples

from group i. Then, the refinement L†k+1 of Lk that maximizes the
estimated improvement potential φ̃+(L†k+1) will have error that
exceeds the error of the best refinement L∗k+1 of Lk by at most
err′+(L†k+1)− err′+(L∗k+1) ≤ εκ2.

Note that here we have εκ2 instead of ε. While at first glance
this may seem like an amplification of the error, it is not so: first,
the scales are different—and visualizing the SUM is like visualiz-
ing AVG multiplied by κ—an error by one “pixel” for the former
would equal κ times the error by one “pixel” for the latter but are
visually equivalent; second, our error function uses a squared `2-
like distance, explaining the κ2.
Unknown Group Sizes. For this case, we simply employ the known
group size case, once the COUNT estimation is used to first ap-
proximate the τi with γ = ε/24a. We have s̃i = τ̃iµ̃iκt, where κt
denotes the total number of items:

∑m
i=1 ni. Here, we need to draw

Ci = d 1152 a
2σ2τ̃2i

ε2m
ln 4m

δ
e samples from each group i, to maintain

the same error guarantee as in Theorem 6.

4. INCVISAGE SYSTEM ARCHITECTURE
The INCVISAGE client is a web-based front-end that captures

user input and renders visualizations produced by the INCVISAGE
back-end. The INCVISAGE back-end is composed of three compo-
nents: (A) a query parser, which is responsible for parsing the input
query QT or QH (see Section 2.1), (B) a view processor, which
executes ISplit (see Section 3), and (C) a sampling engine which
returns the samples requested by the view processor at each itera-
tion. As discussed in Section 2.1, INCVISAGE uses a bitmap-based
sampling engine to retrieve a random sample of records matching
a set of ad-hoc conditions [28]. At the end of each iteration, the
view processor sends the incremental changes to the visualizations
generated to the front-end in json.

The front-end is responsible for capturing user input and ren-
dering visualizations generated by the INCVISAGE back-end. The
visualizations (i.e., the segment approximations) generated by the
back-end incrementally improve over time, but the users can pause
and replay the visualizations on demand. The details of the front-
end and screenshots, along with an architecture diagram can be
found the technical report [2].

5. PERFORMANCE EVALUATION
We evaluate our algorithms on three primary metrics: the error

of the visualizations, the degree of correlation with the “best” algo-
rithm in choosing the split groups, and the runtime performance.

5.1 Experimental Setup
Algorithms Tested. Each of the incrementally improving visual-
ization generation algorithms that we evaluate performs uniform

sampling, and take either B (time budget) and f (sampling rate of
the sampling engine) as input, or ε (desired error threshold) and δ
(the probability of correctness) as input, and in either case com-
putes the required N1 and α. The algorithms are as follows:
ISplit: At each iteration k, the algorithm draws Nk

m
samples uni-

formly from each group, where Nk is the total number of samples
requested at iteration k and m is the total number of groups. ISplit
uses the concept of improvement potential (see Section 3) to split
an existing segment into two new segments.
RSplit: At each iteration k, the algorithm takes the same samples
as ISplit but then selects a segment, and a split group within that,
all at random to split.
ISplit-Best: The algorithm simulates the ideal case where the mean
of all the groups are known upfront (see Section 3.1). The visual-
izations generated have the lowest possible error at any given itera-
tion (i.e. for any k-segment approximation) among approaches that
perform refinement of previous approximation.
DPSplit: We describe the details of this algorithm in our technical
report [2], but at a high level, at each iteration k, this algorithm
takes the same samples as ISplit, but instead of performing refine-
ment, DPSplit recomputes the best possible k-segment approxima-
tion using dynamic programming. We include this algorithm to
measure the impact of the iterative refinement constraint.
DPSplit-Best: This algorithm simulates the case where the means
of all the groups are known upfront, and the same approach for
producing k-segment approximations used by DPSplit is used. The
visualizations generated have the lowest possible error among the
algorithms mentioned above since they have advance knowledge of
the means, and do not need to obey iterative refinement.

Table 2: Datasets Used for the Experiments and User Studies.
E = Experiments and U = User Studies (Section 6 and 7).

