
Semandaq: A Data Quality System Based on
Conditional Functional Dependencies

Wenfei Fan1,2,∗ Floris Geerts1,† Xibei Jia1,†

1University of Edinburgh 2Bell Laboratories
{wenfei@inf., fgeerts@inf., xibei.jia@}ed.ac.uk

ABSTRACT
We present SEMANDAQ, a prototype system for improving the
quality of relational data. Based on the recently proposed condi-
tional functional dependencies (CFDs), it detects and repairs er-
rors and inconsistencies that emerge as violations of these con-
straints. We demonstrate the following functionalities supported
by SEMANDAQ: (a) an interface for specifying CFDs; (b) a visual
tool for automated detection of CFD violations in relational data,
leveraging efficient SQL-based techniques; (c) extensive visual data
exploration capabilities that provide the user with various measures
of the quality of the data; (d) repair (cleaning) functionality with-
out excess human interaction, built upon CFD-based cleaning algo-
rithms; we show how SEMANDAQ allows for a natural exploration
of the quality of the obtained repairs. SEMANDAQ is a promising
tool that provides easy access and user-friendly data quality facili-
ties for any relational database system.

1. INTRODUCTION
The prevalent use of information systems has made data one of

the most valuable assets in most organizations. Nevertheless, the
value of data highly depends on its quality. Errors and inconsis-
tencies in the data dramatically reduce the value of data, making
it worthless, or even harmful. A study conducted by Gartner in
2005 [10] forecasts that more than 50 percent of data warehouse
projects will have limited success, or will be outright failures, as a
result of the lack of attention to data quality issues. Indeed, useful
results are unlikely to be obtained from unreliable source data, a
general principle best known as “Garbage In, Garbage Out”. Thus,
to reduce the resources wasted on dirty data and avoid the potential
disastrous consequences caused by errors, it is desirable to clean
the data before using it in data warehousing, data mining, and busi-
ness intelligence systems. It is estimated that data cleaning, a labor-
intensive and complex process, accounts for 30%-80% of the devel-
opment time in a data warehousing project [12]. These highlight
the increasing need for data quality tools to automatically detect
and effectively remove inconsistencies and errors in data.
∗Adjunct professor, Harbin Institute of Technologies. Supported in part by EPSRC
GR/S63205/01, GR/T27433/01, EP/E029213, and BBSRC BB/D006473/1.
†Supported in part by EPSRC EP/E029213.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Existing data cleaning systems are dominated by transformation-
based approaches, in which cleaning actions have to be explicitly
specified by users. Data cleaning systems reported in the research
literature include AJAX [7] and Potter’s Wheel [11]. AJAX pro-
vides users with five transformation operations and a declarative
language to specify data cleaning programs. Potter’s Wheel lever-
ages a spreadsheet-like interface to allow users to refine the clean-
ing process by interactively specifying transformations that auto-
matically trigger error detections in the background. Most com-
mercial data quality systems focus on data profiling, which reveals
data quality issues by analyzing the data, and record matching,
which removes duplicate entities in the dirty data. Their data clean-
ing capabilities are often skewed toward very specific types of data
(e.g., addresses, phone numbers). They are based on ad-hoc tech-
niques such as manually specified IF THEN rules where the actions
in THEN clauses are usually a set of transformation operations.

A more principled approach to cleaning is based on constraints.
Two models have been studied. One is consistent query answer-
ing (e.g., [1, 6]), which can be seen as virtual data cleaning, with-
out editing the data. The other is constraint-based repairing, which
fixes constraint violations by physically editing the data (e.g., [2, 5,
9]), a process that US national statistical agencies have been prac-
ticing for decades [4]. However, constraints considered in these
models are mostly traditional dependencies, such as functional, in-
clusion and full dependencies, which were designed for schema
design rather than data cleaning. Partly due to this, no commercial
data-cleaning systems have emerged from these two models yet.

