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ABSTRACT

The constant flux of data and queries alike has been pushing the
boundaries of data analysis systems. The increasing size of raw
data files has made data loading an expensive operation that delays
the data-to-insight time. Hence, recent in-situ query processing
systems operate directly over raw data, alleviating the loading cost.
At the same time, analytical workloads have increasing number of
queries. Typically, each query focuses on a constantly shifting —
yet small — range. Minimizing the workload latency, now, requires
the benefits of indexing in in-situ query processing.

In this paper, we present Slalom, an in-situ query engine that
accommodates workload shifts by monitoring user access patterns.
Slalom makes on-the-fly partitioning and indexing decisions, based
on information collected by lightweight monitoring. Slalom has
two key components: (i) an online partitioning and indexing scheme,
and (ii) a partitioning and indexing tuner tailored for in-situ query
engines. When compared to the state of the art, Slalom offers per-
formance benefits by taking into account user query patterns to (a)
logically partition raw data files and (b) build for each partition
lightweight partition-specific indexes. Due to its lightweight and
adaptive nature, Slalom achieves efficient accesses to raw data with
minimal memory consumption. Our experimentation with both
micro-benchmarks and real-life workloads shows that Slalom out-
performs state-of-the-art in-situ engines (3 — 10x), and achieves
comparable query response times with fully indexed DBMS, offer-
ing much lower (~ 3x) cumulative query execution times for query
workloads with increasing size and unpredictable access patterns.

1. INTRODUCTION

Nowadays, an increasing number of applications generate and
collect massive amounts of data at a rapid pace. New research fields
and applications (e.g., network monitoring, sensor data manage-
ment, clinical studies, etc.) emerge and require broader data anal-
ysis functionality to rapidly gain deeper insights from the available
data. In practice, analyzing such datasets becomes a costly task due
to the data explosion of the last decade.

Big Data, Small Queries. The trend of exponential data growth
due to intense data generation and data collection is expected to
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Figure 1: Ideally, in-situ data analysis should be able to retrieve
only the relevant data for each query after the initial table scan
(ideal - dotted line). In practice today, in-situ query processing
avoids the costly phase of data loading (dashed line), however, as
the number of the queries increases, the initial investment for full
index on a DBMS pays off (the dashed line meets the grey line).

persist, however, recent studies of the data analysis workloads show
that typically only a small subset of the data is relevant and ulti-
mately used by analytical and/or exploratory workloads [1, 18]. In
addition, modern businesses and scientific applications require in-
teractive data access, which is characterized by no or little a priori
workload knowledge and constant workload shifting both in terms
of projected attributes and selected ranges of the dataset.

The Cost of Loading, Indexing, and Tuning. Traditional data
management systems (DBMS) require the costly steps of data load-
ing, physical design decisions, and then index building in order to
offer interactive access over large datasets. Given the data sizes
involved, any transformation, copying, and preparation steps over
the data introduce substantial delays before the data can be queried,
and provide useful insights [2, 5, 34]. The lack of a priori knowl-
edge of the workload makes the physical design decisions virtu-
ally impossible because cost-based advisors rely heavily on past
or sample workload knowledge [3, 17, 22, 29, 58]. The workload
shifts observed in the interactive setting of exploratory workloads
can nullify investments towards indexing and other auxiliary data
structures (e.g., views), since frequently, they depend on the actual
data values and the knowledge generated by the ongoing analysis.

Querying Raw Data Files Is Not Enough. Recent efforts opt to
query directly raw files [2, 5, 13, 19, 30, 40] to reduce the data-
to-insight cost. These in-sifu systems avoid the costly initial data
loading step, and allow the execution of declarative queries over
external files without duplicating or “locking” data in a proprietary
database format. Further, they concentrate on reducing costs as-
sociated with raw data accesses (e.g., parsing and converting data
fields) [5, 19, 40]. Finally, although recent scientific data manage-
ment approaches index raw data files using file-embedded indexes,
they do it in a workload-oblivious manner, or requiring full a priori
workload knowledge [13, 57]. Hence, they bring back in the raw
data querying paradigm the cost of full index building, negating
part of the benefits of avoiding data loading.
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Figure 1 shows what the ideal in-situ query performance should
be (dotted line). After the unavoidable first table scan, ideally, in-
situ queries need to access only data relevant to the currently ex-
ecuted query. The figure also visualizes the benefits of state-of-
the-art in-situ query processing when compared with a full DBMS.
The y-axis shows the cumulative query latency, for an increasing
number of queries with fixed selectivity on the x-axis. By avoid-
ing the costly data loading phase the in-situ query execution sys-
tem (dashed line) can start answering queries very quickly. On
the other hand, when a DBMS makes an additional investment on
full DBMS indexing (solid grey line), it initially increases signifi-
cantly the data-to-query latency, however, it pays off as the number
of queries issued over the same (raw) dataset increases. Eventu-
ally, the cumulative query latency for an in-situ approach becomes
larger than the latency of a DBMS equipped with indexing. When
operating over raw data, ideally, we want after the initial — unavoid-
able — table scan to collect enough metadata to allow future queries
to access only the useful part of the dataset.

Adaptive Partitioning and Fine-Grained Indexing. We use the
first table scan to generate partitioning and lightweight indexing
hints, which are further refined by the data accesses of (only a few)
subsequent queries. During this refinement process, the dataset is
partially indexed in a dynamic fashion adapting to three key work-
load characteristics: (i) data distribution, (ii) query type (e.g., point
query, range query), and (iii) projected attributes. Workload shifts
lead to varying selected value ranges, selectivity, which areas of the
dataset are relevant for a query, and projected attributes.

This paper proposes an online partitioning and indexing tuner for
in-situ query processing which, when plugged into a raw data query
engine, offers fast queries over raw data files. The tuner reduces
data access cost by: (i) logically partitioning a raw dataset to virtu-
ally break it into more manageable chunks without physical restruc-
turing, and (ii) choosing appropriate indexing strategies over each
logical partition to provide efficient data access. The tuner adapts
the partitioning and indexing scheme as a side-effect of executing
the query workload. It continuously collects information regarding
the values and access frequency of queried attributes at runtime.
Based on this information, it uses a randomized online algorithm
to define logical partitions. For each logical partition, it estimates
the cost-benefit of building partition-local index structures consid-
ering both approximate (membership) indexing (i.e., Bloom filters
and zonemaps) and full indexing (i.e., bitmaps and B™-Trees). By
allowing fine-grained indexing decisions our proposal defers the
decision of the index shape to the level of each partition rather than
the overall relation. This has two positive side-effects. First, there
is no costly indexing investment that might be unnecessary. Sec-
ond, any indexing effort is tailored to the needs of the data accesses
on the corresponding range of the dataset.

Efficient In-Situ Query Processing With Slalom. We integrate
our online partitioning and indexing tuner to an in-situ query pro-
cessing prototype system, Slalom, which combines the tuner with
a state-of-the-art raw data query executor. Slalom is further aug-
mented with index structures and uses the tuner to decide how to
partition and which index or indexes to build for each partition.
In particular, Slalom logically splits raw data into partitions and
selects which fine-grained, per-partition index to build based on
how “hot” (i.e., frequently accessed) each partition is, and what
types of queries target each partition. Slalom also populates bi-
nary caches (of data converted from raw to binary) to further boost
performance. Slalom adapts to workload shifts by adjusting the
current partitioning and indexing scheme using a randomized cost-
based decision algorithm. Overall, the logical partitions and the
indexes that Slalom builds over each partition provide performance
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enhancements without requiring expensive full data indexing nor
data file re-organization, all while adapting to workload changes.

Contributions. This paper makes the following contributions:

e We present a logical partitioning scheme of raw data files that
enables fine-grained indexing decisions at the level of each par-
tition. As a result, lightweight per-partition indexing provides

near-optimal raw data access.

The lightweight partitioning allows our approach to maintain the
benefits of past in-situ approaches. In addition, the granular way
of indexing (i) brings the benefit of indexing to in-situ query
processing, (ii) having low index building cost, and (iii) small
memory footprint. These benefits are further pronounced as the
partitioning and indexing decisions are refined on-the-fly using
an online randomized algorithm.