Name Description #Rows Size (GB) E U
Sensor Intel Sensor dataset [1]. 2.2M 0.73 X
FL US Flight dataset [6] . 74M 7.2 X X
T11 2011 NYC taxi trip data [4] 170M 6.3 X
T12 2012 NYC taxi trip data [4] 166M 4.5 X
T13 2013 NYC taxi trip data [4] 166M 4.3 X
WG Weather data of US [7] 415M 27 X

Datasets and Queries. The datasets used in the performance eval-
uation experiments and the user studies (Section 6 and Section 7)
are shown in Table 2 and are marked by ticks (X) to indicate where
they were used. For the US flight dataset (FL) we show the results
for the attribute Arrival Delay. Since all of the three years exhibit
similar results for the NYC taxi dataset, we only present the results
for the year 2011 (T11) for the attribute Trip Time. For the weather
dataset, we show results for the attribute Temperature. The results
for the other datasets are included in our technical report [2]. To
verify our sub-Gaussian assumption, we generated a Q-Q plot [42]
for each of the selected attributes to compare the distributions with
Gaussian distributions. The FL, T11, T12, and T13 datasets all
exhibit right-skewed Gaussian distributions while WG exhibits a
truncated Gaussian distribution [2]. Unless stated explicitly, we
use the same query in all the experiments—calculate the average
of an attribute at each day of the year.
Metrics. We use the following metrics to evaluate the algorithms:
Error: We measure the error of the visualizations generated at each
iteration k via err(Lk) (see Section 2.3). The average error across
iterations is computed as: ẽrr(Lk) = 1

m

∑m
k=1 err(Lk).

Time: We also evaluate the wall-clock execution time.
Correlation: We use Spearman’s ranked correlation coefficient to
measure the degree of correlation between two algorithms in choos-
ing the order of groups as split groups.
Interactivity: We use a new metric called interactivity (defined in
Section 2.3) to select appropriate parameters for ISplit. Interactivity
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is essentially the average waiting time for generating the segment
approximations. We explore the measure in Section 5.5.
Implementation Setup. We evaluate the runtime performance of
all our algorithms on a bitmap-based sampling engine [29]. In addi-
tion, we implement a SCAN algorithm which performs a sequential
scan of the entire dataset. Since both ISplit and SCAN are imple-
mented on the same engine, we can make direct comparisons of
execution times between the two algorithms. All our experiments
are single threaded and are conducted on a HP-Z230-SFF worksta-
tion with an Intel Xeon E3-1240 CPU and 16GB memory running
Ubuntu 14.04 LTS. We set the disk read block size to 256KB. Un-
less explicitly stated we assume the time budget B = 500ms and
use the parameter values of N1 = 25000, α = 1.02 (with a ge-
ometric decrease), and δ = 0.05. All experiments were averaged
over 30 trials.

5.2 Comparing Execution Time
In this section, we compare the Wall Clock time of ISplit, DPSplit

and SCAN for the datasets mentioned in Table 2.
Summary: ISplit is several orders of magnitude faster than SCAN in
revealing incremental visualizations. The completion time of DPSplit
exceeds the completion time of even SCAN. Moreover, when generat-
ing the early segment approximations, DPSplit always exhibits higher
latency compared to ISplit.
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Figure 2: Comparison of Wall Clock Time.
We depict the wall-clock time in Figure 2 for three different

datasets for ISplit and DPSplit at iteration 10, 50, and 100, and at
completion, and for SCAN. First note that as the size of the dataset
increases, the time for SCAN drastically increases since the amount
of data that needs to be scanned increases. On the other hand, the
time for completion for ISplit stays stable, and much smaller than
SCAN for all datasets: on the largest dataset, the completion time
is almost 1

6

th that of SCAN. When considering earlier iterations,
ISplit performs even better, revealing the first 10, 50, and 100 seg-
ment approximations within≈ 5 seconds,≈ 13 seconds, and≈ 22
seconds, respectively, for all datasets, allowing users to get insights
early by taking a small number of samples. Compared to SCAN,
the speed-up in revealing the first 10 features of the visualization is
≈ 12X , ≈ 22X , and ≈ 46X for the FL, T11 and WG datasets.

