
Ad-Hoc Data Processing in the Cloud

Dionysios Logothetis
UCSD Department of Computer Science

dlogothetis@cs.ucsd.edu

Kenneth Yocum
UCSD Department of Computer Science

kyocum@cs.ucsd.edu

ABSTRACT
Ad-hoc data processing has proven to be a critical paradigm
for Internet companies processing large volumes of unstruc-
tured data. However, the emergence of cloud-based com-
puting, where storage and CPU are outsourced to multi-
ple third-parties across the globe, implies large collections
of highly distributed and continuously evolving data. Our
demonstration combines the power and simplicity of the
MapReduce abstraction with a wide-scale distributed stream
processor, Mortar. While our incremental MapReduce op-
erators avoid data re-processing, the stream processor man-
ages the placement and physical data flow of the operators
across the wide area. We demonstrate a distributed web
indexing engine against which users can submit and deploy
continuous MapReduce jobs. A visualization component il-
lustrates both the incremental indexing and index searches
in real time.

1. MOTIVATION
Ad-hoc data processing is a powerful abstraction for min-

ing terabytes of data. Systems for massive parallel data
processing, such as MapReduce [5] and Dryad [8], allow In-
ternet companies, e.g., Google, Yahoo, and Microsoft, to
mine large web crawls, click streams, and system logs across
shared-nothing clusters of unreliable servers. While tradi-
tionally the job of parallel databases [6], these systems give
programmers a familiar procedural interface to process un-
structured data, and, since the data is often relatively tran-
sient, avoid the overhead of importing the data into a tra-
ditional RDBMS. Today, such systems manage parallel pro-
cessing tasks across tens of thousands of machines in a single
datacenter.

To date, ad-hoc data processing systems process data lo-
cated at a single site in a snap-shot fashion. However, cur-
rent trends in distributed computing are challenging these
assumptions. For example, the cloud-based compute model
allows one to acquire computation, storage, and network
connectivity from a disparate collection of remote infras-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

tructure providers. Such resource providers, such as Ama-
zon’s S3 and EC2 web services or Akamai’s EdgeComputing
platform, allow companies to dynamically out-source CPU
and storage to remote data centers. Recent performance
and availability studies of Amazon’s offerings have shown re-
spectable performance [7]. Indeed, a growing body of small
to medium-sized companies now forgo the costs of manag-
ing computing resources in-house [1]. Similarly, larger com-
panies may simply manage many remote sites themselves,
e.g., a big-box retailer recording local customer transactions
across hundreds of locations.

An additional challenge is that the data is continuously
updated and evolving across time. For example, servers at a
single site generate system and event logs, and peers within
a distributed application may write data to local storage,
such as a distributed web crawler [3]. Because many of the
ad-hoc processing tasks programmers use are amenable to
incremental computation, there is a large opportunity to re-
use previous computations and avoid materializing interme-
diate results. However, current ad-hoc data processing ar-
chitectures require the programmer to explicitly break tasks
into multiple jobs to build pipelines. And, as we show for
MapReduce, even these can leave large opportunities for re-
use on the table.

In this demo we address these challenges by implement-
ing a popular ad-hoc data processing abstraction, MapRe-
duce [5], over a distributed stream processor. We take ad-
vantage of the fact that MapReduce forces programmers to
specify two separable, parallel phases: map and reduce. In
many cases the entire MapReduce job can be performed as
in-network aggregate computation. Thus instead of bringing
data to a central location, the distributed stream processor
orchestrates incremental map and reduce computations to
process unstructured data distributed across the wide area.

We demonstrate the benefits of continuous, incremental
MapReduce by building and querying a distributed web cor-
pus across multiple sites. Beyond reducing the cost of down-
loading the web to a single location, distributed crawling
provides increased opportunities for performing deep web
indexing. For example, giving web publishers control over
intranet crawling allows them to address the presence of dy-
namic content, access restrictions, emerging content types
(e.g., video), and privacy concerns when creating indices.

For our demo, multiple crawlers explore disjoint areas of
the web while a continuous MapReduce job builds each lo-
cal index. The system transforms user queries into con-
tinuous, in-network, MapReduce tasks to query the global
index. A visualization component illustrates the output of

1472

Permission to make digital or hard copies of portions of this work for
personal or classroom use is gr anted without fee provided that copies
are not made or distr ibuted for pr ofit or co mmercial a dvantage and
that copies bear t his notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VL DB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on ser vers or to r edistribute to lists r equires prior specific
permission and/or a fee. Request permission to r epublish from:
Publications Dept. , AC M, I nc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Figure 1: Incremental MapReduce producing a
searchable inverted index across a set of distributed
web crawlers. A client’s continuous MapReduce job
queries the index for a given set of keywords.

user queries, the rate of growth of the index across the sys-
tem, and the impact of node failure on results. Experi-
ence with our prototype indicates that wide-area incremen-
tal MapReduce is a powerful technique for managing data
in the cloud.

