XTCcmp: XQuery Compilation on XTC

Christian Mathis, Andreas M. Weiner, Theo Harder, and Caesar Ralf Franz Hoppen
Databases and Information Systems Group, Department of Computer Science
University of Kaiserslautern, P. O. Box 3049, D-67653 Kaiserslautern, Germany

{mathis | weiner | haerder | hoppen}@informatik.uni-kl.de

ABSTRACT

XTCcmp, the XQuery Compiler of a native XML database
system, extends Starburst’s well-known Query Graph Model
to serve as an internal representation and basis for query re-
structuring of XQuery expressions. Furthermore, XTCcmp
is able to generate execution plans supporting a wide range
of both well-known and newly developed variants of core
XML processing algorithms and indexes. Our demo visual-
izes all rule-based transformation stages, i. e., simplification,
algebraic rewriting, and plan generation. Furthermore, via
an interface to the extensible rule configuration, it allows
interaction with the query compiler to vary configuration
parameters and to control the compilation outcome.

Categories and Subject Descriptors

H.2 [ DATABASE MANAGEMENT];
H.2.3 [Languages]: Query languages—XQuery;
H.2.4 [Systems]: Query processing—XML

General Terms

Design, Experimentation, Languages

1. MOTIVATION

Query processing—especially over XML data—is a com-
plex task. In computer science, the answer to complexity
is abstraction. Therefore, it is quite natural to split up
query processing into system-independent problems (logical
abstraction level) and problems that are system-dependent
(physical abstraction level).

Considering XML query processing at the physical level,
a plethora of algorithms has been proposed over the re-
cent years, such as navigational primitives, structural joins,
twig joins, and various forms of path, content, and hybrid
indexes. Often these approaches contend themselves with
solving subproblems (e.g., twig pattern matching, path in-
dexing) that are important to XML query processing, but

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

ded
tage,
2ar,
ata
vers
1 the

1400

they do not reason about the integration of their proposals
into a full-fledged query processor.

At the logical level, there is still no commonly agreed logi-
cal XML algebra. However, we think the classification in [2]
still holds. It basically identifies two primary movements:
coarser-grained macro-level algebras that operate on com-
plete sub-trees [10], and finer-grained micro-level algebras
that operate on (tuples of) nodes [12].

Starting from this initial situation, the design and im-
plementation of the XTCcmp query compiler for the XML
Transaction Coordinator (XTC)—a native XDBMS—was
driven by the vision to bring concepts from both commu-
nities, i.e., from physical and logical parties, more closely
together. Therefore, at the physical level, we implemented a
large variety of both well-known and newly developed vari-
ants of physical operators and index structures, like navi-
gational axis evaluation primitives, structural joins, index-
based and scan-based holistic twig joins, or content-and-
structure (CAS) indexes, and seamlessly integrated them
into a physical XML algebra. At the logical level, we ex-
tended Starburst’s Query Graph Model (QGM) to serve as
an internal representation for XQuery expressions. The re-
sulting XML Query Graph Model (XQGM) is underpinned
by a micro-level algebra [7] (however, as sketched in the next
Section, the algebraic query rewriter can also detect and ex-
ploit tree-based macro-level algebra operators). To provide
for extensibility, we follow the classical rule-based approach,
in which all query transformations are defined by extensible
sets of rules.

Our system demonstration traces the behavior of the rule-
based XML query compiler. In particular,

e it shows how Starburst’s Query Graph Model can be
extended to support XQuery;

e it visualizes three important stages of query compila-
tion, i. e., Stmplification, Algebraic Rewriting, and Plan
Generation;

e it presents how a large variety of XML evaluation al-
gorithms cooperate in a physical algebra;

e it allows online modification of the rule configuration,
thereby interacting with the query compiler to control
the compilation outcome; and

e it serves as a visual explain tool for database users
and developers facilitating tuning, debugging, and the
development of new query transformations.

In the following, we provide an overview over the query com-
pilation process, the XQGM, and the query transformation
rules implemented in XTCcmp.