When comparing ISplit to DPSplit, we first note that DPSplit
is taking the same samples as ISplit, so its differences in execu-
tion time are primarily due to computation time. We see some
strange behavior in that while DPSplit is worse than ISplit for the
early iterations, for completion it is much worse, and in fact worse
than SCAN. The dynamic programming computation complexity
depends on the number of segments. Therefore, the computation
starts occupying a larger fraction of the overall wall-clock time for
the latter iterations, rendering DPSplit impractical for latter itera-
tions. Even for earlier iterations, DPSplit is worse than ISplit, re-
vealing the first 10, 50, and 100 features within ≈ 7 seconds, ≈ 27
seconds, and ≈ 75 seconds, respectively, as opposed to 5, 13, and
22 seconds for ISplit. As we will see later, this additional time does

not come with a commensurate decrease in error, making DPSplit
much less desirable than ISplit as an incrementally improving visu-
alization generation algorithm.

5.3 Incremental Improvement Evaluation
We now compare the error for ISplit with RSplit and ISplit-Best.

Summary: (a) The error of ISplit, RSplit, and ISplit-Best reduce across
iterations. At each iteration, ISplit exhibits lower error in generating
visualizations than RSplit. (b) ISplit exhibits higher correlation with
ISplit-Best in the choice of split groups, with ≥ 0.9 for any N1 greater
than 25000. RSplit has near-zero correlation overall.
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Figure 3: `2 squared error of ISplit, Rsplit, and ISplit-Best.
Figure 3 depicts the iterations on the x-axis and the `2-error on the
y axis of the corresponding segment approximations for each of
the algorithms for two datasets (others are similar). For example,
in Figure 3, at the first iteration, all three algorithms obtain the 1-
segment approximation with roughly similar error; and as the num-
ber of iterations increase, the error continues to decrease. The error
for ISplit is lower than RSplit throughout, for all datasets, justify-
ing our choice of improvement potential as a good metric to guide
splitting criteria. ISplit-Best has lower error than the other two, this
is because ISplit-Best has access to the means for each group be-
forehand. We also explore the correlation of the split group order of
ISplit and RSplit with ISplit-Best on varying the sample complexity.
Due to space limitations, the results can be found in our technical
report [2] where we show that ISplit’s split groups actually match
those from ISplit-Best, even if the error is a bit higher.

5.4 Releasing the Refinement Restriction
We now compare ISplit with DPSplit and DPSplit-Best—we aim

to evaluate the impact of the refinement restriction, and whether it
leads to substantially lower error.
Summary: Given the same set of parameters, DPSplit and ISplit have
roughly similar error; as expected DPSplit-Best has much lower error
than both ISplit and DPSplit. Considering the drastic variation between
iterations introduced by DPSplit, ISplit is definitely a better choice.
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Figure 4: `2 squared error of ISplit, DPSplit and DPSplit-Best
Figure 4 depicts the error across iterations for ISplit, DPSplit, and
DPSplit-Best for two datasets—we aim to evaluate the impact of
the refinement restriction, and whether it leads to substantially lower
error. From Figure 4, at each iteration DPSplit-Best has the lowest
error, while ISplit and DPSplit have very similar error. Thus, in or-
der to reduce the drastic variation of the segment approximations,
while not having a significant impact on error, ISplit is a better
choice than DPSplit. Furthermore from Section 5.2, we found that
ISplit’s execution time is much more reasonable than DPSplit.
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5.5 Optimizing for Error and Interactivity
So far, we have kept the sampling parameters fixed across algo-

rithms; here we study the impact of these parameters. Specifically,
we evaluate the impact of the initial sample (N1) and sampling fac-
tor (α) on the error-interactivity trade-off.
Summary: We find: (a) Geometrically decreasing the sample complex-
ity per iteration leads to higher interactivity. (b) Given the time budget
(B), only a small set of sampling factors (α) improves interactivity. (c)
The theoretical and experimental error-interactivity trade-off curves be-
have essentially the same, producing similarly shaped knee regions.

