
Large-Scale Collaborative Analysis and Extraction
of Web Data

Felix Weigel Biswanath Panda Mirek Riedewald
Johannes Gehrke Manuel Calimlim
Dept. of Computer Science, Cornell University

{weigel,bpanda,mirek,johannes,calimlim}@cs.cornell.edu

ABSTRACT
Archived web data is a great resource for scientific research,
but poses serious challenges in data processing and manage-
ment. We demonstrate the Web Lab Collaboration Server,
a platform and service for large-scale collaborative web data
analysis in a distributed computing environment, and show
how it seamlessly supports non-technical users during search,
data extraction and analysis.

1. INTRODUCTION
The web has evolved into a large and rich data source for re-
searchers in many different disciplines like social science, eco-
nomics, linguistics, business and marketing. For example, so-
cial scientists study the structure and dynamics of social net-
works in on-line communities and the blogosphere; economists
search for trends in stock markets; marketing specialists an-
alyze customer preferences and feedback; and linguists track
the spread of neologisms.

The Internet Archive [3] and other public or commercial
archiving services make web crawls persistently available for
analysis. For example, the Internet Archive has collected
petabytes of crawled web data since 1996 which is accessi-
ble to researchers. However, even with such a wealth of data
publicly available, there are three major obstacles in creating
effective and practical analysis applications:

Extraction of structured data sets: Researchers are
typically interested in subsets of the data with specific con-
tents and structure. For example, a social scientist studying
a social network first has to extract the network graph from
a set of archived web pages selected from a specific site or
window of time. Preparing such customized data sets requires
writing extraction scripts tailored to the task at hand. This
is not only time-consuming, but also hard to accomplish for
many researchers in disciplines outside computer science.

Cleaning and formatting data sets: Web data often
contains errors, omissions, inconsistencies and outdated infor-
mation that must be corrected before the analysis. Moreover,

extracted data may need to be reformatted to serve as input
to existing analysis tools. These steps are often needlessly
repeated by different users.

Efficiency and scalability issues during analysis: Pro-
cessing gigabytes or even terabytes of data can easily require
more computing resources than are available at a researcher’s
desktop or lab. But even with sufficient hardware, it is non-
trivial to write analysis code that takes advantage of paral-
lelism, shared memory or distributed computing power and
storage, features that are key to large-scale data analysis.

As a first step toward addressing the challenges in an end-to-
end solution, we present the Web Lab Collaboration Server, a
platform and service for large scale analysis of web data. The
system is designed and built on three key observations:

High-level interface: Many users interested in analyz-
ing web data are experts in domains outside computer sci-
ence. Such users can benefit from an intuitive interface that
hides technical details about how the different components
work and interact. There is a significant amount of work
on graphical web data extraction using wrappers [5], and on
large-scale distributed data analysis using the Map/Reduce
paradigm [1]. More recently, languages like Pig Latin [6],
Sawzall [7] and Dryad [4] have been proposed to facilitate
writing Map/Reduce tasks. However, implementing a com-
plete extraction and analysis workflow using these techniques
is cumbersome for non-technical users. In this demonstration,
we show that complex extraction and analysis tasks can be
accomplished through a simple intuitive GUI, while building
on established Map/Reduce technology in the backend.

Collaborative infrastructure: Data extraction, cleaning
and formatting are time-consuming and tedious tasks. Once
data sets have been prepared for analysis, they should be man-
aged in a central repository to enable reuse and sharing among
a community of researchers. The same applies to the analysis
protocols and results and the extraction code contributed by
different users.

Software-as-a-Service approach: Setting up and main-
taining a large data repository and computing infrastructure
is a complex endeavor, especially as more data becomes avail-
able and analysis requirements evolve. This complexity should
be hidden from the users. However, while considerable ef-
fort has gone into data collection and parallel processing, the
problem of convenient access for ad-hoc analysis has been
largely ignored. We describe a web-based architecture that
enables users to leverage a powerful distributed computing
and archiving platform for their extraction and analysis tasks,
and demonstrate two applications that use our infrastructure

1476

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Figure 1: System architecture of the Web Lab Col-
laboration Server.

to process web crawls from the Internet Archive [3] through
remote services. We are not aware of any other system pro-
viding users with such an end-to-end solution to large-scale
data extraction and analysis.

