
Probabilistic Database Summarization
for Interactive Data Exploration

Laurel Orr, Magdalena Balazinska, and Dan Suciu
University of Washington
Seattle, Washington, USA

{ljorr1, magda, suciu}@cs.washington.edu

ABSTRACT
We present a probabilistic approach to generate a small,
query-able summary of a dataset for interactive data ex-
ploration. Departing from traditional summarization tech-
niques, we use the Principle of Maximum Entropy to gen-
erate a probabilistic representation of the data that can be
used to give approximate query answers. We develop the
theoretical framework and formulation of our probabilistic
representation and show how to use it to answer queries.
We then present solving techniques and give three critical
optimizations to improve preprocessing time and query ac-
curacy. Lastly, we experimentally evaluate our work using a
5 GB dataset of flights within the United States and a 210
GB dataset from an astronomy particle simulation. While
our current work only supports linear queries, we show that
our technique can successfully answer queries faster than
sampling while introducing, on average, no more error than
sampling and can better distinguish between rare and nonex-
istent values.

1. INTRODUCTION
Interactive data exploration allows a data analyst to

browse, query, transform, and visualize data at “human
speed” [7]. It has been long recognized that general-purpose
DBMSs are ill suited for interactive exploration [19]. While
users require interactive responses, they do not necessarily
require precise responses because either the response is used
in some visualization, which has limited resolution, or an
approximate result is sufficient and can be followed up with
a more costly query if needed. Approximate Query Process-
ing (AQP) refers to a set of techniques designed to allow fast
but approximate answers to queries. All successful AQP sys-
tems to date rely on sampling or a combination of sampling
and indexes. The sample can either be computed on-the-fly,
e.g., in the highly influential work on online aggregation [12]
or systems like DBO [14] and Quickr [16], or precomputed
offline, like in BlinkDB [2] or Sample+Seek [9]. Samples
have the advantage that they are easy to compute, can ac-
curately estimate aggregate values, and are good at detect-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

ing heavy hitters. However, sampling may fail to return
estimates for small populations; targeted stratified samples
can alleviate this shortcoming, but stratified samples need
to be precomputed to target a specific query, defeating the
original purpose of AQP.

In this paper, we propose an alternative approach to in-
teractive data exploration based on the Maximum Entropy
principle (MaxEnt). The MaxEnt model has been applied
in many settings beyond data exploration; e.g., the multi-
plicative weights mechanism [11] is a MaxEnt model for both
differentially private and, by [10], statistically valid answers
to queries, and it has been shown to be theoretically opti-
mal. In our setting of the MaxEnt model, the data is pre-
processed to compute a probabilistic model. Then, queries
are answered by doing probabilistic inference on this model.
The model is defined as the probabilistic space that obeys
some observed statistics on the data and makes no other
assumptions (Occam’s principle). The choice of statistics
boils down to a precision/memory tradeoff: the more statis-
tics one includes, the more precise the model and the more
space required. Once computed, the MaxEnt model defines
a probability distribution on possible worlds, and users can
interact with this model to obtain approximate query re-
sults. Unlike a sample, which may miss rare items, the
MaxEnt model can infer something about every query.

Despite its theoretical appeal, the computational chal-
lenges associated with the MaxEnt model make it difficult
to use in practice. In this paper, we develop the first scal-
able techniques to compute and use the MaxEnt model. As
an application, we illustrate it with interactive data explo-
ration. Our first contribution is to simplify the standard
MaxEnt model to a form that is appropriate for data sum-
marization (Sec. 3). We show how to simplify the MaxEnt
model to be a multi-linear polynomial that has one mono-
mial for each possible tuple (Sec. 3, Eq. (5)) rather than its
näıve form that has one monomial for each possible world
(Sec. 2, Eq. (2)). Even with this simplification, the MaxEnt
model starts by being larger than the data. For example,
the flights dataset is 5 GB, but the number of possible tuples
is approximately 1010, more than 5 GB. Our first optimiza-
tion consists of a compression technique for the polynomial
of the MaxEnt model (Sec 4.1); for example, for the flights
dataset, the summary is below 200MB, while for our larger
dataset of 210GB, it is less than 1GB. Our second optimiza-
tion consists of a new technique for query evaluation on the
MaxEnt model (Sec. 4.2) that only requires setting some
variables to 0; this reduces the runtime to be on average
below 500ms and always below 1s.

1154

We find that the main bottleneck in using the MaxEnt
model is computing the model itself; in other words, com-
puting the values of the variables of the polynomial such that
it matches the existing statistics over the data. Solving the
MaxEnt model is difficult; prior work for multi-dimensional
histograms [18] uses an iterative scaling algorithm for this
purpose. To date, it is well understood that the MaxEnt
model can be solved by reducing it to a convex optimization
problem [23] of a dual function (Sec. 2), which can be solved
using Gradient Descent. However, even this is difficult given
the size of our model. We managed to adapt a variant of
Stochastic Gradient Descent called Mirror Descent [5], and
our optimized query evaluation technique can compute the
MaxEnt model for large datasets in under a day.

In summary, in this paper, we develop the following new
techniques:

• A closed-form representation of the probability space of
possible worlds using the Principle of Maximum Entropy,
and a method to use the representation to answer queries
in expectation (Sec 3).

• Compression method for the MaxEnt summary (Sec 4.1).

• Optimized query processing techniques (Sec 4.2).

• A new method for selecting 2-dimensional statistics based
on a modified KD-tree (Sec 4.3).

We implement the above techniques in a prototype sys-
tem that we call EntropyDB and evaluate it on the flights
and astronomy datasets. We find that EntropyDB can an-
swer queries faster than sampling while introducing no more
error, on average, and does better at identifying small pop-
ulations.

2. BACKGROUND
We summarize data by fitting a probability distribution

over the active domain. The distribution assumes that the
domain values are distributed in a way that preserves given
statistics over the data but are otherwise uniform.

For example, consider a data scientist who analyzes a
dataset of flights in the United States for the month of De-
cember 2013. All she knows is that the dataset includes
all flights within the 50 possible states and that there are
500,000 flights in total. She wants to know how many of
those flights are from CA to NY. Without any extra infor-
mation, our approach would assume all flights are equally
likely and estimate that there are 500, 000/502 = 200 flights.

Now suppose the data scientist finds out that flights leav-
ing CA only go to NY, FL, or WA. This changes the estimate
because instead of there being 500, 000/50 = 10, 000 flights
leaving CA and uniformly going to all 50 states, those flights
are only going to 3 states. Therefore, the estimate becomes
100, 000/3 = 3, 333 flights.

This example demonstrates how our summarization tech-
nique would answer queries, and the rest of this section cov-
ers its theoretical foundation.

2.1 Possible World Semantics
To model a probabilistic database, we use the slotted pos-

sible world semantics where rows have an inherent unique
identifier, meaning the order of the tuples matters. Our set
of possible worlds is generated from the active domain and
size of each relation. Each database instance is one possible
world with an associated probability such that the probabil-
ities of all possible worlds sum to one.

In contrast to typical probabilistic databases where the
probability of a relation is calculated from the probability
of each tuple, we calculate a relation’s probability from a
formula derived from the MaxEnt principle and a set of
constraints on the overall distribution. This approach cap-
tures the idea that the distribution should be uniform except
where otherwise specified by the given constraints.

2.2 The Principle of Maximum Entropy
The Principle of Maximum Entropy (MaxEnt) states that

subject to prior data, the probability distribution which best
represents the state of knowledge is the one that has the
largest entropy. This means given our set of possible worlds,
PWD, the probability distribution Pr(I) is one that agrees
with the prior information on the data and maximizes

−
∑

I∈PWD

Pr(I) log(Pr(I))

where I is a database instance, also called possible world.
The above probability must be normalized,

∑
I Pr(I) = 1,

and must satisfy the prior information represented by a set
of k expected value constraints:

sj = E[φj(I)], j = 1, k (1)

where sj is a known value and φj is a function on I that
returns a numerical value in R. One example constraint is
that the number of flights from CA to WI is 0.

Following prior work on the MaxEnt principle and solving
constrained optimization problems [4, 23, 20], the MaxEnt
probability distribution takes the form

Pr(I) =
1

Z
exp

(
k∑
j=1

θjφj(I)

)
(2)

where θj is a parameter and Z is the following normalization
constant:

Z
def
=

∑
I∈PWD

(
exp

(
k∑
j=1

θjφj(I)

))
.

To compute the k parameters θj , we must solve the non-
linear system of k equations, Eq. (1), which is computa-
tionally difficult. However, it turns out [23] that Eq. (1) is
equivalent to ∂Ψ/∂θj = 0 where the dual Ψ is defined as:

Ψ
def
=

k∑
j=1

sjθj − ln (Z) .

