
Incompleteness in Information Integration

Evgeny Kharlamov

Supervised by: Werner Nutt

Free University of Bozen-Bolzano
39100, Piazza Domenicani, 3

Bozen-Bolzano, Italy

{kharlamov, nutt}@inf.unibz.it

ABSTRACT
Information integration is becoming a critical problem for
both businesses and individuals. The data, especially the
one that comes from the Web, is naturally incomplete, that
is, some data values may be unknown or lost because of
communication problems, hidden due to privacy considera-
tions. At the same time research in (virtual) integration in
the community focusses on null-free sources and addresses
limited forms of incompleteness only. In our work we aim to
extend current results on virtual integration by considering
various forms of incompleteness at the level of the sources,
the integrated database and the queries (we call this In-
complete Information Integration, or III). More specifically,
we aim to extend current query answering techniques for
local-, and global-as-view integration to integration of tables
with SQL nulls, Codd tables, etc. We also aim to consider
incomplete answers as a natural extension of the classical
approach. Our main research issues are (i) semantics of III,
(ii) semantics of query answering in III, (iii) complexity of
query answering, and (iv) algorithms (possibly approximate)
to compute the answers.

Keywords
Information integration, incomplete information, certain an-
swers, query rewriting.

1. INTRODUCTION
Information integration (II) is becoming a critical prob-

lem for both businesses and individuals [14]. The amounts of
data on the Web, in life-science labs, governmental institu-
tions is sky-rocketing and new sources and types of informa-
tion appear constantly. Processing these data is infeasible
without integration approaches. The most adequate inte-
gration scenario for these applications is virtual or mediator
based integration.

In virtual integration a user is provided with a query in-
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terface over several heterogeneous distributed data sources.
The interface allows the user to pose queries to the sources
in terms of a global schema. The system (underlying the in-
terface) is responsible for (i) linking the global schema with
the sources by means of mappings and (ii) performing query
answering. In this integration the sources can be incomplete
in two different ways: (i) they may contain null values and
(ii) they may be incomplete wrt to the mappings and the
global schema.

Most of the research on virtual integration is done un-
der the assumption that sources are null-free and addresses
the second type of incompleteness only. In reality nulls in
the sources are common, for example, SQL nulls in RDBs or
missing values in relational wrappers on top of non-relational
Web data.

Therefore we consider the completeness assumption for
the sources as a serious limitation of the current approaches
to virtual integration. In this work we aim to overcome this
limitation by assuming that the sources may have nulls (that
is, may be incomplete and modeled using either SQL nulls,
or Codd tables, or v-tables, or c-tables) and extend tech-
niques for query answering over different types of virtual in-
tegration (local-, global-as-view) under this assumption. We
call this type of integration Incomplete Information Integra-
tion, or III for short.

We also consider incomplete answers as a natural exten-
sion of classical answers that should reflect (i) the incom-
pleteness coming from the sources and (ii) the fact that most
approaches to II define this as a task of querying incomplete
databases (DBs).

The following research questions arise in the work:

• What is the semantics of III?

• What is the semantics of query answering over III?

• What kind of answers are appropriate for III?

• How to compute answers?

• How to integrate integration settings?

The structure of the paper is as follows. In Section 2 we
review models of incomplete information: SQL nulls, Codd
tables, v- and c-tables and world-set decompositions. In
Section 3 we review virtual II and query answering. In Sec-
tion 4 we present the research questions of our interest. In
Sections 5, 6 and 7 are our preliminary results on integra-
tion of tables with SQL nulls, semantics for integration of

1652

Permission to make digital or hard copies of portions of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for  profit or commercial advantage and 
that copies bear this notice and the full citation on the first page.  
Copyright for components of this wor k owned by  others than VLDB 
Endowment must be honored. 
Abstracting with credit is permitted. To copy otherwise, to republish, 
to post on servers or  to redistribute to lists requires prior specific 
permission and/or a fee. Request permission to republish from: 
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or  
permissions@acm.org. 
 