2. SYSTEM OVERVIEW

Figure la) depicts the overall query compilation and ex-
ecution process in XTC. Initially, an XQuery expression is
sent to the parser which generates an Abstract Syntax Tree
(AST) representation, on which the next four translation
steps elaborate: Following the XQuery Formal Semantics
[4], the query is first transformed to a variant® of the XQuery
Core language (thereby removing syntactic sugar) on which
then the static type is inferred. Static typing allows to detect
errors in the query in an early stage and provides type infor-
mation for the following simplification phase. Similar to [12],
simplification removes unnecessary sub-expressions from the
query, e.g., unnecessary calls to the fn:data function or
unnecessary typeswitch expressions. In the last translation
step, the query is mapped onto an XQGM instance.

The query translation phase is closely related to the sug-
gestions from the Formal Semantics. The rationale is to keep
a certain “proximity” to the specification to ensure correct-
ness and to translate semantically equivalent queries to a
common basis. Therefore, an initial (canonical) XQGM, as
depicted in Figure 1b), can be seen as a graphical representa-
tion for XQuery expressions and can serve as an explanation
model, e.g., for teaching.

As in classical query processing, the goal of the algebraic
rewriting stage is to find an equivalent XQGM graph that
hopefully leads to a more efficient evaluation. Therefore, we
implemented primitives for query unnesting and selection
push down. To address XML specifics, we also developed
means to identify tree-based (macro-level [2]) operators.

Our intentions for plan generation were (1) to ensure that
every XQGM instance can be mapped onto one or more
plans; and (2) to address a large variety of evaluation algo-
rithms in the physical algebra. These requirements are nec-
essary, because cost-based XML query optimization is still
an open issue and we plan to use our system as a testbed for
comparison and measurements®. The optimization result is
a Physical Algebra (PAL) operator tree that is based on the
Open-Next-Close protocol to support pipelining.

In the last stage, the PAL tree is executed returning an in-
termediate result containing TID-style references to subtrees
in the document. These references are resolved in the ma-
terialization step, before the result is returned to the client.

Of course, we cannot give a detailed discussion on all
transformation stages. However, at least we want to pro-
vide a short introduction to XQGM and rewriting.

2.1 The XQGM in a Nutshell
Figure 1b) depicts the canonical XQGM instance® for query:

let $auction := doc ("auction.xml") return
for $b in $auction//person[@id = "person0"]
return <person>{$b/name}</person>

For readers familiar with Starburst’s QGM and XQuery, we
think XQGM is more intuitive and easier to read than the
algebraic notations in [10, 12]: Basically, the graph is an op-
erator tree, in which each operator consumes and produces
sequences (of nested tuples [7]) and the data flows from bot-
tom to top. The two basic operators are ACCESS (to access

"We normalize as far as possible to facilitate the XQGM
mapping.
2This implies that the current optimizer uses heuristics only.

3This graph was generated by our demo system (and was
only slightly hand-optimized for space efficiency).

1401

the document) and SELECT (to combine input sequences),
which can carry a predicate (over input sequences), a sort-
ing specification (for order-by queries), and an output spec-
ification (to compute output sequences). Tuple variables
(“F” standing for for and “L” standing for let) control
how input sequences are processed, where the semantics is
borrowed from XQuery: “F” iterates over each item in the
input sequence, whereas “L” passes the complete sequence
to subsequent operations.

To read the XQGM instance, you can start at the docu-
ment ACCESS operator (the darkest shaded operator that
delivers the artificial document root R) and simply follow
the arcs: R is bound to an “F”-variable. Then, the sub-
tree of the adjacent “L”-variable has to be evaluated. Sim-
ilar to nested SQL Selects, this subtree is a nested ex-
pression, requiring R as correlated input. With R as in-
put (dotted line), the next ACCESS operator evaluates
descendant-or-self: :node() on a sequence S, over which
the following “F”-variable iterates, passing on each node
in S as correlated input to the subexpressions below. At
the bottom, person and @id are evaluated and filtered
by a SELECT operator that only returns those persons,
where the id attribute is equal to “person0”. On their
“way up”, intermediate results are collected and arranged
in distinct-doc-order (ddo), before, in the final step, the
name of each returned person is wrapped inside a new
person element.

