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1. INTRODUCTION
A large number of peer-to-peer (P2P) networks have been intro-

duced in the literature since their popular advent in the late 1990s.
In particular, structured P2P overlays have gained much attention
since 2001. They are noted mainly for their theoretical properties
such as balancing of communication, storage and processing load,
as well as elegance of design.

The problem that resulted from so many proposals is that, when
one needs to implement a new peer-based data management system
(PDMS), there are many good network models to chose from and
no tools to compare them. Most works that compare P2P networks
require the existence of a full implementation and, consequently,
are hard to use. They do little to help in the initial phases of the
design process.

Our work takes an orthogonal approach to the problem of com-
paring P2P architectures for PDMSs. We look at the underlying
structure and, in particular, at its potential of tolerating node fail-
ures. We do this because in a PDMS it is important to have query
answer completeness. Otherwise, the system just stores data with-
out an effective way of fully taking advantage of it. We propose a
system entitledProfiler for Peer-to-Peer Networks(P3N) which is
aimed to answer questions present in the initial phase of the design
process of a PDMS. For instance, given our expected node failure
rate, can we afford maintaining only a fixed number of neighbors
for each node, like in Viceroy [13], or must we use a variable num-
ber of neighbors like in Chord [19]? And if the number of neigh-
bors is variable, how many should we maintain in order to keep the
query success rate above our quality threshold?

These are basic questions, that are currently hard to answer with-
out a full implementation of the P2P network. Our previous work
[12] provides an analytical basis. However, for arbitrary graphs, it
is often hard to prove analytical results. Instead,P3N provides the
user with a lower and upper bound on the query success rate of a
P2P network for different node failure rates. In the process, it also
analyses the bandwidth load and identifies potential bottlenecks in
the network.P3N has been designed around the notion of Cayley
graphs, but, as shown before [12], many P2P overlays are either
Cayley graphs themselves or are mappable to Cayley graphs.
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1.1 Related Work
Assessing the quality of P2P networks is a problem that has re-

ceived considerable attention, mostly in comparing some new pro-
posal with an existing one. Virtually all newly introduced P2P net-
works have such a characterization, showing improvement against
previous solutions.

Still, it remains difficult for a system designer to choose among
the various structures. One solution is, of course, to take all the
networks, or as many as possible, and run them with the same data
to see which one performs best according to some specific metric
of interest. A recent such approach is that of [10]. The problem
with such a test is that one has to implement, or obtain, the dif-
ferent networks and run them with the same input. Similarly, [3]
presents P2PTester, a system to assess the performance of existing
P2P networks. It functions as an additional layer on top of some ex-
isting architecture. Both systems are interesting for an organization
that already has deployed a system, but are of little use to system
designers, as they need to make a decisionbeforeimplementation.

Another solution to the problem of comparing different P2P ar-
chitectures is to provide a general model that unites several of them.
For instance, a unified API for structured P2P overlays is proposed
in [4]. A P2P application is divided into tiers, where tier 0 is limited
to the basic key-based routing API; tier 1 implements abstractions
such as DHT or multicast; and eventual higher tiers implement ap-
plications on top of the two basic levels. [4] argues that the API
can be easily implemented on four types of structured overlay net-
works but does not provide further results in that direction. Instead,
in [18], Shudo et al. propose an implementation of the multi-tier
structure of [4] in OverlayWeaver. They further separate the rout-
ing process from the routing algorithm, attempting to reduce the
amount of code needed to be written by a potential user. Still, Over-
layWeaver is complex for two reasons: the underlying framework
is thread based and thus limited by the operating system, leading
to an upper bound on the number of nodes that can be simulated.
Secondly, implementing a new architecture still requires a signifi-
cant amount of programming work. In this second sense, a more
compact system is [11]. However, the compactness is achieved by
using a non-standard language, a variant of Datalog, which must be
learned before being able to use the system.

Another recent example of a general model is [2]. Even without
the benefit of an implementation, [4] and [2] are a motivating exer-
cise, arguing for the case of a unifying framework. The reason for
which they lack an implementation is, we suspect, that they are too
general and require a fair amount of programming to launch a new
system. Consequently, we must restrict the analysis domain if we
want to aim for a system that is both useful and useable.

