
Querying and Monitoring Distributed Business Processes ∗

Tutorial

Tova Milo Daniel Deutch
Tel Aviv University

{milo,danielde}@post.tau.ac.il

1. INTRODUCTION
A business process (BP for short) consists of a group of

business activities undertaken by one or more organizations
in pursuit of some particular goal. It usually operates in
a cross-organization, distributed environment and the soft-
ware implementing it is fairly complex. Standards facilitate
the design, deployment, and execution of BPs. In particu-
lar, the recent BPEL standard (Business Process Execution
Language), provides an XML-based language to describe the
interface between the participants in a process, as well as the
full operational logic of the process and its execution flow.
BPEL specifications are automatically compiled into exe-
cutable code that implements the described BP and runs on
a BPEL application server. Processes execution is traced,
and their run-time behavior can be recorded in standard
XML formats.

These new standards not only simplify software develop-
ment, but, more interestingly from an information man-
agement perspective, they also provide an important new
mine of information. Queries about the BPs, that were
extremely hard (if not impossible) to evaluate when the
BP logic was coded in a complex program are now poten-
tially much easier given a declarative specification of the BP.
Furthermore, sophisticated querying, that interleaves static
analysis of the BP specification with run-time process moni-
toring, can now be used for a variety of critical tasks such as
fraud detection, SLA (service level agreement) maintenance,
and general business management. This provides an essen-
tial infrastructure for companies to optimize their business
processes, reduce operational costs, and ultimately increase
competitiveness.

Our goal here to study the new possibilities that this new
generation of BPs brings to process querying and monitor-
ing. We first give, in section 2, a brief survey of the new
generation BP technology and the challenges it raises. Then
in the next two sections we highlight the main properties of

∗The research has been partially supported by the European
Project MANCOOSI and the Israel Science Foundation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

existing approaches for the querying (Section 3) and moni-
toring (Section 4) of BPs, and the consequent challenges.

2. BACKGROUND AND MOTIVATION
A BP usually depends upon various business functions

for support, e.g. personnel, accounting, inventory, and in-
teracts with other BPs/activities carried by the same or
other organizations. Consequently, the software implement-
ing such BPs typically operates in a cross-organization, dis-
tributed environment. It is a common practice to use XML
for data exchange between BPs, and Web services for inter-
action with remote processes [37]. The recent BPEL stan-
dard (Business Process Execution Language [8], also identi-
fied as BPELWS or BPEL4WS), developed jointly by BEA
Systems, IBM, and Microsoft, combines and replaces IBM’s
WebServices Flow Language (WSFL) [24] and Microsoft’s
XLANG [39]. It provides an XML-based language to de-
scribe not only the interface between the participants in a
process, but also the full operational logic of the process
and its execution flow. Because of the complexity of the
BPEL syntax, commercial vendors offer systems that allow
to design BPEL specification via a visual interface, using a
conceptual, intuitive view of the process, as a graph of data
and activity nodes, connected by control flow edges. Designs
are automatically converted to BPEL specifications, which
in turn can be automatically compiled into executable code
that implements the described BP [29].

As mentioned above, declarative BPEL specifications greatly
simplify the task of software development for BPs. More
interestingly from an information management perspective,
they also provide an important new mine of information [36,
31]. Consider for instance a user who tries to understand
how a particular business, say a Web auctioning system, op-
erates. She may want to find answers to questions such as:
Can I place a bid without giving first my credit card details?
What should one do to confirm a purchase? What kind of
credit services are used by the auctioning system, directly
or indirectly, (i.e. by the other processes it interacts with)?
Answering such queries becomes feasible given a declarative
BP specification, like BPEL. For an organization that has
access to its own BPEL specifications, as well to those of co-
operating organizations, the ability to answer such queries,
in a possibly distributed environment, is of great practical
potential.

To support such queries, one needs an adequate query
language, and an efficient execution engine for it. We argue
that it is essential to develop query languages that allow for
an intuitive formulation of queries on BP specifications, and

1512

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

efficient query evaluation, in a distributed cross-organization
environment [5, 14].