This evaluation model follows the XQuery Formal Se-
mantics. However, evaluation on navigational primitives
and nested subexpressions is often far from being efficient.
Therefore, the query is rewritten to support bulk (sequence-
based) evaluation algorithms. Figure 1c) depicts a pos-
sible rewriting, in which most navigational primitives are
unnested to structural joins, and in which the predicate ex-
pression is pushed down to the attribute access (directly
atomizing the attribute). Note, the bottom-most access op-
erators do not require a correlated input anymore, because
they deliver complete sequences (e. g., all persons) from the
document.

Based on this representation, plan generation would now
start to find physical evaluation alternatives. For example,
the above query could be evaluated starting with a content-
and-structure index on person/@id="person0", followed by
a navigation from each delivered person to retrieve its name
children.

2.2 Rule-Based Query Transformations

As indicated in Figure 1la), simplification, algebraic
rewriting, and plan generation are specified using rules and
are executed by a rule inference engine in a bottom-up fash-
ion. These mechanisms are generic, i.e., the engine can be
reused in each transformation stage. Rules consist of a pat-
tern and an action part. The pattern is matched against
an overlay tree (generated on top of the AST or XQGM in-
stance). Whenever a pattern match is found, the rule engine
executes the action part on the match, thereby transforming
the underlying tree. Table 1 provides an overview over the
most important rules and their effects (note, due to the lack
of space, precise conditions could not be presented).

During rewriting, the two most important rules are
Unnest and StructJoinFusion, because they transform the
initial XQGM instance which contains many nested sub-
expressions and navigations, into a form facilitating the



XQuery
1

SELECT
PROJ_SPEC

SELECT
PROJ_SPEC

Parser

v SELECT
5 AST PROJ_SPEC
S
L Normalization (ddo) "@ o
g Static Typing o G . — A ACCESS

Simplification _ ST @xis:chid) SR
QGM Transformation " PROJ_SPEC
1 : (ddo) SELECT,
XQGM : PROJ_SPEC PREDICATE

@ 1 : o SELECT PREDICATE
N . agr H
= Algebraic Rewriting : PROJ_SPEC (=
g— Plan Generation abcess (n:datd)

v a

PAL Tree B
3 _— o) : ACCESS ACGESS
3 Execution g et AGCESS Coocument ) PREDICATE
€
2 Materialization 2 Gis i)
xtc:atomize 0
! m - person
a) Result b) c)

Figure 1: a) Query Evaluation in XTC, b) Canonical XQGM Instance, c) Rewritten XQGM Instance

mapping onto bulk (set-based) evaluation operators, such
as the holistic twig join or a path index access (as depicted
in Figure 1b) and 1c)). Note, during rewriting, navigational
access operators are rewritten to sequence access operators
(e.g., person and id access). The responsible rewriting rules
make sure, that each access operator “knows” its document.

Table 1: Implemented Query Transformation Rules

Rule Description
TypebasedRem Removes typeswitch, data(), or distinct-
g doc-order() expression when type known
% LetSubs Substitutes “let” when defined variable
& referenced only once or not at all
i OrderBySimpl Removes order specs with no effect
£ | QuantSimpl Removes unnecessary bindings in quantfi-
n fied expressions
ForAtRem Removes unnecessary “at” particles from
“for” bindings
DescOrSelfSubs Substitutes “descendant-or-self::node()/
4 child::” with “descendant::”
= | PredPushDown Pushes predicates to (access) operators
é SelectFusion Merges select with its input if possible
é Unnest Unnests to enable bulk operators
StructJoinFusion Creates multi-way joins for twig patterns
- Access*Trans Maps to navigation and scan for access
8 SelectTrans Generic mapping for all select operators
g StructJoinTrans Maps to structural join algorithms
A | TwigJoinTrans Maps to holistic twig join algorithms
IndexTrans Maps to path index access

