
QueryScope: Visualizing Queries for
Repeatable Database Tuning∗

Ling Hu
Northeastern University

Boston, MA, USA
audnyhu@ccs.neu.edu

Yuan-Chi Chang Christian A. Lang
IBM T.J. Watson Research Center

Hawthorne, NY, USA
{yuanchi, langc}@us.ibm.com

Kenneth A. Ross
Columbia University

NYC, NY, USA
kar@cs.columbia.edu

Donghui Zhang
Northeastern University

Boston, MA, USA
donghui@ccs.neu.edu

“To understand is to perceive patterns.” — Isaiah Berlin

ABSTRACT
Reading and perceiving complex SQL queries has been a
time consuming task in traditional database applications for
decades. When it comes to decision support systems with
automatically generated and sometimes highly nested SQL
queries, human understanding or tuning of these workloads
becomes even more challenging. This demonstration ex-
plores visualization methods to represent queries as graphs.
We developed the QueryScope tool to help visualize and un-
derstand critical elements of a query, thereby cutting down
the learning curve. We show how the tool allows the user
to drill down on particular queries or to find similarly struc-
tured queries that may exhibit similar tuning opportunities.
The queries shown in the demonstration are taken from real
tuning engagements.

1. INTRODUCTION
The market of decision support systems and business in-

telligence is growing every year. Building data warehouses
to support such systems is a serious undertaking and in-
volves a variety of tools for modeling, ETL, and tuning.
With business requirements getting more and more com-
plex, so do the supporting tools, resulting in sometimes very
long and convoluted queries being issued to the underlying
database system. This is further magnified by the use of
model-driven technology that, while enabling easier reuse
and high-level understanding, also leads to increased nesting

∗This paper describes a user interface that utilizes color in
an essential way. We therefore request that the reviewers
either read an electronic version of the paper, or print the
document using a color printer.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

in queries and extensive table and column aliasing. Com-
pared with a scenario in which all SQL queries are concise
and written by hand, a bigger burden is placed on tuning
the physical schema to achieve the required performance.

Autonomic tuning tools [1, 2, 6, 10, 9, 4, 3] are helpful, but
they do not eliminate the need for physical tuning. Auto-
nomic tuning does not scale well with query complexity. For
example, the view selection problem has a lower bound com-
plexity that is exponential in the query size [5]. For queries
of even moderate length, only a tiny fraction of the search
space of possible tuning decisions can be explored. Shasha
and Bonnet [7] state the challenge well: “Tuning rests on a
foundation of informed common sense. This makes it both
easy and hard.” The informed common sense is accumulated
through learning and practising on real projects, something
that is hard to capture in an autonomic tool.

Query Visualization
To address the problems discussed above, we have designed
and implemented a prototype query visualization system we
call QueryScope. The goals of this system are:

• To communicate the essence of a query (or a collec-
tion of queries) pictorially through a controlled visual
semantics.

• To provide a variety of visualization options so that a
user can focus on the aspects of queries of relevance.

• To visualize queries in the context of a physical schema,
so that schema-specific information such as table sizes
and indexes are incorporated into the query visualiza-
tion.

• To facilitate searches for similar queries, from both
current and prior engagements. A variety of similarity
notions are supported.

• To make the tuning process productive and repeatable.

We show how the visualization allows a user to quickly
identify important features of queries that would take much
longer if one was working from the underlying SQL text. We
also provide examples of how the visualization techniques
were helpful in practice on real data and schema.

To our knowledge, we are the first to propose a systematic
approach to visualize and search collections of large complex

1

1488

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Figure 1: QueryScope Overview.

queries. QueryScope is an important step toward a discipline
of repeatable data warehouse engagements.

2. QUERY TRANSFORMATION AND VI-
SUALIZATION

This section presents the query ingestion and visualiza-
tion techniques in QueryScope. The information flow for our
tool is shown in Figure 1. A preprocessor reads and parses
SQL queries occurring in the data warehouse workload and
generates an XML representation of the queries’ structure.
The XML representation of the queries forms one part of
the so-called Abstract Engagement Descriptor (AED). The
AED also stores schema information, hardware characteris-
tics, and data statistics; in short, everything that is needed
to specify a tuning engagement. The visualization engine
then reads the AED, and generates images based on the
engagement information and user interaction.

2.1 The Abstract Engagement Descriptor
A set of SQL queries from one engagement is parsed by

the preprocessor and transformed into XML format for stor-
age in the AED. The preprocessor assumes that the queries
have already been successfully compiled against the target
database and it does not need to do extensive error check-
ing. Important elements of the query are extracted and
represented in a structured way. Tables, subqueries and
joins between table columns are represented as XML ele-
ments with subquery nodes containing again other tables,
subqueries, and joins. The schema information obtained
from the underlying database system and other configura-
tion information, such as hardware characteristics, database
configuration parameters, data refresh rate and query exe-
cution frequency are also valuable information for tuning
purposes. We do not record all of these in the AED for now,
but plan to incorporate them in the future.