1.2 Impact analysis of overlay structure
The works of Ratajczak and Hellerstein [16], Qu et al. [15] or
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Gummadi et al. [5], successfully argue for an analysis of the un-
derlying static structure of the P2P overlays before looking at the
algorithms implemented on top of it to deal with load balancing
and churn. First, [5] presents an empirical analysis based on the
simulations of various types of networks and concludes that rout-
ing geometry is fundamental and that flexibility is a key parameter.
They also suggest that the ring (here by ring they actually mean the
chordal ring graph, i.e., a ring plus a set of chords connecting dif-
ferent sections of the ring) is a powerful candidate for theuniversal
network, on top of which most routing and balancing algorithms
may be implemented. Their analysis still lacks a cohesive analyti-
cal framework; even in the case of the ring, the results do not take
into account that the arrangement of chords of the ring has a signif-
icant effect on the graph’s properties.

The empirical results of [5] call for an analytical study to identify
the graph theoretic properties of the networks. Such a study was
initiated in [16] and independently extended in [15]. Both works
identify Cayley graphs as the common underlying structure of the
most popular P2P overlays. Additionally, they suggest the possi-
bility of defining new networks based on so-far unexplored Cayley
graphs, such as thestar graphor the pancake graph. A useful
continuation is the implementation of these proposals, and, maybe
more importantly, the identification of significant measures to dif-
ferentiate existing P2P overlays.

Our initial analysis [12] lead us to further extend the set of P2P
architectures that are mappable to Cayley graphs despite their ap-
parent differences. For instance, we have taken a close look at BA-
TON [8], a recently proposed tree-based peer-based data manage-
ment system capable of answering both equality and range queries.
We have observed that, provided the addition of one node (regard-
less of the size of the tree), there exists a mapping between the
tree and the chordal ring representations. In particular, if directed,
this chordal ring representation forms the well-known Chord net-
work [19]. The existence of such a mapping indicates that the study
of the subclass of structured P2P networks based on Cayley graphs
provides useful insights for a much larger array of networks than
what may be initially expected.

To analyze the static underlying structure of P2P networks we
propose to demonstrateP3N (Profiler for Peer-to-Peer Networks)
- a system that allows the user to easily design and test new struc-
tured P2P models based on Cayley graphs.P3N is implemented
using the Java programming language.P3N simulates a P2P in-
frastructure on a local machine or, if available, on a cluster of ma-
chines, and collects information about the query success rates as
well as about the bandwidth load distribution in the network.P3

N allows the user to :

• easily modify existing network models: imagine you are in-
terested in the effects of adding a new edge to a Chord [19]
overlay, or increasing the dimensionality of CAN [17].

• measure query success rates as a function of the node fail-
ure rate - which in data management terms translates as an
estimate of query answer completeness.

• assess the bandwidth load distribution in the network, both
in the presence and in the absence of node failures.

We will demonstrate how to implement a new P2P structure and
assess its properties in terms of query success rate, query response
time and bandwidth load balancing - probably the main factors in
judging the performance of any peer based data management sys-
tem.

Figure 1: Architecture of Cayley-based implementation of
common P2P networks simulator
2. P3N

Before we describe the system, we cannot overlook the definition
of a Cayley graph, since that is the main concept underlyingP3N.

DEFINITION 1. ACayley graphCay(G,S) given by a groupG
and a subsetS ⊂ G is the graph whose vertices are the elements
of the group and there exists an arc between any two verticesu, v

if and only if there exists an elements ∈ S such thatv = u ∗ s.
Where useful, we will label this arc with the elements.

Using Cayley graphs, the main goals of the Profiler for Peer-to-
Peer Networks (P3N) can be summarized as follows:

• Quick results. Our main goal is to provide a tool, using
which, a system designer would get an approximate idea of
the performance, function of three variables: the number of
neighbors of each node, the maximum path length and the
query failure rate.

• Flexibility. While partially constrained by the Cayley graph
theoretical model, we want to give the user the possibility
to test innovative structures. Such a system must be modu-
lar and each module, representing a new structure, must be
easily integrated into the system.