We integrate our partitioning and indexing tuner into our proto-
type state-of-the-art in-situ query engine Slalom. We use syn-
thetic and real-life workloads to compare the query latency of
Slalom, a traditional DBMS, a state-of-the-art in-situ query pro-
cessing, and adaptive indexing (cracking). Our experiments show
that, even when excluding the data loading cost, Slalom offers
the fastest cumulative query latency. In particular, Slalom (a)
outperforms state-of-the-art disk-based approaches by one or-
der of magnitude, (b) state-of-the-art in-memory approaches by
3.7x (with 2.45x smaller memory footprint), and (c) adaptive
indexing by 19% (with 1.93 x smaller memory footprint).

To our knowledge, this is the first paper that proposes the use of a
randomized online algorithm to select which workload-tailored, in-
dex structures should be built per partition of the data file. This ap-
proach offers constant, and more crucially minimal, decision time,
while at the same time delivering optimal competitive ratio against
the optimal offline algorithm.

2. RELATED WORK

Queries over Raw Data. Data loading is a large fraction of overall
workload execution time in both the DBMS and Hadoop ecosys-
tems [30]. NoDB [5] treats raw data files as native storage of the
DBMS, and introduces auxiliary data structures (positional maps
and caches) to reduce the expensive parsing and tokenization costs
of raw data access. ViDa [38, 39, 40] introduces code-generated
access paths and data pipeline to adapt the query engine to the
underlying data formats and layouts, and to the incoming queries.
Data Vaults [34, 36] and SDS/Q [13] perform analysis over scien-
tific array-based file formats. SCANRAW [19] uses parallelism to
mask the increased CPU processing costs associated with raw data
accesses during in-situ data processing. In-situ DBMS approaches
either rely on accessing the data via full table scans or require a pri-
ori workload knowledge and enough idle time to create the proper
indexes. The mechanisms of Slalom are orthogonal to these sys-
tems, and can augment such systems by enabling data skipping and
indexed accesses while constantly adapting its indexing and parti-
tioning schemes to queries.

Hadoop-based systems such as Hive [55] can access raw data
stored in HDFS. While such frameworks internally translate queries
to MapReduce jobs, other systems follow a more traditional MPP
architecture to offer SQL-on-Hadoop functionality [41, 43]. Hy-
brid approaches such as invisible loading [2] and Polybase [21]
propose co-existence of a DBMS and a Hadoop cluster, transferring
data between the two when needed. SQL Server PDW [24] and As-
terixDB [6] propose indexes for data stored in HDFS and for exter-
nal data in general. Similar to the case of DBMS-based approaches,
the techniques of Slalom can also be applied in a Hadoop-based



environment. In the case of PDW and AsterixDB, which build sec-
ondary indexes over HDFS files, the techniques used by Slalom
can improve system scalability by reducing the size of the index
and building memory efficient indexes per file-partition.

On the other side of raw data querying, Instant Loading [45]
parallelizes the loading process for main-memory DBMS, offering
bulk loading at near-memory-bandwidth speed. Similarly to Instant
Loading, Slalom uses data parsing with hardware support for effi-
cient raw data access. Instead of loading all data, however, Slalom
exploits workload locality to adaptively create a fine-grained in-
dexing scheme over raw data and gradually reduce I/O and access
costs, all while operating under a modest memory budget.

Database Partitioning. A table can be physically subdivided into
smaller disjoint sets of tuples (partitions), allowing tables to be
stored, managed and accessed at a finer level of granularity [42].
Offline partitioning approaches [4, 27, 46, 58] present physical
design tools that automatically select the proper partition configu-
ration for a given workload to improve performance. Online par-
titioning [35] monitors and periodically adapts the database par-
titions to fit the observed workload. Furtado et al. [23] combine
physical and virtual partitioning to fragment and dynamically tune
partition sizes for flexibility in intra-query parallelism. Shinobi [56]
clusters hot data in horizontal partitions which it then indexes, while
Sun et al. [54] use a bottom-up clustering framework to offer an ap-
proximate solution for the partition identification problem.
Physical re-organization, however, is not suitable for data file
repositories due to its high cost and the immutable nature of the
files. Slalom presents a non-intrusive, flexible partitioning scheme
that creates logical horizontal partitions by exploiting data skew.
Additionally, Slalom continuously refines its partitions during query
processing without requiring a priori workload knowledge.

Database Indexing. There is a vast collection of index structures
with different capabilities, performance, and initialization/mainte-
nance overheads [10, 11]. This paper uses representative index
structures from the two categories (i) value-position and (ii) value-
existence indexes, that offer good indexing for point and range
queries. Value-position indexes include the BT Tree and hash in-
dexes and their variations [9]. Common value-existence indexes are
Bloom filters [14], Bitmap indexes [12, 52] , and Zonemaps [44].
They are lightweight and can provide the information whether a
value is present in a given dataset. Value-existence indexes are fre-
quently used in scientific workloads [20, 53, 57]. Slalom builds
main-memory auxiliary structures (i) rapidly, (ii) with small foot-
print, and (iii) without a priori workload knowledge. That way it
enables low data-to-insight latency, and does not penalize long run-
ning workloads, that indexing is typically useful.

Online Indexing. Physical design decisions made before work-
load execution can also be periodically re-evaluated. COLT [50]
continuously monitors the workload and periodically creates new
indexes and/or drops unused ones. COLT adds overhead on query
execution because it obtains cost estimations from the optimizer at
runtime. A “lighter” approach requiring fewer calls to the optimizer
has also been proposed [16]. Slalom also focuses on the problem of
selecting an effective set of indexes but Slalom builds indexes on
partition granularity. Slalom also populates indexes during query
execution in a pipelined fashion instead of triggering a standalone
index building phase. Slalom aims to minimize the cost of index
construction decisions and the complexity of the costing algorithm.

Adaptive Indexing. In order to avoid the full cost of indexing
before workload execution, Adaptive Indexing incrementally re-
fines indexes during query processing. In the context of in-memory
column-stores Database Cracking approaches [25, 31, 32, 33, 48]
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Figure 2: The architecture of Slalom.

create a duplicate of the indexed column and incrementally sorts it
according to the incoming workload, thus reducing memory access.
HAIL [49] proposes an adaptive indexing approach for MapRe-
duce systems. ARF [7] is an adaptive value-existence index similar
to Bloom filters, yet useful for range queries. Similarly to adap-
tive indexing,Slalom does not index data upfront and builds indexes
during query processing and continuously adapts to the workload
characteristics. However, contrary to adaptive indexing that dupli-
cates the whole indexed attribute upfront, Slalom’s gradual index
building allows its indexes to have small memory footprint by in-
dexing both the targeted value ranges, and the targeted attributes.

3. THE SLALOM SYSTEM

Slalom uses adaptive partitioning and indexing to provide inex-
pensive index support for in-situ query processing while adapting
to workload changes. Slalom accelerates query processing by skip-
ping data and minimizes data access cost when this access is un-
avoidable. At the same time, it operates directly on the original data
files without need for physical restructuring (i.e., copying, sorting).

Slalom incorporates state-of-the-art in-situ querying techniques
and enhances them with logical partitioning and fine-grained in-
dexing, thereby reducing the amounts of accessed data. To remain
effective despite workload shifts, Slalom introduces an online par-
titioning and indexing tuner, which calibrates and refines logical
partitions and secondary indexes based on data and query statistics.
Slalom treats data files as relational tables to facilitate the process-
ing of read-only and append-like workloads. The rest of this section
focuses on the architecture and implementation of Slalom.

3.1 Architecture

Figure 2 presents the architecture of Slalom. Slalom combines
an online partitioning and indexing tuner with a query executor fea-
turing in-situ querying techniques. The core components of the
tuner are the Partition Manager, which is responsible for creat-
ing logical partitions over the data files, and the Index Manager,
which is responsible for creating and maintaining indexes over par-
titions. The tuner collects statistics regarding the data and query
access patterns and stores them in the Statistics Store. Based on
those statistics, the Structure Refiner evaluates the potential ben-
efits of alternative configurations of partitions and indexes. Fur-
thermore, Slalom uses in-situ querying techniques to access data.
Specifically, Slalom uses auxiliary structures (i.e., positional maps
and caches) which minimize raw data access cost. During query
processing, the Query Executor utilizes the available data access
paths and orchestrates the execution of the other components. Fi-
nally, the Update Monitor examines whether a data file has been
modified and accordingly adjusts the data structures of Slalom.
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Table 1: Statistics collected by Slalom per data file during query
processing and used to decide (i) which logical partitions to create,
and (ii) select the appropriate matching indexes.