2.2 Visualization Primitives and Design
In this section we show how the AED is visualized. Our

visualization focuses on three basic entities:

• Tables, including base tables, views, and materialized
views.

• Subqueries, at arbitrary levels of nesting.

• Links, connecting combinations of tables and subqueries.

Tables are visualized using colored discs, with the area of
the disc proportional to the table cardinality. Queries and

subqueries are visualized using black circles, with the struc-
ture of the (sub)query shown within the circle. Links are
visualized as lines between tables and/or subqueries. Fig-
ure 2 shows the visualization graphs of two queries, a simple
one (left) and a more complex one (right).

Figure 2: Visualization of Two Queries.

The left query graph in Figure 2 is a simple query example.
The cyan disc represents one table and the pink disc repre-
sents another. The black circle around the pink disc means
that the second table is referenced within a subquery. The
grey line between the cyan disc and the subquery represents
a join conditions between the table and the subquery. The
small red icon in the pink disc stands for index(es) on that
table. This icon is red if joins on that table cannot use the
index column(s) and green if the index is used in joins.

The query graph on the right of Figure 2 comes from a
real deployment and is therefore more complex. The full
SQL query is 192 lines and is omitted due to space limita-
tions. There are many table/column aliases, functions, join
conditions and predicates in the original query. The textual
information is overwhelming to readers. The smaller circle
on the bottom left corner is a bird’s-eye view of the whole
query graph. The rest of the right figure is a zoomed-in
view to show more detail. The tool supports a zoom in/out
function so a user can enlarge any part of a graph to view
details. Figure 2 gives the following initial clues to a user
about the right query graph:

• There are two subqueries inside the query. The top
subquery is more complicated; it has two nested sub-
queries with six tables inside the inner subquery.

• The biggest table (the topmost disc) in green has no
index while the other three smaller tables have indexes.

2

1489

• There are several red index icons, indicating that in-
dexes may not be well chosen for the given joins.

• The subquery on the bottom has five tables and the
three bigger tables have indexes while the two smaller
tables do not.

• From the colors of the tables in each subquery, it ap-
pears that (apart from the big green disc in the top
subquery) the tables being joined are the same (this
can be verified by moving the mouse pointer over the
tables as discussed below).

Some dynamic features of the visualization are not cap-
tured by the static representation of Figure 2. When a user
moves the mouse over an entity, a tooltip will be displayed.
The information displayed depends on the entity:

• Names and local selection conditions for tables or sub-
queries.

• A description of the index type (which columns, pri-
mary or secondary, etc.) for an index.

• The join conditions for a link.

We display this information only when a user’s attention is
focused on the entity. That way, the cognitive load required
to absorb the overall query structure is reduced: no reading
is required.

The main design elements that can be used to convey
information in QueryScope are color, size, and placement.
These are elements that the human visual system is very
good at perceiving [8]. Hence we want them to convey the
most important aspects of our query. Color is used to denote
table identity. The size of a table (or view) corresponds to
its row cadinality and subquery circles are scaled to accom-
modate the included elements. The placement of tables and
subqueries is tricky and it is easy to end up with a graph
with lots of overlaps and intersections. We therefore place
the tables and subqueries in a circular and size-descreasing
sequence in clock-wise order. Overlaps of tables/subqueries
are carefully avoided by computing bounding outlines. The
circular placement is scale-independent, and can be used at
an arbitrarily level of nesting, while still efficiently using the
available screen space. The circular orientation by size is a
simple rule-of-thumb that users can apply in order to nav-
igate the query. Finally, ordering the tables by size means
that repeated patterns (say a join of 3 tables) still look the
same in different places. The placement of links also requires
some thought. To avoid lines intersection and overlap with
other tables or subqueries, we chose to visualize links as a set
of lines radiating outward from the center of the circle of ta-
bles/subqueries to the border of the discs/circles. Thereby,
both line intersection and overlapping with discs/circles are
avoided.

2.3 Workload Visualization
Queries in one database system are oftentimes interre-

lated, especially in analytics systems. To represent connec-
tions between queries, the QueryScope system uses a con-
sistent color for the same table when it occurs in different
queries. The layout of tables and subqueries in different
query graphs conforms to the same principle. And the scal-
ing factor will make sure the ratio between any pair of tables
stays the same. The consistent layout and color assignment
can ensure that if one table occurs in different queries, or
pairs of tables join together in multiple queries, they can be
identified as repeated patterns by the human eye.

Figure 3: Workload Visualization.

Showing a collection of queries in one picture can help a
user identify commonalities between different queries. Fig-
ure 3 shows such a collection as displayed by QueryScope.
In this visualization, we can quickly recognize that there
are some join patterns shared by multiple queries (in this
example, there are four types of join patterns).

3. MINING AND MATCHING EXAMPLES

Figure 4: Top 9 3-way Join Patterns.