PVLDB '08, August 23-28, 2008, Auckland, New Zealand 
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08 



incomplete sources and integration of Codd and v-tables, re-
spectively. In Section 8 we discuss incomplete answers and
in Section 9 we conclude and present our next steps.

2. INCOMPLETE INFORMATION
The relational data model is based on the idea that the

data in a DB is complete, it is usually referred to as Closed
World Assumption. For example, if we want to set up a DB
of employees in a company, we assume that we know all the
employees and we know all the relevant facts about them.

In reality the data frequently happens to be incomplete.
For example, if we create a DB from a white pages book of
Bozen citizens, we face that (i) records about people that
just moved in the city are missing and (ii) some facts, like
phone numbers of some citizens, may be missing because
people rejected to make them public. In this case we can
only guess which are the missing records and phone num-
bers. Each guess gives one completion of the data (that
can be represented as a relational DB) and all the possible
guesses give a set of data completions and a set of corre-
sponding DBs. This understanding of incomplete data as
a set of relational DBs corresponding to the data comple-
tions is the most common in the database community and
usually referred to as Open World Assumption. In the fol-
lowing we will use the term incomplete DB as a synonym
for incomplete data or a set of relational DBs.

Constraints over relational schemas give rise to another
type of incompleteness, namely, when a set of constrains C
enforces the presence of certain tuples in all relational in-
stances over a schema Σ but in a given instance D over Σ
the tuples are missing. In this case D is incomplete wrt to
C. For example, C may consist of tuple generating depen-
dencies. To illustrate the phenomenon let D be a DB about
employees with two tables Manager and Secretary and C
consists of a tuple-generating dependency that says that for
every manager there is at least one secretary. If D contains
a record about a manager Bob, but no information about
his secretaries, then D is incomplete. Since there are several
ways to satisfy this dependency by extending D to D′ with
records about Bob’s secretaries, we have a set of D′s that is
an incomplete DB that corresponds to D and C. We notice
that this type of incompleteness is a specific kind of incon-
sistency in databases, namely, when the inconsistency can
be resolved by only adding (possibly infinitely many) tuples
to the database.

2.1 Managing Incomplete Information
As a consequence of the above discussion, in order to man-

age incomplete data one need to understand:

• how to store sets of databases and

• how to query sets of databases, that is, what is the
answer to a query and how it can be obtained (effi-
ciently).

2.1.1 Storing Incomplete Information
Even simple examples of incomplete data comprise too

many corresponding DBs to store them explicitly (even in-
finitely many). Therefore, in order to store sets of DBs, the
community proposed several approaches or systems how to
represent the sets in a compact way. The most well known
representation systems include Codd tables, v-tables and c-

tables [16, 3] as well as world-set decompositions [4], and
probabilistic DBs [20].

Codd tables are tables that may contain a symbol ⊥,
which is called null and is a kind of existential variable that
serves as a syntactic substitute for unknown values. For ex-
ample, one can use ⊥ as a value for the unknown phone
number of Mary in a table Person as follows:

Name Tel

Mary ⊥

The semantics of a Codd table is, intuitively, the set of all
instances obtained from the Codd table by (i) substituting
each occurrence of ⊥ with a constant and (ii) extending the
result with any extra tuples. Formally, the semantics Rep(T )
of a Codd table T with the schema Σ is defined as

Rep(T ) = {D ∈ I(Σ) | there exists σ such that σT ∈ D},

where I(Σ) is a set of all possible instances over Σ and σ is
a mapping that is the identity on constants and maps each
occurrence of ⊥ in T to some constant.

Codd tables have limitations in modeling incomplete in-
formation when extra knowledge about unknown attribute
values is to be represented. For example, one may need to
model the situation when Mary and John live together and
have the same unknown phone number, which may be differ-
ent from the unknown phone number of a third person, Bob.
In order to overcome such problems v-tables were proposed.

In v-tables nulls are labeled with sub-scripts and nulls with
the same label denote the same unknown attribute value.
The following v-table illustrates our example.