A BP (BPEL) specification describes the potential behav-
ior of the BP. An instance of the BP is an actual running
process (that follows the logic described in the specifica-
tion), which includes specific decisions, real actions, and ac-
tual data. BP Management systems allow to trace process
instances - the activities that they perform, the messages
sent or received by each activity, the values of variables,
performance metrics - and send this information as events,
in standard XML format, to log flies or runtime monitor-
ing systems. These are often called in the literature BAM
(Business Activity Monitoring) systems.

To get some intuition about the type of monitoring that
a given BP may require, consider again the Web auctioning
system mentioned above. The system administrator would
like, among others, to guarantee fair play, detect frauds,
and track services usage and performance. This may be
achieved by monitoring the running processes: she can ask,
for instance, to be notified whenever auctioneers cancel bids
too often, or when buyers attempt to confirm bids without
giving first their credit details. She may also want to be
informed whenever the average response time of the data-
base, in a given service, passes a certain threshold, so that
she can fix the problem or switch to a backup database. In
general, monitoring encompasses the tracking, at run time,
of particular patterns in the execution path of individual
processes or in the interaction between different processes,
as well as the provision of statistics on the performance of
one or more processes. One can also query, posteriori, the
BP logs to mine such activity patterns.

Observe that the querying of the potential behavior of BPs
and the monitoring of the actual run of process instances are
complementary. Queries on the specification can be used
to focus on (the parts of) the BPs that require monitor-
ing/logging. Conversely, run-time monitoring/logging can
be used to complement the analysis of process properties
that cannot be statically determined by querying the speci-
fication.

We argue that is important to develop frameworks that
gracefully combine the querying of BP specifications, run
time behavior, and logs, for a comprehensive BP analysis
[6].

Since BPs in general, and BPEL ones in particular, are
promised such a brilliant future, we believe it is important
to develop a solid foundation for querying and monitoring
such processes, thereby providing the essential infrastruc-
ture for companies to optimize business processes, reduce
operational costs, gain real-time visibility into key perfor-
mance indicators, and ultimately increase competitiveness.

3. QUERYING BP SPECIFICATIONS
Depending on the context, a user may be interested to

query (1) the structure of the specification or (2) the behav-
ior of the process defined by it. We refer to such queries as
structural and behavioral queries, resp. Consider for example
a BPEL specification describing the auctioning system in our
running example. A software engineer may wish to query the
specification to find process components that follow a cer-
tain code pattern, say a loop that contains an IncreaseBid
operation; this is an example of a structural query. A sys-
tem analyst may, on the other hand, wish to know whether
the system allows users to perform an unbounded sequence

of bid increments, regardless of how such a sequence is im-
plemented (e.g. with a loop, recursion, or else); this is an
example for a behavioral query. These two classes of queries
are typically categorized in the literature by their invariance
to bisimulation. Intuitively, two specifications are bisimilar
if each one’s execution can be considered as a simulation of
an execution of the other. A query language (or logic) L is
invariant to bisimulation if an evaluation of any formula f
of L on a system R is equivalent to the evaluation of f on
any R′ that is bisimilar to R.

Previous research had addressed each of these classes of
queries separately, as follows.

Program verification. Works in the area of program veri-
fication focus on behavioral queries. There has been a vast
amount of work in the general area of program analysis and
verification (see e.g. [11, 23] for a sample), and more specifi-
cally in the analysis of interactions of composite web services
and BPEL processes [16, 11, 15, 7, 1]. These works are typ-
ically based on modal logics [26] such as LTL, CTL(*) and
µ-calculus, which are all bisimulation invariant. Queries,
formulated as logic formulas, test if the runs of the pro-
gram satisfy a behavioral property. The verification of the
behavioral properties is typically of very high complexity
(from NP-hard for very simple specifications to undecidable
in the general case [28]). Dedicated optimization techniques
and data structures have been developed to accelerate the
process (e.g. [32, 23]).

Database query languages. BP specifications may be ab-
stractly viewed as a set of nested graphs, possibly with re-
cursion: the graphs structure captures the execution flow
of the process components; the nesting comes from the fact
that the operations/services used in a process are not nec-
essarily atomic and may have a complex internal structure
(which may itself be represented by a graph); recursion may
exist due to mutual calls. Database research offers query lan-
guages for semi-structured data in general, and for tree- and
graph-shaped data in particular. But typical database query
languages are sensitive to the exact graph structure and are
not bisimulation invariant [12, 30], hence express only struc-
tural queries. They also typically consider only flat graphs.
This line of research on querying XML and semi-structured
data led to the development of standard query languages, an
array of query optimization techniques for query evaluation
in both centralized and distributed environments [27, 19, 38,
34, 10, 5, 2], and the identification of language fragments
with good balance between expressibility and low complex-
ity [17].