5.5.1 Parameter Selection
We now empirically evaluate the trade-off between error and in-

teractivity. We focus on “decreasing” sampling factors, i.e., those
that result in the sample complexity decreasing across iterations—
we have found that “increasing” sampling factors lead to signifi-
cantly worse λ (i.e., interactivity), while error is not reduced by
much. We consider both geometric and linear decrease, as well as
upfront sampling (Section 3.4). Figure 5 captures the trade-off be-
tween average error (across iterations) on the y axis and logarithm
of interactivity, i.e., log λ on the x axis for the FL dataset (other
datasets are similar)—focus on the circles and triangles for now.
Each line in the chart corresponds a certain number of initial sam-
ples N1, and either geometric decrease (denoted with a “/”), or a
linear one (denoted with a “-”). Each point in each line corresponds
to a specific value of α (circles) or β (triangles). For all lines, we
find a similar behavior as the decrease factor increases, which we
explain for N1 = 25000 for geometric and linear decrease, de-
picted again in Figure 5d with α and β annotated. Consider the ge-
ometric decrease points (circles) in Figure 5b: we start at I ≈ 6.75
at the point corresponding to the constant sampling approach where
α = 1 for geometric and β = 0 for linear decrease, and then as α is
increased the points move to the left—indicating that the interactiv-
ity improves, while error increases slightly. Then, we have a knee
in the curve—for any α > 1.028, the trails start moving back to the
right (lower interactivity) but also show a simultaneous increase in
error. A similar knee is seen if we trace the linear decrease points
(triangles). For other values of β depicted for the linear decrease
points, this indicates the reduction in the number of samples per
round, e.g., 50, 500, 1000. This behavior of a knee in the curve is
seen for allN1 values. We also find that for the sameN1, the linear
decrease has worse interactivity compared to geometric decrease.
Finally, on examining the upfront sampling scheme (squares), we
find that both geometric decrease and linear decrease have much
better interactivity and lower error.
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Figure 5: Error-interactivity trade-off curve. (/) = Geometric
decrease, (-) = Linear decrease, (u) = Upfront sampling

Overall, when selecting parameters, we would like to identify
parameters that result in the favorable knee region of the curve. We
find that α ∈ [1.0, 1.028], with N1 relatively small helps us stay
in this region empirically. We select α = 1.02 to balance between
error and interactivity if we set the maximum allowable delay per
iteration B = 500ms [34]. Based on our sampling rate, fetching
25000 samples takes around 500ms; thus we set N1 = 25000.
From our theoretical results in Section 3.4, the range of α for this
N1 was [1, 1.028], so our experiments agree with the theory.

5.5.2 Simulations vs. Empirical Observations
We now simulate the error-interactivity trade-off curve for the

sampling approaches using the expressions of error and interactiv-
ity obtained in Section 3.4. Figure 6 captures the trade-off between
the upper bound of the error averaged (across iterations) on the y
axis and logarithm of interactivity, i.e., log λ on the x axis for the
FL and T11 dataset (other datasets are similar).
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Figure 6: Simulation of the error-interactivity trade off curve.
Each line in the chart corresponds a certain number of initial

samplesN1. Each point in each line corresponds to a specific value
of α. For all lines, we find a similar behavior as our empirical
results—a knee shape emerges as α increases starting from 1. The
theoretical value for the optimal decrease factor α∗ is annotated for
each initial sample N1. Thus, the simulated trade-off curves gen-
erated based on the theory can mimic our empirical results. Sim-
ulations for upfront sampling and linear decrease similarly mimic
empirical results and can be found in [2].

6. EVALUATION: INTERPRETABILITY
We now present an evaluation of the usability of INCVISAGE,

and more broadly evaluate how users interpret and use incremen-
tally improving visualizations.