2. WIDE-SCALE DATA PROCESSING
This section gives an overview of the technical aspects of

our demonstration. We review the MapReduce abstraction,
and discuss the benefits of incremental MapReduce compu-
tations. We then describe the distributed stream processing
platform, Mortar [9], used to create and manage the physi-
cal MapReduce dataflows. Finally we address the challenges
and implications of adapting the MapReduce abstraction to
a data stream model.

Figure 1 illustrates our demonstration scenario. Here three
nodes distributed across the wide area run a distributed
crawler, such as the Ubi crawler [3] that ensures each peer
walks disjoint pieces of the web. Each node runs a Mortar
peer that can install, execute, and remove continuous map
and reduce operators. The Mortar peer feeds data from
the crawler into an incremental MapReduce job, which in
turn builds an inverted index that is written to persistent
storage. The index maps keywords to the set of documents
containing the keyword. Users query the system by writing
a new continuous query, which Mortar executes as a contin-
uous, in-network MapReduce job. This illustration shows
a simple binary tree of reduce operators aggregating query
results.

2.1 Incremental MapReduce
A MapReduce job splits data processing tasks into two

phases: map and reduce. The map function operates on in-
dividual key-value pairs, {k1, v1}, and outputs a new pair,
{k2, v2}. The system creates a list of values, [v]2, for each
key k2. The reduce function then creates a final value v3

from each key-value list pair. MapReduce implementations [5]
transparently manage the parallel execution of the map phase,
the grouping of all values with a given key (called the sort),
and the parallel execution of the reduce phase. The system
restarts failed tasks, gracefully dealing with machine failures

Figure 2: Incremental updates to views in MapRe-
duce. Here the window range is two increments.

and ensuring reliable operation even when operating across
thousands of cheap PC’s. However, current MapReduce im-
plementations process data in isolated snap-shots.

In contrast, we define an incremental MapReduce job as
one that processes data in large batches of tuples. Like
stream processing systems, an incremental MapReduce task
runs continuously and, to bound processing, specifies a win-
dow range and slide or increment. The system produces a
MapReduce result that includes all data within a window (of
time or data size) every slide1. We also consider landmark
MapReduce jobs where the trailing edge of the window is
fixed (tuples never “expire”), and the system incorporates
new data into the existing result.

Figure 2 illustrates an incremental MapReduce as a col-
lection of three views, each corresponding to a phase in a
single MapReduce job: map, sort, and reduce. From left
to right, each phase transforms the preceding view into a
new relation2. Time progresses from top to bottom, as the
system processes arriving increments; the second index for
each key or value signifies the increment of data that it rep-
resents. Here the window range is equal to two increments,
suggesting that each may be re-used in the next window.

Note that Figure 2 shows materialized windows (the dot-
ted boxes) in the sort and reduce phases. Basic material-
ized view maintenance in a RDBMS ensures that a cached
realization of a common query remains valid as new tuples
arrive. Efficient maintenance avoids re-evaluating the rela-
tional expression on all data when only a few base tuples
change. Such incremental view maintenance depends on
whether the relational function is distributive with respect
to insert or delete operations [10]. A goal of this work is to
provide transparent incremental update support for unstruc-
tured data kept in simplistic, opaque key-value relations.

In that respect, the MapReduce model makes it simple
to reason about updates to the intermediate views relative
to less structured systems, like Dryad [8]. A window of
mapped data is a union of processed increments, and a win-
dow of sorted data may be created through a groupby oper-
ation. Because both operations are distributive aggregates
with respect to insertion and deletion, the system can main-
tain these views in an incremental fashion independent of
the user-defined map or reduce function. However, holis-
tic reduce functions (as in this figure) require the system
to recalculate the reduce output for each window from the
materialized sort. Our current prototype delegates responsi-
bility for efficiently updating those views to the user-defined
reduce function.

1Here the terms increment, delta, and slide are interchange-
able.
2Programmers may also specify a combiner function that
runs as part of the map phase. For simplicity we do not
show that intermediate view.

1473

As a point of comparison, one may emulate incremental
computation with traditional MapReduce by using several,
pipelined MapReduce jobs. Such an approach may require
running additional reduce tasks to combine the multiple in-
termediate outputs [4]. However, there are limitations to
this high-level approach. First, intermediate results are al-
ways written to disk. Second, there is no obvious way to
re-use the output of intermediate sorts, which is critical, as
sort requires each of N reduce tasks to request data from
each of M map tasks.