The rest of the paper is organized as follows. Section 2 de-
scribes the system architecture. Section 3 walks through an
example analysis task to demonstrate the current data extrac-
tion and analysis functionality of the Web Lab Collaboration
Server. Section 4 summarizes our contributions.

2. SYSTEM OVERVIEW
Figure 1 depicts the system architecture of the Web Lab Col-
laboration Server. The core components are the storage and
computing infrastructure and the service layer (center). These
components are hosted at Cornell University, separated phys-
ically from both the crawler (left) and the client applications
(right). We periodically transfer web crawls from the Internet
Archive [3] in San Francisco through a high-speed TeraGrid
connection and store them in our Data Repository. To date,
we have downloaded more than 30 TB of compressed web data
this way. In addition to the full-text content of the web pages,
which is stored in compressed files, we keep metadata about
each page in a relational database. This metadata comprises
the URLs, crawl times, mime types, outlinks, anchor texts etc.
of all pages, plus pointers to the corresponding full-text files
on disk.

A Content Service provides clients with access to the full
text and metadata of archived pages and to extracted data
sets and analysis results. For example, our project web site
[9] features a search tool that internally uses the Content Ser-
vice to retrieve crawled pages based on URL patterns, time
stamps, etc. The Content Service also serves the data extrac-
tion and analysis applications described below. Together, they
are part of a Web Lab Service API that lets clients access the
Data Repository through JSON RPC and Java APIs. The
API is still being expanded and includes more general-purpose
services that are not shown in Figure 1, e.g., for progress mon-
itoring and user management.

The Visual Wrapper Generator is a client-server applica-
tion that allows non-technical users to extract structured data
from web pages without writing any code. On the client side,
a user creates a set of extraction rules, called a wrapper, from
example pages in a web browser using a point-and-click inter-
face. The sample pages are obtained from the Content Service.
When the user is satisfied with the extraction samples, the

wrapper is sent to the server which applies it to similar pages
in the archive. The extracted data set is stored in a relational
Extraction Database where other users can access it through
the Content Service. Figure 2 shows the GUI of the wrapper
generator, which is implemented as a Google Web Toolkit ap-
plication running in an ordinary browser. Section 3.2 demon-
strates the extraction of a data set of book reviews using the
Visual Wrapper Generator. A Flash video of the extraction
process is also available [8].

Users can analyze extracted data sets in various ways using
the Visual Analysis Workbench. This client-server application
acts as a frontend to the Map/Reduce Cluster [1] that is used
for large-scale analysis tasks on the contents of our repository.
On the client side, the user specifies which data sets to pro-
cess and in which way, again using a point-and-click interface
(see Figure 3; a detailed description is given in Section 3.3).
The visual task definition is shipped to the server side and
internally translated into a declarative query language called
Marquee1 which is tailored to make Map/Reduce programs
amenable to automatic optimization. Marquee represents the
analysis task as a sequence of Map and Reduce steps that can
be rearranged, e.g., in order to minimize the number of passes
through the data or the size of intermediate results. Next, the
Marquee query is compiled into Java code to be distributed
and executed on the Map/Reduce Cluster. Before the execu-
tion begins, the specified input relations from the Extraction
Database are dumped to disk and copied to the distributed file
system on the cluster, too. Our current cluster has six com-
pute nodes, each with two 2.66 GHz quad-core Xeon CPUs,
16 GB RAM and 4.5 TB local disk space, and is going to
be expanded to sixty nodes soon. It runs the Hadoop [2]
open-source Map/Reduce implementation. After the analysis
program has terminated, all the output files it generated are
moved from the cluster to disk space in the Data Repository,
along with metadata about the analysis task, input/output
schema, result size and runtime performance. This metadata
is exposed to users that access the analysis results through
the Content Service. Alternatively, the analysis results may
be bulk-loaded to tables in the Extraction Database.

3. DEMO DESCRIPTION
In this section, we describe a typical user session that will be

presented in the demonstration, using the following example.