Furthermore, Ψ is concave, which means solving for the k
parameters can be achieved by maximizing Ψ. We note that
Z is called the partition function, and its log, ln(Z), is called
the cumulant.

3. EntropyDB APPROACH
This section explains how we use the MaxEnt model for

approximate query answering. We first show how we use the
MaxEnt framework to transform a single relation R into a
probability distribution represented by P . We then explain
how we use P to answer queries over R.

3.1 Maximum Entropy Model of Data
We consider a single relation with m attributes and

schema R(A1, . . . , Am) where each attribute, Ai, has an

1155

Domains:

D1 = {a1, a2} N1 = 2

D2 = {b1, b2} N2 = 2

Tup = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)} d = 4

Database Instance:
I: A B
1 a1 b1
2 a1 b2
3 a2 b2
4 a1 b1
5 a2 b2

Query:

q: SELECT COUNT(*)
FROM R
WHERE A = a1

Modeling Data and Query: n = 5, m = 2

n
I
= (2, 1, 0, 2) q = (1, 1, 0, 0) 〈q,nI〉 = 3 also denoted 〈q, I〉

Figure 1: Illustration of the data and query model

active domain Di, assumed to be discrete and ordered.1

Let Tup = D1 × D2 × · · · × Dm = {t1, . . . , td} be the
set of all possible tuples. Denoting Ni = |Di|, we have
d = |Tup| =

∏m
i=1 |Ni|.

An instance for R is an ordered bag of n tuples, denoted
I. For each I, we form a frequency vector which is a d-
dimensional vector2 nI = [nI1, . . . , n

I
d] ∈ Rd, where each

number nIi represents the count of the tuple ti ∈ Tup in
I (Fig. 1). The mapping from I to nI is not one-to-one
because the instance I is ordered, and two distinct instances
may have the same counts. Further, for any instance I of
cardinality n, ||nI ||1 =

∑
i n

I
i = n. The frequency vector

of an instance consisting of a single tuple {ti} is denoted
nti = [0, . . . , 0, 1, 0, . . . , 0] with a single value 1 in the ith
position; i.e., {nti : i = 1, d} forms a basis for Rd.

While the MaxEnt principle allows us, theoretically, to
answer any query probabilistically by averaging the query
over all possible instances; in this paper, we limit our dis-
cussion to linear queries. A linear query is a d-dimensional
vector q = [q1, . . . , qd] in Rd. The answer to q on instance I

is the dot product 〈q,nI〉 =
∑d
i=1 qin

I
i . With some abuse of

notation, we will write I when referring to nI and ti when
referring to nti . Notice that 〈q, ti〉 = qi, and, for any in-
stance I, 〈q, I〉 =

∑
i n

I
i 〈q, ti〉.

Fig. 1 illustrates the data and query model. Any count-
ing query is a vector q where all coordinates are 0 or
1 and can be equivalently defined by a predicate π such
that 〈q, I〉 = |σπ(I)|; with more abuse, we will use π in-
stead of q when referring to a counting query. Other SQL
queries can be modeled using linear queries, too. For exam-
ple, SELECT A, COUNT(∗) AS cnt FROM R GROUP BY
A ORDER BY cnt DESC LIMIT 10 corresponds to sev-
eral linear queries, one for each group, where the outputs
are sorted and the top 10 returned.

Our goal is to compute a summary of the data that is
small yet allows us to approximatively compute the answer
to any linear query. We assume that the cardinality n of
R is fixed and known. In addition, we know k statistics,
Φ = {(cj , sj) : j = 1, k}, where cj is a linear query and
sj ≥ 0 is a number. Intuitively, the statistic (cj , sj) asserts
that 〈cj , I〉 = sj . For example, we can write 1-dimensional
and 2-dimensional (2D) statistics like |σA1=63(I)| = 20 and
|σA1∈[50,99]∧A2∈[1,9](I)| = 300.

1We support continuous data types by bucketizing their ac-
tive domains.
2This is a standard data model in several applications, such
as differential privacy [17].

Next, we derive the MaxEnt distribution for the possible
instances I of a fixed size n. We replace the exponential
parameters θj with ln(αj) so that Eq. (2) becomes

Pr(I) =
1

Z

∏
j=1,k

α
〈cj ,I〉
j . (3)

We prove the following about the structure of the partition
function Z:

Lemma 3.1. The partition function is given by

Z = Pn (4)

where P is the multi-linear polynomial

P (α1, . . . , αk)
def
=
∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j . (5)

Proof. Fix any n = [n1, . . . , nd] such that ||n||1 =∑d
i=1 ni = n. The number of instances I of cardinality

n with nI = n is n!/
∏
i ni!. Furthermore, for each such

instance, 〈cj , I〉 = 〈cj ,n〉 =
∑
i ni〈cj , ti〉. Therefore,

Z =
∑
I

Pr(I) =
∑

n:||n||1=n

n!∏
i ni!

∏
j=1,k

α
∑
i ni〈cj ,ti〉

j

=

∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j

n

= Pn.

The data summary consists of the polynomial P (Eq. (5))
and the values of its parameters αj ; the polynomial is de-
fined by the linear queries cj in the statistics Φ, and the
parameters are computed from the numerical values sj .

Example 3.2. Consider a relation with three attributes
R(A,B,C), and assume that the domain of each attribute
has 2 distinct elements. Assume n = 10 and the only statis-
tics in Φ are the following 1-dimensional statistics:

(A = a1, 3) (B = b1, 8) (C = c1, 6)
(A = a2, 7) (B = b2, 2) (C = c2, 4).

The first statistic asserts that |σA=a1(I)| = 3, etc. The poly-
nomial P is

P =α1β1γ1 + α1β1γ2 + α1β2γ1 + α1β2γ2+

α2β1γ1 + α2β1γ2 + α2β2γ1 + α2β2γ2

where α1, α2 are variables associated with the statistics on
A, β1, β2 are for B3, and γ1, γ2 are for C.

Consider the concrete instance

I = {(a1, b1, c1), (a1, b2, c2), . . . , (a1, b2, c2)}

where the tuple (a1, b2, c2) occurs 9 times. Then, Pr(I) =
α10
1 β1β

9
2γ1γ

9
2/P

10.

3We abuse notation here for readability. Technically, αi =
αai , βi = αbi , and γi = αci .

1156

Example 3.3. Continuing the previous example, we add
the following multi-dimensional statistics to Φ:

(A = a1 ∧B = b1, 2) (B = b1 ∧ C = c1, 5)
(A = a2 ∧B = b2, 1) (B = b2 ∧ C = c1, 1).

P is now

P =α1β1γ1[αβ]1,1[βγ]1,1 + α1β1γ2[αβ]1,1+

α1β2γ1[βγ]2,1 + α1β2γ2+

α2β1γ1[βγ]1,1 + α2β1γ2+

α2β2γ1[αβ]2,2[βγ]2,1 + α2β2γ2[αβ]2,2. (6)

The red variables are the added 2-dimensional statistic vari-
ables; we use [αβ]1,1 to denote a single variable correspond-
ing to a 2D statistics on the attributes AB. Notice that each
red variable only occurs with its related 1-dimensional vari-
ables. αβ1,1, for example, is only in the same term as α1

and β1.
Now consider the earlier instance I. Its probability be-

comes Pr(I) = α10
1 β1β

9
2γ1γ

9
2 [αβ]1,1[βγ]1,1/P

10.

To facilitate analytical queries, we choose the set of statis-
tics Φ as follows:

• Each statistic φj = (cj , sj) is associated with some pred-
icate πj such that 〈cj , I〉 = |σπj (I)|. It follows that for
every tuple ti, 〈cj , ti〉 is either 0 or 1; therefore, each
variable αj has degree 1 in the polynomial P in Eq. (5).

• For each domain Di, we include a complete set of 1-
dimensional statistics in our summary. In other words,
for each v ∈ Di, Φ contains one statistic with predi-
cate Ai = v. We denote Ji ⊆ [k] the set of indices of
the 1-dimensional statistics associated with Di; therefore,
|Ji| = |Di| = Ni.

• We allow multi-dimensional statistics to be given by arbi-
trary predicates. They may be overlapping and/or incom-
plete; e.g., one statistic may count the tuples satisfying
A1 ∈ [10, 30] ∧ A2 = 5 and another count the tuples sat-
isfying A2 ∈ [20, 40] ∧A4 = 20.

• We assume the number of 1-dimensional statistics
dominates the number of attribute combinations; i.e.,∑m
i=1Ni � 2m.

• If some domain Di is large, it is beneficial to reduce the
size of the domain using equi-width buckets. In that case,
we assume the elements of Di represent buckets, and Ni
is the number of buckets.

