Periscope/GQ: A Graph Querying Toolkit

Yuanyuan Tian* Jignesh M. Patel -

Viji Nair +

Sebastian Martini+ Matthias Kretzler +

* Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Ml
{ytian, jignesh}@eecs.umich.edu
* Department of Internal Medicine, University of Michigan, Ann Arbor, Ml
{vijin, sebmarti, kretzler}@med.umich.edu

ABSTRACT

Real life data can often be modeled as graphs, in which
nodes represent objects and edges between nodes indicate
their relationships. Large graph datasets are common in
many emerging applications. Examples span from social
networks, biological networks to computer networks. To
fully exploit the wealth of information encoded in graphs,
systems for managing and analyzing graph data are crit-
ical. To address this need, we have designed and devel-
oped a graph querying toolkit, called Periscope/GQ. This
toolkit is built on top of a traditional RDBMS. It provides
a uniform schema for storing graphs in the database and
supports various graph query operations, especially sophis-
ticated operations, such as approximate graph matching,
large graph alignment and graph summarization. Users can
easily combine several operations to perform complex anal-
ysis on graphs. In addition, Periscope/GQ employs several
novel indexing techniques to speed up query execution. This
demonstration will highlight the use of Periscope/GQ in two
application domains: life science and social networking.

1. INTRODUCTION

Graphs provide a natural way to model data in a va-
riety of applications. Nodes in graphs usually represent
real world objects and edges indicate relationships between
objects. Examples of data modeled as graphs include so-
cial networks, biological networks, and computer networks.
Many graph databases are large and growing rapidly in size.
For example, the number of pathways (a pathway is a graph
of cellular entities and their interactions) in the well-known
KEGG pathway database [6] has increased from 2,706 in
1999 to 29,921 in 2005, then to 66,407 in 2007. The social
networking site Facebook contains a large network of regis-
tered users and their friendships. The number of Facebook
users has grown from less than 5 million in September 2005
to close to 10 million in September 2006, then to 50 million
in September 2007. There is a critical need for efficient and
effective graph querying systems to query and mine these

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

1404

growing graph databases. This need is especially critical for
life science applications [1, 5].

Previous graph querying systems [2, 8] have largely fo-
cused on relatively simple graph operations, such as retriev-
ing nodes, edges and paths. Systems for querying RDF
data, such as Jena2 [3], also supports graph pattern queries.
However, none of these systems support sophisticated query
operations like approximate graph matching, large graph
alignment, or graph summarization (see Table 1 for the de-
scriptions of these operations). On the other hand, tools for
individual query operations, such as GraphGrep [7], Gln-
dex [12] and Grafil [13], have been developed. These tools
are useful, but the power of individual query operations is
limited. Complex analysis on graphs usually requires more
than one query operation. Users have to combine these in-
dividual tools together, going through the complication of
resolving the differences in execution platforms and data
formats. Therefore, it is crucial to develop graph querying
systems that include sophisticated graph operations as well
as simple ones.

In this proposal, we introduce a graph querying toolkit,
called Periscope/GQ. This toolkit is built on top of a tra-
ditional RDBMS. It provides a uniform schema for storing
graphs in the database. The key feature of Periscope/GQ
is that it supports various simple and complex graph query
operations. Users can easily combine several operations to
perform complex analysis on graphs. To speed up query op-
erations, Periscope/GQ employs novel indexing techniques
that make use of the existing robust index structures in a
typical RDBMS, which makes adoption and implementa-
tion easy. By applying Periscope/GQ to life science and
social networking applications, we demonstrate the power
of Periscope/GQ in performing complex analysis on graph
databases.

2. SYSTEM ARCHITECTURE

Periscope/GQ is built on top of the RDBMS PostgreSQL
(http://www.postgresql.org/). Graph data are stored and
indexed in the RDBMS, while graph query algorithms are
implemented as applications on top of the RDBMS. This
design allows us to easily port the implementation to other
RDBMSs. Figure 1 shows the architecture of Periscope/GQ.

2.1 Data Model and Data Storage

Periscope/GQ supports a general graph model. Under
this model, graphs can be directed or undirected. Nodes and
edges are allowed to have arbitrary labels and attributes.
In fact, node and edge labels can be viewed as special at-

I

Periscope/GQ
Query Operations
= =1 5[

Queries
-
Results

Figure 1: Periscope/GQ architecture

tributes. Furthermore, attributes can be of arbitrary types.