3.1 Example: Tie Strength in Social Networks
Research on social networks has put forward various hy-

potheses about the dynamics of ties (relations) between mem-
bers of a community. For instance, according to some models,
two people with strong ties to the same third person are likely
to develop a strong tie between each other, too. Assume our
user is a social scientist who wants to test this hypothesis on
the social network of book reviewers at Amazon.com, where
the strength of a tie between any two reviewers can be de-
fined as the number of reviewed books they have in common.
To compute the network structure, the user first needs to ex-
tract the ISBNs of all books in Amazon pages along with the
names of reviewers who reviewed these books. Given two sets
of ISBNs for a pair of reviewers, he can then obtain their tie
strength as the size of the intersection of the two sets.

Figure 2 shows part of a typical Amazon web page with
book reviews (bottom center). Each page describes a single

1Marquee stands for Map/Reduce Query Language.

1477

Figure 2: Screenshot of the Visual Wrapper Generator.

book, including title, ISBN, etc. Each review comes with the
name of the reviewer, but no explicit mention of the book; it
is understood that the review is about the book on the same
page. We demonstrate the following extraction and analysis
tasks:

Extraction Task: Find the subset of book pages from Ama-
zon.com that were crawled in 2005. Extract from each
page the ISBN of the book and the names of reviewers
who reviewed that book.

Analysis Task: For each pair of reviewers, count the number
of reviewed books they have in common and output that
number as their tie strength. To simplify the network
structure, include only ties of strength ≥ 3.

The analysis task can be refined in many ways, e.g., by ex-
cluding pairs of identical reviewers or by comparing the tie
strengths in two crawls from different years. This can be ac-
complished using the techniques described below. However,
for the purpose of the demonstration, we deliberately keep
the example simple.

3.2 Extraction Task
This section describes the first step, the extraction of book

reviews from web pages using the Visual Wrapper Generator.
The GUI of the Visual Wrapper Generator is shown in Figure 2
(see [8] for an animated version). First, the user retrieves
archived Amazon book pages through the metadata search
form (shown in the inset on the right-hand side of Figure 2).
The panel in the upper middle of the screen contains the search
result as a list of hyperlinks to the repository. Clicking on
an item in the list retrieves the corresponding page from the
Content Service and renders it in the panel below the search
result. The screenshot in Figure 2 shows an Amazon book
page from 2005 with the book reviews.

While the page is being rendered, the wrapper tool dynam-
ically adds mouse event listeners to the DOM tree that allow
users to highlight and select any visible element in the page,
without modifying its contents. The user first clicks on one
of the reviews in the page. The tool generates an extraction
rule for this element and shows the full text of that review
in a table on the right-hand side. Additional columns con-
taining the reviewer name and the ISBN of the book appear
as the user selects these elements in the page. Through this
immediate feedback on sample pages, users can easily check
whether the extraction rules are correct. Each rule can be
adjusted in the panel on the lower left, including settings for
extracting attribute values or manipulating strings through
regular expressions. Upon request, the tool also generalizes
the extraction rule so that it captures all other reviews in the
page. When the user is satisfied with the extraction result, he
has the wrapper sent to the server where it is applied to all
pages in the search result. The resulting BookReviews table
is stored in the Extraction Database and registered with the
Content Service. Note that since the actual extraction task
(apart from sample pages) happens on the server, even large
collections are processed efficiently and with a minimum of
traffic between client and server.

3.3 Analysis Task
The analysis task in our example features common data

processing techniques such as filtering, joining, grouping and
counting. Our Visual Analysis Workbench offers a collection
of predefined analysis primitives for these purposes that can
be composed into more complex tasks. Users can also add
their own tasks as new primitives to the pool, thus making
them available for reuse. The following analysis primitives
are currently being implemented:

1478

Set operations: Union, intersection, difference, count, over-
lap (Jaccard coefficient), deduplication

Relational algebra: Selection, projection, inner and outer
equijoin, grouping and aggregation

Text analysis: Word count, term frequency, document fre-
quency, term weights (TF·IDF)

Graphs: Breadth-first search, clustering coefficient

Figure 3: User-specified anal-
ysis task in the Visual Analysis
Workbench.