• We enforce our MaxEnt distribution to be overcom-
plete [23, pp.40] (as opposed to minimal). More pre-
cisely, for any attribute Ai and any instance I, we have∑
j∈Ji〈cj , I〉 = n, which means that some statistics are

redundant since they can be computed from the others
and from the size of the instance n.

Note that as a consequence of overcompleteness, for any
attribute Ai, one can write P as a linear expression

P =
∑
j∈Ji

αjPj (7)

where each Pj , j ∈ Ji is a polynomial that does not contain
the variables (αj)j∈Ji . In Example 3.3, the 1-dimensional
variables for A are α1, α2, and indeed, each monomial in
Eq. (6) contains exactly one of these variables. One can

write P as P = α1P1 +α2P2 where α1P1 represents the first
two lines and α2P2 represents the last two lines in Eq. (6).
P is also linear in β1, β2 and in γ1, γ2.

3.2 Query Answering
In this section, we show how to use the data summary

to approximately answer a linear query q by returning its
expected value E[〈q, I〉]. The summary (the polynomial P
and the values of its variables αj) uniquely define a prob-
ability space on the possible worlds (Eq. (3) and (5)). We
start with a well known result in the MaxEnt model. If c`
is the linear query associated with the variable α`, then

E[〈c`, I〉] =
n

P

α`∂P

∂α`
. (8)

We review the proof here. The expected value of 〈c`, I〉 over
the probability space (Eq. (3)) is

E[〈c`, I〉] =
1

Pn

∑
I

〈c`, I〉
∏
j

α
〈cj ,I〉
j =

1

Pn

∑
I

α`∂

∂α`

∏
j

α
〈cj ,I〉
j

=
1

Pn
α`∂

∂α`

∑
I

∏
j

α
〈cj ,I〉
j =

1

Pn
α`∂P

n

∂α`
=
n

P

α`∂P

∂α`
.

To compute a new linear query q, we add it to the sta-
tistical queries cj , associate it with a fresh variable β, and
denote Pq the extended polynomial:

Pq(α1, . . . , αk, β)
def
=
∑
i=1,d

∏
j=1,k

α
〈cj ,ti〉
j β〈q,ti〉 (9)

Notice that Pq[β = 1] ≡ P ; therefore, the extended data
summary defines the same probability space as P . We can
apply Eq. (8) to the query q to derive:

E[〈q, I〉] =
n

P

∂Pq

∂β
. (10)

This leads to the following näıve strategy for computing
the expected value of q: extend P to obtain Pq and apply
formula Eq. (10). One way to obtain Pq is to iterate over
all monomials in P and add β to the monomials correspond-
ing to tuples counted by q. As this is inefficient, Sec. 4.2
describes how to avoid modifying the polynomial altogether.

3.3 Probabilistic Model Computation
We now describe how to compute the parameters of the

summary. Given the statistics Φ = {(cj , sj) : j = 1, k}, we
need to find values of the variables {αj : j = 1, k} such that
E[〈cj , I〉] = sj for all j = 1, k. As explained in Sec 2, this is
equivalent to maximizing the dual function Ψ:

Ψ
def
=

k∑
j=1

sj ln(αj)− n lnP. (11)

Indeed, maximizing P reduces to solving the equations
∂Ψ/∂αj = 0 for all j. Direct calculation gives us ∂Ψ/∂αj =
sj
αj
− n

P
∂P
∂αj

= 0, which is equivalent to sj − E[〈cj , I〉] by

Eq. (8). The dual function Ψ is concave, and hence it has
a single maximum value that can be obtained using convex
optimization techniques such as Gradient Descent.

In particular, we achieve fastest convergence rates using a
variant of Stochastic Gradient Descent (SGD) called Mirror

1157

Algorithm 1 Solving for the αs

maxError = i n f i n i t y
whi le maxError >= thre sho ld do

maxError = −1
f o r each alpha do

value =
sj(P−αjPαj)
(n−sj)Pαj

alpha = value

e r r o r = value−
nαjPαj

P

maxError = max(er ror , maxError)

Descent [5], where each iteration chooses some j = 1, k and
updates αj by solving

nαj
P

∂P
∂αj

= sj while keeping all other

parameters fixed. In other words, the step of SGD is chosen

to solve ∂Ψ/∂αj = 0. Denoting Pαj
def
= ∂P

∂αj
and solving, we

obtain:

αj =
sj(P − αjPαj)

(n− sj)Pαj
. (12)

Since P is linear in each α, neither P−αjPαj nor Pαj contain
any αj variables.

We repeat this for all j, and continue this process until all

differences |sj−
nαjPαj

P
|, j = 1, k, are below some threshold.

Algorithm 1 shows pseudocode for the solving process.

4. OPTIMIZATIONS
We now discuss three optimizations: (1) summary com-

pression in Sec. 4.1, (2) optimized query processing in
Sec. 4.2, and (3) selection of statistics in Sec. 4.3.

4.1 Compression of the Data Summary
The summary consists of the polynomial P that, by def-

inition, has |Tup| monomials where |Tup| =
∏m
i=1Ni. We

describe a technique that compresses the summary to a size
closer to O(

∑
iNi).

We start by walking through an example with three at-
tributes, A, B, and C, each with an active domain of size
N1 = N2 = N3 = 1000. Suppose first that we have only
1D statistics. Then, instead of representing P as a sum of
10003 monomials, P =

∑
i,j,k∈[1000] αiβjγk, we factorize it

to P = (
∑
αi)(

∑
βj)(

∑
γk); the new representation has

size 3 · 1000.
Now, suppose we add a single 3D statistic on ABC: A =

3 ∧ B = 4 ∧ C = 5. The new variable, call it δ, occurs
in a single monomial of P , namely α3β4γ5δ. Thus, we can
compress P to (

∑
αi)(

∑
βj)(

∑
γk) + α3β4γ5(δ − 1).

Instead, suppose we add a single 2D range statistics on
AB, say A ∈ [101, 200] ∧ B ∈ [501, 600], and call its
associated variable δ1. This will affect 100 · 100 · 1000
monomials. We can avoid enumerating them by noting
that they, too, factorize. The polynomial compresses to
(
∑
αi)(

∑
βj)(

∑
γk) + (

∑200
i=101 αi)(

∑600
j=501 βj)(

∑
γk)(δ1 −

1).
Finally, suppose we have three 2D statistics: the previous

one on AB plus the statistics B ∈ [551, 650]∧C ∈ [801, 900]
and B ∈ [651, 700]∧C ∈ [701, 800] on BC. Their associated
variables are δ1, δ2, and δ3. Now we need to account for the
fact that 100 · 50 · 100 monomials contain both δ1 and δ2.
Applying the inclusion/exclusion principle, P compresses to
the following (the i and ii labels are referenced later).

P =

(i)︷ ︸︸ ︷
(
∑

αi)(
∑

βj)(
∑

γk) +

(i)︷ ︸︸ ︷
(
∑

γk)

(ii)︷ ︸︸ ︷
(

200∑
101

αi)(

600∑
501

βj)(δ1 − 1)

(13)

+

(i)︷ ︸︸ ︷
(
∑

αi)

(ii)︷ ︸︸ ︷[
(

650∑
551

βj)(

900∑
801

γk)(δ2 − 1) + (

700∑
651

βj)(

800∑
701

γk)(δ3 − 1)

]
(14)

+

(ii)︷ ︸︸ ︷
(

200∑
101

αi)(

600∑
551

βj)(

900∑
801

γk)(δ1 − 1)(δ2 − 1) . (15)

The size, counting only the αs, βs, and γs for simplicity, is
3000 + 1200 + 1350 + 250.

Before proving the general formula for P , note that this
compression is related to standard algebraic factorization
techniques involving kernel extraction and rectangle cover-
ings [13]; both techniques reduce the size of a polynomial by
factoring out divisors. The standard techniques, however,
are unsuitable for our use because they require enumeration
of the product terms in the sum-of-product (SOP) polyno-
mial to extract kernels and form cube matrices. Our poly-
nomial in SOP form is too large to be materialized, making
these techniques infeasible. It is future work to investigate
other factorization techniques geared towards massive poly-
nomials.

We now make the following three assumptions for the rest
of the paper.

• Each predicate has the form πj =
∧m
i=1 ρij where m is

the number of attributes and ρij is the projection of πj
onto Ai. If j ∈ Ji, then πj ≡ ρij . For any set of indices

of multi-dimensional statistics S ⊂ [k], we denote ρiS
def
=∧

j∈S ρij , and πS
def
=
∧
i ρiS ; as usual, when S = ∅, then

ρi∅ ≡ true.

• Each ρij is a range predicate Ai ∈ [u, v].

• For each I, the multi-dimensional statistics whose at-
tributes are exactly those in I are disjoint; i.e., for j1, j2
whose attributes are I, ρij 6≡ true for i ∈ I, ρij ≡ true
for i 6∈ I, and πj1 ∧ πj2 ≡ false.

