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ABSTRACT

Execution plans for SQL statements have a significant impact on
the overall performance of database systems. New optimizer
statistics, configuration parameter changes, software upgrades and
hardware resource utilization are among a multitude of factors
that may cause the query optimizer to generate new plans. While
most of these plan changes are beneficial or benign, a few rogue
plans can potentially wreak havoc on system performance or
availability, affecting critical and time-sensitive business
application needs. The normally desirable ability of a query
optimizer to adapt to system changes may sometimes cause it to
pick a sub-optimal plan compromising the stability of the system.

In this paper, we present the new SQL Plan Management feature
in Oracle 11g. It provides a comprehensive solution for managing
plan changes to provide stable and optimal performance for a set
of SQL statements. Two of its most important goals are
preventing sub-optimal plans from being executed while allowing
new plans to be used if they are verifiably better than previous
plans. This feature is tightly integrated with Oracle’s query
optimizer.

SQL Plan Management is available to users via both command-
line and graphical interfaces. We describe the feature and then,
using an industrial-strength  application suite, present
experimental results that show that SQL Plan Management
provides stable and optimal performance for SQL statements with
no performance regressions.

1. INTRODUCTION

The performance of SQL statements depends heavily on the
optimality of execution plans generated by the query optimizer.
This means that a query optimizer has the unenviable task of
generating efficient execution plans for SQL statements of varied
characteristics: simple vs. complex, lightweight vs. resource
intensive, recursive vs. non-recursive. The query optimizers of
most commercial DBMSs, such as Oracle, IBM DB2, and
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Microsoft SQL Server, do a very good job of producing efficient
execution plans for the majority of SQL statements. In cases
where they fail, SQL plan tuning techniques are employed to
overcome the optimizer limitations [5].

Furthermore, query optimizers are also very good at adapting to
the database and system changes and producing execution plans
according to the current state. However, the plan adaptability
comes at a price. If the query optimizer generates a different
execution plan for a SQL statement due to a change, there is no
guarantee that the new plan will execute better than the old one.

When a plan change occurs, it results in one of three possible
outcomes: 1) the SQL statement continues to run with similar
performance, 2) the SQL statement runs faster than before — a
performance improvement, or 3) the SQL statement runs slower
than before — a performance regression. The last outcome poses a
serious problem, especially if the SQL statement has a stringent
performance requirement.

An execution plan change can occur for a number of reasons.
Some of the obvious ones are: 1) a database upgrade, and
consequently a new version of the query optimizer, 2) change in
the statistics used by the optimizer, 3) presence of host language
variables in the SQL statement such that different amount of data
are processed with different values, 4) change in the set of
indexes and materialized views affecting the availability of access
paths, and 5) change in the system configuration parameters
affecting the efficiency (i.e., cost) of operations such as hash join,
sort, and aggregation. Execution plan change is a consequence of
the plan adaptability.

To address the performance risk associated with plan adaptability,
a technique called plan stability is offered by most commercial
DBMS vendors. Plan stability, as the name suggests, tries to
stabilize the SQL performance by greatly reducing or completely
disabling the ability of the query optimizer to adapt to database
system changes for a set of SQL statements. The plan stability
technique works by issuing directives to the query optimizer to
generate a specific plan. The optimizer directives can dictate how
to generate parts of a plan or a full plan.

Various commercial database vendors have offered different
solutions to address the problem of performance regressions
arising from execution plan changes. Oracle has offered a plan
stability feature called Stored Outlines since Oracle 8i [14]. A
Stored Outline contains directives for the optimizer to generate a
fixed execution plan. Oracle also offers optimizer hints that can
be embedded in the SQL statement text, which direct the



optimizer to fix all or parts of an execution plan. IBM DB2 allows
database users to create optimization profiles, which contain hints
for the optimizer to generate specific query execution plans [4].
SQL Server offers a feature called plan forcing based on plan
guides created by database users [15]. A plan guide contains
optimizer hints guiding the optimizer in its plan generation
process. Note that Oracle optimizer hints, DB2 optimization
profiles, and SQL Server plan guides are also used in the manual
tuning of poorly performing SQL statements.

But plan stability also comes at a price. It prevents potential
performance gains that would have been possible without its use.
For example, a fixed execution plan may no longer be optimal
due to data growth. A much more serious issue occurs when
some optimizer directives stop working due to system changes,
and as a consequence the original plan is no longer reproducible.
Consider, for example, an optimizer directive that references an
index that is later dropped so that the only access path now
available is a full table scan. If this directive was specified along
with another directive to use nested-loops join, then the query
optimizer acts upon the second directive while ignoring the first
one since it is no longer applicable. This will produce a plan
using nested-loops join with full table scan as the inner access
path, resulting in severe performance degradation unless the
scanned table is very small. This is an unfortunate outcome
because it defeats the very objective of plan stability.