• Reduced requirements.To some extent, this is part of our
main goal of obtaining quick results. The system must be
easily deployable, should not require privileged execution
rights on other machines. Also, defining new structures should
be done using a popular programming language in order to
smoothen and reduce the learning curve.

In assessing the performance of a network,P3N considers two
quality measures: the percentage of failed queries and the load dis-
tribution on the links and nodes.

2.1 P3N’s Architecture
Figure 1 illustrates the architecture ofP3N . All components of

the simulation framework were implemented using the Java 1.5
programming language, taking extensive advantage of its generic
types. The four main components of the framework, as shown in
Figure 1, are:
Abstract group: Defines a generic Cayley graph, from which we

derive the plug-in classes that implement the specifications
of different overlays.

1417



Plug-in modules: The modules, depicted as spheres, are classes
derived fromAbstractGroup specifying the actual group
and generator set in use, as defined for instance in Table 1.

ID Distributor: When testing sparse networks, theIdDistributor
component assigns subsets of the ID space to different nodes.

Network: The network simulator launches test queries which ex-
ecute according to the group and generator set defined in the
plug-in module currently used. It captures success rates as
well as edge and generator usages.

As different networks have different identifier types (an inte-
ger for Chord, a (level, id)-pair for Butterfly, an array of integers
for CAN, etc.), each network specification is parametrized with its
identifier type. The requirements for these types are restricted to the
existence of a way to iterate through the set of identifiers and the
possibility to pick one at random. Even more, the iteration through
the list of group elements does not have to follow existing edges
(i.e. it does not have to be a hamiltonian path in the graph).

To test a new structured overlay, the user must only derive a new
class either fromAbstractGroup or, if the new overlay is simi-
lar to one that is already implemented, from an existing descendent
of the AbstractGroup. Similarly, a new identifier type may be
necessary, or an existing one can be used. Apart from this, the user
does not need to modify the network simulator, but only instruct the
framework to instantiate the correct class when given some com-
mand line parameter.

The simulations can either use a default routing protocol, based
on Dijkstra’s algorithm to identify the potential of the network, or
specify their own routing protocol. While the former is a sort of
upper bound on its performance, the latter provides a lower bound,
given that no non-standard fault tolerance measures are used, such
as caching or replication. Both of these bounds give the designer a
significantly better perspective over the capability of the structured
overlay to withstand failures in terms of query success rates. For a
PDMS implemented on top of such a structure overlay, the results
translate into an upper and lower bound on the completeness of the
answer to a query.

The default algorithm is implemented in theAbstractGroup
class, such that any subsequent network architecture derived from
this class will have it by default. A specific routing method can then
be defined simply by overriding one method in theAbstractGroup
class.

3. DEMONSTRATION SCENARIO
The demonstration scenario comprises three activities, showcas-

ing the flexibility of the simulator in testing predefined architec-
tures as well as accepting new input.

• First, we will show how to test a predefined network. We
provide the set of P2P architectures described in Section 3.1
and the user only has to choose one and launch the process.
After a predefined number of random queries, the system will
return the query success rate as a function of the percentage
of failed nodes in the system.

• Second, we will demonstrate how a given structure can be
slightly changed in order to observe the effects of having
smaller or larger routing tables or the effects of maintaining
some neighbors rather than others. For instance, in Chord,
is it always best to maintain neighbors distanced by powers
of 2? Why not powers of 3? Why not a cluster of neighbors
grouped around powers of 3? And so on. All these scenarios
can be easily tested usingP3N.

• Finally, we will show how we can implement a totally new
architecture. For this, we must consider an algebraic group

of interest and define its elements and operation using the
Java programming language. In most cases of interest, such
a group is implemented in at most a few hundred lines. In
our implementations, the more complicated networks, like
the Star, Pancake or Viceroy have around 210 lines, plus an
additional 70 lines for the two classes implementing the node
identifiers1.

3.1 P2P architectures tested
Table 1 shows the main eight networks tested inP3N . How-

ever, we have so far implemented and tested over 30 types of net-
works. Most of them are modifications of the eight main types, as
we attempted to answer questions such as: Does using directed or
undirected links make a significant difference? Is maintaining more
successors in Chord worth the trouble of keeping large routing ta-
bles? For a fixed number of neighbors, does their distribution in the
network significantly affect the resilience of the network?

