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1. INTRODUCTION
There has been a wide interest recently in managing probabilistic

data [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26]. But in order to follow the rich literature
on probabilistic databases one is often required to take a detour into
probability theory, correlations, conditionals, Monte Carlo simula-
tions, error bounds, topics that have been studied extensively in
several areas of Computer Science and Mathematics. Because of
that, it is often difficult to get to the algorithmic and systems level
aspects of probabilistic data management. In this tutorial, we will
distill these aspects from the, often theory-heavy literature on prob-
abilistic databases. We will start by describing a real application at
the University of Washington, using theRFID Ecosystem; we will
show how probabilities arise naturally, and why we need to cope
with them. We will then describe what an implementor needs to
know to process SQL queries on probabilistic databases. In the
second half of the tutorial, we will discuss more advanced issues,
such as event processing over probabilistic streams, and views over
probabilistic data.

2. OUTLINE
The tutorial is divided into five parts. All topics covered in the

tutorial depend on Part I, which introduces motivating applications
and the probabilistic data model. However, Part II through IV are
independent of each other. Part V will focus on current challenges
of probabilistic data management systems.

Part I. Motivating application and the Proba-
bilistic Data Model (30 minutes)
• An illustration of RFID enabled applications using the RFID

Ecosystem at the University of Washington [21]. Causes and
effects of noisy RFID readings. Impacts of RFID deployment
limitations.

• Basic methods for coping with errors from RFID readings:
particle filters, filtering, smoothing.

• Probabilistic data model. Probabilistic tuples, probabilistic
attributes, and tradeoffs between the two models; Models
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using independence, disjointness, or correlation. Possible
worlds. Data lineage.

Part II. General Query Processing Techniques
(35 minutes)
.

• Extensional plans in SQL, intensional plans, the “safety” con-
dition for plans [8]; general purpose probabilistic inference
based on the Luby-Karp Monte Carlo algorithm.

• Top-K query answering.

• Skyline queries.

• Aggregate queries with group-by and aggregate operators (ex-
pected value semantics); queries a GROUP-BY clause Hav-
ing Clause; OLAP for Probabilistic databases.

Break (30 minutes)
Part III: Processing Probabilistic Events (25 min-
utes)
• Motivation for and definition of events, event queries, and

their semantics on probabilistic data.

• Online event query processing over Markov Chains.

• Offline event query processing over Markov Chains. Index-
ing archived Markov Chains.

Part IV: Advanced Representation for Proba-
bilistic Databases (30 minutes)
• Representation Techniques for Discrete Distributions: basic

Lineage; Views over probabilistic data; World decomposi-
tion.

• Probabilistic database systems: Trio, MystiQ, URanks, Orion,
Monte-Carlo DB.

Part V: Discussions and Open Problems (10
minutes)
We will describe a few short and long term challenges in proba-
bilistic data management.

3. INTENDED AUDIENCE
This tutorial is primarily intended for researchers, developers,

and PhD students. It targets mostly a database audience, but some
parts of this tutorial may be of interest to researchers and practition-
ers in Ubiquitous Computing, while others to experts in Knowledge
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Representation. The emphasis of the tutorial will be on the algo-
rithmic and systems building side of probabilistic databases, and
not on theoretical results. The tutorial will be self contained, and
will assume only a standard background in database systems and
basic probability theory.
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