Plan adaptability and plan stability have their pros and cons, and
the two objectives often conflict. This means that the use of one
comes at the expense of the other. This is the main gist of the
problem faced by database users in managing the performance of
SQL statements in their applications. This problem is becoming
more challenging with the increasing complexity of industrial
strength business applications such as Oracle E-Business Suite,
Siebel Business Analytics, and SAP Business Warehouse. The
success of these applications depends to a large extent on
ensuring both optimal and stable performance of their SQL
workload.

In Oracle 11g Release 1, we have introduced a comprehensive
solution called SQL Plan Management, which allows database
users to maintain stable yet optimal performance for a set of SQL
statements. SQL Plan Management incorporates the positive
attributes of plan adaptability and plan stability, while
simultaneously avoiding their shortcomings. It has two main
objectives: 1) prevent performance regressions in the face of
database system changes, and 2) offer performance improvements
by gracefully adapting to the database system changes.

Section 2 describes SQL Plan Management concepts and
architecture in detail. In section 3, we present experimental
results to show how SQL Plan Management can prevent
performance regressions caused by plan changes, while still
allowing for performance improvements. We describe related
work in section 4, and conclude in section 5.

2. SQL PLAN MANAGEMENT

SQL Plan Management (SPM) enables database users to easily
manage the execution plans and performance of various SQL
statements. A managed SQL statement is one for which SPM has
been enabled. SPM can be configured to work automatically or it
can be manually controlled either wholly or partially.
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SPM helps prevent performance regressions by enabling the
detection of plan changes for managed SQL statements. For this
purpose, a plan history consisting of different execution plans
generated for each managed SQL statement is maintained on disk.
The part of the Oracle database dictionary that stores the plan
history and other SPM related information is called the SQL
Management Base (SMB). An enhanced version of the Oracle
optimizer, called SPM aware optimizer, accesses, uses, and
manages the information stored in the SMB. The plan history
enables the SPM aware optimizer to determine if the best-cost
plan it has produced using the cost-based method is a brand new
plan or not. A brand new plan represents a plan change that has
potential to cause performance regression. For this reason, the
SPM aware optimizer does not choose a brand new best-cost plan.
Instead, it chooses from a set of accepted plans. An accepted plan
is one that has been either verified to not cause performance
regression or designated to have good performance. A set of
accepted plans is called a SQL plan baseline, which represents a
subset of the plan history.

A brand new plan is added to the plan history as a non-accepted
plan. Later, an SPM utility verifies its performance, and keeps it
as a non-accepted plan if it will cause a performance regression,
or changes it to an accepted plan if it will provide a performance
improvement. The plan performance verification process ensures
both plan stability and plan adaptability.

Oracle DBMS_SPM
Enterprise PL/SQL
Manager Package

(GUI) API

N\

SQL statement \/
Database
Dictionary

SPMAware |q—p| Tv------" -

Optimizer SHB
l : Manageability
SQL Execution Monitor
Engine Daemon

Figure 1: SPM Functional Architecture

The SPM architecture is shown in Figure 1. It consists of several
functional components, a disk store, a background daemon, and
user interfaces. These are listed below.



SPM Aware Optimizer — Enhanced Oracle optimizer that
uses and manages SPM information.

SQL Management Base — a subset of the Oracle database
dictionary, where plan history, SQL plan baselines, and other
information of managed SQL statements is stored.

Manageability Monitor Daemon — a background shadow
process that periodically purges unused information from the
SMB.

SPM User Interfaces — a new DBMS SPM PL/SQL
(Oracle’s procedural language) package, and Oracle
Enterprise Manager screens (GUI).

In Figure 1, a shaded component represents an enhanced version
of an existing component or a newly introduced component. For
example, DBMS_SPM is a new PL/SQL package created for the
SPM user interface, while SPM aware optimizer is an enhanced
version of Oracle’s query optimizer.

Not shown in Figure 1 but employed by the shaded components
are the three main functional methods of SPM:

e SQL Plan Baseline Capture — methods of capturing and
storing relevant information about execution plans of

managed SQL statements on disk.

SQL Plan Baseline Selection — a method used by the SPM
aware optimizer to detect plan changes using stored plan
history and to select appropriate plans for managed SQL
statements.

SQL Plan Baseline Evolution — methods of evolving SQL
plan baselines by accepting plans after they are verified not
to cause plan regressions.

2.1 SPM Aware Optimizer

The SPM aware optimizer is central to the SPM functional
architecture. The main objectives of the SPM aware optimizer are
to: 1) identify repeatable SQL statements, 2) use and maintain
plan history and SQL plan baselines of managed SQL statements,
3) detect if a best-cost plan is a brand new plan (i.e., it is not
found in the plan history), 4) detect if a best-cost plan represents a
potential performance risk (i.e., it is in the plan history but not in
the SQL plan baseline), and 5) when necessary, reproduce
accepted plans and select the least costly one.