6.1 Study Design and Participants
The study consisted of five phases: (a) an introduction phase that

explained the essential components of INCVISAGE, (b) an explo-
ration phase that allowed the participants to familiarize themselves
with the interface by exploring a sensor dataset (see Section 5.1),
(c) a quiz phase where the participants used the same interface to
answer targeted questions on the flight dataset, (d) an interview to
collect qualitative data during the quiz phase, and (e) a closing sur-
vey to obtain feedback on INCVISAGE. Our study was conducted
prior to the development of ISplit, and was meant to assess the util-
ity of incremental visualizations—nevertheless, we ensured that the
interactivity criteria of 500ms per iteration was met [34].

We recruited 20 participants. Our participants included 11 grad-
uate students (8 in computer science), one business undergraduate
student, two researchers, and six university employees.

6.2 The Quiz
We now explain the design of and findings from the quiz phase.

6.2.1 The Quiz Phase Design
The purpose of the quiz phase was to evaluate whether partici-

pants were willing to compromise accuracy to make rapid decisions
when posed various types of questions.

We used two types of quiz questions: extrema-based (E1-7), and
range-based (R1-7). These questions are listed in our technical re-
port [2]. The extrema-based questions asked a participant to find
the highest or lowest values in a visualization. The range-based
questions asked a participant to estimate the average value over a
time range. The purpose of such a categorization is to evaluate
the accuracy and confidence of participants in finding both specific
points of interest (extrema) and patterns over a range (range) when
given INCVISAGE. The extrema based questions were free form
questions; the range based questions were multiple choice ques-
tions. To prevent order effects, ten participants started the quiz
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with heatmaps; the other ten started with trendlines. Additionally,
we randomized the order of the questions for each participant.
The Scoring Function. The scoring function to assess quiz per-
formance relied on two variables: the iteration number at which
the participant submitted an answer, and whether or not that an-
swer was accurate. The participants were informed prior to the quiz
phase that the score was based on these two variables, but the exact
function was not provided. The score was computed as a product
S = P · A, where P was based on the iteration, and A on the ac-
curacy. If a participant submitted an answer at iteration k, we set
P = m−k

m
, i.e., the fraction of the remaining number of iterations

over the total number of iterations, m. To compute A, let c be the
correct answer to a question, and let u be the answer submitted by
the participant. The accuracy A of a multiple choice question is 0
if u = c and 1 otherwise. The accuracy A of a free-form question
is 1− |u−c||c| .

Interface Issues. Analyzing the quiz results proved more difficult
than expected. Out of 280 total submissions, 10 submissions had
interface issues—4 of those occurred due to ambiguity in the ques-
tions [2], while others were due to mistakes made by the partici-
pants in selecting the visualization to be generated. The ambiguity
arose from attribute names in the original dataset. We explicitly
separate out interface issues when analyzing the results.

6.2.2 Quantitative Analysis
In discussing the participants’ quiz performance, we first inves-

tigate their answer submission trends.
Summary: The majority of the submissions for both trendlines (75%)
and heatmaps (77.5%) were within the first 25% of the total number of
iterations. Even though the participants chose to trade accuracy for time
in both cases, they did so with reasonably high accuracy.
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Figure 7: Per-question statistics for the iterations at which par-
ticipants submitted answers for trendlines (l) and heatmaps (r).

Trading accuracy for time. Figure 7 shows a dot graph analy-
sis of the participants’ submission trends as a function of iteration.
For both the trendline and heatmap visualizations, we separated
the statistics for the correct and incorrect submissions (Figure 7a
and 7b). Correct submissions are represented by green circles. In-
correct submissions are either represented by blue circles (interface
issue) or red circles.

For trendlines, the majority of the submissions (75%) were made
at around 25% of the total iterations, except for question E4 (Fig-
ure 7a). Question E4 asks for a day of the year that shows the
highest departure delay across all years. During the study, we dis-
covered that the departure delays for December 22 and December
23 were very similar. Due to the proximity of the values, these
dates were not split into separate groups until a later iteration.