Using this, define JI ⊆ P([k])4 for I ⊆ [m] to be the
set of sets of multi-dimensional statistics whose combined
attributes are {Ai : i ∈ I} and whose intersection is non-
empty (i.e., not false). In other words, for each S ∈ JI ,
ρiS 6∈ {true,false} for i ∈ I and ρiS ≡ true for i /∈ I.

For example, suppose we have the three 2D statistics from
before: πj1 = A1 ∈ [101, 200] ∧ A2 ∈ [501, 600], πj2 = A2 ∈
[551, 650] ∧ A3 ∈ [801, 900], and πj3 = A2 ∈ [651, 700] ∧
A3 ∈ [701, 800]. Then, {j1} ∈ J{1,2} and {j2}, {j3} ∈ J{2,3}.
Further, {j1, j2} ∈ J{1,2,3} because ρ2j1 ∧ ρ2j2 6≡ false.
However, {j1, j3} /∈ J{1,2,3} because ρ2j1 ∧ ρ2j3 ≡ false.
Using these definitions, we now give the compression.

4P([k]) is the power set of {1, 2, . . . , k}

1158

Theorem 4.1. The polynomial P is equivalent to:

P =
∑
I⊆[m]

(i)︷ ︸︸ ︷∏
i/∈I

∑
j∈Ji

αj

 ∑
S∈JI

∏
i∈I

∑
j∈Ji

πj∧ρiS 6≡false

αj

∏
j∈S

(αj − 1)

︸ ︷︷ ︸
(ii)

The proof uses induction on the size of I, but we omit it for
lack of space.

To give intuition, when I = ∅, we get the sum over the
1D statistics because when S = ∅, (ii) equals 1. When I is
not empty, (ii) has one summand for each set S of multi-
dimensional statistics whose attributes are I and whose in-
tersection is non-empty. For each such S, the summand
sums up all 1-dimensional variables αj , j ∈ Ji that are in
the ith projection of the predicate πS (this is what the con-
dition (πj ∧ρiS) 6≡ false checks) and multiplies with terms
αj − 1 for j ∈ S.

At a high level, our algorithm computes the compressed
representation of P by first computing the summand for
when I = ∅ by iterating over all 1-dimensional statistics.
It then iterates over the multi-dimensional statistics, and
builds a map from I to the attributes that are defined on
I; i.e., I → JI such that |S| = 1 for S ∈ JI . It then
iteratively loops over this map, taking the cross product of
different values, JI and JI′ , to see if any new JI∪I′ can be
generated. If so, JI∪I′ is added to the map. Once done, it
iterates over the keys in this map to build the summands
for each I.

The algorithm can be used during query answering to
compute the compressed representation of Pq from P
(Sec. 3.2) by rebuilding ii for the new q. However, as this is
inefficient and may increase the size of our polynomial, our
system performs query answering differently, as explained in
the next section.

We now analyze the size of the compressed polynomial P .
Let Ba denote the number of non-empty JI ; i.e., the number
of unique multi-dimensional attribute sets. Since Ba < 2m

and
∑m
i=1Ni � 2m, Ba is dominated by

∑m
i=1Ni. For

some I, part (i) of the compression is O(
∑m
i=1Ni). Part

(ii) of the compression is more complex. For some S ∈
JI , the summand is of size O(

∑m
i=1Ni + |S|). As |S| ≤

Ba �
∑m
i=1Ni, the summand is only O(

∑m
i=1Ni). Putting

it together, for some I, we have the size is O(
∑m
i=1Ni +

|JI |
∑m
i=1Ni) = O(|JI |

∑m
i=1Ni).

|JI | is the number of sets of multi-dimensional statistics
whose combined attributes are {Ai : i ∈ I} and whose in-
tersection is non-empty. A way to think about this is that
each Ai defines a dimension in |I|-dimensional space. Each
S ∈ JI defines a rectangle in this hyper-space. This means
|JI | is the number of rectangle coverings defined by the
statistics over {Ai : i ∈ I}. If we denote R = maxI |JI |,
then the size of the summand is O(R

∑m
i=1Ni).

Further, although there are 2m possible I, JI is non-
empty for only Ba + 1 I (the 1 is from I = ∅). Therefore,
the size of the compression is O(BaR

∑m
i=1Ni).

Theorem 4.2. The size of the polynomial is
O(BaR

∑m
i=1Ni) where Ba is the number of unique

multi-dimensional attribute sets and R is the largest number
of rectangle coverings defined by the statistics over some I.

In the worst case, if one gathers all possible multi-
dimensional statistics, this compression will be worse than
the uncompressed polynomial, which is of size O(

∏m
i=1Ni).

However, in practice, Ba < m, and R is dependent on
the number and type of statistics collected and results in
a significant reduction of polynomial size to one closer to
O(
∑m
i=1Ni) (see Fig. 2 discussion).

4.2 Optimized Query Answering
In this section, we assume that the query q is a counting

query defined by a conjunction of predicates, one over each
attribute Ai; i.e., q = |σπ(I)|, where

π = ρ1 ∧ · · · ∧ ρm (16)

and ρi is a predicate over the attribute Ai. If q ignores
Ai, then we simply set ρi ≡ true. Our goal is to compute
E[〈q, I〉]. In Sec. 3.2, we described a direct approach that
consists of constructing a new polynomial Pq and returning
Eq. (10). However, as described in Sec. 3.2 and Sec. 4.1, this
may be expensive.

We describe here an optimized approach to compute
E[〈q, I〉] directly from P . The advantage of this method
is that it does not require any restructuring or rebuilding
of the polynomial. Instead, it can use any optimized ora-
cle for evaluating P on given inputs. Our optimization has
two parts: a new formula E[〈q, I〉] and a new formula for
derivatives.

New formula for E[〈q, I〉]: Let πj be the predicate
associate to the jth statistical query. In other words,
〈cj , I〉 = |σπj (I)|. The next lemma applies to any query
q defined by some predicate π. Recall that β is the new
variable associated to q in Pq (Sec. 3.2).

Lemma 4.3. For any ` variables αj1 , . . . , αj` of Pq:
(1) If the logical implication πj1∧· · ·∧πj` ⇒ π holds, then

αj1 · · ·αj`∂
`Pq

∂αj1 · · · ∂αj`
=
αj1 · · ·αj`β∂

`+1Pq

∂αj1 · · · ∂αj`∂β
(17)

(2) If the logical equivalence πj1∧· · ·∧πj` ⇔ π holds, then

αj1 · · ·αj`∂
`Pq

∂αj1 · · · ∂αj`
=
β∂Pq

∂β
(18)

Proof. (1) The proof is immediate by noting that every
monomial of Pq that contains all variables αj1 , . . . , αj` also
contains β; therefore, all monomials on the LHS of Eq. (17)
contain β and thus remain unaffected by applying the oper-
ator β∂/∂β.

(2) From item (1), we derive Eq. (17); we prove now that

the RHS of Eq. (17) equals
β∂Pq

∂β
. We apply item (1) again to

the implication π ⇒ πj1 and obtain
β∂Pq

∂β
=

βαj1∂
2Pq

∂β∂αj1
(the

role of β in Eq. (17) is now played by αj1). As P is linear,
the order of partials does not matter, and this allows us to
remove the operator αj1∂/∂αj1 from the RHS of Eq. (17).
By repeating the argument for π ⇒ πj2 , π ⇒ πj3 , etc, we
remove αj2∂/∂αj2 , then αj3∂/∂αj3 , etc from the RHS.

Corollary 4.4. (1) Assume q is defined by a point pred-
icate π = (A1 = v1 ∧ · · · ∧ A` = v`) for some ` ≤ m. For
each i = 1, `, denote ji the index of the statistic associated to

1159

the value vi. In other words, the predicate πji ≡ (Ai = vi).
Then,

E[〈q, I〉] =
n

P

αj1 · · ·αj`∂
`P

∂αj1 · · · ∂αj`
(19)

(2) Let q be the query defined by a predicate as in Eq. (16).
Then,

E[〈q, I〉] =
∑

j1∈J1:πj1⇒ρ1

· · ·
∑

jm∈Jm:πjm⇒ρm

n

P

αj1 · · ·αjm∂mP
∂αj1 · · · ∂αjm

(20)

Proof. (1) Eq. (19) follows from Eq. (10), Eq. (18), and
the fact that Pq[β = 1] ≡ P . (2) Follows from (1) by ex-
panding q as a sum of point queries as in Lemma. 4.3 (1).

In order to compute a query using Eq. (20), we would
have to examine all m-dimensional points that satisfy the
query’s predicate, convert each point into the corresponding
1D statistics, and use Eq. (19) to estimate the count of the
number of tuples at this point. Clearly, this is inefficient
when q contains any range predicate containing many point
queries.