Data (global) ‘
Sizepage: page size

Data (partition 7) ‘ Queries (partition i)

m;: mean value Ciyiq - index build cost

min;: min value Sizefi: file size Citutisean” full scan cost

max;: max value LA;: #q since last access
dev;: std. deviation

DV;: #distinct values

AF;: part. access freq.
sel;: avg. sel. (0.0-1.0)

Slalom Scope. The techniques of Slalom are applicable to any
tabular dataset. Specifically, the scan operator of Slalom can use a
different specialized parser for each underlying data format. This
work concentrates on queries over delimiter-separated textual CSV
files, because CSV is the most popular structured textual file for-
mat. Still, the yellow- and blue-coded components of Figure 2
are applicable over binary files, which are the typical backend of
databases and scientific applications.

Reducing Data Access Cost. Slalom launches queries directly
over the original raw data files, without altering or duplicating the
files by ingesting them in a DBMS, in order to avoid the initial-
ization cost induced by loading and to allow for instant data access.
Similarly to state-of-the-art in-situ query processing approaches [5,
19] Slalom mitigates the overheads of parsing and tokenizing tex-
tual data with positional maps (PM) [5] and partial data caching.
PMs are populated at query runtime and maintain structural in-
formation about the underlying textual file; they keep the positions
of file attributes. This information is used during query processing
to “jump” to the exact position of an attribute or as close as pos-
sible to an attribute, significantly reducing the cost of tokenizing
and parsing when a tuple is accessed. Furthermore, Slalom builds
binary caches of fields that are already converted to binary format
to reduce parsing and data type conversion costs of future accesses.

Statistics Store. Slalom collects statistics during query execution
and utilizes them to (i) detect workload shifts and (ii) enable the
tuner to evaluate partitioning and index configurations. Table 1
summarizes the statistics about Data and Queries that Slalom gath-
ers per data file. Data statistics are updated after every partition-
ing action and include the per-partition standard deviation (dev;) of
values, mean (m;), max (max;) and min (min;) values. Additionally,
Slalom keeps as global statistics the physical page size (Sizepage)
and file size (Sizefil.). Regarding Query statistics, Slalom main-
tains the number of queries since the last access (LA;), the percent-
age of queries accessing each partition (access frequency AF;), and
the average query selectivity (sel;). Finally, the full scan cost over
a partition (Cj,,.,,) and the indexing cost for a partition (Cj,,,) is
calculated by considering the operator’s data accesses.

Partition Manager. The Partition Manager recognizes patterns
in the dataset and logically divides the file into contiguous non-
overlapping chunks to enable fine-grained access and indexing. The
Partition Manager specifies a logical partitioning scheme for each
attribute in a relation. Each partition is internally represented by its
starting and ending byte within the original file. The logical par-
titioning process starts the first time a query accesses an attribute.
The Partition Manager triggers the Structure Refiner to iteratively
fine-tune the partitioning scheme with every subsequent query. All
partitions progressively reach a state in which there is no benefit
from further partitioning. The efficiency of a partitioning scheme
depends highly on the data distribution and the query workload.
Therefore, the Partition Manager adjusts the partitioning scheme
based on value cardinality (further explained in Section 4.1).

Index Manager. The Index Manager estimates the benefit of an
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index over a partition and suggests the most promising combina-
tion of indexes for a given attribute/partition. For every new index
configuration, the Index Manager invokes the Structure Refiner to
build the selected indexes during the execution of the next query.
Every index corresponds to a specific data partition. Depending on
the access pattern of an attribute and the query selectivity, a sin-
gle partition may have multiple indexes. Slalom chooses indexes
from two categories based on their capabilities: (i) value-existence
indexes, which respond whether a value exists in a dataset, and
(ii) value-position indexes, which return the positions of a value
within the file. The online nature of Slalom imposes a significant
challenge not only on which indexes to choose but also on when
and how to build them with low cost. The Index Manager mon-
itors previous queries to decide which indexes to build and when
to build them; timing is based on an online randomized algorithm
which considers (i) statistics on the cost of full scan (Cij,,,), (i})
statistics on the cost of building an index (C;,,,,), and (iii) partition
access frequency (AF;), further explained in Section 4.2.

Update Monitor. The main focus of Slalom is read-only and ap-
pend workloads. Still, to provide query result consistency, the Up-
date Monitor checks the input files for both appends and in-place
updates at real-time. Slalom enables append-like updates without
disturbing query execution by dynamically adapting its auxiliary
data structures. Specifically, Slalom creates a partition at the end
of the file to accommodate the new data, and builds binary caches,
PMs and indexes over them during the first post-update query. In-
place updates require special care in terms of positional map and
index maintenance because they can change the internal file struc-
ture. Slalom reacts to in-place updates during the first post-update
query by identifying the updated partitions and the positional map,
and recreating the other corresponding structures. More informa-
tion about how Slalom tackles updates can be found in [8].

3.2 Implementation

We implement Slalom from scratch in C++. Slalom’s query en-
gine uses tuple-at-a-time execution based on the Volcano iterator
model [26]. The rest of the components are implemented as mod-
ules of the query engine. Specifically, the Partitioning and Index-
ing managers as well as the Structure Refiner attach to the Query
Executor. Furthermore, the Statistics Store runs as a daemon, gath-
ering the data and query statistics and persisting them in a catalog.

Slalom reduces raw data access cost by using vectorized parsers,
binary caches, and positional maps (PM). The CSV parser uses
SIMD instructions; it consecutively scans a vector of 256 bytes
from the input file and applies a mask over it using SIMD execution
to identify delimiters. Slalom populates a PM for each CSV file ac-
cessed. To reduce memory footprint, the PM stores only delta dis-
tances for each tuple and field. Specifically, to denote the beginning
of a tuple, the PM stores the offset from the preceding tuple. Fur-
thermore, for each field within a tuple, the PM stores only the offset
from the beginning of the tuple. The Partition Manager maintains a
mapping between partitions and their corresponding PM portions.

Slalom populates binary caches at a partition granularity. When a
query accesses an attribute for the first time, Slalom consults the po-
sitional map to identify the attribute’s position, and then caches the
newly converted values. To improve insertion efficiency, Slalom
stores the converted fields of each tuple as a group of columns.
If Slalom opts to convert an additional field during a subsequent
query, it appends the converted value to the current column group.

Slalom also populates secondary indexes at a partition granular-
ity; for each attribute, the indexes store its position in the file and
its position in the binary cache (when applicable). Slalom uses a
cache friendly in-memory BT -Tree implementation. It uses nodes
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of 256 bytes that are kept 60% full. To minimize the size of inner
nodes and make them fit in a processor cache line, the keys in the
nodes are stored as deltas. Furthermore, to minimize tree depth, the
B -Tree stores all appearances of a single value in one record.

The Structure Refiner monitors the construction of all auxiliary
structures and is responsible for memory management. Slalom
works within a memory area of pre-defined size. The indexes, PMs,
and caches are placed in the memory area. However, maintain-
ing caches of the entire file and all possible indexes is infeasible.
Thus, the Structure Refiner dynamically decides, on a partition ba-
sis, which structure to drop so Slalom can operate under limited
resources (details in Section 4.2).