Figure 7b shows the trends for heatmaps. Similar to trendlines,
the majority of the participants (77.5%) chose to submit answers
earlier (within 25% of the iterations) except for questions R5 and
R7, where once again the relevant heatmap block was split in a later
iteration.
Submission trends. For trendlines, the range-based questions were
submitted earlier (75% of the submissions at % iteration ≈ 15%)
compared to the extrema-based questions (75% of the submissions
at %iteration ≈ 28%). This difference in submission trends across
types may be due to the fact that the range based questions asked
participants to find more coarse grained information (e.g., the de-
lay statistics in a specific range) which may be easier than finding
peaks and valleys. We see the opposite trend for heatmaps; the
extrema-based questions were submitted earlier compared to the
range-based questions. We investigate this again in the next study.

6.3 Interview and Survey Phase
We now present a qualitative analysis of the participants’ percep-

tions based on their interview and survey responses.

Summary: Participants were highly confident (confidence = 8.5 out of
10) when they submitted answers for both visualization types. Some
participants, however, suggested providing explicit guarantees to further
boost their confidence.

Interview. We conducted semi-structured interviews to gauge our
participants’ motivations for stopping the visualization at a certain
iteration, and their confidence of their answers. The main motiva-
tions for terminating a visualization were the emergence of obvi-
ous extrema (N = 5), gaining sufficient confidence in an answer
(N = 10), or both (N = 5). When asked to rate their confidence at
the time of submission on a scale of 1 to 10 (10 being the most con-
fident), most participants rated their confidence very high (µ = 8.5
and σ = 1.03 out of 10). However, some participants (N = 4) indi-
cated that they would have continued until the final iteration if they
were freely exploring the data (and not in an assessment setting). If
they were pressed for time or the dataset was very large, they would
choose to stop before the final visualization iteration, but likely at
a later iteration than the iteration they stopped at in our quiz phase.
One of those participants (P8) mentioned that providing an explicit
guarantee along with the visualizations would further increase the
confidence level when making decisions.
Survey. The survey consisted of seven Likert scale questions to
measure the interpretability of the visualizations and the usability
of INCVISAGE. The heatmap and trendline visualizations received
similar average ratings (out of 5) for interpretability (heatmap: µ
= 4.45; σ = 0.51; trendline: µ = 4.50; σ = 0.83) and satisfaction
levels (heatmap: µ = 4.55; σ = 0.60; trendline: µ = 4.50; σ = 0.83).
Limitations and Future Work. Our approach to approximate vi-
sualizations relies heavily on the smoothness of the data; noise and
outliers in the dataset impede generating a useful approximation
quickly. As highlighted in Section 7.2, when the value of the point
of interest and its neighbor(s) is very close, INCVISAGE might
choose to reveal that point at later iterations. As a result, any user
looking to find quick insights may select an incorrect sub-optimal
point. INCVISAGE currently does not offer any explicit guarantee
of an answer, which was pointed out as a limitation of the tool by
one of the participants (P8).

The limitations of the user study fall into three categories: am-
biguity in quiz questions, interface control, and limited variance in
the participant demographics. From the interface perspective, par-
ticipants suggested adding axes to the snapshots for easier compar-
ison between iterations, adding zooming capabilities, and options
for downloading the data summary. Finally, our participant pool
demographics do not match the demographics of the general audi-
ence intended for this tool. Future studies will reach a larger, more
diverse audience.
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7. EVALUATION: DECISION MAKING
Previously, we evaluated the interpretability of INCVISAGE, com-

pared trendlines to heatmaps, and qualitatively studied how users
felt about the inherent uncertainty. We now compare INCVISAGE
with traditional online-aggregation-like [19] approaches (OLA) that
depict approximations of visualizations as samples are taken (as in
the first and third row of Figure 1). Specifically, does INCVISAGE
lead to faster and/or more accurate decision making?

7.1 Study Design and Participants
Our study design was similar to our previous study, with four

phases, an introduction, a quiz phase, an interview for qualitative
data, and finally a closing survey. We introduced the INCVISAGE
approach as the “grouped value” approach, and the OLA approach
as the “single value” approach. We focus on the quiz phase; other
findings and more details can be found in our technical report [2].