Following the constraint-repairing approach, we are developing
SEMANDAQ (Semantic Data Quality), a data quality tool based on
the concept of conditional functional dependencies (CFDs) recently
introduced [3]. CFDs are an extension of functional dependencies
(FDs) developed for data cleaning. They enforce bindings of se-
mantically related data values, and are capable of capturing more
errors and inconsistencies commonly found in real-life data than
traditional dependencies can catch. SEMANDAQ allows users to
specify a set of CFDs to characterize the semantics of data. Subse-
quently, errors and inconsistencies in the data are captured as viola-
tions of the CFDs. These violations are efficiently detected by SQL
queries that are automatically generated from the given CFDs. The
quality of data is then estimated based on the identified violations.
Furthermore, SEMANDAQ uses CFDs to repair the violations and
hence restore the consistency of the data; it presents the candidate
repairs to users for inspections. Another functionality supported by
SEMANDAQ is incremental repairing: the repaired data is moni-
tored by the same set of CFDs, and any updates to the repaired data
are incrementally detected and repaired by the monitoring process.

We believe that SEMANDAQ is a promising data quality tool that
combines data exploration and data cleaning in a natural way. On

1460

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Error Detector

Data Explorer

Data AuditorData Monitor
•Incremental Detection
•Incremental Repair

Constraint Engine

ConstraintsConstraintsStatic
Analysis

Data Cleanser

Cost ModelCost Model

Database ServersDatabase Servers

Web ServersWeb Servers

Data QualityData Quality
ServersServers

Web ClientsWeb Clients

…

…

Figure 1: The SEMANDAQ Architecture

one hand, the functionality of SEMANDAQ helps the user quickly
discover quality issues of the data and their solutions. On the other
hand, the user’s expertise is readily incorporated into SEMAN-
DAQ’s data cleaning process by efficient visual data exploration.
This demonstration will show that SEMANDAQ’s support for this
two-way interactive process is extremely valuable for tackling data
quality problems.

2. THE SEMANDAQ SYSTEM
The architecture of SEMANDAQ is depicted in Fig. 1. Below we

briefly describe the major components of the system. We illustrate
the CFD formalism, algorithms and their performance by examples
in Section 3, and refer the reader to [3, 8] for details.

SEMANDAQ consists of four layers and six major components.
Relational databases holding the data to be cleaned form the lowest
layer of the system. The major functionalities are provided by the
second layer consisting of a set of data quality servers. A data qual-
ity server is built upon of one or more of the following components:
constraint engine, error detector, data auditor, data cleanser and
data monitor. Each of these components is implemented as an En-
terprise Java Bean (EJB). This allows the different components to
run independently in a distributed way (possibly in different lo-
cations). Security and transactions are supported by the EJB con-
tainer. Users can access these functionalities easily by means of
the data explorer, which constitutes the third layer, and is built in
a web container. Finally, the fourth layer allows users to access
SEMANDAQ from any computer with a standard web browser by
using Asynchronous JavaScript and XML technology.
Constraint Engine. The core of SEMANDAQ is the constraint en-
gine, which manages the CFDs used to specify the consistency of
the data. These constraints may either be explicitly specified by
users or automatically discovered from reference data. Since CFDs
allow for a relational representation [3], the constraint engine maxi-
mally leverages the use of indices and other optimizations provided
by DBMS in the storage and manipulation of CFDs. Further, the
constraint engine implements static analysis techniques developed
in [3], that check for the consistency of CFDs. In this way, users are
informed whether the specified set of CFDs “makes sense”.
Error Detector. An important step in assessing the quality of data
is to efficiently identify errors and inconsistencies. In SEMANDAQ,
this is achieved by detecting violations of CFDs in the underlying
relational databases. It hereby relies on efficient SQL-based de-
tection techniques developed in [3]. Specifically, the SQL-queries
identify two kinds of violations: (1) single-tuple violations, i.e., a
tuple that conflicts with a CFD all by itself; and (2) multi-tuple vio-

lations, i.e., tuples that jointly conflict with a CFD in a similar way
to that of functional dependencies.