New formula for derivatives Thus, to compute
E[〈q, I〉], one has to evaluate several partial derivatives of P .
Recall that P is stored in a highly compressed format, and
therefore, computing the derivative may involve nontrivial
manipulations. Instead, we use the fact that our polyno-
mial is overcomplete, meaning that P =

∑
j∈Ji αjPj , where

Pj , j ∈ Ji does not depend on any variable in {αj : j ∈ Ji}
(Eq. (7)). Let ρi be any predicate on the attribute Ai. Then,∑

ji∈Ji:πji⇒ρi

αji∂P

∂αji
=P [

∧
j∈Ji:πji 6⇒ρi

αj = 0] (21)

Thus, in order to compute the summation on the left, it
suffices to compute P after setting to 0 the values of all
variables αj , j ∈ Ji that do not satisfy the predicate ρi (this
is what the condition πji 6⇒ ρi checks).

Finally, we combine this with Eq. (20) and obtain the
following, much simplified formula for answering a query q,
defined by a predicate of the form Eq. (16):

E[〈q, I〉] =
n

P
P [

∧
i=1,m

∧
j∈Ji:πji 6⇒ρi

αj = 0]

In other words, we set to 0 all 1D variables αj that corre-
spond to values that do not satisfy the query, evaluate the
polynomial P , and multiply it by n

P
(which is a precom-

puted constant independent of the query). For example, if
the query ignores an attribute Ai, then we leave the 1D vari-
ables for that attribute, αj , j ∈ Ji, unchanged. If the query
checks a range predicate, Ai ∈ [u, v], then we set αj = 0
for all 1D variables αj corresponding to values of Ai outside
that range.

Example 4.5. Consider three attributes A, B, and C
each with domain 1000 and two multi-dimensional statis-
tics: one AB statistic A ∈ [101, 200] ∧ B ∈ [501, 600]
and two BC statistics B ∈ [551, 650] ∧ C ∈ [801, 900] and
B ∈ [651, 700] ∧ C ∈ [701, 800]. The polynomial P is shown
in Eq. (13). Consider the query:

q: SELECT COUNT(*) FROM R
WHERE A in [36,150] AND C in [660,834]

We estimate q using our formula n
P
P [α1:35 = 0, α151:1000 =

0, γ1:659 = 0, γ835:1000 = 0]. There is no need to compute a
representation of a new polynomial.

4.3 Choosing Statistics
In this section, we discuss how we choose the multi-

dimensional statistics. Recall that our summary always in-
cludes all 1D statistics of the form Ai = v for all attributes
Ai and all values v in the active domain Di. We describe
here how to tradeoff the size of the summary for the preci-
sion of the MaxEnt model.

A first choice that we make is to include only 2D statis-
tics. It has been shown that restricting to pairwise corre-
lations offers a reasonable compromise between the number
of statistics needed and the summary’s accuracy [22]. Fur-
thermore, we restrict each Ai1Ai2 statistic to be a range
predicate; i.e., πj ≡ Ai1 ∈ [u1, v1] ∧ Ai2 ∈ [u2, v2]. As ex-
plained in Sec. 4.1, the predicates over the same attributes
Ai1Ai2 are disjoint.

The problem is as follows: given a budget B = Ba ∗ Bs,
which Ba attribute pairs Ai1Ai2 do we collect statistics on
and which Bs statistics do we collect for each attribute pair?
This is a complex problem, and we make the simplifying as-
sumption that B and Ba are known, but we explore different
choices of Ba in Sec. 6. It is future work to investigate au-
tomatic techniques for determining the budgets.

Given Ba, there are two main considerations when pick-
ing pairs: attribute cover and attribute correlation. If we
focus only on correlation, we can pick the set of attribute
pairs that are not uniform5 and have the highest combined
correlation such that every pair has at least one attribute
not included in any previously chosen, more correlated pair.
If we also consider attribute cover, we can pick the set of
pairs that covers the most attributes with the highest com-
bined correlation. For example, if Ba = 2 and we have
the attribute pairs BC, AB, CD, and AD in order of most
to least correlated, if we only consider correlation, we would
choose AB and BC. However, if we consider attribute cover,
we would choose AB and CD. We experiment with both of
these choices in Sec. 6, and, in the end, conclude that con-
sidering attribute cover achieves more precise query results
for the same budget than the alternative.

Next, for a given attribute pair of type Ai1Ai2 , we need
to choose the best Bs 2D range predicates [u1, v1]× [u2, v2].
We consider three heuristics and show experimental results
to determine which technique yields, on average, the lowest
error on query results.

LARGE SINGLE CELL In this heuristic, the range
predicates are single point predicates, Ai1 = u1 ∧Ai2 = u2,
and we choose the points (u1, u2) as the Bs most popular
values in the two dimensional space; i.e., the Bs largest val-
ues of |σAi1=u1∧Ai2=u2(I)|.

ZERO SINGLE CELL In this heuristic, we select
the empty/zero/nonexistent cells; i.e., we choose Bs points
(u1, u2) s.t. σAi1=u1∧Ai2=u2(I) = ∅. If there are fewer than
Bs such points, we choose the remaining points as in SIN-
GEL CELL. The justification for this heuristic is that, given
only the 1D statistics, the MaxEnt model will produce false
positives (“phantom” tuples) in empty cells; this is the op-
posite problem encountered by sampling techniques, which
return false negatives. This heuristic has another advantage

5This can be checked by calculating the chi-squared coeffi-
cient and seeing if it is close to 0

1160

u1 u2 u3 u4

u1’ 2 10 10 10

u2’ 1 10 10 10

u3’ 1 12 10 10

Best	split	for
traditional	KD-tree

Best	split	for	data	summary

A	x	A’

(a)

500 1000 2000

0.00
0.20

0.40
0.60

0.00
0.05

0.10

0.15

0.20
0.40
0.60
0.80

Budget

Av
g

Er
ro

r
Li

gh
t H

it
te

rs
(ii

i)
H

ea
vy

 H
it

te
rs

(i)
N

on
ex

is
te

nt
(ii

)

Zero Large Composite

(b)

Figure 2: (a) Illustration of the splitting step, and
(b) query accuracy versus budget for the three dif-
ferent heuristics and three different selections: (b.i)
selecting 100 heavy hitter values, (b.ii) selecting
nonexistent values, and (b.iii) selecting 100 light hit-
ter values.

because the value of αj in P is always 0 and does not need
to be updated during solving.

COMPOSITE This method partitions the entire space
Di1 ×Di2 into a set of Bs disjoint rectangles and associates
one statistic with each rectangle. We do this using an adap-
tation of KD-trees.

The only difference between our KD-tree algorithm and
the traditional one is our splitting condition. Instead of
splitting on the median, we split on the value that has the
lowest sum squared average value difference. This is because
we want our KD-tree to best represent the true values. Sup-
pose we have cell counts on dimensions A and A′ as shown
in Fig. 2 (a). For the next vertical split, if we followed the
standard KD-tree algorithm, we would choose the second
split. Instead, our method chooses the first split. Using the
first split minimizes the sum squared error.

Our COMPOSITE method repeatedly splits the attribute
domains Di1 and Di2 (alternating) by choosing the best
split value until it exhausts the budget Bs. Then, for each
rectangle [u1, v1] × [u2, v2] in the resulting KD-tree, it cre-
ates a 2D statistic (cj , sj), where the query cj is associ-
ated with the 2D range predicate and the numerical value

sj
def
= |σAi1∈[u1,v1]∧Ai2∈[u2,v2](I)|.

We evaluate the three heuristics on the dataset of flights
in the United States restricted to the attributes (fl_date,
fl_time, distance) (see Sec 6 for details). We gather statis-
tics using the different techniques and different budgets
on the attribute pair (fl_time, distance). There are 5,022
possible 2D statistics, 1,334 of which exist in Flights.
We evaluate the accuracy of the resultant count of the
query SELECT fl_time, distance, COUNT(*) FROM
Flights WHERE fl_time = x AND distance = y
GROUP BY fl_time, distance for 100 heavy hitter (x,
y) values, 100 light hitter (x, y) values, and 200 random (x,
y) nonexistent/zero values. We choose 200 zero values to
match the 100+100 heavy and light hitters.

Figure 2 (b.i) plots the query accuracy versus method
and budget for 100 heavy hitter values. Both LARGE and
COMPOSITE achieve almost zero error for the larger bud-
gets while ZERO gets around 60 percent error no matter

the budget.
(b.ii) plots the same for nonexistent values, and clearly

ZERO does best because it captures the zero values first.
COMPOSITE, however, gets a low error with a budget
of 1,000 and outperforms LARGE. Interestingly, LARGE
does slightly worse with a budget of 1,000 than 500. This
is a result of the final value of P being larger with a larger
budget, and this makes our estimates slightly higher than
0.5, which we round up to 1. With a budget of 500, our
estimates are slightly lower than 0.5, which we round down
to 0.