Similar join patterns are easy to perceive when the num-
ber of queries is reasonably small (say, less than 100). If
there are thousands of queries stored in the repository, it is
better to employ machine-based mining, similarity search-
ing and ranking in order to reduce the number of candi-
dates to a manageable quantity before presenting it to a
user. QueryScope employees novel query graph mining and
matching algorithms that try to emulate the human percep-
tual system but can scale up to thousands of queries. Our
system currently provides two types of query mining algo-
rithms: (1) common join pattern discovery, and (2) overall
query similarity search.

The first algorithm (join pattern discovery) is useful for
finding and eliminating performance bottlenecks shared by
many queries. For example, if two or three tables are often
joined together, the execution time may be reduced for all

3

1490

involved queries by turning the common join pattern into a
materialized view or by creating indexes on the columns in-
volved in the common join. Figure 4 and Figure 5 show two
steps in this process using QueryScope: first, the most com-
mon join patterns are discovered automatically (Figure 4)
and then the user can pick one of them to explore all queries
that contain that pattern (Figure 4). By exploring indi-
vidual queries, maybe missing indexes are discovered and
added, benefitting all the queries shown in Figure 5.

Figure 5: Queries Containing the 3-way Join Pat-
tern in the Upper Left.

The second algorithm (query similarity search) is useful
for carrying tuning knowledge forward from older engage-
ments. For example, in real data warehouse engagements,
DBAs often have a specific query that they wish to opti-
mize due to the importance of the query or some unmet
response time constraints. By using the query similarity
search in QueryScope, the DBA can find the top-k most
similar queries from the whole repository which contains
thousands of queries from previous engagements. Figure 6
shows an example: given the query on the left, QueryScope
returns the query on the right (from an older engagement)
as the most similar query. It can be seen that there are
additional indexes in the right query graph. Adding similar
indexes to the current engagement may be a first step in im-
proving its performance. The similarity measures used for
finding similar queries are based on a combination of query
tree structure similarity, participating table similarities, join
expression similarities, and query cost similarities.

Figure 6: A Current Query Graph and A Query
Graph in the Past.

4. DEMONSTRATION
QueryScope was written entirely in JAVA. It also employs

the Apache Xalan library for XML parsing. In the demon-

stration, we will show a gallery of SQL queries obtained from
real tuning engagements. By comparing the original query
text with the visualization, we will show how the visual-
ization captures the essence of a query and helps users to
quickly understand the query. We will then show how users
can quickly detect common query patterns by eyeballing the
query collection. The demo will also walk through how the
join pattern discovery and query similarity search can be
employed to discover useful tuning opportunities. Finally,
we will share some anecdotes on how the tool helped to
discover and eliminate suboptimal query patterns in an au-
tomatically generated workload from a real engagement.

5. CONCLUSION
We propose QueryScope, a novel query workload visual-

ization and exploration system. QueryScope uses compact
visual semantics to capture key elements of queries. En-
hanced with common query pattern mining and similarity
search, it enables database consultants to look up queries
captured in related data warehouse projects and examine
opportunities for performance tuning. Conceived after ob-
serving and experiencing the ordeal of multi-page queries
and hours of tuning, our work revisits the old challenges
with a fresh angle.

While we have successfully used QueryScope in some of
our engagements, a thorough assessment of the value of
QueryScope would require putting it in the hands of many
practitioners for use in real customer projects to judge tun-
ing knowledge accumulation and repeatability of the tuning
advice. We intend to pursue this avenue in the future and
to release the tool for public trial. The VLDB demonstra-
tion will hopefully allow us to recruit participants for such
a trial.

6. REFERENCES
[1] R. Ahuja. Self-tuning Memory in DB2 Version 9.

http://www.ibm.com/developerworks/db2/library
/techarticle/dm-0606ahuja/, 2006.

[2] N. Bruno and S. Chaudhuri. Automatic Physical Database
Tuning: A Relaxation-based Approach. In SIGMOD, pages
227–238, 2005.

[3] N. Bruno and S. Chaudhuri. To Tune or not to Tune? A
Lightweight Physical Design Alerter. In VLDB, pages
499–510, 2006.

[4] S. Chaudhuri and V. R. Narasayya. Self-Tuning Database
Systems: A Decade of Progress. In VLDB, pages 3–14,
2007.

[5] R. Chirkova, A. Y. Halevy, and D. Suciu. A Formal
Perspective on the View Selection Problem. In VLDB,
pages 59–69, 2001.

[6] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and
G. Wood. Automatic Performance Diagnosis and Tuning in
Oracle. In CIDR, pages 84–94, 2005.

[7] D. Shasha and P. Bonnet. Database Tuning: Principles,
Experiments, and Troubleshooting Techniques. Morgan
Kaufmann, 2002.

[8] E. R. Tufte. Envisioning Information. Graphics Press,
1990.

[9] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman,
A. Storm, C. Garcia-Arellano, and S. Fadden. DB2 Design
Advisor: Integrated Automatic Physical Database Design.
In VLDB, pages 1087–1097, 2004.

[10] D. C. Zilio, C. Zuzarte, S. Lightstone, and W. M. et al.
Recommending Materialized Views and Indexes With the
IBM DB2 Design Advisor. In International Conference on
Autonomic Computing, 2004.

4

1491