Upon the completion of a detection process, the error detector
assigns to each tuple t in the database the number of violations
incurred by t, denoted by vio(t). Initially, vio(t) = 0; it is incre-
mented by 1 for each CFD for which t is a single-tuple violation;
and is incremented for each CFD by the cardinality of the set of
tuples that jointly (with t) violate that CFD. Moreover, the error de-
tector records additional information that is useful for improving
the quality of data (e.g., which CFDs are violated by which tuple).
Data Auditor. This component provides a summarized report of
the inconsistencies detected by the error detector. Specifically,
vio(t) is enriched with statistical information w.r.t. the occurrences
of violations in the data, at both the tuple and the attribute level.
Data Cleanser. To deal with inconsistent data, SEMANDAQ pro-
vides the user with an automatic repair functionality. The data
cleanser passes the violation information provided by the error de-
tector to the CFD-based repair algorithm developed in [8]. More
specifically, a candidate repair is obtained from the original data
using attribute value modifications on the violations. Moreover,
the repair algorithm aims to find a repair that “minimally differs”
from the original data (in terms of some cost function). In view
of the intractability of this optimization problem [2, 8], the repair
algorithm is heuristic in nature. It is reported in [8] that the repair
algorithm generally provides candidate repairs of high quality.
Data Monitor. Real world data changes with time and it is impor-
tant to prevent the degradation of the quality when the data is up-
dated. In SEMANDAQ, the data monitor responds to updates on the
data by (1) invoking an incremental detection module (analogous to
the error detector) using the incremental SQL-based detection tech-
niques developed in [3] if the database has not been cleansed; or
(2) invoking an incremental repair module (analogous to the data
cleanser) using the incremental CFD-based repair algorithm devel-
oped in [8], otherwise.
Data Explorer. The final component of SEMANDAQ, namely, the
data explorer, provides a graphical interface for the functionalities
of the data quality servers. In the data explorer, one can specify
CFDs, navigate the data, check the detection result, view the audit-
ing information, review the cleansing result and monitor modifica-
tions on the data. The data explorer is important since it brings the
human intelligence into the automated cleaning process and helps
users understand the revealed data quality issues. Separated from
the data quality server, the data explorer is designed as a rich Inter-
net application (RIA) which provides a web-based interface. Thus,
SEMANDAQ can be used on any client machine with a web browser
without knowing where the data quality servers are running. It also
enables the software as service mode for SEMANDAQ.

3. DEMONSTRATION OVERVIEW
In this section we describe various aspects of SEMANDAQ in

more detail and explain the aims of our demonstration. More
specifically, we show (a) how users define constraints in the form
of CFDs with the aid of the data explorer; (b) how SEMANDAQ
helps users browse the errors for large quantities of data; (c) how
the quality of data is summarized by combining different metrics at
different granularities; and finally (d) how to review and debug the
data cleansing result.
Specifying Constraints. The first step in using SEMANDAQ is to
connect the system to a database. Users simply need to provide a
username, password, a JDBC url and the corresponding JDBC driver
if it is not already included in the system. The database schema
containing all the relations and attributes will be automatically dis-

1461

Figure 2: Data Exploration using CFDs

covered and displayed to the user. Once the schema information is
available to the user, CFDs can be specified using the data explorer.

We first recall what CFDs are and then explain how they are spec-
ified by the user using the data explorer. We refer to [3] for more
details concerning the CFD-formalism. Assume that a company
maintains a relation of customer records: customer(NAME,CNT,
CITY,ZIP, STR,CC,AC), where each customer tuple contains a
name NAME, address (country CNT, city CITY, postal code ZIP,
street STR) and country and area code (CC and AC, respectively)
of a customer. Figure 3 shows an example of a customer rela-
tion. An example of a traditional functional dependency (FD) on a
customer relation is f1: [CNT,ZIP] → [CITY]. It requires that
customer records with the same country and zip code also have
the same city name. Traditional FDs are to hold on all tuples in the
customer relation. In contrast, the following constraint is supposed
to hold only when the country is UK. That is, for customers in the
UK, ZIP determines STR:

φ2 : [CNT = UK,ZIP =]→ [STR =]

In other words, φ2 is an FD that is to hold on the subset of tuples that
satisfies the pattern “CNT = UK”, rather than on the entire customer
relation (the “ ” symbol stands for a “don’t care” value). It is gen-
erally not considered an FD in the standard definition since φ2 in-
cludes a pattern with data values in its specification. We call such
a dependency a conditional functional dependency (CFD) since the
dependency holds provided that the condition stated by the pattern
is satisfied.