2.3 Physical Algebra

As sketched in Table 1, our plan generator can consider a
large variety of different evaluation strategies at the physi-
cal level. In particular, the generator supports (1) Naviga-
tional Primitives, which can either be evaluated directly on
the document or on a special navigation support index, (2)
Structural Joins with stack-based [3], hash-based [8], and
navigational implementations [9], (3) Holistic Twig Joins
implemented as TwigOpt [6] and TwigList [11], and (4) In-
dezes in the form of pure content indexes, pure path indexes,
and hybrid content-and-structure indexes.

1402

3. DEMONSTRATION OUTLINE

Our demonstration prototype consists of a graphical user
interface (GUI) that connects as client to the XTC database
server. The GUI client serves as a visual explain tool for
database administrators and allows to influence the behavior
of the XTCcmp. Additionally, it permits to follow the com-
plete query evaluation process. The database administrator
interacts with the GUI client by choosing the document to
be queried, by selecting the rules that have to be applied,
and by entering an XQuery expression. Next, these informa-
tion are sent to the XTC query processor, which performs
the query evaluation. During query optimization, only those
rules selected before are used. Finally, the query result and
additional information on query evaluation are sent back to
the client and are presented to the database administrator.

To summarize, our GUI client can

e visualize XQGM instances and the final query execu-
tion plan;

e track the query compilation process, i.e., how query
graphs evolve with the translation and optimization
progress according to different rewrite strategies; and

e present in-detail statistical information on the query
compilation process.

3.1 Making Query Compilation Visible

The GUI client is able to visualize an XQuery expression
and its corresponding logical algebra expression—expressed
as XQGM instance—as well as the final query execution
plan, which solely consists of physical algebra operators. By
allowing the selection of different evaluation strategies, we
can see immediately how they influence the whole query
compilation process in terms of applicable optimization rules
as well as supported physical algebra operators.

To clarify XTCcmp’s internal actions, the GUI client al-
lows to track the query compilation process. Thereby, it
visualizes every modification of the query graph and gives
an impression of the graph’s evolution over the time. Every
modification is highlighted by color for easy recognition of
changes even in large query graphs.



3.2 Impact of Rewrite Rules

As mentioned in Section 2.2, our query compiler follows a
rule-based approach providing three different sets of rules for
simplification, rewrite, and transformation. We can choose
between two strategies for rule application: (1) arbitrary se-
lection of rules and (2) configuration-based selection. Using
the first strategy, we can turn on and off every rule. The sec-
ond option allows to choose from predefined configurations
encompassing useful evaluation scenarios.

Simplification and rewrite rules can be applied in two dif-
ferent modes: (1) interleaved and (2) rule-at-a-time. The
first alternative applies different rules in an interwoven man-
ner, i.e., always the rule is applied that complies best with
the chosen evaluation strategy. On the other hand, switch-
ing to the rule-at-a-time mode allows to visualize the impact
of a single rule on the whole XQGM instance by applying it
as long as its left-hand side matches a (sub)tree of it. Both
alternatives allow to assign a priority to each rule. Whenever
the left-hand side of two or more rules match the same tree
pattern, always the one with the higher priority is applied.

During plan generation, for every logical operator only
one physical counterpart can be chosen at a time. Never-
theless, we provide for every logical operator different phys-
ical operators to choose from. Using these options, we can
play around with different combinations of physical opera-
tors, e.g., employment of structural joins vs. holistic twig
joins. For accessing the document to be queried, we allow
to choose between the employment of different available in-
dexes or navigational access methods.

3.3 Display of Statistical Information

The demonstration prototype provides in-detail statistical
information on the query compilation process. Using these
statistics, we can get an impression of the time spent for
parsing, normalization, and type checking of the XQuery
expression. Presenting the timings for query simplification
and rewrite permits to figure out how much time was con-
sumed by heuristics-based query optimization. Finally, the
overall query evaluation time is shown which allows to com-
pare different rule configurations w.r.t. their influence on
query evaluation performance. In addition to the absolute
numbers presented as milliseconds spent for certain tasks of
the query compilation process, we additionally provide its
share of the overall query evaluation time in percentage, so
we can easily recognize which stage of the query evaluation
process consumed the lion’s share of time.