Name Tel

Mary ⊥1

John ⊥1

Bob ⊥2

It turns out that v-tables can only say that some labeled
nulls are the same but not to express more interesting con-
straints on them, for instance, that Mary’s age is between
30 and 35 and that she is younger than John and older than
Bob. These constraints can be captured by c-tables which
are essentially v-tables equipped with an extra column to
store (local) boolean constraints on the labeled nulls and
constants. The following c-table illustrates our example.

Name Tel Age Con

Mary ⊥1 ⊥3 ⊥3 ∈ [30, 35]
John ⊥1 ⊥4 ⊥3 < ⊥4

Bob ⊥2 ⊥5 ⊥5 < ⊥3

In the following we refer to sets of Codd tables as Codd
multi-tables. Analogously we define v- and c-multi-tables.

The semantics Rep(T ) of v-tables and c-tables T is similar
to the one of Codd tables with the difference that in v-tables
one should substitute all occurrences of the same labeled
null with the same constant and in c-tables after the sub-
stitutions one should delete tuples from the obtained table
where components of the tuple do not satisfy the constrains
associated to the tuple [16].

World-set decompositions (WSDs) were proposed in [4] to
represent any finite sets of relational databases. WSDs are
equivalent to restricted c-tables, namely, c-tables with finite
ranges for the labeled nulls.

SQL nulls, usually denoted as ω, are a standard engi-
neering approach to deal with incomplete information in

1653



RDBMS. Semantically SQL nulls are constants but, while
evaluating SQL expressions, SQL interpreters should treat
them differently from other constants. For instance, the se-
mantics of Boolean expressions that involve ω is based on a
three-valued logic, join operation on ω is forbidden [7]. The
main difference between SQL nulls and nulls in previously
considered formalisms is that ω is a constant. Consequently,
a table with ω is not a representation of a set of tables, but
a single relational table with constants.

We notice that the fact that one cannot join relations on ω
will have a significant impact on the integration of instances
that contain ω (see Section 5).

In the following we discuss how to query incomplete DBs.

2.1.2 Semantics of Queries
In the case of complete DBs queries are mappings from

DBs to DBs. What should a query q output when the in-
put, say I, is an incomplete DB, that is a set of relational
databases? There are two approaches to this question pro-
posed by the community.

• Incomplete DB as output. In this case, the answer set
of q over I, written q(I), is obtained (conceptually) by
applying q to each element D of I separately, that is,

q(I) := {q(D) | D ∈ I},

which is a set of relational databases, that is, an in-
complete DB.

• Complete DB as output. In this case, the answer set of
q over I is a set of tuples. One distinguishes between
certain and possible answers. A tuple of constants is a
possible answer if it is returned by q over some D ∈ I
and it is a certain answer if it is returned by q over
every D ∈ I. Technically, sets of possible and certain
answers are defined, respectively, as follows

Poss(q, I) =
[

D∈I

q(D),

Cert(q, I) =
\

D∈I

q(D).

It is worth noting that that both possible and certain an-
swers can be obtained from q(I) by taking the union

S
q(I)

or the intersection
T
q(I), respectively, of all elements of

q(I).
We notice that in information integration the most widely

accepted approach is to use certain answers. We now discuss
how to compute answers to queries under any of the two
semantics.

2.1.3 Computing Answers to Queries
In the general case it is obviously infeasible to perform

a “naive” query evaluation over an incomplete DB, that is,
to query all the DBs in the input set separately. Hence, a
natural need is (i) to query a representation of the input in
a consistent way, that is, the result of the query should be
the same as if the input set was naively queried. If the query
result is defined as an incomplete DB, then the next need
is (ii) to represent the output in the same representation
formalism as the input. Both needs could be illustrated as
[2]:

Rep(q̃(T )) = q(Rep(T )), (1)

where q̃ is a function that evaluates q over representation T
and q̃(T ) is represented in the same formalism as T .

In [16] Imielinski and Lipski investigated for which rep-
resentation systems and which relational algebra operators
Equation 1 holds. They proposed techniques for querying
the representation systems and showed that Codd tables
support projection and selection but do not support projec-
tion and join together. V-tables support arbitrary positive
queries, that is, projection, positive selection, union, join
and renaming of attributes but do not support selection with
negative conditions, while c-tables support all of relational
algebra. WSDs support projection, product and union [4].