Graphs are stored in a graph table, a node table and an

edge table using the following schema:

Graph(graphID, attrName, attrType, attrValue)

Node (graphID, nodeID, attrName, attrType, attrValue)
Edge (graphID, nodelID, node2ID, attrName, attrType,
attrValue)

Each graph is uniquely identified by a graphID in the
graph table. A graph can have attributes associated with
it. For example, in Figure 2, the graph with graphID=1 has
a string attribute called name. The value of this attribute is
wnt pathway. This graph has another string attribute de-
scribing the source of the graph data. Within each graph,
nodes are uniquely identified by their nodeIDs. Similarly,
nodes can have attributes associated with them. In Figure 2,
the node with nodeID=1 in the graph with graphID=1 has
two attributes label and familyID. Edges within a graph
are identified by the IDs of the end nodes. Again, edges can
have attributes associated with them. In Figure 2, the edge
in graph 1 with end nodes 1 and 2 is undirected, which is in-
dicated by setting the directed attribute to the value false.
A directed edge is represented by setting this directed at-
tribute to the value true and the direction is from node1ID
to node2ID. This edge has another attribute indicating its
link type. Graphs, nodes or edges with multiple attributes
have multiple entries in the corresponding tables. In the cur-
rent implementation, all graphs in the system must have a
name attribute with non-null values; all nodes must have a
label attribute with non-null values; and all edges must
have a directed attribute with non-null values.

2.2 Graph Query Operations

The graph query operations supported in Periscope/GQ
are listed in Table 1. The first six operations in this table are
relatively “simple” and have been extensively studied. The
last three operations are more complex and play crucial roles
in complex analyses, hence are described below.

Approximate Graph Matching: Analogous to the key-
word search in a sequence/text database, graph matching
finds graphs or subgraphs in the database similar to the
query graph. It is an important operation to analyze graphs
in complex ways. Due to the noisy and incomplete nature
of most real graph datasets, approrimate matching plays a
more critical role than exact matching in practice. Approx-
imate matching allows node/edge insertions and deletions,
and node/edge mismatches.

Periscope/GQ incorporates the novel approximate graph

1405

Graph Table

graphlD | attrName attrType attrValue

1 name string wnt pathway

1 source string KEGG Database

Node Table

graphID | nodelD attrName attrType | attrValue

1 1 label string wnt

1 1 familylD string | K00182
Edge Table
graphiD | node1ID | node2ID | attrName | attrType attrvalue

1 1 2 directed boolean false

1 1 2 link type string protein interaction

Figure 2: Examples of the graph table, the node table
and the edge table

matching method, called SAGA [11]. SAGA employs a flex-
ible model for computing graph similarity and utilizes an
index-based matching technique that allows it to efficiently
evaluate queries even against large graph datasets.

Large Graph Alignment: Most graph matching meth-
ods, including SAGA, are designed to query graphs that are
small in size (tens of nodes and edges). However, some ap-
plications require matching large graphs. One such example
is to align protein interaction networks (graphs with thou-
sands of nodes and edges usually) of two species to study
evolutionary conservation.

To address the need for approximate matching of large
graphs, Periscope/GQ incorporates a novel technique, called
TALE [10]. TALE employs an indexing technique, which
achieves high pruning power and scales linearly with database
sizes. The innovative matching algorithm utilizing this in-
dex is orders of magnitude faster than the state-of-the-art
graph alignment methods.

Graph Summarization: As graphs in many applica-
tions, especially large-scale social networking applications,
grow larger and larger, it becomes almost impossible for
users to understand the information encoded in large graphs
by mere visual inspection. Therefore, graph summarization
methods are required to help users understand the underly-
ing characteristics of large graphs.

Periscope/GQ employs the k-SNAP method [9] to sum-
marize graphs. k-SNAP allows users to freely choose the
attributes and relationships that are of interest, and then
makes use of these features to produce small and informa-
tive summary graphs. Furthermore, users can control the
resolution of the resulting summaries and “drill down” or
“roll up” the information, just like the OLAP-style aggre-
gation methods in traditional database systems.

2.3 Efficient Query Evaluation using Indices

To efficiently evaluate queries, Periscope/GQ employs a
variety of indexing techniques. For simple operations, such
as graph selection, node selection and edge selection (see Ta-
ble 1), traditional indexing methods are sufficient. However,
designing indexing mechanisms for the more complex opera-
tions, such as approximate graph matching and large graph
alignment, is more challenging. Rather than designing new
index structures, which makes adoption and implementation
hard, Periscope/GQ makes use of existing index structures
already provided inside the RDBMS in interesting ways.