3.3 Query Execution

Figure 3 presents an overview of a query sequence execution
over a CSV file. During each query, Slalom analyzes its current
state in combination with the workload statistics and updates its
auxiliary structures. In the initial state (a), Slalom has no data or
query workload information. The first query accesses the data file
without any support from auxiliary structures; Slalom thus builds a
PM, accesses the data requested, and places them in a cache. Dur-
ing each subsequent query, Slalom collects statistics regarding the
data distribution of the accessed attributes and the average query
selectivity to decide whether logical partitioning would benefit per-
formance. If a partition has not reached its stable state (i.e., further
splitting will not provide benefit), Slalom splits the partition into
subsets as described in Section 4.1. In state (b), Slalom has already
executed some queries and has built a binary cache and a PM on
the accessed attributes. Slalom has decided to logically partition
the file into two chunks, of which the first (partition 1) is declared
to be in a stable state. Slalom checks stable partitions for the ex-
istence of indexes; if no index exists, Slalom uses the randomized
algorithm described in Section 4.2 to decide whether to build one.
In state (c), Slalom has executed more queries, and based on the
query access pattern it decided index partition 1. In this state, par-
tition 2 of state (b) has been further split into multiple partitions of
which partition 2 was declared stable and an index was built on it.

4. CONTINUOUS PARTITION
AND INDEX TUNING

Slalom provides performance enhancements without requiring
expensive full data indexing nor data file re-organization, all while
adapting to workload changes. Slalom uses an online partitioning
and indexing tuner to minimize the accessed data by (i) logically
partitioning the raw dataset, and (ii) choosing appropriate index-
ing strategies over each partition. To enable online adaptivity, all
decisions that the tuner makes must have minimal computational
overhead. The tuner employs a Partition Manager which makes all
decision considering the partitioning strategy, and an Index Man-
ager which makes all decisions considering indexing. This section
presents the design of the Partition and Index Managers as well as
the mathematical models they are based on.

4.1 Raw Data Partitioning

The optimal access path may vary across different parts of a
dataset. For example, a filtering predicate may be highly selec-
tive in one part of a file, and thus benefit from index-based query
evaluation, whereas another file part may be better accessed via a
sequential scan. As such, any optimization applied on the entire file
may be suboptimal for parts of the file. To this end, the Partition
Manager of Slalom splits the original data into more manageable
subsets; the minimum partition size is a physical disk page. the
Partition Manager opts for horizontal logical partitioning because
physical partitioning would require manipulating physical storage
— a breaking point for many of the use cases that Slalom targets.

Why Logical Partitions. Slalom uses logical partitioning to vir-
tually break a file into more manageable chunks without physical
restructuring. The goal of logical partitioning is twofold: (i) enable
partition filtering, i.e., try to group relevant data values together so
that they can be skipped for some queries, and (ii) allow for more
fine-grained index tuning. The efficiency of logical partitioning in
terms of partition filtering depends mainly on data distribution and
performs best with clustered or sorted data. Still, even in the worst
case of uniformly distributed data, although few partitions will be
skippable, the partitioning scheme facilitates fine-grained indexing.
Instead of populating deep B+ Trees that cover the entire dataset,
the B+ Trees of Slalom are smaller and target only “hot” subsets of
the dataset. Thus, Slalom can operate under limited memory bud-
get, has a minimal memory footprint, and provides rapid responses.
The Partition Manager performs partitioning as a by-product of
query execution and chooses between two partitioning strategies
depending on the cardinality of an attribute. For candidate key at-
tributes, where all tuples have distinct values, the Partition Manager
uses query based partitioning, whereas for other value distribu-
tions, it uses homogeneous partitioning. Ideally, what the Partition
Manager aims for is creating partitions such that: (i) each partition
contains uniformly distributed values, and (ii) partitions are pair-
wise disjoint (e.g., partition 1 has values (12, I, 8) and partition 2
has values (19, 13, 30)). Uniformly distributed values within a par-
tition enable efficient index access for all values in a partition and
creating disjoint partitions improves partition skipping.
Homogeneous partitioning aims to create partitions with uni-
formly distributed values and maximize average selectivity within
each partition. Increasing query selectivity over the partitions im-
plies that for some queries, some of the newly created partitions
will contain a high percentage of the final results, whereas other
partitions will contain fewer or zero results and will be skippable.
Computing the optimal set of contiguous uniformly distributed par-
titions has exponential complexity, thus is prohibitive for online ex-
ecution. Instead, to minimize the overhead of partitioning, the Par-
tition Manager iteratively splits a partition into multiple equi-size
partitions. In every iteration, the tuner decides on (i) when to stop
splitting and (ii) into how many subsets to split a given partition.
The Partition Manager splits incrementally a partition until it
reaches a stable state (i.e., a state where the tuner estimates no
more gains can be achieved from further splitting). After each par-
tition split, the tuner relies on two conditions to decide whether a
partition has reached a stable state. The tuner considers whether
(i) the variance of values in the new partition as well as the excess
kurtosis [47] of the value distribution have become smaller than the
variance and kurtosis in the parent partition, and (ii) the number of
distinct values has decreased. Specifically, as variance and excess
kurtosis decrease, outliers are removed from the partition and the
data distribution of the partition in question becomes more uniform.
As the number of distinct values per partition iteratively decreases,
the probability of partition disjointness increases. If any of these
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metrics increases or remains stable by partitioning, then the par-
tition is declared stable. We use the combination of variance and
excess kurtosis as a metric for uniformity, because their calculation
has a constant complexity and can be performed in an incremen-
tal fashion during query execution. An alternative would be using
a histogram or chi square estimators [47], but that would require
building a histogram as well as an additional pass over the data.
The number of sub-partitions to which an existing partition is di-
vided depends on the average selectivity of the past queries access-
ing the partition and the size of the partition in number of tuples.
The goal of the tuner is to maximize selectivity in each new parti-
tion. We assume that the rows of the partition that have been part
of query results within the partition are randomly distributed. We
model the partitioning problem as randomly choosing tuples from
the partition with the goal to have at least 50% of the new partitions
exhibit higher selectivity than the original partition. The intuition is
that by decreasing selectivity in a subset of partitions will enhance
partition skipping in the rest. The model follows the hypergeo-
metric distribution, whose CDF requires O(N - log (N)) time to be
computed [15]. As the sizes of partitions are large in comparison
to selectivity, we can, without hurting generality, use the binomial
approximation of the hypergeometric distribution. We assume that
K out of the N tuples in a given partition qualify as query results
(sel = N/K). We want to split the partition into m sub-partitions,
each of size n, with our goal being that the ratio of qualifying tuples
to total number of tuples in each new partition will be at least sel
with probability 0.5. Thus, for every split, the Partition Manager
uses the following formula to choose the number of partitions:

_ N-(sel +logy, (1 —sel))

e
= b=
logb < \/2~7tisel-N>

— sel - (1 —sel)

where

Query based partitioning targets candidate keys, or attributes
that are implicitly clustered (e.g., increasing timestamps). For such
attributes, homogeneous partitioning will lead to increasingly small
partitions as the number of distinct values and variance will be con-
stantly decreasing with smaller partitions. Thus, the tuner decides
upon a static number of partitions to split the file. Specifically, the
number of partitions is decided based on the selectivity of the first
range query using the same mechanism as in homogeneous parti-
tioning. If the partition size is smaller than the physical disk page
size, the tuner creates a partition per disk page. By choosing its par-
titioning approach based on the data distribution, Slalom improves
the probability of data skipping and enables fine-grained indexing.

4.2 Adaptive Indexing in Slalom

The tuner of Slalom employs the Index Manager to couple logi-
cal partitions with appropriate indexes and thus decrease the amount
of accessed data. The Index Manager uses value-existence and
value-position indexes; it takes advantage of the capabilities of each
category in order to reduce execution overhead and memory foot-
print. To achieve these goals, the Index Manager enables each par-
tition to have multiple value-existence and value-position indexes.

Value-Existence Indexes. Value-existence indexes are the basis
of partition-skipping for Slalom; once a partition has been set as
stable, the Index Manager builds a value-existence index over it.
Value-existence indexes allow Slalom to avoid accessing some par-
titions. The Index Manager uses Bloom filters, Bitmaps, and zone
maps (min-max values) as value-existence indexes. Specifically,
the Index Manager uses bitmaps only when indexing boolean at-
tributes, because they require a larger memory budget than Bloom
Filters for other data types. The Index Manager also uses zone
maps on all partitions because they have small memory overhead
and provide sufficient information for value-existence on partitions
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with small value variation. For all other data types, the Index Man-
ager favors Bloom filters because of their high performance and
small memory footprint. Specifically, the memory footprint of a
Bloom filter has a constant factor, yet it also depends on the num-
ber of distinct values it will store and the required false positive
probability. To overcome the inherent false positives that charac-
terize Bloom filters, the Index Manager adjusts the Bloom filter’s
precision by calculating the number of distinct values to be indexed
and the optimal number of bytes required to model them [14].