Another example of a CFD relates to the FD f3: [CC]→ [CNT],
which states that the country code determines the country. It is
often the case that exact relationship between attribute values is
known, e.g., tuples with country code 44 should always have coun-
try name UK. Such constraints cannot be modeled by FDs, they can
however be enforced by the following CFD: φ4: [CC = 44] →
[CNT = UK]. Observe that FDs f1 and f3 can be regarded as CFDs
as well. Indeed, φ1: [CNT = ,ZIP =]→ [CITY =] and φ3:
[CC =]→ [CNT =] correspond to f1 and f3, respectively.

In short, a CFD is determined by (1) a standard FD X → Y
embedded in it; (2) a left-hand side (LHS) pattern tuple tp[X] con-
sisting of values and “ ”; and (3) a right-hand side (RHS) pattern
tuple tp[Y]. The FD embedded is to hold on all tuples that satisfy
the LHS-pattern, and moreover, these tuples should also satisfy the
RHS-pattern tuple.

In the demonstration we will show how the user can specify CFDs
using the data explorer. That is,
• the user first selects a relation (table) and creates a standard

FD by dragging and dropping attributes;
• then, the user specifies the LHS and RHS patterns of the

selected FD to make it a CFD. If the user specifies the pattern
tuples manually, the system will provide auto-completion by

Figure 3: Error Detection and Data Quality Map

querying the data instance. In this way, the user is provided
with possible values for the pattern tuples. Alternatively, the
user can import the pattern tuples from an external source.

In contrast to their classical FD counterparts, CFDs are not neces-
sarily satisfiable [3]. In case that the CFDs specified by the users
are not satisfiable (or don’t make sense), they need to be checked
before using them in a data quality setting. Therefore, the demon-
stration also shows
• how the user is prompted about the (un-)satisfiability of CFDs

that are specified by the user.

Data exploration. The tight coupling of data and constraints in
CFDs allows for an interactive exploration process between data
and constraints. In the demonstration we will show the following.
• How the user can explore the data by means of CFDs. Indeed,

consider Fig. 2. When the user selects an FD embedded in a
CFD (e.g., [CNT,ZIP] → [STR] in the left table of Fig. 2),
its corresponding pattern tuples (second table in Fig. 2) will
be displayed in a table. The user can then further select a
specific pattern tuple tp in this table (e.g., tuple [UK, ,]
in Fig. 2). The data explorer will show all the distinct tu-
ples t in the data which match the LHS pattern of tp (third
table in Fig. 2). A further selection of one of these LHS
matched tuples (e.g., tuple [UK, EH2 4SD]) then displays the
distinct RHS values for the corresponding tuples in the data.
In the fourth table of Fig. 2, three different RHS values are
displayed. Finally, a selection of one of these RHS-values
would provide the user with a list of the corresponding tu-
ples in the data (not shown). It is worth noting that in each
of the above steps, the number of violating tuples are given
to the user to guide the navigation process. In Fig. 2, the
number of violations appears in the violation-attribute.
• How the user can explore the CFDs by means of the data.

Here, the user selects a tuple in the data and is provided with
all CFDs and pattern tuples relevant to that tuple. In this way,

1462

Figure 4: Data Quality Report Figure 5: Data Cleansing Review
the user can identify the reasons why the tuple is regarded as
a violation. Moreover, it also provides the users with neces-
sary information to manually correct the data if he/she wishes
to do so.

Data quality map. The error detection component provides valu-
able information regarding the violations of CFDs in the data. In
the demonstration we will show:
• how the result of the error detection component is visualized.