Operation Description

Graph Selection

Node Selection

Edge Selection

Node Similarity

Path Existence

Shortest Path

Approximate Graph Matching
Large Graph Alignment
Graph Summarization

Select graphs based on conditions of graph attributes.

Select nodes based on conditions of node attributes and/or graphlD.

Select edges based on conditions of edge attributes and/or graphID, and/or nodelDs.
Given a node, find nodes that have similar attribute values and similar neighbors.
Decide whether two given nodes are connected by a path.

Find the shortest path between two given nodes.

Find graphs or subgraphs in the database that are similar to the query graph.

Align two or more large graphs to find conserved subgraphs.

Produce summaries capturing the characteristics of the original graphs.

Table 1: Graph operations supported in Periscope/GQ

In [11], we proposed the Fragment Index to speed up
the approximate graph matching in SAGA. The indexing
units of the Fragment Index are small subgraphs in the
database. We used a B+-tree to implement the Fragment In-
dez (see [11] for details). The large graph alignment method
TALE [10] employs the Neighborhood Indez to expedite the
query processing. The indexing units of the Neighborhood
Indez are the neighborhoods of all the nodes in the database.
A neighborhood is defined as the induced subgraph of a node
and its neighbors (adjacent nodes). This Neighborhood In-
dex is implemented as a hybrid index structure, which has
two levels. The first level of this index structure is a B+4-
tree. Each leaf entry of this B4-tree points to a second-level
bitmap index (see [10] for details). Both the Fragment Index
and the Neighborhood Index are easily implemented inside a
typical RDBMS, and result in orders of magnitude speedup
for the corresponding query operations in most cases.

3. DESCRIPTION OF DEMONSTRATION

In this section, we use two real example applications: one
life science application and one social networking applica-
tion, to demonstrate the power of Periscope/GQ in perform-
ing complex analysis on graphs.

3.1 Example 1: Gene Regulatory Networks

Life science is experiencing a transition from focusing on
the function of a single molecule to analyzing biological sys-
tems and their behavior as regulatory networks. Genome
wide microarray analysis with pathway mappings and sci-
entific literature searches can generate gene regulatory net-
works of different species under different biomedical con-
ditions. These gene regulatory networks can be naturally
modeled as graphs, where nodes represent genes and edges
indicate their interactions. The size of an individual gene
regulatory network can be as large as several thousands of
nodes and tens of thousands of edges. These networks serve
as a rich source of information to be analyzed for discoveries
that can lead to the cure of human diseases. Graph querying
systems plays a critical role in helping life scientists analyze
large gene regulatory network datasets.

In this section, we show an example of how different graph
query operations in Periscope/GQ can be combined to help
a group of life scientists find the key drugable pathways to
validate therapeutic targets for Type 1 Diabetic Nephropa-
thy (DN). Figure 3 shows the workflow of the analysis.

Through genome wide microarray analysis on human and
mouse DN samples, large gene regulatory networks of the
two species are generated. Each network contains hundreds
to thousands of nodes and edges. By issuing graph summa-

1406

rization queries using k-SNAP, summaries based on features
of interest are generated to help life scientists understand
the underlying characteristics of individual networks.

In addition, cross-species network comparison is an effec-
tive way to identify which subnetwork produce the disease
in both systems. This operation can be achieved by aligning
the networks of the two species using TALE. This conserved
subnetwork is a good candidate for therapeutic target val-
idation. This operation can also be pipelined with further
queries, such as querying the conserved subnetwork against
a database of pathways to find out which biological processes
might be involved or affected by the conserved mechanism.
A pathway consists of a set of cellular entities interacting
to carry out some biological process. The query against a
database of pathways can be achieved by an approximate
graph matching operation using SAGA. Alternatively, the
conserved subnetwork can also be used to query a database
of parsed literature graphs to search for papers that may
have already studied the conserved mechanism. In [11],
we described a way to perform document comparison us-
ing the graph matching method SAGA. Through natural
language analysis, each biomedical document is represented
by a graph in which a node indicates a gene studied in the
document and a link is drawn between two genes if they
are discussed in the same sentence (indicating a potential
association between the two). Matching the conserved sub-
network against these parsed literature graphs can help life
scientists find out previous studies with similar interests.