Value-Position Indexes. The Index Manager builds a value-posi-
tion index (B™-Tree) over a partition to offer fine-grained access to
tuples. As value-position indexes are more expensive to construct
compared to value-existence indexes, both in terms of memory and
time, it is crucial for the index to pay off the building costs in fu-
ture query performance. The usefulness and performance of an
index depend highly on the type and selectivity of queries and the
distribution of values in the dataset. Thus, for workloads of shifting
locality, the core challenge is deciding when to build an index.

When to Build a Value-Position Index. The Index Manager builds
a value position index over a partition if it estimates that there will
be enough subsequent queries accessing that partition to pay off the
investment (in execution time). As the tuner is unaware of the fu-
ture workload trends, decisions for building indexes are based on
the past query access patterns. To make these decisions, the Index
Manager uses an online randomized algorithm which considers the
cost of indexing the partition (C;,,,,), the cost of full partition scan
(Cifupisean)> and the access frequency on the partition (AF;). These
values depend on the data type and the size of the partition, so they
are updated accordingly in case of a partition split or an append to
the file. The tuner stores the average cost of an access to a file tu-
ple as well as the average cost of an insertion to every index for all
data types, and uses these metrics to calculate the cost of accessing
and building an index over a partition. In addition, the tuner calcu-
lates the cost of an index scan (C;,,,.....) based on the cost of a full
partition scan and the average selectivity. For each future access
to the partition, the Index Manager uses these statistics to generate
online a probability estimate which calculates whether the index
will reduce execution time for the rest of the workload. Given this
probability, the Index Manager decides whether to build the index.

The Index Manager calculates the index building probability us-
ing a randomized algorithm based on the randomized solution of
the snoopy caching problem [37]. In the snoopy caching problem,
two or more caches share the same memory space which is par-
titioned into blocks. Each cache writes and reads from the same
memory space. When a cache writes to a block, caches that share
the block spend 1 bus cycle to get updated. These caches can inval-
idate the block to avoid the cost of updating. When a cache decides
to invalidate a block which ends up required shortly after, there is a
penalty of p cycles. The optimization problem lies in finding when
a cache should invalidate and when to update the block. The solu-
tion to the index building problem in this work involves a similar
decision. The indexing mechanism of the tuner of Slalom decides
whether to pay an additional cost per query (‘“updating a block™)
or invest in building an index, hoping that the investment will be
covered by future requests (“invalidating a block™).

The performance measure of randomized algorithms is the com-
petitive ratio (CR): the ratio between the expected cost incurred
when the online algorithm is used and that of an optimal offline
algorithm that we assume has full knowledge of the future. The
randomized algorithm of the tuner guarantees optimal CR (;%7).
The tuner uses a randomized algorithm in order to avoid the high
complexity of what-if analysis [50] and to improve the competitive
ratio offered by the deterministic solutions [16].



Cost Model. Assume query workload W. At a given query of the
workload, a partition is in one of two states: it either has an index or
not. The state is characterized by the pair (Cpyid, Cuse) Where Cpyijg
is the cost to enter the state (e.g., build the index) and C,. the cost
to use the state (e.g., use the index). Initially the system is in state
with no index (i.e., full scan) (Cpyira, fs, Cuse, £s) Where Cpyizg, rs = 0.
In the second state (Cpyird idx>Cuse,idx)> the system has an index.
We assume that the relation between the costs for the two states is
Chuild,idx > Chuitd, fs a0 Cyse jdx < Cuse,fs a0d Cpyitd jdx > Cuse, fs-

Given a partition i, the index building cost over that partition
(Ciyyq)» the full partition scan cost (Ci,,,,)s the index partition
scan cost (Ci,...or) and a sequence of queries Q : [q1,...,qr] ac-
cessing the partition. Assume that g7 is the last query that accesses
the partition (and is not known). At the arrival time of g,k < T, we
want to decide whether the Index Manager should build the index
or perform full scan over the partition to answer the query.

To make the decision we need a probability estimate p; for build-
ing the index at moment i based on the costs of building the index
or not. In order to calculate p; we initially define the overall ex-
pected execution cost of the randomized algorithm that depends on
the probability p;. The expected cost E comprises three parts:

i. the cost of building the index, which corresponds to the case
where the building of the index will take place at time i. Index
construction takes place as a by-product of query execution
and includes the cost of the current query.

ii. the cost of using the index, which corresponds to the case
where the index has already been built.

iii. the cost of queries doing full partition scan, which corresponds
to the case for which the index will not be built.

T i—1
E= Z pi- Cbuild,idx + Z pPj Cuse,idx

i=1 j=1

i—1
+(1 - ij) 'Cuse#fs
J=1

The optimal offline algorithm which has full knowledge of the fu-
ture, including g7 when the partition stops being accessed, consid-
ers that if the number of queries executed is insufficient to cover
the expense of building the index, then the optimal approach is to
execute only full partition scans. On the other hand, if the number
of queries executed is sufficient for the execution time savings to
cover the cost of index building, the algorithm invests into building
the index at the time of the first query. Specifically, the expected
cost formula of the optimal offline algorithm is the following:

{T . Cuseﬁfs: ifT- Cuse,fs < Cbuild,idx +T- Cuse,idx

Chuitd idx + T + Cyse,iax, otherwise
The randomized algorithm will be in the best case as efficient as
the optimal. Thus, the tuner chooses p; such that it minimizes a:
E<(1+4a)-T-Cyse,fs
E < (1+a) (Couitd,idx + T - Cuse,idx)

By exchanging the inequalities to equalities and solving the linear
system for minimizing a we get p;. Based on the probability p; the
tuner decides whether to build the index.

Eviction Policy. The tuner works within a predefined memory bud-
get to minimize memory overhead. If the memory budget is fully
consumed and the Index Manager attempts to build a new index,
then it defers index construction for the next query and searches
indexes to drop to make the necessary space available. The In-
dex Manager keeps all value-existence indexes once built, because
their size is minimal and they are the basis of partition skipping.
Furthermore, the Index Manager prioritizes binary caches over in-
dexes, because (i) using a cache improves the performance of all
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queries accessing a partition, and (ii) accessing the raw data file
is typically more expensive than rebuilding an index for large par-
titions. Deciding which indexes from which partitions to drop is
based on index size (Sizejnqey,), Number of queries since last ac-
cess (LA;), and average selectivity (sel;) in a partition. To compute
the set of indexes to drop, the Index Manager uses a greedy algo-
rithm which gathers the least accessed indexes with cumulative size
(¥ Sizeingey,) €qual to the size of the new index.

S. EXPERIMENTAL EVALUATION

In this section, we present an analysis of Slalom. We analyze its
partitioning and indexing algorithm, and compare it against state-
of-the-art systems over both synthetic and real life workloads.

Methodology. We compare Slalom against DBMS-X, a commer-
cial state-of-the-art in-memory DBMS that stores records in a row
oriented manner and the open-source DBMS PostgreSQL (version
9.3). We use DBMS-X and PostgreSQL with two different con-
figurations: (i) Fully-loaded tables and (ii) Fully-loaded, indexed
tables. We also compare Slalom with the in-situ DBMS Postgres-
Raw [5]. PostgresRaw is an implementation of NoDB [5] over
PostgreSQL; PostgresRaw avoids data loading and executes queries
by performing full scans over CSV files. In addition, PostgresRaw
builds positional maps on-the-fly to reduce parsing and tokeniza-
tion costs. Besides positional maps, PostgresRaw uses caching
structures to hold previously accessed data in a binary format. Fur-
thermore, to compare Slalom with other adaptive indexing tech-
niques we integrate into Slalom two variations of database crack-
ing: (i) standard cracking [31] and (ii) the MDDI1R variant of sto-
chastic cracking [28]. We chose MDDIR as it showed the best
overall performance in [51]. We integrated the cracking techniques
by disabling the Slalom tuner and setting Cracking as the sole ac-
cess path. Thus, Slalom and Cracking use the same execution en-
gine and have the same data access overheads.

