
Language-Integrated Querying of XML Data in SQL Server

James F. Terwilliger∗
Portland State University

jterwill@cecs.pdx.edu

Sergey Melnik and Philip A. Bernstein
Microsoft Research, USA

{Sergey.Melnik, Phil.Bernstein}@microsoft.com

ABSTRACT
Developers need to access persistent XML data program-
matically. Object-oriented access is often the preferred
method. Translating XML data into objects or vice-versa
is a hard problem due to the data model mismatch and the
difficulty of query translation. Our prototype addresses this
problem by transforming object-based queries and updates
into queries and updates on XML using declarative map-
pings between classes and XML schema types. Our proto-
type extends the ADO.NET Entity Framework and lever-
ages its object-relational mapping capabilities.

We demonstrate how a developer can interact with stored
relational and XML data using the Language Integrated
Query (LINQ) feature of .NET. We show how LINQ queries
are translated into a combination of SQL and XQuery. Fi-
nally, we illustrate how explicit mappings facilitate data in-
dependence upon database refactoring.

1. INTRODUCTION
XML data has become ubiquitous in data-centric appli-
cations. Many commercial database management systems
support XML storage. Yet, the problem of translating be-
tween XML and objects automatically is largely unsolved,
due to differences in the expressive power of their type sys-
tems [5] and the difficulty of translating object queries into
an XML query language such as XQuery. In hybrid rela-
tional/XML databases, this problem is compounded by the
object-relational impedance mismatch, since XML data can
be partitioned across multiple relational tables.

Several object-relational mapping (ORM) frameworks [2]
have emerged to help application developers bridge objects
and relations. They leverage the performance and scalability
of databases by translating queries on objects into equivalent
queries in SQL. However, typically ORMs do not handle the
mismatch between objects and XML. Recently, substantial
research was done on the XML-relational mismatch, includ-
ing shredding XML into relations and rewriting XQuery as

∗Research conducted at Microsoft during an internship

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
Submitted to VLDB ’08 Aukland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

SQL. However, as far as we know this line of work did not
consider programming language integration.

We developed a prototype, called LINQ-to-Stored XML,
that enables programmatic access to persistent XML and
relational data from .NET applications by using explicit
mappings between object classes, XML schema types, and
relations. The mappings drive query and update process-
ing. They can be generated automatically or provided by
the developer. Using the language-integrated query (LINQ)
feature of .NET [7], the developer can write object queries
that resemble SQL but are statically compiled and type-
checked in an object-oriented programming language. Our
prototype translates LINQ queries into a mixture of SQL
and XQuery to execute in the database, using the native
SQL dialect and XML features of that database. Our im-
plementation extends the ADO.NET Entity Framework [1]
and leverages its object-relational mapping capabilities. The
demonstration runs on Microsoft SQL Server 2005.

Our research goes beyond the capabilities of existing
XML-to-object mapping tools in two important ways. First,
existing tools work only on XML documents while they
are in memory; LINQ-to-Stored XML supports in-memory
translation of XML documents into objects, but can also
push queries to the database. Second, existing tools we are
aware of can map XML to objects only in a pre-determined,
canonical fashion. LINQ-to-Stored XML can begin with a
canonical mapping, but then allows the programmer to ad-
just or rewrite the mappings to suit the needs of the appli-
cation, e.g., to support schema evolution.

Section 2 details the capabilities of our prototype and
what we demonstrate. We then describe the run-time and
design-time components of our prototype’s implementation
in Section 3. We conclude in Section 4 by comparing our
contributions against related work.

2. WHAT IS DEMONSTRATED
Our running example is based on AdventureWorks, a sample
database distributed with SQL Server 2005. This database
contains several tables whose columns store XML data. For
example, the table JobCandidate shown in Figure 1(a) has a
column Resume whose contents are XML documents. Fig-
ure 2(a) shows part of the XML schema for those documents.

2.1 Querying XML as Strongly-Typed Objects
We start by demonstrating how XML data that has an asso-
ciated XML schema can be queried using classes mapped to
XML schema types. The following C# program uses LINQ
to list email addresses and schools attended by job candi-

1396

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

JobCandidate

CandidateID

SponsorID

ModifiedDate

Resume (XML)

Candidate

ID

EmployeeID

ModifiedDate

Resume

ID

Name (XML)

Skills

EMail

WebSite

ResumeDetails

ID

Employment (XML Collection)

Education (XML Collection)

Address (XML Collection)

FK FK

(a) (b)

Telephone (XML)

Figure 1: (a) The relational portion of the job candidate table in the AdventureWorks database and (b) an
alternative representation where the XML data has been refactored into multiple tables