Through the above analysis, the life scientists actually
identified several good candidates that they are validating
for therapeutic targets.

3.2 Example2: DBLP Coauthorship Networks

In this section, we demonstrate how Periscope/GQ can
be used to analyze coauthorship networks from the DBLP
Bibliography data [4]. In a coauthorship network, each node
represents an author, and the edge between two authors
indicate their coauthorship.

In this example, we are first interested in studying how
researchers in the database area coauthor with each other.
However, the coauthorship patterns are hidden inside the
large DB coauthorship network, which contains over 7 thou-
sand nodes and around 20 thousand edges. Graph summa-
rization operation (using the k-SNAP method) is very crit-
ical in understanding the characteristics of this large graph
(see Figure 4). k-SNAP generates summaries with the res-
olutions that the users can understand, and also provides
“drill-down” and “roll-up” abilities to navigate summaries
with different resolutions. Detailed analysis on coauthorship

Construct gene
networks

Human Network

Mouse Netwofk

k-SNAP
(summarize a
large network)

TALE (align large
networks to find the
conserved network)

SAGA (query against SAGA (query
database of parsed against a database
literature graphs) of pathways)

e

F

k-SNAP
(summarize a
large network)

node selection &
edge selection

-4

node selection &
edge selection

TALE (align large
networks to find the
conserved network)

SIGMOD Network VLDB Network

igure 4: Example application of Periscope/GQ to an-

alyze coauthorship networks

Figure 3: Example application of Periscope/GQ for

gene regulatory network analysis

networks using the k-SNAP method can be found in [9]. The
k-SNAP operation can also be used to examine the similari-
ties and differences in the coauthorship relations across com-
munities, such as the DB community and the AT community.
Our demonstration will include these examples.

As shown in Figure 4, further analysis can be performed
on subnetworks of the DB coauthorship network. Subnet-
works can be easily generated by node selection and edge
selection operations. For example, one can construct a coau-
thorship network only about authors who publish in SIG-
MOD conference from 2001 (when double-blind review was
first adopted) to 2007. This SIGMOD coauthorship net-
work can be constructed by selecting authors (nodes) who
have at least one SIGMOD paper in year > 2001 and < 2007
and coauthorships (edges) that appear in these publications.
Similarly, one can also construct a VLDB coauthorship net-
work. Further analysis can be performed by aligning the
SIGMOD and VLDB coauthorship networks to compute the
conserved coauthorships across the two communities.

1407

Acknowledgment

This research was primarily supported by the National Sci-
ence Foundation under grant DBI-0543272, the National In-
stitutes of Health under grant 1-U54-DA021519-01A1 and
by an unrestricted research gift from Microsoft Corp.

4. REFERENCES

[1] A. Gupta and B. Ludéscher. The many faces of
process interaction graphs: A data management
perspective. OMICS, 7(1):105-108, 2003.

[2] R. H. Guting. Graphdb: Modeling and querying
graphs in databases. In VLDB, 1994.

[3] K. Wilkinson et al. Efficient RDF storage and retrieval
in Jena2. Techniqual Report: HPL-2003-266, 2003.

[4] M. Ley. DBLP Bibliography.
http://www.informatik.uni-trier.de/"ley/db/.

[5] M. Baitaluk et al. Pathsys: Integrating molecular
interaction graphs for systems biology. BMC
Bioinformatics, 7(55), 2006.

[6] M. Kanehisa et al. The kegg resources for deciphering
the genome. Nucleic Acids Res., 32:D277-D280, 2004.

[7] D. Shasha, J. T.-L. Wang, and R. Giugno.
Algorithmics and applications of tree and graph
searching. In PODS, 2002.

[8] L. Sheng, Z. M. Ozsoyoglu, and G. Ozsoyoglu. A
graph query language and its query processing. In
ICDE, 1999.

[9] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient
aggregation for graph summarization. In SIGMOD,
2008.

[10] Y. Tian and J. M. Patel. TALE: a tool for
approximate large graph matching. In ICDE, 2008.
[11] Y. Tian et al. SAGA: a subgraph matching tool for
biological graphs. Bioinformatics, 23(2):232-239, 2007.
[12] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD, 2004.
[13] X. Yan, P. S. Yu, and J. Han. Substructure similarity

search in graph databases. In SIGMOD, 2005.