Slalom’s query executor pushes predicate evaluation down to
the access path operators for early tuple filtering and results are
pipelined to the other operators of a query (e.g., joins). Thus, in our
analysis, we focus on scan intensive queries. We use select - project
- aggregate queries to minimize the number of tuples returned and
avoid any overhead from the result tuple output that might affect
the measured times. Unless otherwise stated, the queries are of the
following template (OP : {<,>,=}):

SELECT agg(RA), agg(B), .., agg(N) FROM R
WHERE A OP X (AND A OP Y)

Experimental Setup. The experiments are conducted in a Sandy
Bridge server with a dual socket Intel(R) Xeon(R) CPU E5-2660
(8 cores per socket @ 2.20 Ghz), equipped with 64 KB L1 cache
and 256 KB L2 cache per core, 20 MB L3 cache shared, and 128
GB RAM running Red Hat Enterprise Linux 6.5 (Santiago - 64 bit)
with kernel version 2.6.32. The server is equipped with a RAID-0
of 7 250GB 7500 RPM SATA disks.

5.1 Adapting to Workload Shifts

Slalom adapts efficiently to workload shifts despite (i) changes in
data distribution, (ii) changes in query selectivity, and (iii) changes
in query locality - both vertical (i.e., different attributes) and hor-
izontal (i.e., different records). We demonstrate the adaptivity ex-
perimentally by executing a dynamic workload with varying selec-
tivities and access patterns over a synthetic dataset.

Methodology. To emulate the worst possible scenario for Slalom,
we use a relation of 640 million tuples (59GB), where each tuple
comprises 25 unsigned integer attributes with uniformly distributed
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Figure 4: Sequence of 100 queries. Slalom dynamically refines its indexes to reach the performance of an index over loaded data.
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Figure 5: A breakdown of the operations taking place for Slalom during the execution of a subset of the 1000 point query sequence.

values ranging from O to 1000. Slalom is unable to find a value clus-
tering in the file because all values are uniformly distributed, thus
Slalom applies homogeneous partitioning. Slalom, Cracking, and
PostgresRaw operate over the CSV data representation, whereas
PostgreSQL and DBMS-X load the raw data prior to querying. In
this experiment we limit the index memory budget for Slalom to
5GB and the cache budget to 10GB. All other systems are free to
use all available memory. Specifically, for this experiment DBMS-
X required 98GB of RAM to load and fully build the index.

We execute a sequence of 1000 point and range select-project-
aggregation queries following the template from Section 5. The se-
lection value is randomly selected from the domain of the predicate
attribute. Point query selectivity is 0.1% and range query selectivity
varies from 0.5% to 5%. To emulate workload shifts and examine
system adaptivity, in every 100 queries, queries 1-30 and 61-100
use a predicate on the first attribute of the relation and queries 31-
60 use a predicate on the second attribute.

The indexed variations of PostgreSQL and DBMS-X build a clus-
tered index only on the first attribute. It is possible to build in-
dexes on more columns for PostgreSQL and DBMS-X, however
it requires additional resources and would increase data-to-query
time. In addition, choosing which attributes to index requires a pri-
ori knowledge of the query workload, which is unavailable in the
dynamic scenarios that Slalom considers. Indicatively, building an
secondary index on a column for PostgreSQL for our experiment
takes ~25 minutes. Thus, by the time PostgreSQL finishes index-
ing, Slalom will have finished executing the workload (Figure 6).

Slalom Convergence. Figure 4 presents the response time of each
query of the workload for the different system configurations. For
clarity we present the results for the first 100 queries. To emulate
the state of DBMS systems immediately after loading, all systems
run from a hot state where data is resting in the OS caches. Figure
4 plots only query execution time and does not show data loading
or index building for PostgreSQL and DBMS-X.

The runtime for the first query of Slalom is 20x slower than
its average query time, because during that query it builds a po-
sitional map and a binary cache. In subsequent queries (queries
2-7) Slalom iteratively partitions the dataset and builds B*-Trees.
After the initial set of queries (queries 1-6), Slalom has compara-
ble performance to the one of PostgreSQL over fully indexed data.
During the 3rd query, multiple partitions stabilize simultaneously,
thus Slalom builds many BT -Tree and Bloom Filter indexes, adding
considerable overhead. When Slalom converges to its final state, its
performance is comparable to indexed DBMS-X. When the queried
attribute changes (query 31), Slalom starts partitioning and building
indexes on the new attribute. After query 60, when the workload

filters data based on the first attribute again, since the partitioning
has already stabilized, Slalom re-uses the pre-existing indexes.

PostgreSQL with no indexes demonstrates a stable execution
time as it has to scan all data pages of the loaded database re-
gardless of the result size. Due to the queries being very selec-
tive, when an index is available for PostgreSQL the response times
are ~9x lower when queries touch the indexed attribute. DBMS-X
keeps all data in memory and uses memory-friendly data structures,
so it performs on average 3 x better than PostgreSQL. The differ-
ence in performance varies with query selectivity. In highly selec-
tive queries, DBMS-X is more efficient in data access whereas for
less selective queries the performance gap is smaller. Furthermore,
for very selective queries, indexed DBMS-X is more efficient than
Slalom as its single B*-Tree traverses very few results nodes.

During query 1, PostgresRaw builds auxiliary structures (cache,
positional map) and takes 3 more time (180 sec) than its average
query run time. PostgresRaw becomes faster than the unindexed
PostgreSQL variation because its scan operators use vector-based
(SIMD) instructions and exploit compact caching structures.

Similarly, during query 1, Cracking builds a binary cache and
populates the cracker column it uses for incremental indexing. The
runtime of its first query is 4x slower than the average query time
for PostgreSQL without indexes. When it touches a different at-
tribute (query 31) it also populates a cracker column for the sec-
ond attribute. Despite the high initialization cost, Cracking con-
verges efficiently, and reaches its final response time after the 4th
query. The randomness in the workload benefits Cracking as it
splits the domain into increasingly smaller pieces. After converg-
ing, Cracking performance is comparable to the PostgreSQL with
index. Slalom requires more queries to converge than Cracking.
However, after it converges, Slalom is ~2x faster than Cracking.
This difference stems from Cracking execution overheads. Crack-
ing sorts the resulting tuples based on their memory location and
enforces sequential memory access. This sorting operation adds an
overhead, especially for less selective queries.

Execution Breakdown. Slalom aims to build efficient access paths
with minimal overhead. Figure 5 presents the breakdown of query
execution for the same experiment as before. For clarity, we present
only queries Q1-15 and Q31-45 as Q16-30 show the same pattern
as Q11-15. Queries Q1-15 have a predicate on the first attribute
and queries Q31-45 have a predicate on the second attribute.
During the first query, Slalom scans through the original file and
creates the cache. During Q2 and Q3 Slalom is actively partition-
ing the file and collects data statistics (i.e., distinct value counts)
per partition; Slalom bases the further partitioning and indexing
decisions on these statistics. Statistics gathering cost is represented
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because its indexes only target specific areas of a raw file.

in Figure 5 as “Insert to Metadata”. During queries Q2 and Q3,
as the partitioning scheme stabilizes, Slalom builds Bloom filters
and BT -Trees. Q3 is the last query executed using a full partition
scan, and since it also incurs the cost of index construction there
is a local peak in execution time. During Q4 through Q8, Slalom
increasingly improves performance by building new indexes. Af-
ter Q31, the queries use the second attribute of the relation in the
predicate, thus Slalom repeats the process of partitioning and index
construction. In total, even after workload shifts, Slalom converges
into using index-based access paths over converted binary data.

Full Workload: From Raw Data to Results. Figure 6 presents
the full workload of 1000 queries, this time starting with cold OS
caches and no loaded data to include the cost of the first access
to raw data files for all systems. We plot the aggregate execution
time for all approaches described earlier, including the loading and
indexing costs for PostgreSQL and DBMS-X.