In order to compute certain answers over an incomplete
DB I represented by T , one can query T with the relational
operators supported by T and then “clean” the resulting
representation T ′ from tuples that contain nulls. For exam-
ple, if T is a v-multi-table, then certain answers for positive
p are tuples from a v-table T ′ without labeled nulls.

3. INFORMATION INTEGRATION
Since the early 1990’s, there has been considerable interest

in integrating information from heterogeneous data sources.
Most of it is in the tradition of Wiederhold’s seminal paper,
where he envisioned collections of sources being queried via
a mediated or “global” schema – as opposed to the “local”
schemas of the sources [22]. The global schema is usually de-
noted as Σ. To simplify our exposition we assume that there
is a single local schema L which combines the schemas of
the relations in the sources. In this framework the question
arises how to describe the connections (usually called map-
pings) between the mediated and the source schema. Ullman
distinguished two approaches [21], which are called “global-
as-view” (GAV) and “local-as-view” (LAV). In GAV the
global relations from Σ are described in terms of views over
relations from L, while in LAV the local relations from L are
described in terms of views over relations from Σ. Mappings
are usually written as:

e1 : vl(~x, ~y) ; g(~x), e2 : l(~x) ; vg(~x, ~y),

where the mapping on the left hand side is GAV and the one
on the right hand side is LAV, e1, e2 are the names of the
mappings, l and g are relations, from the local and global
schemas, respectively, and vl and vg are views over the local
and global schemas, respectively.

The global schema represents a virtual (usually called
global) DB, the content of which is (not completely) deter-
mined by the sources and the mappings, that is, the global
DB is an incomplete DB. In order to query sources trough
the global schema one can compute the global DB, using the
data in the sources and query it directly (this approach is
called materialized integration) or identify which data in the
sources is relevant to a given query and extract this relevant
data only (virtual integration).

Consider examples of GAV and LAV mappings. Let the
local schema consist of

• Couple(Husband,Wife) that lists all married couples,

• Emp(Name,Company,Tel) that lists employees with the
places of their work and their telephone numbers and

• Company(Name) that lists all registered companies.

and the global schema consists of Phone(Name,Tel) that lists
people with their telephone numbers.
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The mappings are in the table below:

Type Mapping

LAV Couple(x, y) ; ∃z.Phone(x, z), Phone(y, z)
GAV Employee(x, y, z), Company(y) ; Phone(x, z)

We use Prolog-like notation for the mappings and the views
are conjunctive. The LAV mapping describes the local rela-
tion Couple in terms of a view over the global relation Phone.
Namely, it “relates” married couples (x, y) and people that
have the same phone number z in the phone book. The
GAV mapping describes the global relation Phone in terms
of a view over the local relations Employee and Company.
Namely, it “relates” a person x that works for a registered
company y with the phone number z and a person recorded
in the phone book. The meaning of “relates” depends on
the interpretation of “;”.

Usually “;” is interpreted as one of the three logical re-
lations “→”, or “←”, or “≡” [17]. In the first case the
mapping says that the global DB contains at least the data
from the sources (sound mapping). In the second and third
it says, respectively, that the global DB contains at most
(complete mapping) and exactly (exact mapping) the data
from the sources. If the LAV mapping from the example
is sound, the global table Phones has at least the phone
numbers of all couples from Couple.

The classical approach to II defines the semantics of the
global DB as an incomplete DB, that is, the global DB is
the set of all global instances compatible with the source
instance and the mappings. Formally, an information inte-
gration setting is a pair 〈I,M〉, where I is a source instance
over L and M is a set of mappings [13, 17]. We say that a
global instance J over Σ is compatible with I wrt to a sound
LAV mapping e : l(~x)→ vg(~x, ~y), where l ∈ L, if

lI ⊆ vg(J),

where vg(J) is the extension of the global view vg over J .
Analogously, one can define compatibility wrt other types
of mappings. The semantics of the setting or the global DB
is defined as a set of instances GM(I), or G(I) when M is
clear from the context, obtained as follows:

G(I) = {J | J is compatible with I}.