<xs:complexType name="ResumeType">
 <xs:complexType><xs:sequence>
 <xs:element name="Name" type="NameType" />
 <xs:element name="Skills" type="xsd:string" minOccurs="0" />
 <xs:element name="Employment" type="EmploymentType" maxOccurs="unbounded"/>
 <xs:element name="Education" type="EducationType" maxOccurs="unbounded"/>
 <xs:element name="Address" type="AddressType" maxOccurs="unbounded"/>
 <xs:element name="Telephone" type="TelephoneType" minOccurs="0"/>
 <xs:element name="EMail" type="xsd:string" minOccurs="0"/>
 <xs:element name="WebSite" type="xsd:string" minOccurs="0"/>
 </xs:sequence></xs:complexType>
</xs:complexType>

 (a) (c)

public partial class TResume
{
 public TName Name;
 public string Skills;
 public List<TEmployment> Employment;
 public List<TEducation> Education;
 public List<XElement> Address;
 public TTelephone Telephone;
 public string EMail;
 public string WebSite;
}

 (b)

��������������	
���������

�����
Figure 2: Part of mapping (c) between an XML schema type (a) and a class (b)

dates who have an email address and a Bachelor’s degree:

using(AWdb db = new AWdb()) {

var q = from c in db.JobCandidates

from e in c.Resume.Education

where c.Resume.EMail != null &&

e.Degree.Contains("Bachelor")

select new { c.Resume.EMail, e.School };

foreach (var i in q)

Console.WriteLine(i);

}

The “var q” declaration indicates that the return type of the
query is inferred by the compiler (as a collection of string
pairs). We illustrate how the query can be written easily us-
ing the IntelliSense feature of Microsoft Visual Studio 2008,
which automatically suggests member names such as De-
gree and School (they belong to the TEducation class whose
definition is omitted for brevity, as are subelements of Ed-
ucationType). Our prototype translates the query into the
following SQL and XQuery:

WITH XMLNAMESPACES(’http://.../Resume’ AS r)

SELECT

C.Resume.value(’*[1]/r:EMail’, ’varchar(max)’),

E.value(’./r:Edu.School’, ’varchar(max)’)

FROM HumanResources.JobCandidate C

CROSS APPLY C.Resume.nodes(’*[1]/r:Education’) T(E)

WHERE C.Resume.exist(’*[1]/r:EMail’)=1 AND

E.exist(’./r:Edu.Degree[contains(.,"Bachelor")]’)=1

The functions “value”, “nodes”, and “exist” are SQL Server-
specific directives that apply XQuery expressions to XML
fragments. We generate the XPath fragments in the query
(e.g., *[1]/r:EMail) based on mappings that describe rela-
tionships between XML and objects. We describe these
mappings in more detail in the implementation section.

2.2 Querying XML using Loosely-Typed Ob-
jects and Embedded XPath

Not all XML schema types can be mapped to strongly-typed
classes. For instance, the declared type of an XML element
may be “xsd:anyType”, which does not have a statically-
typed object counterpart any more descriptive than “any
XML data”. Also, mixed-content elements are hard to map
to strongly-typed objects due to text nodes that may be
sprinkled between child elements. Finally, the developer
may prefer to query persistent XML directly using XPath.

Our prototype supports these scenarios by mapping XML
schema elements to a .NET type called “XElement” in the
LINQ-to-XML API that represents an XML element [8].
For example, in Figure 2 the XML schema element Address,
which has an unbounded number of occurrences, is mapped
to a list of XElements. Each XPath axis has a counterpart
in the object layer as a method of the class XElement.

The following LINQ query illustrates how strongly-typed
and loosely-typed portions of the query can be used in a sin-
gle expression. The nested subquery that ends with “Any()”
restricts the result to those job candidates who have at least
one address with the postal code 98052. ModifiedDate has a
strongly-typed .NET type DateTime, which has a member
Year and is mapped to the relational type “datetime”. Ad-
dress is loosely-typed XML; to access the PostalCode mem-
ber of an Address in variable “a”, we must use the Element
method (corresponding to the XPath child axis):

from c in db.JobCandidates

where c.ModifiedDate.Year <= 2007 &&

(from a in c.Resume.Address

where (int)

a.Element("{http://...}Addr.PostalCode") == 98052

select a).Any()

select c.Resume.Name;

1397

The above query is translated into the following
SQL/XQuery expression:

SELECT C.Resume.query(’*[1]/r:Name’)

FROM HumanResources.JobCandidate AS C

WHERE DATEPART(year, C.ModifiedDate) <= 2007 AND

EXISTS (SELECT 1

FROM C.Resume.nodes(’*[1]/r:Address’) AS T(A)

WHERE A.value(’./r:Addr.PostalCode[1]’, ’int’)

= 98052)

Our prototype rewrites LINQ’s Element() function (and the
cast to “int”) as value() in T-SQL and applies it to the field
variable A iterating over Address elements. The nested sub-
query becomes a SQL EXISTS clause. The condition on the
date is expressed using a built-in SQL function DATEPART.
Each XML document returned by the query is materialized
on the client as an object of type TName, a strongly-typed
class mapped to NameType in the XML schema.