We recruited 20 participants. Our participants included 12 grad-
uate students (4 in computer science), 5 undergraduate students,
one researcher, and two university employees. All of the partici-
pants had experience with data analysis tools.
Quiz Phase Design. In designing the quiz phase, we used the
flight dataset (details in Section 5), with 20 questions in total—
10 on trendlines and 10 on heatmaps. In each case, five questions
were reserved for INCVISAGE, and five for OLA. We used the same
categorizations of questions as in our first study—range-based and
extrema-based. As before, we randomized the order of the tools,
and the order of the questions.
The Scoring Function. As in Section 6, a score was provided to
the user as they answered questions. The score was computed as a
product S = P ·A, where P corresponded to how quickly the user
made a decision, and A to the accuracy. The formulae for A were
similar to the previous study. Instead of setting P to be proportional
to the number of remaining iterations, here, in order to allow the
scores to be comparable between OLA and INCVISAGE, we set P
to be T−t

T
, where T is the time taken to compute the visualization

by scanning the entire dataset, while t is the time taken by the user.

7.2 Quantitative Analysis of the Quiz Phase
In discussing the participants’ quiz performance, we investigate

both their accuracy (using A above) as well as answer submission
time for both INCVISAGE and OLA.
Summary: For trendlines, INCVISAGE exhibits a 62.52% higher accu-
racy than OLA for both question types, while also reducing the submis-
sion time by 10.83%. For heatmaps, INCVISAGE exhibits 4.05% higher
accuracy than OLA for both question types. The submission time for
range-based questions with INCVISAGE is higher than OLA.

Accuracy and Submission Time Statistics. Table 3 summarizes
the overall accuracy and the submission times for both INCVISAGE
and OLA. For trendlines, INCVISAGE outperformed OLA in terms
of both accuracy and submission times. For extrema based ques-
tions, the overall accuracy of INCVISAGE was almost double than
that of OLA. The submission times were also lower for INCVISAGE
for both types of questions. Overall, users are able to make faster
and more accurate decisions using INCVISAGE than OLA. There is
a dip in the overall accuracy for the range based questions for both
approaches. Since the accuracy of the range based questions was
either 0 or 1, any incorrect submission incurred a higher penalty,
thereby reducing overall accuracy.

For heatmaps, INCVISAGE exhibited better accuracy than OLA—
in particular, an improvement of 4.05%. For extrema based ques-
tions, the submission times were almost equal. However, for range
based questions submissions with INCVISAGE took longer than
OLA. We found that when using INCVISAGE with heatmaps, par-
ticipants waited for the larger blocks to break up in order to com-
pute averages over ranges, thereby increasing submission times

but providing more accurate answers. As it turns out, the initial
(larger) blocks in INCVISAGE do provide average estimates across
ranges and could have been used to provide answers to the ques-
tions quickly. The unfamiliarity with incremental heatmap visu-
alizations, and heatmaps in general, contributed to this delay. In
hindsight, we could have educated the participants more about how
to draw conclusions from the INCVISAGE heatmaps and this may
have reduced submission times. In our technical report, we dig into
these issues at a per-question level.

7.3 Interview and Survey Phase
Due to space limitations, here, we only present a summary of

the results of the interview and survey phase, along with takeaway
quotes; detailed results can be found in the technical report [2].

Summary: The majority of participants preferred INCVISAGE represen-
tations for both visualizations. The trendline visualization using OLA
was unstable and had low interpretability.

Overall, among 20 participants, the majority (N = 12) pre-
ferred the INCVISAGE (‘grouped value’) representation over the
OLA (‘single value’) representation (N = 6) of visualizations while
two participants equally preferred both approaches. When using
INCVISAGE, participants reported that they were able to interpret
the initial high level approximations to identify specific regions of
interest and eventually found the answer after waiting a bit, with
more confidence. On the other hand, they described OLA as un-
stable and difficult to interpret. One of the participants (P14) said
the following—“For (INCVISAGE), it was easier to know when I
wanted to stop because I had the overall idea first. And then I
was just waiting to get the precise answer because I knew it was
coming. . . . With (OLA), it was a shot in the dark where I see a
little bit where it is, I would wait to see if it stays as the answer.”
Another participant (P15) expressed similar observations—“With
(OLA), there was just so much going on I was like ‘OK, where
am I trying to focus on . . . versus (INCVISAGE), it started out re-
ally simple and then became more complex to be able to show the
differences.” The same participant also preferred the aesthetics of
INCVISAGE—“I preferred the grouped (INCVISAGE), because it
made it easier to kind of narrow down at least the range . . . Versus
with the single value (OLA) . . . if you picked the wrong one, you
were very wrong, potentially.”