PostgresRaw, Slalom and Cracking incur no loading and index-
ing cost, and start answering queries before the other DBMS load
data and before the indexed approaches finish index building. Unin-
dexed PostgreSQL incurs data loading cost as well as a total query
aggregate greater than PostgresRaw. Indexed PostgreSQL incurs
both indexing and data loading cost, and due to some queries touch-
ing a non-indexed attribute, its aggregate query time is greater than
the one of Slalom. Unindexed DBMS-X incurs loading cost; how-
ever, thanks to its main memory-friendly data structures and execu-
tion engine, it is faster than the disk-based engine of PostgreSQL.

After adaptively building the necessary indexes, Slalom has com-
parable performance with a conventional DBMS which uses in-
dexes. Cracking converges quickly and adapts to the workload effi-
ciently. However, creating the cracker columns incurs a significant
cost. Overall, Cracking and Slalom offer comparable raw-data-to-
results response time for this workload while, Slalom requires 0.5 x
memory. We compare in detail Cracking and Slalom in Section 5.3.

Memory Consumption. Figure 7 plots the memory consumption
of (i) the fully built indexes used for DBMS-X and PostgreSQL,

(i1) the cracker columns for Cracking, and (iii) the indexes of Slalom.

Figure 7 excludes the size of the caches used by Slalom and Crack-
ing or the space required by DBMS-X after loading. The traditional
DBMS require significantly more space for their indexes. Orthog-
onally to the index memory budget, DBMS-X required 98GB of
memory in total, whereas the cache of Slalom required 9.7GB.
Cracking builds its cracker columns immediately when accessing
a new attribute. The cracker column requires storing the original
column values as well as pointers to the data, thus it has a large
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Figure 8: Sequence 100 queries. Number of accessed tuples using
different access paths. Slalom uses indexes and data skipping to
reduce data access.

memory footprint even for low value cardinality. Regarding the in-
dexes of Slalom, when the focus shifts to another filtering attribute
(Q31), Slalom increases its memory consumption, as during Q31-
34 it creates logical partitions and builds Bloom filters and B*-Tree
indexes on the newly accessed attribute. By building and keeping
only the necessary indexes for a query sequence, Slalom strikes a
balance between query performance and memory utilization.

Minimizing Data Access. The performance gains of Slalom are a
combination of data skipping based on partitioning, value-existence
indexes, and value-position indexes, all of which minimize the num-
ber of tuples Slalom has to access. Figure 8 presents the number of
tuples that Slalom accesses for each query in this experiment. We
observe that as the partitioning and indexing schemes of Slalom
converge, the number of excess tuples accessed is reduced. Since
the attribute participating in the filtering predicate of queries Q31-
60 has been cached, Slalom accesses the raw data file only during
the first query. Slalom serves the rest of the queries utilizing only
the binary cache and indexes. For the majority of queries, Slalom
responds using an index scan. However there are queries where it
responds using a combination of partition scan and index scan.
Figure 9 presents how the minimized data access translates to re-
duced response time and the efficiency of data skipping and index-
ing for different data distribution and different query types. Specif-
ically, it presents the effect of Zone Maps, Bloom filters and B™-
Trees on query performance for point queries and range queries
with 5% selectivity over Uniform and Clustered datasets. The Clus-
tered dataset contains mutually disjointed partitions (i.e., subsets of
the file contain values which do not appear in the rest of the file).
The workload used is the same used for Figure 4. Zone maps are
used for both range and point queries and are most effective when
used over clustered data. Specifically, they offer a ~9x better per-
formance than full cache scan. Bloom filters are useful only for
point queries. As the datasets have values in the domain [1,1000],
point queries have low selectivity making Bloom filters ineffective.
Finally, B*-Trees improve performance for both range and point
queries. The effect of BT -Tree is seen mostly for uniform data
where partition skipping is less effective. Slalom stores all indexes
in-memory, thus by skipping a partition, Slalom avoids full access
of the partition and reduces memory access or disk I/O if the parti-
tion is cached or not respectively.
Summary. We compare Slalom against (i) a state-of-the-art in-situ
querying approach, (ii) a state-of-the-art adaptive indexing tech-
nique, (iii) a traditional DBMS, and (iv) a state-of-the-art in-memory
DBMS. Slalom gracefully adapts to workload shifts using an adap-
tive algorithm with negligible execution overhead. Slalom offers
performance comparable with a DBMS which uses indexes, while
also being more conservative in memory space utilization.

5.2 Working Under Memory Constraints

As described in Section 4.2, Slalom efficiently uses the available
memory budget to keep the most beneficial auxiliary structures. We
show this experimentally by executing the same workload under
various memory utilization constraints. We run the 20 first queries
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Figure 10: Slalom performance using different memory budgets.
Slalom performance varies with alloted memory.

— amix of point and range queries. We consider three memory bud-
get configurations with 10GB, 12GB and 14GB of available mem-
ory, respectively. The budget includes both indexes and caches.

Figure 10 presents the query execution times for the workload
given the three different memory budgets. The three memory con-
figurations build a binary cache and create the same logical parti-
tioning. Slalom requires 13.5GB in total for this experiment; given
an 14GB memory budget, it can build all necessary indexes, leading
to the best performance for the workload. For the 10GB and 12GB
memory budgets, there is insufficient space to build all necessary
indexes, thus these configurations experience a performance drop.
‘We observe that the configurations with 10GB and 12GB memory
budgets outperform the configuration with 14GB of memory bud-
get for individual queries (i.e., Q3 and Q5). The reason is that the
memory-limited configurations build fewer B™-Trees during these
queries than the configuration with 14GB of available memory.
However, future queries can benefit from the additional Bt -Trees,
amortizing the extra overhead over a sequence of queries.

Figure 11 presents the breakdown of memory allocation for the
same query sequence when Slalom is given a 12GB memory bud-
get. We consider the space required for storing caches, B™-Trees
and Bloom filters. The footprint of the statistics and metadata
Slalom collects for the cost model and zone maps is negligible, thus
we exclude them from the breakdown. Slalom initially builds the
binary cache, and logically partitions the data until some partitions
become stable (Q1, Q2). At queries Q3, Q4 and Q5 Slalom starts
building BT -Trees, and it converges to a stable state at query Q7
where all required indexes are built. Thus, from Q7-Q10 Slalom
stabilizes performance. Overall, this experiment shows that Slalom
can operate under limited memory budget gracefully managing the
available resources to improve query execution performance.

5.3 Adaptivity Efficiency

Slalom adapts to query workloads as efficiently as state-of-the-
art adaptive indexing techniques while working with less memory.
Furthermore, it exploits any potential data clustering to further im-
prove its performance. We demonstrate this by executing a variety
of workloads. We use datasets of 480M tuples (55GB on disk);
each tuple comprises 25 unsigned integer attributes whose values
belong to the domain [1,10000]. Queries in all workloads have
equal selectivity to alleviate the noise from data access; all queries
have 0.1% selectivity, i.e., select 10 consecutive values.
Methodology. Motivated by related work [51], we compare Slalom
against Cracking and Stochastic Cracking in three cases.

Random workload over Uniform dataset. We execute a sequence
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Figure 11: Slalom memory allocation (12 GB memory budget).

of range queries which access random ranges throughout the do-
main to emulate the best case scenario for cracking. As subsequent
queries filter on random values and the data is uniformly distributed
in the file, Cracking converges and minimizes data access.

“Zoom In Alternate” over Uniform dataset. To emulate the ef-
fect of patterned accesses we execute a sequence of queries that
access either part of the domain in alternate i.e., 1st query: [1,10],
2nd query: [9991,10000], 3rd query: [11,20], etc. This access pat-
tern is one of the scenarios where the original cracking algorithm
underperforms [28]. Splits are only query-driven, and every query
splits data into a small piece and the rest of the file. Thus, the im-
provements in performance with subsequent queries are minimal.
Stochastic cracking alleviates the effect of patterned accesses by
splitting in more pieces apart from the ones based on queries.

Random workload over Clustered dataset. This setup examines
how adaptive indexing techniques perform on datasets where cer-
tain data values are clustered together e.g., data clustered on times-
tamp or sorted data. The clustered dataset we use in the experiment
contains mutually disjoint partitions, i.e., subsets of the file contain
specific values which do not appear in the rest of the file.