2.3 Refactoring XML into Relations
Finally, we demonstrate how the prototype introduces a level
of data independence that isolates queries from a changing
persistence model. We allow for both the relational and
XML schemas of the database to evolve; the application code
remains intact as long as the mappings are updated with
the schema and can compensate for the changes. We show
how we can alter the schema of Figure 2(a) (and the data to
match) so that all of the Education nodes are moved beneath
a new EducationListing parent node. We compensate for
this change by appending the “EducationListing/” prefix
to all XPath expressions in the mapping that reference the
Education nodes, without modifying the application.

Moreover, the prototype allows data to change from re-
lational to XML or vice versa. For example, the schema in
Figure 1(b) is a refactoring of the schema in Figure 1(a),
where the original XML data has been partitioned across
three tables containing relational and XML columns. Such
selective shredding of XML data may be motivated by per-
formance concerns; retrieval of frequently-accessed elements
of XML may be significantly faster if those elements are
moved into their own tables and columns. Once we ad-
just the mappings to conform to the new schema, all of the
demonstrated queries still work without alteration.

3. IMPLEMENTATION OVERVIEW
Our implementation builds on the ADO.NET Entity Frame-
work [1], which enables applications to interact with the
database via a conceptual entity model and an object sur-
face that encapsulates conceptual types (Figure 3). We ex-
tended the framework by adding an XML mapping layer.
Specifically, we modified the LINQ query translator and the
Data Provider1 for SQL Server to recognize XML mappings
and embed XQuery statements into the generated SQL. All
of the XML-related features shown in Figure 3 are unique
to our prototype.

3.1 Flexible X-O Mappings
Before we can execute LINQ queries on objects, we need to
represent the XML data in the object layer. In our run-
ning example, we need to map the XML types used in the
1An ADO.NET Data Provider translates queries repre-
sented in an abstract syntax into the native SQL dialect
(and XML features) supported by the database system.

Resume column to classes. Figure 2 shows a portion of the
mapping that associates ResumeType from the XML schema
with a C# class TResume. The mapping is specified using
XPath expressions, one for each class member, shown as la-
bels on double-headed arrows. For example, the XPath “Ad-
dress” retrieves all of the Address children of a Resume ele-
ment, while the XPath “data(WebSite)” identifies the scalar
value of the WebSite child element. Mappings may option-
ally specify conditions that must be met on either the XML
or object side or both, allowing a single XML schema type
to be conditionally mapped to different classes, and vice
versa. For example, an XML schema type AddressType may
be mapped to classes TAddress or TUSAddress depending on
whether a state element appears in the XML instance.

While XPath expressions describe how to transform XML
into objects, they do not specify the reverse transformation
explicitly. For a mapping to be reversible, we require that
the collective set of XPath expressions for a single class de-
compose the XML structure into non-overlapping, contigu-
ous segments along the descendant axis. We restrict the
supported subset of the XPath language to enable valida-
tion of these roundtripping conditions. The XPath subset
we currently support includes:

• Child element axis (e.g., Q/R/S for qualified names Q,
R, and S)

• Attribute axis (@Q for some qualified name Q)

• Self axis (.)

• Filter by absolute position ([i] for some positive in-
teger i or the function last())

• Filter by relative position (e.g., Q[.<<../R[1]] finds
all instances of Q before the first instance of an R sib-
ling)

• The data() function, to retrieve scalar values

3.2 Design-time Mapping Generation
We provide several ways to automatically generate a default
mapping. First, we have written a tool that reads the XML
schemas that are stored in the database or in the local file
system and generates a set of .NET classes and mappings to
those classes. Generation of classes and mappings are driven
by a set of canonical rules. For example, if an XML element
can be repeated it is mapped to a .NET collection type, etc.

Conversely, the developer can also start with a set of .NET
classes. In this case, we use a technology from Windows
Communication Foundation (WCF [9]) called Data Con-
tract. WCF includes a schema generator that creates an
XML schema from a set of classes based on canonical choices.
The default choices can be overridden using class-level at-
tributes provided by the developer. We built a tool that
creates a mapping that respects the XML schema generated
by WCF.