4. IMPLEMENTATION

Our demonstration prototype is implemented using the
Java programming language (version 1.6) and uses its Swing
API for the GUI. The prototype connects to the XTC server
using Java RMI. For every modification of a query graph
during query optimization, the query processor generates a
corresponding textual representation using the dot language
[5] and sends it to the client—together with the query re-
sult and statistical information. On the client side, the tex-
tual representations of the query graphs are transformed
into SVG instances using the GraphViz' graph visualiza-
tion software [5], which serves for automatic layouting of
huge graphs. Finally, the SVG descriptions are rendered
using the Batik SVG Toolkit [1].

4See: http://www.graphviz.org/

1403

5. CONCLUSIONS

In this demonstration, we show how flexible rule-based
XQuery compilation is done in the XTC system. Our sys-
tem covers the overall query evaluation process beginning
at the translation of XQuery statements into the XQGM
and ending at the delivery of the final query result. Besides
the main purpose of the visualization prototype, providing
an interface to XTC’s query optimizer, it also serves as a
means for illustration of XQuery compilation. By activat-
ing the appropriate rules, we can get a feeling of how differ-
ent evaluation strategies influence query evaluation perfor-
mance. Finally, choosing between different transformation
rules allows to play the role of a query optimizer by defining
which physical operators should be used for query evalua-
tion. Future work will focus on defining appropriate cost
models and the integration of a statistics component, which
enable the query optimizer to dynamically choose promising
rules and physical operators automatically.

6. REFERENCES

[1] The Apache XML Graphics Project—Batik SVG
Toolkit. http://xmlgraphics.apache.org/batik/,
2008.

[2] S. Al-Khalifa and H. V. Jagadish. Multi-Level
Operator Combination in XML Query Processing. In
Proc. CIKM, 2002.

[3] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,
N. Koudas, and D. Srivastava. Structural Joins: A
Primitive for Efficient XML Query Pattern Matching.
In Proc ICDE, pages 141-154, 2002.

[4] D. Draper, P. Frankhauser, M. Ferndndez,
A. Malhotra, K. Rose, M. Rys, J. Siméon, and
P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics, 2004.

[5] J. Ellson, E. Gansner, E. Koutsofios, and S. N. G.
Woodhull. Graphviz and Dynagraph—Static and
Dynamic Graph Drawing Tools. In M. Junger and
P. Mutzel, editors, Graph Drawing Software, pages
127-148. Springer-Verlag, 2003.

[6] M. Fontoura, V. Josifovski, E. Shekita, and B. Yang.
Optimizing Cursor Movement in Holistic Twig Joins.
In Proc. CIKM, pages 784-791, 2005.

[7] C. Mathis. Extending a Tuple-Based XPath Algebra
to Enhance Evaluation Flexibility. Informatik —
Forschung und Entwicklung, 21:3:147-164, 2007.

[8] C. Mathis and T. Hérder. Hash-Based Structural Join
Algorithms. In Proc. DataX, LNCS 425/, pages
136-149, 2006.

[9] C. Mathis, T. Hérder, and M. P. Haustein.
Locking-Aware Structural Join Operators for XML
Query Processing. In Proc. SIGMOD, pages 467478,
2006.

[10] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree Logical Classes for Efficient Evaluation
of XQuery. In Proc. SIGMOD, pages 71-82, 2004.

[11] L. Qin, J. X. Yu, and B. Ding. TwigList: Make Twig
Pattern Matching Fast. In Proc. DASFAA, 2007.

[12] C. Re, J. Siméon, and M. Fernédndez. A Complete and
Efficient Algebraic Compiler for XQuery. In Proc.
ICDE, 2006.