3.2 Experiments on a Grid
Though much faster than any other system of its kind,P3N still

needs a non negligible amount of time for each test. Since queries
are issued randomly, there is also the problem of statistical signif-
icance of the results. This is normally assessed by repeating the
tests using the same parameters.P3N allows us to do that on a
local machine, but, if accessible, it can also use a computing grid
to run the processes in parallel. In our experiments [12] we use
a cluster present at the School of Computing, National University
of Singapore. The cluster is operated by a Sun Grid Engine 5.3p6
and consists of 49 nodes using 2 Opteron 2.2GHz CPUs and 2GB
RAM, and 42 nodes using 2 P4 2.8GHz CPUs and 1GB RAM.

3.3 User Interface
For ease of use, we have designed a graphical user interface for

our simulator. Figure 2 shows sample screenshots ofP3N’s graph-
ical user interface. In the simplest execution scenario, where a user
simply loads a predefined architecture, the GUI allows the user to
indicate the desired number of nodes, their failure rate. The user
must also select how nodes should assign themselves portions of
the dataspace (random or based on the hamiltonian cycle) and what
is the query distribution over the dataspace.

For the second execution scenario, where the underlying graph
is tweaked to explore new ways of interconnecting nodes, the user
can select/deselect/add new generators to the Cayley graph. For
networks where the number of neighbors is fixed (e.g. Viceroy,
Cube-Connected Cycles) the user can change the connection pat-
terns by modifying the group operators. Finally, for each network,
the routing algorithm can also be changed. These last two types
of modifications, operators and routing method, are done via the
integrated Java editor inP3N’s GUI. Behind the scenes, the corre-
sponding Java class will be put together, compiled and executed.

4. CONCLUSIONS
We started this project with the aim of identifying a set of mea-

sures to follow when choosing or designing a structured overlay for
a PDMS. Our strategy was not only to look at graph-theoretic mea-
sures, but also to learn from the experience of the past half decade
by matching the proposed measures with the existing overlays to
discover which of them are indeed significant. In the process of
analyzing all these overlays, we have createdP3N: a framework

1the Star and Pancake networks share the same type of node iden-
tifiers
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Table 1: P2P networks and their respective Cayley graph parameters, where⊕ is component wise addition,◦ is permutation com-
position, σl(x) is a circular permutation of length l and negation in± represents the inverse with respect to the group’s operation.

Cayley Group and generating set
Group set (Cardinality) Group operation Generators Overlay

Zn
2 (2n) ⊕ mod 2 {1i, i = 1, ..., n} Hypercube

Z2n (2n) + mod2n
˘

2i, i = 0, ..., n − 1
¯

Chord
Z2n (2n) + mod2n

˘

±2i, i = 0, ..., n − 1
¯

SkipNet
Zd·c

2 (2d·c) ⊕ mod2c {±1i, i = 1...d} CAN
Zn × Zn

2 (n2n) (l, x) ∗ (l′, x′) =
`

l + l′(mod n), x ⊕ σl(x′)
´

{(1, 00...0), (0, 10...0)} Cycloid
Zn × Zn

2 (n2n) (l, x) ∗ (l′, x′) =
`

l + l′(mod n), x ⊕ σl(x′)
´

{(1, 00...0), (1, 10...0)} Butterfly
Zn × Z2n (n2n) (l, x) ∗ (l′, x′) = (l + l′(mod n), x + x′ · 2l (mod2n)) {(1, 0), (1, 1)} Viceroy

Sn (n!) ◦ {(1, i), 1 < i ≤ n} Star

Figure 2: Graphical User Interface sample forP3N

by which a designer can implement and simulate easily different
network structures. Within this framework, we can go from idea
to simulation results within a day - a significant aid for a system
designer.

The demonstration of the system will not only show its poten-
tial, but also its limitations. Apart from offering a comparative
study of some of the most important P2P network architectures, the
demonstration also provides a reference point for discussions on
the potential of Cayley graphs as underlying general architectures
towards new P2P architectures and systems.
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