
When is it Time to Rethink the Aggregate Configuration of
Your OLAP Server?∗

Katja Hose, Daniel Klan, Matthias Marx, Kai-Uwe Sattler
Faculty of Computer Science and Automation

TU Ilmenau, Germany

{first.last}@tu-ilmenau.de

ABSTRACT
OLAP servers based on relational backends typically exploit
materialized aggregate tables to improve response times of
complex analytical queries. One of the key problems in this
context is the view selection problem: choosing the optimal
set of aggregation tables (called configuration) for a given
workload. In this paper, we present a system that contin-
uously monitors the workload and raises a quantified alert,
when a better configuration is available. We address the
tasks of query monitoring and view selection at the OLAP
level instead of the SQL level, which simplifies the contain-
ment checks as well as rewriting and in this way helps to
reduce the complexity of the backend system. At the demo
we plan to show how our system works, i.e., how the system
reacts upon arbitrary (interactive) workloads and how the
user is alerted that a better configuration is available.

1. INTRODUCTION
OLAP servers are powerful tools to answer analytical que-

ries in data warehouses. An OLAP server represents data
in a multidimensional cube and usually supports a multidi-
mensional query language (either as a real query language
such as Microsoft’s MDX or as a visual query interface). A
typical implementation variant is ROLAP where the cube is
mapped to a set of base tables in a relational DBMS mod-
eled as star or snowflake schema. Hence, a multidimensional
OLAP query has to be translated into one or a sequence of
SQL queries following the star join pattern and usually con-
taining complex grouping and aggregation operations.

In order to speed up query processing so-called aggrega-
tion tables are used. These tables are (partial) materializa-
tions of query results. To decide which results to materialize
the cost-benefit tradeoff has to be taken into account: ag-
gregation tables improve query response time but require
additional disk space and maintenance costs. The problem
of identifying the optimal set of aggregation tables is called

∗This work was supported by the BMBF under grant
03WKBD2B.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

the view selection problem and due to the large number of
possible aggregations known to be NP complete [7].

Nowadays, commercial DBMS support aggregation tables
in the form of materialized views (Oracle), materialized que-
ry tables (DB2), or indexed views (SQL Server). They
provide sophisticated techniques for query rewriting, incre-
mental maintenance, and – usually implemented as an ex-
ternal administration tool – recommending aggregation ta-
bles [1, 4, 12]. However, particularly the latter step is still
a static solution that has to be carried out manually and
repeated after changes in the data or the workload. In con-
trast, other aspects of physical design tuning (e.g., index
tuning) are successfully moved to an online approach allow-
ing a continuous and more autonomous tuning [3, 9, 10].

Unfortunately, determining the optimum set of aggrega-
tion tables given limited space is a hard problem and a very
expensive process. Thus, such an algorithm should be run
as rarely as possible. In order to determine the necessity
to run such a reoptimization step and similar to the alerter
approach for index tuning proposed in [2], we propose a
light-weight alerter approach that indicates whether there
is a configuration that would be better with respect to the
current configuration. In summary, the system we present
is characterized by the following points:

• The selection of candidate materializations is driven
by the queries processed by the OLAP server.

• We simplify the problem of query containment checks
by carrying out the view selection at the level of MDX
queries instead of SQL.

• The system alerts the user if a better configuration
with respect to the current workload is available and
outputs one such configuration.

• The alert is quantified by the expected cost reduction
with respect to the current configuration and the work-
load.

By taking the view selection problem as well as the query
rewriting problem out of the relational backend we expect
a more simple but still powerful solution as we exploit the
semantics or patterns of the analytical queries. Further-
more, we argue that this helps to reduce the complexity
of the query engine in the spirit of [5]. Finally, we pro-
vide the functionality of aggregation tables also for DBMS
not supporting materialized views natively (e.g., open source
systems). The system is implemented as part of the open
source OLAP server Mondrian [6] and can run on any rela-
tional DBMS providing a cost-based optimizer.