For example, the semantics of a setting with the instance
I that consists of a single relation Couple with a single tuple,

I = {Couple(Mary, John)},

and the LAV mapping considered above can be represented
by a v-multi-table, that is,

G(I) = Rep({Phone(Mary,⊥1), Phone(John,⊥1)}).

In fact, such a representation by a v-multi-table is possible
for arbitrary LAV integration settings (see Theorem 3.1).

The goal of II is to provide a user with a query interface
over a set of sources, that is, to enable the user to get answers
q(〈I,M〉) for a global query q from an integration setting
〈I,M〉. The classical approach [17] defines q(〈I,M〉) as the
set of certain answers of q over G(I), that is, as Cert(q,G(I)).

We refer to LAV integration settings where all the views in
the mappings are conjunctive as conjunctive LAV settings.
To summarize, the following theorem holds.

Theorem 3.1. Let 〈I,M〉 be a sound conjunctive LAV
integration setting and q be a conjunctive query. Then:

• There is a v-multi-table T such that G(I) = Rep(T ),

• Cert(q,G(I)) = {~t | ~t ∈ q(T ), ~t has no labelled nulls}.

It can be shown that the v-multi-table T from the theorem
can be computed by chasing I with M. We denote the
function that computes T by chasing I as TM(I).

4. PROBLEMS TO INVESTIGATE
As we saw in Section 3, in the classical approach the

sources are complete, the global DB is incomplete and the
answers are certain, that is, complete. Therefore, incom-
pleteness is only in the global DB and it comes from map-
pings and/or constraints. As a consequence, using the classi-
cal approach one cannot perform integration of sources that
result from integration, that is, are incomplete databases.

In general, we lacking a uniform theory that combines in-
formation integration with the topic of incomplete informa-
tion by allowing the sources and the answers to be incom-
plete. We also lacking methods and (efficient) algorithms
to perform incomplete information integration. This work
aims to propose such a theory and such algorithms.

More precisely, the problems we are interested in are:

• Semantics of III : What is the global DB GM(I) for
incomplete sources I?

• Semantically correct representations of GM(I): Given
that I is represented by a formalism A, what is a good
formalism B to represent GM(I)?

• Forms of answers for III : What are meaningful an-
swers (e.g. certain, incomplete) for queries in III?

• Computation of answers: How can one retrieve these
meaningful answers in III?

• Integration over integrations: How can one perform an
integration of sources that are themselves results of an
integration?

Regarding the related work, there is a body of research
done on incompleteness that stems from mappings and con-
straints [5, 9, 6] but to the best of our knowledge nothing has
been done to treat incompleteness originating from sources.

Although a considerable amount of work has been done
in the past few years on query processing via rewritings on
integration of complete sources by means of LAV mappings
(see for example [1, 8, 18]), to the best of our knowledge,
there are no attempts to develop rewriting techniques for the
integration of incomplete sources. There are also no results
on query rewriting in LAV integration when the sources are
LAV integration settings themselves.

The question of integrating sources that themselves re-
sulted from integrations have been studied in the context
of data exchange by Fagin et al. [10]. In this work the au-
thors consider three schemas, namely, a source schema S,
and two target schemas T1 and T2. They assume to have
mappings MS,T1 from S to T1 and mappings MT1,T2 from
T1 to T2. The mappings describe how to “ship” the data
from instances of S to the schema T1 and from instances
of T1 to the schema T2, respectively. The authors investi-
gated the problem of finding mappings MS,T2 that “ship”
the data from instances of S to T2 directly and the result of
the “shipping” is the same as if the data was first “shipped”
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to T1 byMS,T1 and then to T2 byMT1,T2 . In the context of
data integration T2 can be seen as a global schema of a data
integration setting with a local schema T1, that at the same
time is a global schema in another integration setting with
the local schema S. In this case we have an integration of
sources that are integration settings. Fagin et al. considered
composition of mappings, while we are interesting in query
rewriting, hence, the results of [10] are not directly applica-
ble for our scenario. Moreover, we assume that the sources
that are integration settings do not expose the underlying
mappings, but only provide a query interface. Consequently,
there is no access to MS,T1 mappings and one cannot per-
form schema composition and use it for query answering in
this kind of data integration.