Lastly, (b.iii) plots the same for 100 light hitter values,
and while LARGE eventually outperforms COMPOS-
ITE, COMPOSITE gets similar error for all budgets. In
fact, COMPOSITE outperforms LARGE for a budget of
1,000 because LARGE predicts that more of the light hit-
ter values are nonexistent than it does with a smaller budget
as less weight is distributed to the light hitter values.

Overall, we see that COMPOSITE is the best method to
use across all queries and is the technique we use in our eval-
uation. Note that when the budget is high enough, around
5,000, all methods get almost no error on all queries be-
cause we have a large enough budget to capture the entire
domain. Also note that the uncompressed polynomial size
of these summarizes are orders of magnitude larger than the
compressed versions. For example, for a budget of 2,000,
the uncompressed polynomial has 4.4 million terms while
the compressed polynomial has only 9,000 terms.

5. IMPLEMENTATION
We implemented our polynomial solver and query eval-

uator in Java 1.8, in a prototype system that we call En-
tropyDB. We created our own polynomial class and variable
types to implement our factorization. Since the initial im-
plementation of our solver took an estimated 3 months to
run on the experiments in Sec 6, we further optimized our
factorization and solver by using bitmaps to associate vari-
ables with their statistics and using Java’s parallel streaming
library to parallelize polynomial evaluation. Also, by using
Java to answer queries, we were able to store the polynomial
factorization in memory. By utilizing these techniques, we
reduced the time to learn the model (solver runtime) to 1
day and saw a decrease in query answering runtime from
around 10 sec to 500 ms (95% decrease). We show more
query evaluation performance results in Sec. 6.

Lastly, we stored the polynomial variables in a Postgres
9.5.5 database and stored the polynomial factorization in
a text file. We perform all experiments on a 64bit Linux
machine running Ubuntu 5.4.0. The machine has 120 CPUs
and 1 TB of memory. For the timing results, the Postgres
database, which stores all the samples, also resides on this
machine and has a shared buffer size of 250 GB.

6. EVALUATION
In this section, we evaluate the performance of EntropyDB

in terms of query accuracy and query execution time. We
compare our approach to uniform sampling and stratified
sampling.

6.1 Experimental Setup
For all our summaries, we ran our solver for 30 iterations

using the method presented in Sec. 3.3 or until the error

1161

Flights
Coarse

Flights
Fine

fl_date
(FD)

307 307

origin
(OS/OC)

54 147

dest
(DS/DC)

54 147

fl_time
(ET)

62 62

distance
(DT)

81 81

possible
tuples

4.5× 109 3.3×1010

Particles
density 58
mass 52
x 21
y 21
z 21
grp 2
type 3

snapshot 3
possible

tuples 5.0× 108

Figure 3: Active domain sizes. Each cell shows the
number of distinct values after binning. Abbrevia-
tions shown in brackets are used in figures to refer
to attribute names: e.g., OS stands for origin_state.

was below 1 × 10−6. Our summaries took under 1 day to
compute with the majority of the time spent building the
polynomial and solving for the parameters.

We evaluate EntropyDB on two real datasets as opposed
to benchmark data to measure query accuracy in the pres-
ence of naturally occurring attribute correlations. The first
dataset comprises information on flights in the United States
from January 1990 to July 2015 [1]. We load the data into
PostgreSQL, remove null values, and bin all real-valued at-
tributes into equi-width buckets. We further reduce the
size of the active domain to decrease memory usage and
solver runtime by binning cities such that the two most pop-
ular cities in each state are separated and the remaining
less popular cities are grouped into a city called ‘Other’.
We use equi-width buckets to facilitate transforming a
user’s query into our domain and to avoid hiding outliers,
but it is future work to try different bucketization strate-
gies. The resulting relation, FlightsFine(fl_date,
origin_city, dest_city, fl_time, distance), is
5 GB in size.

To vary the size of our active domain, we also cre-
ate FlightsCoarse(fl_date, origin_state,
dest_state, fl_time, distance), where we use
the origin state and destination state as flight locations.
The left table in Fig. 3 shows the resulting active domain
sizes.

The second dataset is 210 GB in size. It comprises N-body
particle simulation data [15], which captures the state of as-
tronomy simulation particles at different moments in time
(snapshots). The relation Particles(density, mass,
x, y, z, grp, type, snapshot) contains attributes
that capture particle properties and a binary attribute, grp,
indicating if a particle is in a cluster or not. We bucketize
the continuous attributes (density, mass, and position co-
ordinates) into equi-width bins. The right table in Fig. 3
shows the resulting domain sizes.

6.2 Query Accuracy
We first compare EntropyDB to uniform and stratified

sampling on the flights dataset. We use one percent sam-
ples, which require approximately 100 MB of space when
stored in PostgreSQL. To approximately match the sample
size, our largest summary requires only 600 KB of space in
PostgreSQL to store the polynomial variables and approxi-
mately 200 MB of space in a text file to store the polyno-
mial factorization. This, however, could be improved and

MaxEnt Method No2D 1&2 3&4 1&2&3
Pair 1 (origin, distance) X X
Pair 2 (dest, distance) X X
Pair 3 (time, distance) X X
Pair 4 (origin, dest) X

Figure 4: MaxEnt 2D statistics including in the
summaries. The top row is the label of the Max-
Ent method used in the graphs.

factorized further beyond what we did in our prototype im-
plementation.

We compute correlations on FlightsCoarse across all
attribute-pairs and identify the following pairs as having
the largest correlations (C stands for “coarse”): 1C = (ori-
gin_state, distance), 2C = (destination_state, distance),
3 = (fl_time, distance), and 4C = (origin_state, destina-
tion_state). We use the corresponding attributes, which are
also the most correlated, for the finer-grained relation and
refer to those attribute-pairs as 1F, 2F, and 4F.

As explained in Sec. 4.3, we build four summaries with a
budget B = 3, 000, chosen to keep runtime under a day while
allowing for variations of Ba (“breadth”) and Bs (“depth”),
to show the difference in choosing statistics based solely
on correlation (choosing statistics in order of most to least
correlated) versus attribute cover (choosing statistics that
cover the attributes with the highest combined correlation).
The first summary, No2D, contains only 1D statistics. The
next two, Ent1&2 and Ent3&4, use 1,500 buckets across
the attribute-pairs (1, 2) and (3, 4), respectively. The final
one, Ent1&2&3, uses 1,000 buckets for the three attribute-
pairs (1, 2, 3). We do not include 2D statistics related to
the flight date attribute because this attribute is relatively
uniformly distributed and does not need a 2D statistic to
correct for the MaxEnt’s underlying uniformity assumption.
Fig 4 summarizes the summaries.

For sampling, we choose to compare with a uniform sam-
ple and four different stratified samples. We choose the
stratified samples to be along the same attribute-pairs as
the 2D statistics in our summaries; i.e., pair 1 through pair
4.

To test query accuracy, we use the following query tem-
plate:

SELECT A1 , . . . , Am COUNT(∗)
FROM R WHERE A1=‘v1 ’ AND . . . AND Am=‘vm’ ;

We test the approaches on 400 unique (A1,.., Am) val-
ues. We choose the attributes for the queries in a way that
illustrates the strengths and weaknesses of EntropyDB. For
the selected attributes, 100 of the values used in the ex-
periments have the largest count (heavy hitters), 100 have
the smallest count (light hitters), and 200 (to match the
200 existing values) have a zero true count (nonexisten-
t/null values). To evaluate the accuracy of EntropyDB, we
compute |true − est|/(true + est) on the heavy and light
hitters. To evaluate how well EntropyDB distinguishes be-
tween rare and nonexistent values, we compute the F mea-
sure, 2 ∗ precision ∗ recall/(precision + recall) with precision
= |{estt > 0 : t ∈ light hitters}|/|{estt > 0 : t ∈
(light hitters ∪ null values)}| and recall = |{estt > 0 :
t ∈ light hitters}|/100. We do not compare the runtime
of EntropyDB to sampling for the flights data because the
dataset is small, and the runtime of EntropyDB is, on aver-
age, below 0.5 seconds and at most 1 sec. Sec. 6.3 reports
runtime for the larger data.