1492

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

2. THE ALERTER APPROACH
The goal of our work is to support the aggregate config-

uration of an OLAP server by (1) continuously monitoring
information about the workload and the benefit of aggre-
gation tables and (2) alerting the user or DBA if changes
to the current configuration would be beneficial. As in the
alerter approach for indexes [2] we “prove” this alert by pre-
senting at least one new configuration that is better than
the current one for the current workload situation.

In contrast to previous work on recommenders for ma-
terialized views and cubes our alerter is part of an OLAP
engine (in our case the Mondrian OLAP server) and not of
the relational DBMS. We have chosen this approach for the
following reasons:

• Because we work at the level of MDX queries the steps
of determining corresponding aggregation tables and
analyzing derivability relationships between aggrega-
tion tables and queries are much easier than at the
SQL level for arbitrary queries.

• OLAP servers such as Mondrian support rewriting of
queries in order to exploit aggregation tables even if
the underlying backend DBMS does not support ma-
terialized views. Thus, an alerter for the OLAP server
supports such DBMS (which includes all open source
DBMS).

• We are able to exploit information about the multidi-
mensional schema such as measure attributes, aggre-
gation levels etc., which are not available at the SQL
level or would require language extensions.

• Finally, we can collect query execution costs (at least
for certain queries) instead of only relying on estima-
tions, because the queries are processed anyway by the
OLAP server.

The alerter is conceptually based on two main components:
the aggregation lattice, which captures the aggregation nodes
(materialized or not) as well as their relationships and a cost
matrix to collect costs for each query / aggregation node
pair. Each cell ij in this matrix (Fig. 1) represents the costs
ci,j for processing query Qi on the aggregation table Mj .
The column M0 represents the base relations. In addition,
for each query a query counter is maintained.

Q1 Q2 . . . Qn

cnt1 cnt2 . . . cntn

M0

M1

. . .
Mn . . .

Figure 1: Cost matrix

In contrast to static optimization approaches, the aggre-
gation lattice is not constructed entirely in advance. Instead,
the following steps are performed:

1. Each processed MDX query is intercepted.

2. For each query the corresponding aggregation node is
inserted into the lattice (if it does not already exist)

by taking the derivability relationship to other nodes
into account. The corresponding aggregation node can
easily be extracted from the MDX query by identifying
the lowest aggregation level for each queried dimen-
sion. Fig. 2 illustrates how derivability can be checked
efficiently by assigning coordinates to each node in the
lattice. For this purpose, hierarchy levels are assigned
numbers, e.g., day-month-year corresponds to 1-2-3.
In our example lattice this means that the node cor-
responding to the aggregation by month and city is
assigned the coordinates (2,3). A node a is derivable
from a node b if: ∀i ∈ D : b[i] ≤ a[i] where D is the set
of dimensions and b[i] denotes the coordinate of node
b in dimension i.

day month year

state

city

customer

oders
(1,1)

(1,2)

(1,3)

(1,4)

(2,1) (3,1)

(3,2)

(3,3)

(2,4)

(2,3)

Figure 2: Aggregation lattice with coordinates

3. In order to consider also common base nodes in the
lattice for which no query has been processed so far,
we can again use the coordinates illustrated in Fig. 2:
Using these coordinates and given two nodes a and b
we can determine the “greatest” node g from which
both can be derived by simply choosing the minimal
coordinates: ∀i ∈ D : g[i] = min{a[i], b[i]}.

4. The execution costs for the query on each aggregation
node on the path(s) from the newly inserted one to
the node representing the base relations are collected
in the cost matrix, i.e., all nodes that the new one
can be derived from are concerned. These costs are
estimated as follows:
Since queries are processed anyway, we get the exact
execution costs and some statistics for each query Qi.
With this, we can estimate the costs for a table scan
on an aggregation table using the cardinality of the
query result set, the average tuple size, the fill factor
of the page, and the page size. That is, we estimate
the costs for a query Qi on the aggregation table Mi

with

ci,i = |Qi|·tuplesize·fillfactor
pagesize

If a query Qk is processed on an aggregation table Mi,
the DBMS reads the table and computes some addi-
tional aggregation functions and projections. In gen-
eral, the execution costs are dominated by scanning
and sorting the basic aggregation table. Aggregation
and projection costs are not significant. Since com-
puting query Qj on the aggregation table Mi is a sim-
ple table scan followed by necessary aggregations and