These primitives can be
freely combined into com-
plex analysis tasks us-
ing a form-based GUI,
as shown in Figure 3.
Each primitive is repre-
sented as a form with
specific parameters and
a description of how
input tuples are pro-
cessed. For exam-
ple, the INPUT primi-
tive reads all tuples from
a user-specified table in
the Extraction Database
and emits them with-
out modification. All re-
maining primitives con-
sume tuples produced by
other primitives. Each
form has an optional sec-
tion for specifying the
output of the primi-
tive. By default, such
intermediate results are
stored in temporary files
on the analysis cluster,
but they may be saved to
the Extraction Database
where they are available
to all users.

In our example anal-
ysis (see Figure 3), the
first step after access-
ing the BookReviews ta-
ble is a selfjoin of that
relation on the isbn

field. The resulting re-
lation SharedBooks con-
tains the books shared
by any two reviewers.
The COUNT primitive then
groups this relation by
reviewer pair and emits
the book count per pair
as its tie strength. The final FILTER primitive refines this to
StrongTies through a selection on the tie strength and saves
the result in the Extraction Database.

When the user has finished editing an analysis task in the
Visual Analysis Workbench, he sends it to the server which
compiles it into Map/Reduce code and executes that code on
the cluster. The compilation works as follows: Each visual
task definition is represented internally as an expression of a
logical algebra whose operators resemble the primitives above.
The mapping between the visual and logical representation is

straightforward; we skip the details in the interest of space.
The logical expression is translated to a physical algebra ex-
pression consisting only of parameterized Map and Reduce
operators that implement the various primitives. Finally, this
Map/Reduce program is compiled into Java code to be linked
against the Hadoop Map/Reduce runtime [2].

Composing analysis tasks in this manner is arguably simpler
and more intuitive than writing either Map/Reduce programs
or SQL queries by hand. Unlike procedural Map/Reduce code,
our declarative analysis specification also opens up interesting
opportunities for optimizing queries that combine relational
operators such as selection and grouping with our extended set
of primitives (see above). While on the logical level the stan-
dard query rewriting rules for relational algebra apply (e.g.,
selection push-down), rewriting on the physical level can alter
the sequence of Map and Reduce steps in order to minimize the
number of passes through the input data and the size of inter-
mediate results. To this end, our declarative query formalism
on the physical level, which we call Marquee (Map/Reduce

Query Language), captures the data flow in the analysis and
static properties of the Map and Reduce operators. For in-
stance, the Marquee representation of the FILTER primitive in
Figure 3 consists of a Map step with the property of leaving
its input keys and values intact, followed by a Reduce step
flagged as performing the identity mapping. Based on these
properties, one possible rewriting rule merges the Map into
the Reduce of the preceding COUNT and eliminates the Reduce
of the FILTER, which is now obsolete. This saves the disk
and network I/O needed to transfer data for another set of
Map and Reduce steps. More work will be needed to develop
good optimization rules and a suitable cost model for effective
rewriting of general Map/Reduce programs.

4. CONCLUSION
We have introduced the Web Lab Collaboration Server, a

platform and service for large-scale collaborative analysis of
web data. Our goal is to turn collections of rich, but unstruc-
tured and noisy web contents into resources that are readily
accessible for ad-hoc analysis in various scientific disciplines.
As a first step, we have demonstrated two applications that
enable users of our web archive at Cornell to write complex
extraction and analysis tasks in an intuitive, integrated envi-
ronment.

5. REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Proc. on Large Clusters. In Proc. OSDI, 2004.

[2] The Hadoop Project. hadoop.apache.org.

[3] Internet Archive. www.archive.org.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks. In Proc. EuroSys, 2007.

[5] Lixto Software GmbH. www.lixto.com.

[6] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language for
Data Processing. In Proc. SIGMOD, 2008.

[7] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the Data: Parallel Analysis with Sawzall.
Scientific Programming, 13(4):227–298, 2005.

[8] Flash video of the Visual Wrapper Generator.
www.cs.cornell.edu/∼weigel/WrapperDemo.

[9] The Cornell Web Lab Project. weblab.infosci.cornell.edu.

1479