8. RELATED WORK
In this section, we review papers from multiple research areas

and explain how they relate to INCVISAGE.
Approximate Query Processing (AQP). AQP schemes can op-
erate online, i.e., select samples on the fly, and offline, i.e, select
samples prior to queries being issued. Certain online approaches
respect a predefined accuracy constraint for computing certain fixed
aggregates without indices [22, 23], and with indexes [18, 32]. The
objectives and techniques are quite different from that of INCVIS-
AGE. Offline AQP systems [9, 10, 12, 17] operate on precomputed
samples. Unlike these approaches, INCVISAGE deals with ad-hoc
visualizations.
Approximate Visualization Algorithms. We have already dis-
cussed IFOCUS [28], PFunkH [11] and ExploreSample [46] in
Section 1. Recent work introduces an optimistic visualization sys-
tem [35] that allows users to explore approximate visualizations
and verify the results of any visualization they feel uncertain about
at a later time. INCVISAGE’s approach is complementary to this
approach, since verification of decisions made using approximate
visualizations may still be valuable.
Incremental Visualization. We have already discussed Online
aggregation [19], sampleAction [16], and CLOUDS [20] in Sec-
tion 1. Recent user studies by Zgraggen et al. [47] demonstrate that
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Table 3: Overall Accuracy and Submission Time Statistics Per Question Category

Approach
Trendline Heatmap

Extrema Based Questions Range Based Questions Extrema Based Questions Range Based Questions
Accuracy Time (sec) Accuracy Time (sec) Accuracy Time (sec) Accuracy Time (sec)

INCVISAGE 94.55% 25.0638 62.50% 22.0822 83.47% 31.6012 97.50% 34.7992
OLA 45.83% 26.4022 52.50% 27.3125 79.13% 31.3846 95% 25.4782

an OLA-style system outperforms one-shot computation of the vi-
sualization in terms of number of insights gained. In our work, we
additionally demonstrate that INCVISAGE reduces the number of
user mistakes made in decision making compared to OLA.
Visualization Tools. In recent years, several interactive visualiza-
tion tools have been introduced [27, 37, 38, 40, 41]. The algorithms
provided in this paper can be incorporated in these tools so that
users can quickly identify key features of data.
Scalable Visualizations. A number of recent tools support scal-
able visualization generation [26, 31, 33] by precomputing and
storing aggregates—this can be prohibitive on datasets with many
attributes. INCVISAGE on the other hand, reveals features of visu-
alizations in the order of prominence for arbitrary queries.
Approximation of Distributions. Previous histogram approxima-
tion of data distributions (COUNT queries) [8, 24] are one shot—
they do not sample iteratively from groups. Donjerkovic et al. [15]
maintains histograms over evolving data, once again for COUNT
queries.

9. CONCLUSIONS
We introduced the notion of incrementally improving visualiza-

tions and demonstrated that our incremental visualization tool, IN-
CVISAGE, helps users gain insights and make decisions quickly.
On very large datasets, INCVISAGE is able to achieve a 46× speedup
relative to SCAN in revealing the first 10 salient features of a visu-
alization with suitable error guarantees that are comparable to a
dynamic programming approach, but without a high computational
overhead. Our user studies demonstrate that users chose to trade
accuracy for time to make rapid decisions, that too at higher accu-
racy than traditional approaches. There are a number of interesting
future directions, such as modeling and displaying the degree of
uncertainty, along with a wider range of operations (e.g. pausing at
segment level or group level), and alternative views (e.g., overlay-
ing incremental visualizations and traditional approaches). Finally,
gaining a better understanding of the sorts of decisions for which
one-shot approaches and incremental visualization approaches are
appropriate is a promising future direction.
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