In general, different colors are used to indicate the different
numbers of violations for a tuple or a value. As an example,
Figure 3 shows a tuple-level data quality map. The darker
the color of a tuple is, the greater vio(t) is, and thus the more
“dirty” the tuple is.

Data quality report. High level data quality information is pro-
vided by the auditor component. In the demonstration we show:
• How the level of dirtiness of the data is summarized to the

user both at the table-tuple and the attribute-value level. In
particular, the data auditor computes various data quality
metrics which categorize each tuple t as “verified clean”,
meaning that t does not violate any CFD and moreover there
exists a CFD with a constant in its RHS that applies to t (i.e.,
the values in t are verified by at least one CFD); “probably
clean”, meaning that t does not violate any CFD; and finally
“arguably clean”, meaning that t is either probably clean or
t is involved in a multi-tuple violation but the bulk of the
joint violating tuples agree with t (i.e., there is substantial
evidence to regard t as being clean). A similar categoriza-
tion exists at the attribute-value level. The bar chart in Fig. 4
shows the percentage of verified clean, probably clean and
arguably clean values for each attribute in the customer re-
lation.
• How simple data quality measures are reported; e.g., Figure 4

shows a pie chart indicating the number of violations in the
data. Various other measures can be reported in this way.
• How the violations are distributed among the data. The audi-

tor computes various statistical measures (max,min, avg,. . .)
and also reports statistics regarding multi-tuple violations.
The user can choose to retrieve this information at different
levels of details of the data.

Data cleansing review. In the final part of the demonstration we
illustrate the interactive nature of the data explorer in combination
with the data cleanser. More specifically, we show the following.
• How the candidate repair (cleansed data) compares to the

original data. This is illustrated in Fig. 5 where the modified
values are highlighted in red color. When the user selects a
modified value, a pop-up window will show a list of alterna-
tive modifications. These alternatives are ranked according

to the cost model used in the underlying repair algorithms in
the data cleanser [8].
• How the user can review these modifications and change

them.
• How changes to the suggested repair trigger a background

incremental detection and how the effect of these changes to
other tuples is visualized to the user by showing the conflict-
ing tuples with this new value.
• How, for a large data set, this reviewing process could be

combined with data exploring to concentrate only on inter-
ested part of the data.

In summary, the demonstration exhibits the strength of the CFD-
formalism and automatic functionalities of SEMANDAQ (error de-
tection, data cleansing, data auditing), and illustrates the savings
of human effort in the data quality process. At the same time, the
demonstration shows that SEMANDAQ provides the user with a bet-
ter understanding of the quality of the data, assisting the user to
improve the quality of the data in an interactive way.

4. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query

answers in inconsistent databases. TPLP, 3(4-5):393–424, 2003.
[2] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model

and effective heuristic for repairing constraints by value
modification. In SIGMOD, 2005.

[3] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for data cleaning. TODS, 33(1), 2008. to
appear.

[4] I. Fellegi and D. Holt. A systematic approach to automatic edit and
imputation. J. of the American Statistical Association,
71(353):17–35, 1976.

[5] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello.
Census data repair: a challenging application of disjunctive logic
programming. In LPAR, pages 561–578, 2001.

[6] A. Fuxman, E. Fazli, and R. J. Mille. Conquer: Efficient management
of inconsistent databases. In SIGMOD, 2005.

[7] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita.
Declarative data cleaning: Language, model and algorithms. In
VLDB, 2001.

[8] C. Gao, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality:
Consistency and accuracy. In VLDB, 2007.

[9] A. Lopatenko and L. Bertossi. Complexity of consistent query
answering in databases under cardinality-based and incremental
repair semantics. In ICDT, 2007.

[10] Press release, Gartner, Inc., February 3, 2005, quoting Bill
Hostmann, Research Director, presenting at Gartner Business
Intelligence Summit in London, UK.
http://www.gartner.com/press releases/asset 119071 11.html.

[11] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB, 2001.

[12] C. C. Shilakes and J. Tylman. Enterprise information portals.
Technical report, Merrill Lynch, Inc., New York, NY, Nov. 1998.

1463