1493

projections (joins are eliminated by the aggregation
table), we can use the following heuristic to estimate
the costs for a query Qj on an aggregation table Mi:

cj,i =

(
ci,i + csort(Mi) Qj is derivable from Mi

cj,0 else

Based on the cost matrix the benefit of an aggregation
table Mi can be calculated by taking the costs of all queries
into account, for which no (materialized) aggregation node
Mk 6= Mi with lower costs exists:

benefit(Mi, Qj) = (cj,0 − cj,i) · cntj

benefit(Mi) =
X

j

benefit(Mi, Qj) with 6 ∃Mk : k 6= i,

k > 0 ∧Mk is materialized ∧ cj,k < cj,i

The optimization goal is now to find a configuration C ⊆
{M0, M1, . . . , Mn} that maximizes the benefit by taking space
constraints into account. For this purpose, several algo-
rithms have been presented in the literature [7, 8, 11].

However, these are rather expensive algorithms. Thus,
for an alerter we are interested in answering the question:
Is there a better configuration than the current one? For this
purpose, we assume an existing configuration and consider
minimal changes, i.e., adding a single new aggregation node
to the current configuration (and eventually drop a less ben-
eficial one). Checking for a new configuration is triggered
by the following events:

• a query counter in the cost matrix has changed,

• a new row or column was inserted into the cost matrix.

In both cases the benefits of the affected aggregation nodes
are recalculated. If all affected rows represent already ma-
terialized aggregation tables, there is no need to change
the configuration. When triggered, the alerter evaluates all
possible new configurations C1, C2, . . . which can be con-
structed by adding one of the affected aggregation nodes to
the current configuration C0. For this purpose, the bene-
fit deltas are calculated and the configuration Ci with the
highest improvement of the overall benefit is returned to
the user. This allows him to decide if a reconfiguration is
necessary.

In our prototype several strategies for dealing with mate-
rialization costs as well as workload drifts can be used by
the alerter. One of them is to consider materialization costs
for new aggregation tables as negative benefit. Furthermore,
we could introduce a simple LRU-k strategy for aging the
query counters to reduce the impact of older queries.

To avoid missing a better configuration simply due to a
restrictive limit for the configuration size, we apply a prin-
ciple from economics: Gossen’s First Law or the concept of
diminishing marginal utility. It basically says that although
the total utility of a good increases as more of it is consumed,
the additional satisfaction (the marginal utility) usually de-
creases with additional consumptions if a certain threshold
of satisfaction is reached. For the problem of view selection,
disk space is the good and the benefit of views represents
the utility. That means, we allow to add a new aggregation
table even if the total size (i.e., the required disk space) of
the configuration is exceeded as long as the slope of the line
connecting two benefit values in the function of benefit over
the size is above a certain threshold.

3. ARCHITECTURE
In this section, we illustrate the implementation of our

alerter approach as part of the Mondrian OLAP server. The
Mondrian server is running on a DB2 database backend.
Mondrian itself uses a browser-based frontend for user in-
teraction (Fig. 4(a)). For this purpose, the OLAP query
result is rendered by the JPivot1 library.

We extended Mondrian by an alerter, an admin console,
and a configuration recommender. The alerter is based on
an aggregation monitor, which observes the workload and
propagates changes to the aggregation lattice and the cost
matrix. The alerter component monitors the cost matrix
and notifies the admin console if there exists a better con-
figuration than the current one. In that case, the choice is
upon the user: keep the current configuration or change it.
On the one hand, there is the fast but not optimal configu-
ration proposed by the alerter as it considers only changes
detected by the alerter. On the other hand, there is the
configuration recommender, which uses a greedy-based op-
timization strategy to determine the best configuration for
the current workload. The configuration recommender may
find the optimal configuration but it is very expensive. The
architecture of the overall system is shown in Fig. 3.