1162

ET & DT (Pair 3) DB & DT (Pair 2) FL & DB & DT (Pair 2)

U
ni

St
ra

t1
St

ra
t2

St
ra

t3
St

ra
t4

En
t1

&2
En

t3
&4 U

ni
St

ra
t1

St
ra

t2
St

ra
t3

St
ra

t4
En

t1
&2

En
t3

&4 U
ni

St
ra

t1
St

ra
t2

St
ra

t3
St

ra
t4

En
t1

&2
En

t3
&4

-0.5

0.0

0.5

OB & DB (Pair 4) DB & ET & DT (Pair 2&3) FL & DB & DT (Pair 2)

-0.5

0.0

0.5

H
ea

vy
 H

it
te

rs
Li

gh
t H

it
te

rs
D

iff
er

en
ce

 in
 E

rr
or

 fo
r C

oa
rs

e
D

at
a

Figure 5: Query error difference between all meth-
ods and Ent1&2&3 over FlightsCoarse. The pair in
parenthesis in the column header corresponds to the
2D statistic pair(s) used in the query template. For
reference, pair 1 is (origin/OB, distance/DT), pair
2 is (dest/DB, distance/DT), pair 3 is (time/ET,
distance/DT), and pair 4 is (origin/OB, dest/DB).

Fig. 5 (top) shows query error differences between all
methods and Ent1&2&3 (i.e., average error for method X
minus average error for Ent1&2&3) for three different heavy
hitter queries over FlightsCoarse. Hence, bars above
zero indicate that Ent1&2&3 performs better and vice versa.
Each of the three query templates uses a different set of at-
tributes that we manually select to illustrate different sce-
narios. The attributes of the query are shown in the column
header in the figure, and any 2D statistic attribute-pair con-
tained in the query attributes is in parentheses. Each bar
shows the average of 100 query instances selecting different
values for each template.

As the figure shows, Ent1&2&3 is comparable or better
than sampling on two of the three queries and does worse
than sampling on query 1. The reason it does worse on
query 1 is that it does not have any 2D statistics over 4C,
the attribute-pair used in the query, and 4C is fairly corre-
lated. Our lack of a 2D statistic over 4C means we cannot
correct for the MaxEnt’s uniformity assumption. On the
other hand, all samples are able to capture the correlation
because the 100 heavy hitters for query 1 are responsible
for approximately 25% of the data. This is further shown
by Ent3&4, which has 4C as one of its 2D statistics, doing
better than Ent1&2&3 on query 1.

Ent1&2&3 is comparable to sampling on query 2 because
two of its 2D statistics cover the three attributes in the
query. It is better than both Ent1&2 and Ent3&4 because
each of those methods has only one 2D statistic over the
attributes in the query. Finally, Ent1&2&3 is better than
stratified sampling on query 3 because it not only contains
a 2D statistic over 2C but also correctly captures the uni-
formity of flight date. This uniformity is also why Ent1&2
and a uniform sample do well on query 3. Another reason
stratified sampling performs poorly on query 3 is because
the result is highly skewed in the attributes of destination
state and distance but remains uniform in flight date. The
top 100 heavy hitter tuples all have the destination of ‘CA’
with a distance of 300. This means even a stratified sample
over destination state and distance will likely not be able to
capture the uniformity of flight date within the strata for

U
ni

St
ra
t1

St
ra
t2

St
ra
t3

St
ra
t4

En
t1
&2

En
t3
&4

En
t1
&2
&3

0.2

0.4

0.6

F
M

ea
su

re

U
ni

St
ra
t1

St
ra
t2

St
ra
t3

St
ra
t4

En
t1
&2

En
t3
&4

En
t1
&2
&3

Coarse Fine

Figure 6: F measure for light hitters and null values
over FlightsCoarse (left) and FlightsFine (right).

‘CA’ and 300 miles.
Fig. 5 (bottom) shows results for the same queries but for

the bottom 100 light hitter values. In this case, EntropyDB
always does better than uniform sampling. Our performance
compared to stratified sampling depends on the stratifica-
tion and query. Stratified sampling outperforms Ent1&2&3
when the stratification is exactly along the attributes in-
volved in the query. For example, for query 1, the sample
stratified on pair 3 outperforms EntropyDB by a significant
amount because pair 3 is computed along the attributes
in query 1. Interestingly, Ent3&4 and Ent1&2 do better
than Ent1&2&3 on query 1 and query 2, respectively. Even
though both of the query attributes for query 1 and query 2
are statistics in Ent1&2&3, Ent1&2 and Ent3&4 have more
buckets and are thus able to capture more zero elements.
Lastly, we see that for query 3, we are comparable to strat-
ified sampling because we have a 2D statistic over pair 2C,
and the other attribute, flight date, is relatively uniformly
distributed in the query result.

We ran the same queries over the FlightsFine dataset
and found identical trends in error difference. We omit the
graph due to space constraints.

An important advantage of our approach is that it more
accurately distinguishes between rare values and nonexis-
tent values compared with stratified sampling, which often
does not have samples for rare values when the stratification
does not match the query attributes. To assess how well our
approach works on those rare values, Fig. 6 shows the av-
erage F measure over fifteen 2- and 3-dimensional queries
selecting light hitters and null values.

We see that Ent1&2 and 3&4 have F measures close
to 0.72, beating all stratified samples and also beating
Ent1&2&3. The key reason why they beat Ent1&2&3 is
that these summaries have the largest numbers of buckets,
which ensures they have more fine grained information and
can more easily identify regions without tuples. Ent1&2&3
has an F measure close to 0.69, which is slightly lower than
the stratified sample over pair 3 but better than all other
samples. The reason the sample stratified over pair 3 per-
forms well is that the flight time attribute has a more skewed
distribution and has more rare values than other dimensions.
A stratified sample over that dimensions will be able to cap-
ture this. On the other hand, Ent1&2&3 will estimate a
small count for any tuple containing a rare flight time value
and will be rounded to 0.

6.3 Scalability
To measure the performance of EntropyDB on large-scale

datasets, we use three subsets of the 210 GB Particles
table. We select data for one, two, or all three snapshots

1163

Heavy Hitters

den & mass
& grp & type

1 2 3

mass & x & y
& z

1 2 3

y & z & grp &
type

1 2 3

Light Hitters

den & mass
& grp & type

1 2 3

mass & x & y
& z

1 2 3

y & z & grp &
type

1 2 3

0.0

0.5

1.0

Av
g

Er
ro

r

0

2

4

Av
g

Ru
nt

im
e

(s
ec

) Uni Strat No2D EntAll

Figure 7: Query average error and runtime for three
4D selection queries on the Particles table. The
stratified sample (orange) is stratified on (den, grp).

(each snapshot is approximately 70 GB in size). We build a
1 GB uniform sample for each subset of the table as well as
a stratified sample over the pair density and group with the
same sampling percentage as the uniform sample. We then
build two MaxEnt summaries; EntNo2D uses no 2D statis-
tics, and EntAll contains 5 2D statistics with 100 buckets
over each of the most correlated attributes, not including
snapshot. We run a variety of 4D selection queries such
as the ones from Sec. 6.2, split into heavy hitters and light
hitters. We record the query accuracy and runtime.

Fig. 7 shows the query accuracy and runtime for three
different selection queries as the number of snapshots in-
creases. We see that EntropyDB consistently does better
than sampling on query runtime, although both EntropyDB
and stratified sampling execute queries in under one sec-
ond. Stratified sampling outperforms uniform sampling be-
cause the stratified samples are generally smaller than their
equally selective uniform sample.

In terms of query accuracy, sampling always does bet-
ter than EntropyDB for the heavy hitter queries. This is
expected because the bucketization of Particles is rela-
tively coarse grained, and a 1 GB sample is sufficiently large
to capture the heavy hitters. We do see that EntAll does sig-
nificantly better than EntNo2D for query 1 because three of
its five statistics are over the attributes of query 1 while only
1 statistic is over the attributes of queries 2 and 3. However,
the query results of query 3 are more uniform, which is why
EntNo2D and EntAll do well.

For the light hitter queries, none of the methods do well
except for the stratified sample in query 1 because the query
is over the attributes used in the stratification. EntAll does
slightly better than stratified sampling on queries 2 and 3.

6.4 Statistics Selection
To compare different 2D statistic choices for our method,

we look at the query accuracy of the four different MaxEnt
methods summarized in Fig. 8. We use the flights dataset
and query templates from Sec. 6.2. We run six different
two-attribute selection queries over all possible pairs of the
attributes covered by pair 1 through 4; i.e., origin, destina-
tion, time, and distance. We select 100 heavy hitters, 100
light hitters, and 200 null values.