5. SOURCES WITH SQL NULLS
SQL nulls are a form of incompleteness that often occurs

in relational DBs. In this section we address integration
of sources with SQL nulls. Consider an example of such a
source with two tuples:

Iω = {Couple(John,Mary), Couple(Bob, ω)},

where ·ω in Iω denotes the fact that an instance I may
contain ω.

5.1 Integration With Sound LAV Mappings
In this section we consider sound conjunctive LAV map-

pings only. Consider the mapping e:

e : Couple(x, y)→ Phone(x, z), Phone(y, z), Female(y).

5.1.1 Representing and Querying Global Databases
It turns out that in the presence of SQL nulls an integra-

tion setting 〈Iω,M〉 may be inconsistent, that is, G(I) may
be empty. Formally, 〈Iω,M〉 is inconsistent if there is no
global instance Jω that is compatible with Iω wrt M. Our
example setting with the source

Iω = {Couple(John,Mary), Couple(Bob, ω)},

and the mapping e is inconsistent. The reason is that, due
to the soundness of e, Bob’s unknown wife ω should appear
in the relations Phone and Female of any compatible global
instance Jω. Since the semantics of SQL nulls does not allow
to join on ω, no such Jω exists and the setting is inconsistent.

The following theorem shows that consistency is easy to
check.

Theorem 5.1. For conjunctive integration settings 〈Iω,M〉
the consistency problem is LogSpace in |Iω| and Linear in
|M|.

In the following we assume that all settings are conjunc-
tive and consistent.

For consistent integration settings 〈Iω,M〉, we define the
global DB as the set of all global instances compatible with
the setting. The difference between global DBs for 〈Iω,M〉
settings and global DBs from Section 3 for 〈I,M〉 settings
is the notion of compatibility. Since Iω may contain ω, one
should allow ω to be in any global instance Jω compatible
with Iω wrt to M. One can allow Jω to contain either

• arbitrary occurrences of ω, or

• only occurrences that are justified by the mappings,
that is, ω can be in Jω only if there is a mapping in
M that “ships” ω from Iω to Jω.

We call the first approach open-world- or OW-compatibility
and the second one closed-world- or CW-compatibility. The
names for the approaches are inspired by OWA and CWA
solutions for data exchage settings in [19].

For example, let

Iω = {Couple(ω,Mary)},

then a CW-compatible instance Jω
1 wrt e is

Jω
1 = {Phone(ω, c1), Phone(Mary, c1), Female(Mary),

Phone(Bob, c2)},

where c1 and c2 are constants, and the fact Phone(Bob, c2)
has nothing to do with Iω but it is in Jω

1 to illustrate that
arbitrary tuples are allowed to be in the solutions. An OW-
compatible instance Jω

2 is

Jω
2 = {Phone(ω, c1), Phone(Mary, c1), Female(Mary),

Phone(Bob, c2)}, Female(ω)},

where Female(ω) is a fact in Jω
2 that has ω that is not jus-

tified by the mapping e.
We say that the set of all instances CW-compatible with

Iω is the CW semantics of 〈Iω,M〉 and denote it as GCW (Iω).
Analogously, we define the OW semantics GOW (Iω).

Obviously, the CW semantics is not weaker than the OW
one, that is, GCW (Iω) ⊆ GOW (Iω).

The following Theorem 5.2 shows that one can represent
the global DB of 〈Iω,M〉 using v-multi-tables that may
contain ω. We first describe two semantics Rep(Tω) and
Repω(Tω) for v-multi-tables Tω that may contain ω. In-
stances in Rep(Tω) are obtained from Tω by substituting
labeled nulls with constants distinct from ω and adding tu-
ples without ω. To define Repω(Tω), we refer to labeled
nulls occurring only ones in Tω as singleton nulls and as
joined nulls otherwise. The Repω(Tω) consists of instances
obtained from Tω by substituting singleton nulls with con-
stants or ω and, substituting join nulls with constants dis-
tinct from ω, and adding tuples possibly containing ω.