We address many of these issues by implementing map
and reduce as continuous operators inside an in-network
stream processor.

2.2 Distributed stream processing
We consider a distributed stream processor as the sub-

strate for incremental MapReduce because such systems nat-
urally support continuous operators, placement of operators
across the wide-area networks, and in-network aggregate
functions. In particular, we chose Mortar [9], a platform
for instrumenting end hosts with user-defined stream pro-
cessing operators. The platform manages the creation and
removal of operators, and orchestrates the flow of data be-
tween them. By using Mortar we are free to focus princi-
pally on how to create efficient incremental map and reduce
operators. Mortar takes care of arranging them in network-
aware aggregation trees, routing data around failed nodes,
and ensuring accurate processing in the face of unsynchro-
nized clocks.

Mortar presents a simple API that facilitates program-
ming sophisticated user-defined streaming operators. We
distinguish between the operator, the code that supports the
MapReduce abstraction, and the function, the programmer-
supplied code. Our incremental map and reduce Mortar
operators up call the programmer-defined map and reduce
functions as new data arrives. Those function API’s are
nearly identical to those of the original MapReduce abstrac-
tion, making it easier to “port” existing MapReduce pro-
grams to the wide area. A key difference is that reduce
functions may need to implement an appropriate “remove”
operation to efficiently maintain the view for data exiting
the window.

2.3 Continuous map and reduce
Unlike traditional MapReduce, stream-based map and re-

duce operators run continuously, processing arriving incre-
ments of tuples to update the current views without recom-
puting them from scratch. Map functions are trivially con-
tinuous, and process data on a tuple-by-tuple basis. How-
ever, before the reduce function may process the mapped
data, the data must be partitioned across the reduce opera-
tors and sorted.

When the map operator first receives a new key-value pair,
it up calls the map function and inserts the result into the
latest increment in the map view. The operator then as-
signs output key-value pairs to reduce tasks, grouping them
according to the partition function. Then the map opera-
tor participates in the sort, grouping values by the mapped
keys, k2. While traditional reduce tasks pull data from fin-
ished map tasks, our continuous map operator pushes each
partition of the increment to the appropriate downstream
reduce operator.

Continuous reduce operators participate in the sort as

Figure 3: The indexing query written in the Mortar
Stream Language.

well, grouping values by their keys before up calling the
reduce function. Both operators maintain the sort in nearly
an identical fashion with respect to updates or removals.
In both cases, materialization is simply a union across the
constituent increments followed by a flatten operation. By
keeping a small internal indexing structure, both operators
allow O(1) removals from the mapped or sorted materialized
view. Continuous reduce operators can integrate a new in-
crement without re-reading, re-partitioning, and re-fetching
the prior sorted data.

However, the reduce operator may require the program-
mer to supply an ”un-remove” or deletion function. This is
straightforward for many algebraic aggregates, such as sum.
However, if deletion functions do not exist or are difficult
to write, then our design re-computes the window output
from the base data, the constituent slides. If the function is
non-holistic and distributive with respect to insertions, this
will be relatively efficient. If it is a holistic function, such
re-computation is unavoidable.

2.4 Observations
In general there may be arbitrary sequences of map and

reduce operators. The type of operations in such a sequence
determines whether operators only need the last increment
or the materialized window to produce the correct output.
In our demo, when the indexing query integrates a new
increment of crawled documents, our simple MapReduce
search query needs the entire local index, not just the last
changes, to produce the search result delta. However, both
the index and search MapReduce jobs remain internally in-
cremental. We discuss the query in detail in the next section.

For many applications including this one, partial results
remain useful, and we allow individual map and stream op-
erators to fail, potentially losing their data. This allows us
to avoid sophisticated consistency protocols to tolerate node
failures found in other stream processors [2], or support for
a shared filesystem that makes reliably re-generating data
after failure simpler for snap-shot MapReduce implementa-
tions. In contrast, Mortar makes no attempt to salvage data
that was lost due to node or network failures. It does, how-
ever, reliably re-start (or re-install) operators when nodes
recover. Note too, that continuous operation means the
output of a MapReduce task can improve as nodes recover
or connectivity improves. To take advantage of this, our
distributed crawler rebuilds lost state, ensuring that query
results eventually reflect the restored data.

3. DEMONSTRATION SCENARIO
This demonstration allows participants to interact directly

with a distributed index engine based on continuous MapRe-
duce jobs. Our prototype is a 30 node distributed web index-
ing application where each node runs a Heritrix crawler [3]
and Mortar peer. A custom protocol, loosely based on prior
work using consistent hashing [3], ensures disjoint crawl
queues across the nodes.

1474

Figure 4: The search query uses a TopK reduce to
rank results by word frequency.