SQL
Generator

Aggregate
Manager

Sc
he

m
a

+
Di

m
en

sio
na

l
M

an
ag

er

SQL
Database

MDX
Parser Evaluator

MDX Result

Aggregate
Monitor

Alerter

Lattice

Statement

Configuration
Recommender

Alerter

Cost Matrix

Admin
Console

Figure 3: Architecture of the demonstration system

4. DEMONSTRATION
For our demonstration we use two different kinds of work-

loads on a data cube: (i) a batch of MDX queries and (ii)
an interactive session of OLAP queries using Mondrian’s
browser-based frontend. Using these workloads we demon-
strate the online collection and evaluation of information
about the workload and the benefit of (potential) aggrega-
tion tables. Both workloads are designed to contain shifts
requiring an adaptation of the aggregation configuration.

1http://jpivot.sourceforge.net/

1494

(a) Mondrian’s browser-based frontend (b) Admin console

Figure 4: Screenshots

The need for a reconfiguration is observed by the alerter
that intercepts all incoming queries.

At the demonstration, we provide a console application
that visualizes the aggregation lattice and the cost matrix
(Fig. 4(b)). Red nodes in the lattice represent non-material-
ized aggregation tables and green nodes represent material-
ized aggregation tables, i.e., the summary of all green nodes
corresponds to the running configuration. On the right hand
side of Fig. 4(b) some node statistics (cardinality, space con-
sumption) and the corresponding MDX and SQL queries are
displayed. The cost matrix shows the cost and benefit in-
formation of all nodes.

The alerter state is visualized by a gauge showing the
benefit of a new configuration (if any exists). The gauge vi-
sualizes the differences between the current (running) con-
figuration and the best configuration recommended by the
alerter scaled to a user defined presetting.

The user is now able to extract the configuration recom-
mended by the alerter or initiate an exhaustive optimization.
We can prove the validity of the alerter’s recommendation
by re-running the captured workload on the optimized con-
figuration.

5. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V. Narasayya.

Automated Selection of Materialized Views and
Indexes in SQL Databases. In VLDB ’00, pages
496–505, 2000.

[2] N. Bruno and S. Chaudhuri. To Tune or not to Tune?
A Lightweight Physical Design Alerter. In VLDB 06,
pages 499–510, 2006.

[3] N. Bruno and S. Chaudhuri. An Online Approach to
Physical Design Tuning. In ICDE ’07, pages 826–835,
2007.

[4] S. Chaudhuri and V. Narasayya. An Efficient
Cost-Driven Index Selection Tool for Microsoft SQL
Server. In VLDB ’97, pages 146–155, 1997.

[5] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning
RISC-Style Database System. In VLDB ’00, pages
1–10, 2000.

[6] P. Corporation. Pentaho Analysis Services: Mondrian
Project. http://mondrian.pentaho.org, 2007.

[7] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing Data Cubes Efficiently. SIGMOD ’96,
pages 205–216, 1996.

[8] M. Lee and J. Hammer. Speeding Up Materialized
View Selection in Data Warehouses Using a
Randomized Algorithm. Int. J. Cooperative Inf. Syst.,
10(3):327–353, 2001.

[9] M. Lühring, K. Sattler, K. Schmidt, and E. Schallehn.
Autonomous Tuning with Soft Indexes. In SMDB ’07,
pages 450–458, 2007.

[10] K. Sattler, I. Geist, and E. Schallehn. QUIET:
Continuous Query-driven Index Tuning. In VLDB ’03,
pages 1129–1132, 2003.

[11] C. Zhang and J. Yang. Genetic Algorithm for
Materialized View Selection in Data Warehouse
Environments. In DaWaK ’99, pages 116–125, 1999.

[12] D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 Design
Advisor: Integrated Automatic Physical Database
Design. In VLDB ’04, pages 1087–1097, 2004.

1495