Theorem 5.2. Let 〈Iω,M〉 be a conjunctive sound LAV
integration setting and q be a conjunctive query. Then there
is a v-multi-table Tω such that

GCW (Iω) = Rep(Tω), and GOW (Iω) = Repω(Tω).

For the evaluation of conjunctive queries q over v-multi-
tables Tω we first generalize the definition of q(Tω): this
evaluation is different from the one in [16] in that a variable
occurring more than once in q cannot be mapped to ω. We
introduce safe assignments as mappings from variables of q
to terms in Tω that never map variables occuring more than
once in q to singleton variables or ω. Now we define qs(Tω)
as the subset of q(Tω) obtained by admitting only safe as-
signments. We notice that safe assignments are variants of
J-homomorphisms in [11].

Our next theorem shows how to compute certain answers.

Theorem 5.3. Let 〈Iω,M〉 be a conjunctive sound LAV
integration setting and q be a conjunctive query. Then there
is a v-multi-table Tω such that

(i) Cert(q,GCW (Iω)) = {~t | ~t ∈ q(Tω), ~t has no nulls},

(ii) Cert(q,GOW (Iω)) ⊆ {~t | ~t ∈ qs(Tω), ~t has no nulls}.
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We notice that certain answers may contain ω, hence, in-
completeness is in a way present in the answers.

Statement (i) of the theorem says that under closed world
semantics certain answers for settings with sources that con-
tain ω can be computed in the same way as for the sources
without ω. But Statement (ii) says that this is not possible
anymore under open world semantics, that is, one can no
longer evaluate conjunctive queries over v-tables in a naive
way. One should use safe assignments, because naive evalu-
ation may retrieve tuples that are not certain answers.

In [11] the problem of containment of conjunctive queries
over DBs with ω was studied. Examples in that paper can be
adopted to show that some cases the inclusion in Statement
(ii) of Theorem 5.3 is proper.

It turns out that the v-multi-table Tω from Theorem 5.2
can be computed by a chase and its size is polynomial in
|Iω|+ |M|.

For example, using the mapping e from above and

Iω
0 = {Couple(ω,Mary)},

the chase Te(Iω
0 ) is the v-multi-table:

{Phone(ω,⊥1), Phone(Mary,⊥1), Female(Mary)}.

5.2 Integration With GAV Mappings
We now consider integration settings with GAV mappings.

Note that in the case without SQL nulls, G(I) can be repre-
sented by a v-multi-table without labelled nulls, which can
be identified with a relational instance J0 (all compatible
databases are supersets of J0). These results can be gener-
alized for the case when Iω may contain ω. Below we only
list our results without specifying the details:

• Any integration setting with GAV mappings is consis-
tent.

• The global DB G(Iω) can be represented by a relational
instance Jω that may contain ω and certain answers
can be computed on the representation. The size of
Jω is polynomial in |M|.

• In order to compute certain answers for monotone queries
without constructing the global DB, one can use a
slightly modified unfolding.

6. MODEL OF INFORMATION INTEGRA-
TION FOR INCOMPLETE SOURCES

In this section we propose a model that generalizes the
classical one for complete sources considered in Section 3.

In our case an information integration setting is a pair
〈I,M〉, where I is a set of instances of L, and M is a set
of mappings. The semantics of the setting is defined as the
set GM(I) or G(I) of instances obtained as follows:

G(I) =
[
I∈I

G(I).

We notice that the semantics for integration of both com-
plete and incomplete sources is an incomplete DB. This as-
sures backward compatibility of the the semantics, when
incomplete sources are singleton sets.

7. SOURCES WITH V-TABLES

As we saw in Section 3, LAV integration of complete
sources admits the representation of global databases by
v-multi-tables. This motivates our work on integration of
sources that are v-multi-tables, assuming that they are re-
sults of other integrations.