Overall, each of these lines of works have some very impor-
tant merits and some limitations. We believe that an effec-
tive solution can be achieved by combining the best features
of the two paradigms: structural querying and efficiency of
query processing and distributed data management of data-
base systems, with behavioral analysis and dedicated data
structures from program verification [13]. We envision a sys-
tem where users can issue declarative queries on both the
structure of BP specifications and the processes expected
behavior, with efficient query processing and transparent
management of distributed data.

1513

4. MONITORING BPS
BP Management systems allow to trace process instances

- the activities that they perform, the messages sent or re-
ceived by each activity, the values of variables, performance
metrics - and to send this information as events, at runtime,
to monitoring tools (often called in the literature BAM –
Business Activity Monitoring) [33, 9, 35, 4, 20, 21]. Events
are reported in standard XML formats to enable interoper-
ability. Typical monitoring systems are composed of three
layers: a layer that absorbs the stream of events coming from
the BP execution engine, a processing and filtering layer
that selects relevant events/data and automatically triggers
actions, and a dashboard that allows users to follow the
process progress, view custom reports and statistics on the
processes and send alerts. The events can also be logged
and be available to be queried/mined posteriori.

While rather powerful, existing tools are dedicated to the
monitoring and mining of run-time events. A process analy-
sis, that interleaves static analysis of the BP specification
with run-time analysis of the events stream generated by
the process instance, is not possible, using existing tools.

In contrast, the use of uniform query languages for query-
ing both static and streamed data is common in database
system [22, 3]. We have mentioned above that the events
sent to BP monitoring systems have standard XML format
and that BP (BPEL) specifications are also written in XML.
A natural question is why not use XQuery, coupled with
some existing XML stream-processing engine (e.g. [18, 25]),
for the task? We have already mentioned above the limi-
tation of database query languages in general, and XQuery
in particular, for the querying of BP specifications. XML-
stream processing engines are also not the best fit here for
monitoring the events trace. A key observation is that the
XML elements in this stream each describe an individual
event. To express even a very simple inquiry about a process
execution flow, one needs to write a fairly complex XQuery
query that performs an excessive number of joins of such
elements and is difficult (if not impossible) to handle by ex-
isting streaming engines. Furthermore, even if a more query-
friendly nested XML representation, that reflects the flow,
had been chosen for the data, standard XML stream process-
ing would still not be adequate for the task: XML stream
engines manage tree-shaped data and not DAGs (directed
acyclic graphs), which is the typical structure of processes
trace. More importantly, they expect to receive the tree
elements in document order (i.e. from left to right) and
process sibling branches sequentially. But the events flow in
BPs does not necessarily follow this order: events of parallel
activities may interleave. Deferring the processing of incom-
ing events of a given process branch until all the events of its
sibling have been processed may cause an unnecessary and
significant delay. A dedicated parallel processing is required
here.

Here again, we believe that an adequate solution may
be achieved by combining the best features of the existing
technologies, enriching them where needed, to obtain a uni-
form framework for querying BP specs, run time behavior,
and logs. This will allow to use specifications analysis to
identify process parts that require monitoring/logging and,
conversely, exploit monitoring/logging to clarify issues that
could not be determined statically.

5. REFERENCES
[1] S. Abiteboul, Zoe Abrams, Stefan Haar, and T. Milo.

Diagnosis of asynchronous discrete event systems:
datalog to the rescue! In Proc. of ACM PODS, 2005.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic xml documents with
distribution and replication. In Proc. of ACM
SIGMOD, 2003.

[3] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: semantic foundations and query
execution. The VLDB Journal, 15(2):121–142, 2006.

[4] BEA. Weblogic application server.
http://www.bea.com.

[5] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo.
Querying business processes. In Proc. of VLDB, 2006.

[6] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring
business processes with queries. In Proc. of VLDB,
2007.