We write the indexing and search queries in the Mortar
Stream Language, a simple, text-based “boxes-and-arrows”
language. Figure 3 illustrates the indexing query; Mortar
compiles each line into a set of operators and installs them
across the crawling nodes. First, Mortar installs an incre-
mental MapReduce job on every node to build the inverted
index. A WordBreak map function sources data (WebPages)
fetched by the crawler and outputs (token, document lo-
cation) pairs. The BuildIndex reduce function groups in-
coming pairs by word, generating an inverted index. A sec-
ondary sort in the function maintains a word occurrence
count per document.

Users submit keyword queries through a web interface,
and Mortar dynamically installs each user query across the
crawlers. The system transforms each user search into a
continuous query, shown in Figure 4. The first map opera-
tor subscribes to the inverted index at each node, executes a
QueryIndex function to find keyword matches, and outputs
pairs of (search keywords, results). The second map com-
putes a rank using the word frequency present in the results,
and sends its output to the reduce operator that implements
an in-network TopK aggregate. The reduce outputs the top
50 results across the collection of inverted indices ordered
by rank. Both queries use landmark windows, incremen-
tally updating the index and search results with the latest
data every ten seconds.

We run the system across an emulated wide-area network
using ModelNet [11]. A ModelNet emulation tests real, de-
ployable prototypes over unmodified, commodity operating
systems and network stacks. A Mortar configuration run-
ning across the wide area (e.g., Planetlab) requires zero code
changes to use ModelNet; the primary difference is that, in
ModelNet, network traffic is subjected to the bandwidth,
delay, and loss constraints of an arbitrary network topology.
Our demo uses an Internet-like network topology created by
the Inet topology generator.

We visualize the indexing system by animating the instal-
lation, processing, and removal of each user’s MapReduce
operators across the crawling nodes. Selecting a node dis-
plays information about its status, such as the number of
user queries installed, the rate of the indexing, and the cur-
rent size of the index. Upon query submission, a user ob-
serves (i) the progress of the query installation on the nodes
and (ii) the streaming of the query results back to the web
search interface, which dynamically updates until the user
cancels the query.

4. APPLICABILITY
While our demonstration scenario leverages MapReduce

computations that are both distributed and incremental,
other applications may not benefit from both. Beyond cloud
computing, a growing number of applications produce large
waves of unstructured data, including sky surveys, medical
imaging studies, and digital video surveillance applications.

While these systems may benefit from an incremental pro-
cessing abstraction, the benefits for distributed MapReduce
will be greatest when the processing tasks are highly selec-
tive, avoiding transferring enormous amounts of data be-
tween sites. If the tasks do not sufficiently reduce the input
data, or there are many queries, it may be more efficient to
bring the data to a central location.

There remain significant research issues for future inves-
tigation. For instance, while it is likely that weakly con-
sistent results are sufficient for an important class of appli-
cations, others may require increased guarantees of correct-
ness. Though Mortar annotates individual operator results
with the percentage of base data used to produce results
(completeness), it is a weak metric on which to base accu-
racy. Another important goal is to develop techniques for
orchestrating incremental computation across multiple non-
distributive MapReduce tasks. However, even with these
limitations, our demonstration indicates that this is a pow-
erful approach for managing the increasing presence of un-
structured data across the Internet.

5. REFERENCES
[1] Amazon’s Cloud Storage Hiccups.

http://www.wjla.com/news/stories/0208/496511.html.

[2] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-Tolerance in the Borealis
Distributed Stream Processing System. In Proc. of
ACM SIGMOD, Baltimore, MD, June 2005.

[3] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
Ubicrawler: A scalable fully distributed web crawler.
In Software: Practice & Experience, October 2004.

[4] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S.
Parker. Map-Reduce-Merge: Simplified relational data
processing on large clusters. In Proc. of ACM
SIGMOD, June 2007.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI’04, San
Francisco, CA, December 2004.

[6] D. J. DeWitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Communications of the ACM, 35(6):85–98, 1992.

[7] S. Garfinkel. An evaluation for Amazon’s Grid
Computing Services: EC2, S3, SQS. Technical Report
TR-08-07, School for Engineering and Applied
Sciences, Harvard University, Cambridge, MA, July
2007.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, , and
D. Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In European
Conference on Computer Systems (EuroSys), Lisbon,
Portugal, March 2007.

[9] D. Logothetis and K. Yocum. Wide-scale data sream
management. In Usenix Annual Technical Conference,
Boston, MA, June 2008.

[10] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh.
Incremental maintenance for non-distributive
aggregate functions. In Proc. of 28th VLDB,
September 2002.

[11] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. In
OSDI’02, Boston, MA, December 2002.

1475