In this section an integration setting is a pair 〈I,M〉,
where I can be represented by a v-multi-table T I , that is,
Rep(T I) = I. We refer to these integration settings as v-
integration settings.

7.1 Representing and Querying Global DBs
We observe that v-integration settings under the seman-

tics in Section 6 are always consistent for LAV mappings.
It turns out that global databases for v-integration set-

tings with sound conjunctive LAV mappings can be repre-
sented by v-multi-tables and one can compute a represen-
tation of G(I) by computing the chase TM(T I). The chase
of v-multi-tables with LAV mappings can be defined analo-
gously to the chase of relational instances as in [9].

Theorem 7.1. Let 〈I,M〉 be a v-integration setting with
sound conjunctive LAV mappings M. Then there is a v-
multi-table T , such that

• G(I)=Rep(T),

• Cert(q,G(I)) = {~t ∈ q(T ) | ~t has no nulls}, for any
conjunctive global query q.

The chase TM(T I) is such a T and the size |TM(T I)| is
polynomial in |I|+ |M|.

Our next observation is that the set of all answers for a
positive global query can be represented by querying the
representation of the global DB.

Proposition 7.1. For a conjunctive LAV v-integration
setting 〈I,M〉 and a positive global query q it holds that

q(GI) = Rep(q(TM(T I)).

It turns out that techniques, like in [18] for rewriting
queries using views, can be used to compute the set of rewrit-
ings that return certain answers of conjunctive queries for
v-integration settings with conjunctive LAV mappings. A
set Q of rewritings of q is complete if any rewriting is con-
tained in a rewriting in Q (see [15]).

Theorem 7.2. Let 〈I,M〉 be a v-integration setting with
sound conjunctive LAV mappings M, q be a positive global
query, and Q be a complete set of rewritings of q with the
views from M. Then:

Cert(q,G(I)) = {~t | ~t ∈ Q(TM(I)), ~t has no nulls}
= Cert(Q, I).

We notice that similar results to the ones listed in this sec-
tion hold for integration of Codd tables. The only essential
difference in the techniques is that the chase of Codd tables
requires first to label each null in the table with a distinct
label and then to chase it.

8. INCOMPLETE ANSWERS FOR V-TABLES
We claim that incomplete answers are essential for infor-

mation integration.
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Consider for example an integration scenario, that extends
the one in Section 5. An instance I is the following:

{Couple(John,Mary), Couple(Bob,⊥1)}.

The set M consists of the one mapping:

{Couple(x, y)→ Phone(x, z), Phone(y, z), Female(y)}.

The representation T = TM(I) is the following:

{Phone(John,⊥2), Phone(Mary,⊥2), Female(Mary),

Phone(Bob,⊥3), Phone(⊥1,⊥3), Female(⊥1)}.

One can pose a query to the integration: “Return the
names A of all people that share phone numbers with their
wives and the names of the wives B”. Obviously, from
TM(I) one obtains that these pairs (A,B) are (John,Mary)
and (Bob,⊥3). It is easy to see that certain answers do not
capture this type of answer, since they never contain labeled
nulls.

We define the set of incomplete answers for a conjunctive
global q over a v-integration setting 〈I,M〉 as

Inc(q, I,M) = q(TM(I)).

Incomplete answers for conjunctive queries q(~x) can be
computed via rewriting techniques, like in [18], if one rewrites
the set of queries

Sq = {q(~y) | ~y ⊆ ~x},

that is, by rewriting all the queries obtained from q by drop-
ping some of the output variables. Of course, this leads to
exponentially many rewriting problems1. We are investigat-
ing more efficient approaches.

9. CONCLUSIONS
We provided a semantics for integration of incomplete

sources. We studied some problems of integration for sources
with SQL nulls and v-tables. We also have started to work
on incomplete answers. Currently we are working on in-
tegration of c-tables. Next steps aimed at extending our
results to other types of mappings (that are not sound con-
junctive) and to other representation systems, such as WSDs
and in the long term probabilistic DBs. We also plan to de-
velop implementation techniques to efficiently compute dif-
ferent types of answers.
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