[7] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull,
and M. Mecella. Automatic Composition of
Transition-based Semantic Web Services with
Messaging. In Proc. of VLDB, 2005.

[8] Business Process Execution Language for Web
Services.
http://www.ibm.com/developerworks/library/ws-
bpel/.

[9] M. Castellanos, F. Casati, M. Shan, and U. Dayal.
ibom: A platform for intelligent business operation
management. In ICDE, pages 1084–1095, 2005.

[10] L. Chen, A. Gupta, and E. Kurul. Stack-based
Algorithms for Pattern Matching on DAGs. In Proc.
of VLDB, 2005.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[12] M. Consens and A. Mendelzon. The g+/graphlog
visual query system. In Proc. of ACM SIGMOD, page
388, 1990.

[13] D. Deutch and T. Milo. Querying structural and
behavioral properties of business processes. In Proc. of
DBPL, 2007.

[14] D. Deutch and T. Milo. Type inference and type
checking for queries on execution traces. In Proc. of
VLDB, 2008.

[15] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and
D. Zhou. A verifier for interactive, data-driven web
applications. In Proc. of ACM SIGMOD, 2005.

[16] E.Clarke, O. Grumberg, and D. Long. Verification
Tools for Finite State Concurrent Systems. In A
Decade of Concurrency-Reflections and Perspectives,
volume 803, pages 124–175. Springer-Verlag, 1993.

[17] G. Gottlob, C. Koch, and R. Pichler. Efficient
algorithms for processing xpath queries. ACM Trans.
Database Syst., 30(2):444–491, 2005.

[18] A. K. Gupta and D. Suciu. Stream Processing of
XPath Queries with Predicates. In Proc. of ACM
SIGMOD, 2003.

[19] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu,
and I. Tatarinov. The piazza peer-data management
system. Trans. on Knowledge and Data Engineering,
16(7):787–798, 2004.

[20] HP. Openview bpi. http://www.hp.com.

1514

[21] Ilog jviews. http://www.ilog.com/products/jviews/.

[22] N. Koudas and D. Srivastava. Data Stream Query
Processing. In Proc. of VLDB, 2003.

[23] M. Lam, J., V. B. Livshits, M. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program
analysis as database queries. In PODS, 2005.

[24] F. Leymann. Web Services Flow Language (WSFL)
1.1, May 2001. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[25] X. Li and G. Agrawal. Efficient Evaluation of XQuery
over Streaming Data. In Proc. of VLDB, 2005.

[26] Zohar Manna and Amir Pnueli. The temporal logic of
reactive and concurrent systems. Springer-Verlag New
York, Inc., New York, NY, USA, 1992.

[27] J. McHugh and J. Widom. Query optimization for
XML. In The VLDB Journal, pages 315–326, 1999.

[28] S. Narayanan and S. McIlraith. Analysis and
simulation of web services. Compute Networks,
42:675–693, 2003.

[29] Oracle BPEL Process Manager 2.0 Quick Start
Tutorial.
http://www.oracle.com/technology/products/ias/bpel/index.html.

[30] J. Paredaens, P. Peelman, and L. Tanca. G-log: A
graph-based query language. IEEE Trans. Knowl.
Data Eng., 7(3):436–453, 1995.

[31] D. Roman and M. Kifer. Reasoning about the
behavior of semantic web services with concurrent
transaction logic. In Proc. of VLDB, 2007.

[32] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In POPL, 1999.

[33] D. M. Sayal, F. Casati, U. Dayal, and M. Shan.
Business Process Cockpit. In Proc. of VLDB, 2002.

[34] D. Suciu. Distributed query evaluation on
semistructured data. Database Systems, 27(1):1–62,
2002.

[35] B. van Dongen, A. de Medeiros, H. Verbeek,
A. Weijters, and W. van der Aalst. The prom
framework: A new era in process mining tool support.
In ICATPN, pages 444–454, 2005.

[36] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang,
V. Markl, A. Maier, and T. Kraft. An approach to
optimize data processing in business processes. In
Proc. of VLDB, 2007.

[37] The World Wide Web Consortium.
http://www.w3.org/.

[38] Y. Wu and H. Jagadish. Structural join order selection
for xml query optimization, 2003.

[39] XLANG: Web Services for Business Process Design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-
c/default.htm.

1515