Fig. 8 shows the average error for the heavy hitters and
the F measure for light hitters across the six queries. Over-

N
o2
D

En
t1
&2

En
t3
&4

En
t1
&2
&3

0.0
0.1

0.2

0.3

N
o2
D

En
t1
&2

En
t3
&4

En
t1
&2
&3

Coarse Fine

Av
g

H
ea

vy
 H

it
te

rs
 E

rr
or

(a)

N
o2
D

En
t1
&2

En
t3
&4

En
t1
&2
&3

0.0
0.2

0.4

0.6
0.8

N
o2
D

En
t1
&2

En
t3
&4

En
t1
&2
&3

Coarse Fine

F
M

ea
su

re

(b)

Figure 8: (a) Error over 2D heavy hitter queries
and (b) F measure over 2D light hitter and null
value queries across different MaxEnt methods over
FlightsCoarse and FlightsFine.

all, we see that the summary with more attribute-pairs but
fewer buckets (more “breadth”), Ent1&2&3, does best on
the heavy hitters. On the other hand, for the light hit-
ters, we see that the summary with fewer attribute-pairs
but more buckets (more “depth”) and still covers the at-
tributes, Ent3&4, does best. Ent3&4 doing better than
Ent1&2 implies that choosing the attribute-pairs that cover
the attributes yields better accuracy than choosing the most
correlated pairs because even though Ent1&2 has the most
correlated attribute-pairs, it does not have a statistic con-
taining flight time. Lastly, Ent1&2&3 does best on the
heavy hitter queries yet slightly worse on the light hitter
queries because it does not have as many buckets as Ent1&2
and Ent3&4 and can thus not capture as many regions in
the active domains with no tuples.

7. DISCUSSION
The above evaluation shows that EntropyDB is compet-

itive with stratified sampling overall and better at distin-
guishing between infrequent and absent values. Impor-
tantly, unlike stratified sampling, EntropyDB’s summaries
permit multiple 2D statistics. The main limitations of En-
tropyDB are the dependence on the size of the active do-
main, correlation-based 2D statistic selection, manual buck-
etization, and limited query support.

To address the first problem, our future work is to in-
vestigate using standard algebraic factorization techniques
on non-materializable polynomials. By further reducing the
polynomial size, we will be able to handle larger domain
sizes. We also will explore using statistical model techniques
to more effectively decompose the attributes into 2D pairs,
similar to [8]. To no longer require bucketizing categorical
variables (like city), we will research hierarchical polynomi-
als. These polynomials will start with coarse buckets (like
states), and build separate polynomials for buckets that re-
quire more detail. This may require the user to wait while a
new polynomial is being loaded but would allow for different
levels of query accuracy without sacrificing polynomial size.

Lastly, to address our queries not reporting error, we
will add variance calculations to query answers. We have
a closed-form formula for calculating variance for a single
statistic but still need to expand the formula to handle more
complex queries. Additionally, our theoretical model can
support more complex queries involving joins and other ag-
gregates, but it is future work to implement these queries
and make them run efficiently.

1164

8. RELATED WORK
Although there has been work in the theoretical aspects of

probabilistic databases [21], as far as we could find, there is
not existing work on using a probabilistic database for data
summarization. However, there has been work by Markl [18]
on using the maximum entropy principle to estimate the se-
lectivity of predicates. This is similar to our approach except
we are allowing for multiple predicates on an attribute and
are using the results to estimate the likelihood of a tuple
being in the result of a query rather than the likelihood of
a tuple being in the database.

Our work is also similar to that by Suciu and Ré [20]
except their goal was to estimate the size of the result of a
query rather than tuple likelihood. Their method also relied
on statistics on the number of distinct values of an attribute
whereas our statistics are based on the selectivity of each
value of an attribute.

There has been much research in sampling techniques for
faster query processing. In the work by Chaudhiri et al.
[6], they precompute the samples of data that minimizes
the errors due to variance in the data for a specific set of
queries they predict. The work by [3] chooses multiple sam-
ples to use in query execution but only considers single col-
umn stratifications. The work by [9] builds a measure-biased
sample for each measure dimension to handle sum queries
and uniform samples to handle count queries. Depending on
if the query is highly selective or not, they choose an appro-
priate sample. The later work of BlinkDB [2] improves this
by removing assumptions on the queries. BlinkDB only as-
sumes that there is a set of columns that are queried, but the
values for these columns can be anything among the possible
set of values. BlinkDB then computes samples for each pos-
sible value of the predicate column in an online fashion and
chooses the single best sample to run when a user executes
a query.

Although we handle linear queries, our work makes no
assumptions on query workload and can take into ac-
count multi-attribute combinations when choosing statis-
tics. When a user executes a query, our method does not
need to choose which summary to use. Further, the sum-
mary building is all done offline.

9. CONCLUSION
We presented, EntropyDB, a new approach to generate

probabilistic database summaries for interactive data ex-
ploration using the Principle of Maximum Entropy. Our
approach is complementary to sampling. Unlike sampling,
EntropyDB’s summaries strive to be independent of user
queries and capture correlations between multiple different
attributes at the same time. Results from our prototype
implementation on two real-world datasets up to 210 GB
in size demonstrate that this approach is competitive with
sampling for queries over frequent items while outperform-
ing sampling on queries over less common items.
Acknowledgments This work is supported by NSF 1614738 and

NSF 1535565. Laurel Orr is supported by the NSF Graduate

Research Fellowship.

10. REFERENCES
[1] http://www.transtats.bts.gov/.

[2] S. Agarwal et al. Blinkdb: queries with bounded errors and
bounded response times on very large data. In Proc. of
EuroSys’13, pages 29–42, 2013.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample
selection for approximate query processing. In Proceedings
of the 2003 ACM SIGMOD international conference on
Management of data, pages 539–550, 2003.

[4] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A
maximum entropy approach to natural language processing.
Comput. Linguist., 22(1), 1996.

[5] S. Bubeck. Convex optimization: Algorithms and
complexity. Foundations and Trends in Machine Learning,
8, N0. 3-4:231–357, January 2015.

[6] S. Chaudhuri, G. Das, and V. Narasayya. A robust,
optimization-based approach for approximate answering of
aggregate queries. In ACM SIGMOD Record, volume 30,
pages 295–306, 2001.

[7] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. The case for interactive data exploration
accelerators (ideas). In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, page 11. ACM, 2016.

[8] A. Deshpande, M. N. Garofalakis, and R. Rastogi.
Independence is good: Dependency-based histogram
synopses for high-dimensional data. In SIGMOD
Conference, 2001.

[9] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and
C. Wang. Sample+seek: Approximating aggregates with
distribution precision guarantee. In Proc. SIGMOD, pages
679–694, 2016.

[10] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold,
and A. Roth. Generalization in adaptive data analysis and
holdout reuse. In Advances in Neural Information
Processing Systems, pages 2350–2358, 2015.

[11] M. Hardt and G. N. Rothblum. A multiplicative weights
mechanism for privacy-preserving data analysis. In
Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 61–70. IEEE, 2010.

[12] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In ACM SIGMOD Record, volume 26, pages
171–182. ACM, 1997.

[13] A. Hosangadi, F. Fallah, and R. Kastner. Factoring and
eliminating common subexpressions in polynomial
expressions. In IEEE/ACM International Conference on
Computer Aided Design, 2004. ICCAD-2004., 2004.

[14] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. ACM
Transactions on Database Systems (TODS), 33(4):23, 2008.

[15] P. Jetley et al. Massively parallel cosmological simulations
with ChaNGa. In Proc. IPDPS, 2008.

[16] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma,
R. Grandl, S. Chaudhuri, and B. Ding. Quickr: Lazily
approximating complex adhoc queries in bigdata clusters.
In Proceedings of the 2016 International Conference on
Management of Data, pages 631–646. ACM, 2016.

[17] C. Li et al. Optimizing linear counting queries under
differential privacy. In Proc. of PODS, pages 123–134, 2010.

[18] V. Markl et al. Consistently estimating the selectivity of
conjuncts of predicates. In Proc. of VLDB, pages 373–384.
VLDB Endowment, 2005.

[19] B. Mozafari and N. Niu. A handbook for building an
approximate query engine. IEEE Data Eng. Bull.,
38(3):3–29, 2015.

[20] C. Ré and D. Suciu. Understanding cardinality estimation
using entropy maximization. ACM TODS, 37(1):6, 2012.

[21] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
databases. Synthesis Lectures on Data Management,
3(2):1–180, 2011.

[22] K. Tzoumas, A. Deshpande, and C. S. Jensen. Efficiently
adapting graphical models for selectivity estimation. The
VLDB Journal, 22(1):3–27, 2013.

[23] M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. Found.
Trends Mach. Learn., 1(1-2), Jan 2008.

1165

http://www.transtats.bts.gov/

	Introduction
	Background
	Possible World Semantics
	The Principle of Maximum Entropy

	EntropyDB Approach
	Maximum Entropy Model of Data
	Query Answering
	Probabilistic Model Computation

	Optimizations
	Compression of the Data Summary
	Optimized Query Answering
	Choosing Statistics

	Implementation
	Evaluation
	Experimental Setup
	Query Accuracy
	Scalability
	Statistics Selection

	Discussion
	Related Work
	Conclusion
	References