Figure 12a demonstrates the cumulative execution time for Crack-
ing, Stochastic Cracking and Slalom for the random workload over
uniform data. All approaches start from a cold state, thus dur-
ing the first query they parse the raw data file and build a binary
cache. Stochastic Cracking and Cracking incur an additional cost
of cracker column initialization during the first query, but reduce
execution time with every subsequent query. During the first three
queries, Slalom creates its partitions; during the following 6 queries,
Slalom builds the required indexes, and finally converges to a sta-
ble state at query 10. Due to its fine-grained indexing and local
memory accesses, Slalom provides ~8x lower response time than
cracking and their cumulative execution time is equalized during
query 113. Furthermore, Figure 12d demonstrates the memory
consumption of the cracking approaches and Slalom for the same
experiment. The cracking approaches have the same memory foot-
print; they both duplicate the full indexed column along with point-
ers to the original data. On the other hand, the cache-conscious
BT -Trees of Slalom stores only the distinct values along with the
positions of each value, thus reducing the memory footprint. In ad-
dition, Slalom allocates space for its indexes gradually, allowing it
to offer efficient query execution even with limited resources.

Figure 12b shows the cumulative execution time for Cracking,
Stochastic Cracking, and Slalom for the “Zoom In Alternate” work-
load over uniform data. Cracking needs more queries to converge
to its final state as it is cracking only based on query-driven val-
ues. Stochastic cracking converges faster because it cracks based
on more values except the ones found in queries. Slalom uses a
combination of data and query driven optimizations. Slalom re-
quires an increased investment during the initial queries to create its
partitioning scheme and index the partitions, but ends up providing
7x lower response time, and equalizes cumulative execution time
with Cracking at query 53 and Stochastic Cracking at query 128.

Figure 12c presents the cumulative execution time of Cracking,
Stochastic Cracking and Slalom for the random workload over im-
plicitly clustered data. In this situation, Slalom exploits the cluster-
ing of the underlying data early on (from the second query) and
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Figure 12: Cracking techniques converge more efficiently but Slalom takes advantage of data distribution.

Table 2: Cost of each phase of a smart-meter workload.

System Loading | Index Build Queries Total
Slalom 0 sec 0 sec 4301 sec 4301 sec
Cracking 0 sec 0 sec 6370 sec 6370 sec
PostgresRaw 0 sec 0 sec 10077 sec | 10077 sec
PostgresSQL (with index) | 2559 sec 1449 sec 9058 sec 13066 sec
PostgreSQL (no index) 2559 sec 0 sec 15379 sec | 17938 sec
DBMS-X (with index) 6540 sec 1207 sec 3881 sec 11628 sec
DBMS-X (no index) 6540 sec 0 sec 5243 sec 11783 sec

skips the majority of data. For the accessed partitions, Slalom
builds indexes to further reduce access time. Similarly to Figure
12a, the Cracking approaches crack only based on the queries and
are agnostic to the physical organization of the dataset.

Summary. Slalom converges comparably to the best Cracking
variation when querying uniform data over both random and “Zoom
In Alternate” workloads. Furthermore, when Slalom operates over
clustered data, it exploits the physical data organization and pro-
vides minimal data-to-query time. Finally, as Slalom builds indexes
gradually and judiciously, it requires less memory than the cracking
approaches, and it can operate under a strict memory budget.

5.4 Slalom Over Real Data

In this experiment, we demonstrate how Slalom serves a real-life
workload. We use a smart home dataset (SHD) taken from an elec-
tricity monitoring company. The dataset contains timestamped in-
formation about sensor measurements such as energy consumption
and temperature, as well as a sensor id for geographical tracking.
The timestamps are in increasing order. The total size of the dataset
is 55 GB in CSV format. We run a typical workload of an SHD ana-
Iytics application. Initially, we ask a sequence of range queries with
variable selectivity, filtering data based on the timestamp attribute
(Q1-29). Subsequently, we ask a sequence of range queries which
filter data based on energy consumption measurements to identify
a possible failure in the system (Q30-59). We then ask iterations of
queries that filter results based on the timestamp attribute (Q60-79,
Q92-94), the energy consumption (Q80-84, Q95-100), and the sen-
sor id (Q85-91) respectively. Selectivity varies from 0.1% to 30%.
Queries focusing on energy consumption are the least selective.

Figure 13 shows the response time of the different approaches
for the SHD workload. All systems run from a hot state, with data
resting in the OS caches. The indexed versions of PostgreSQL and
DBMS-X build a B*-Tree on the timestamp attribute. The fig-
ure plots only query execution time and does not show the time
for loading or indexing for PostgreSQL and DBMS-X. For other
other systems, where building auxiliary structures takes place dur-
ing query execution, execution time contains the total cost.

PostgreSQL and DBMS-X without indexes perform full table
scans for each query. Q30-60 are more expensive because they
are not selective. For queries filtering on the timestamp, indexed
PostgreSQL exhibits 10x better performance than PostgreSQL full
table scan. Similarly, indexed DBMS-X exhibits 17 x better perfor-
mance compared to DBMS-X full table scan. As the queries using
the index become more selective, response time is reduced. For the

queries that do not filter data based on the indexed field, the opti-
mizer of DBMS-X chooses to use the index despite the predicate
involving a different attribute. This choice leads to response time
slower than the DBMS-X full scan.

PostgresRaw is slightly faster than PostgreSQL without indexes.
The runtime of the first query that builds the auxiliary structures
(cache, positional map) is 8x slower (374 sec) than the average
query runtime. For the rest of the queries PostgresRaw behaves
similar to PostgreSQL and performs a full table scan for each query.

After the first query, Slalom identifies that the values of the times-
tamp attribute are unique. Thus, it chooses to statically partition the
data following the cost model for query-based partitioning (Section
4.1) and creates 1080 partitions. Slalom creates the logical parti-
tions during the second query and calculates statistics for each par-
tition. Thus, the performance of Slalom is similar to that of Post-
gresRaw for the first two queries. During the third query, Slalom
takes advantage of the implicit clustering of the file to skip the ma-
jority of the partitions, and decides whether to build an index for
each of the partitions. After Q5, when Slalom has stabilized parti-
tions and already built a number of indexes over them, the perfor-
mance is better than that of the indexed PostgreSQL variation.

Queries Q2-Q30 represent a best-case scenario for DBMS-X:
Data resides in memory and its single index can be used, there-
fore DBMS-X is faster than Slalom. After Q29, when queries filter
on a different attribute, the performance of Slalom becomes equal
to that of PostgresRaw until Slalom builds indexes. Because the
energy consumption attribute has multiple appearances of the same
value, Slalom decided to use homogeneous partitioning. Q30 to
Q59 are not selective, thus execution times increase for all systems.

Table 2 shows the costs for loading and indexing as well as the
aggregate query costs for the same query workload of 100 queries,
for all the systems. Due to the queries being non-selective, the in-
dexed and non-indexed approaches of DBMS-X have similar per-
formance, thus in total Slalom exploits its adaptive approach to of-
fer competitive performance to the fully indexed competitors.

Summary. Slalom serves a real-world workload which involves
fluctuations in the areas of interest, and queries of great variety in
selectivity. Slalom serves the workload efficiently due to its low
memory consumption and its adaptivity mechanisms, which grad-
ually lower query response times despite workload shifts.

6. CONCLUSION

In-situ data analysis over large and, crucially, growing data sets
faces performance challenges as more queries are issued. State-
of-the-art in-situ query execution reduces the data-to-insight time,
however, as the number of issued queries is increasing and, more
frequently, queries are changing access patterns (having variable
selectivity, projectivity and are of interest in the dataset), in-situ
query execution cumulative latency increases.

To address this, we bring the benefits of indexing to in-situ query
processing. We present Slalom, a system that combines an in-
situ query executor with an online partitioning and indexing tuner.
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Figure 13: Sequence of SHD analytics workload. Slalom offers consistently comparable performance to in-memory DBMS.

Slalom takes into account user query patterns to reduce query time

over

raw data by partitioning raw data files logically and build-

ing for each partition lightweight partition-specific indexes when
needed. The tuner further adapts its decisions on-the-fly to follow
any workload changes and maintains a balance between the poten-
tial performance gains, the effort needed to construct an index, and
the overall memory consumption of the indexes built.
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