3.3 Runtime Query and Update Processing
We leverage multiple existing features and extensibility
mechanisms of the Entity Framework (EF) to combine XML
and relational mappings. For example, we exploit user-
defined functions to tunnel XML queries through the query
pipeline. We also use the EF’s query rewriting mechanism
to return nested collections in query results, which enables

1398

DB

Entity

Model

CLR (.Net)

Objects

Extended entity-to-relational

mappings (from ADO.NET

Entity Framework)

XML-to-object mappings

+

Entity-to-object mappings

SQL +

XQuery

Translate references to XML-

mapped members and methods into

XQuery

Translate tree according to entity-to-

relational mappings, then into

vendor-specific syntax

LINQ

Query

Tuples

Objects

Shred XML data into strongly-typed objects using

XML-to-object mappings

Transform tuples into objects using entity-to-

relational mapping; nest collections

Objects

Query

Tree

Objects

Change List

Translate change list into DML

statements, and pass through entity-to-

relational mappings

Query Processing Result Materialization Update Propagation

DML

Package changed/added objects into

XML; mark as changed

Mappings

Figure 3: A high-level view of our implementation

convenient query formulation over XML content. For in-
stance, the query

from c in db.JobCandidates select c.Resume.Address

returns a collection of collections of XElements. The EF
automatically flattens such queries prior to execution in the
database and nests their results on the client. Not least, we
directly leverage EF’s built-in support for .NET functions
and data types, such as DateTime.

The query and update translation performed at runtime
is decoupled from the schema translation algorithm used by
the tool, which is essential to support schema evolution and
advanced mapping scenarios that require data reshaping.
Once we have defined or generated a set of classes, we can
construct LINQ expressions that reference both classes that
map to relational types and classes that map to XML types.

We also perform some optimization during query process-
ing. For instance, we collapse multiple XQuery fragments
from nested SQL queries into a single XQuery expression if
possible. Also, note that the example query from Section 2.1
could be expressed almost entirely in XQuery; our transla-
tion algorithm often uses relational operators to leverage the
relational capabilities of the query processor and to support
queries that span both relational and XML data.

4. RELATED WORK
Several tools are currently available that provide access to
XML documents as strongly-typed objects. XML Beans [10]
can expose XML documents as typed Java objects, while
Liquid XML [6] can expose XML documents as typed ob-
jects in a variety of languages. Finally, a strongly-typed
LINQ interface to XML was proposed in the initial LINQ-
to-XSD work of Lämmel et al [4] at Microsoft.

Each of these tools is limited to XML in main memory.
They do not push any operations to a database. In addition,
they each use a fixed mapping that cannot be controlled
by the user. Our work addresses both of these limitations.
To the best of our knowledge, LINQ-to-Stored XML is the
first system that supports accessing typed XML stored in a
database through LINQ. Our XML-to-object mappings can

be generated, but are not hardwired and can be edited at
design-time. We believe these features allow persistent XML
programming to be accessible to a larger developer audience.

Tools such as XJ [3] and LINQ-to-XML offer an XPath-
like interface to loosely-typed XML objects in a program-
ming environment. These tools are also limited to manipu-
lating XML in memory.

Our work was introduced at the XML’07 conference
[8] as a future direction for LINQ-to-XSD but has never
been demonstrated previously. Our proposed demonstration
shows an internal Microsoft prototype and does not imply
any product commitments.

5. REFERENCES
[1] A. Adya, J. A. Blakeley, S. Melnik, S. Muralidhar,

The ADO.NET Team. Anatomy of the ADO.NET
Entity Framework. In SIGMOD, 2007.

[2] W. R. Cook, A. H. Ibrahim. Integrating Programming
Languages and Databases: What is the Problem?
ODBMS.ORG, Expert Article, Sept. 2006.

[3] M. Harren, M. Raghavachari, O. Shmueli, M. G.
Burke, R. Bordawekar, I. Pechtchanski, V. Sarkar. XJ:
facilitating XML processing in Java. In WWW, 2005.

[4] R. Lämmel. LINQ-to-XSD. In PLAN-X, 2007.

[5] R. Lämmel, E. Meijer. Revealing the X/O Impedance
Mismatch (Changing Lead into Gold). In
Datatype-Generic Programming, Lecture Notes in
Computer Science. Springer-Verlag, June 2007.

[6] Liquid XML. http://www.liquid-technologies.com/.

[7] E. Meijer, B. Beckman, G. M. Bierman. LINQ:
Reconciling Object, Relations and XML in the .NET
Framework. In SIGMOD, 2006.

[8] S. Pather. LINQ to XML: Visual Studio 2008,
Silverlight, and Beyond. XML ’07,
http://2007.xmlconference.org/public/schedule/detail/369.

[9] S. Resnick, R. Crane, C. Bowen. Essential Windows
Communication Foundation (WCF): For .NET
Framework 3.5. Addison Wesley, 2008.

[10] XML Beans. http://xmlbeans.apache.org/.

1399