When enabled, the SPM aware optimizer determines if a SQL
statement is repeatable. A SQL statement is repeatable if it is
compiled or executed twice. Statement repeatability is used as a
pre-condition for the automatic capture of SQL plan baselines,
which is described in the next section. The processing logic of the
SPM aware optimizer is detailed in the next three sections.

2.2 SQL Plan Baseline Capture

The SQL plan baselines for various SQL statements can be
captured manually, or automatically, or both. A database user can
load a set of execution plans that are known to have good
performance as SQL plan baselines using DBMS SPM package
procedures. Plans for a set of SQL statements can be first captured
into a SQL tuning set [5][19] before they are loaded, or plans can
be directly loaded from the cursor cache (i.e., cache of recently
executed plans). All manually loaded plans are assumed to be
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accepted plans, so they are added to the existing SQL plan
baselines, or used to create new SQL plan baselines.

Automatic SQL plan baseline capture can be enabled for
individual user sessions or for the entire system by setting the
configuration parameter optimizer capture_sql_plan_baselines to
TRUE. This enables three activities by the SPM aware optimizer:
1) automatic recognition of repeatable SQL statements, 2)
automatic creation of plan history and SQL plan baseline for
recognized repeatable SQL statements, and 3) addition of new
plans, as they are found, to the plan history of managed SQL
statements. The first best-cost plan found for a newly recognized
repeatable SQL statement is considered to be an accepted plan,
resulting in the automatic creation of a SQL plan baseline. New
best-cost plans found subsequently are considered non-accepted
plans and added to the plan history.

SQL Statement

v

Plan History
Present?

Known Repeatable

Statement in
SQL Log?

Add Statement to SQL Log

5

Generate Best-Cost Plan |

Now Repeatable:
Create Plan History +
SQL Plan Baseline

Executed
Once/Twice?

Not Yet Repeatable

Figure 2: Automatic Capture Process

In order to recognize a repeatable SQL statement, the SPM aware
optimizer stores the statement into SQL log. If the same SQL
statement is compiled again, its presence in SQL log signifies it to
be a repeatable statement. A statement compiled once and



executed twice is also recognized as repeatable. The steps
involved in recognizing a SQL statement to be repeatable and the
automatic capture of SQL plan baseline for it, are depicted in the
flowchart shown in Figure 2. The last conditional in this flowchart
is a check for one or two executions. A SQL plan baseline is
created upon first execution of SQL statement if it was previously
seen (i.e. it was found in SQL log); otherwise it is created on
second execution.

The plan history of a SQL statement and, by inference, its SQL
plan baseline, only contain unique plans. Thus, for example, a
SQL statement may be executed several times with different sets
of host language variable values or using different configuration
parameter values, but there may be only a few distinct plans
produced and stored in the plan history.

Note that the database user can disable the automatic capture of
SQL plan baselines after the capture has been completed for a
SQL workload of interest. This means that no additions will be
made to the set of managed SQL statements. However, SPM will
continue to manage existing SQL statements, and the SPM aware
optimizer will add newly found best-cost plans to the plan history
of these statements.

2.3 SQL Plan Baseline Selection

The SPM aware optimizer uses a conservative plan selection
method called SQL plan baseline selection. The main objective of
this method is to avoid potential performance regressions for
managed SQL statements.

When a managed SQL statement is compiled, the SPM aware
optimizer builds a best-cost plan using the normal cost-based
method. It checks whether the best-cost plan is the same as one of
the plans in the plan history or the SQL plan baseline. If no match
is found, then the best-cost plan represents a brand new plan and
the SPM aware optimizer adds it to the plan history as a non-
accepted plan. However, if a match is found in the plan history
but not in the SQL plan baseline, then it is a non-accepted plan. In
either scenario, the SPM aware optimizer tries to reproduce and
cost each of the accepted plans in the SQL plan baseline and
selects the one with the least cost. If, however, none of the
accepted plans in the SQL plan baseline is fully reproduced, the
SPM aware optimizer selects the best-cost plan. This is a better
choice than selecting a partially reproduced accepted plan because
the latter is neither fully cost-based nor fully verified and so has a
greater potential of causing unpredictable performance. The
flowchart shown in Figure 3 illustrates the plan selection logic.

Note that the SPM aware optimizer does not use a SQL plan
baseline at the outset. It builds a best-cost plan first because this
can be a brand new plan, so it is important, at the very first
opportunity, to generate and add this plan and its execution
context (e.g., host language variable values) to the plan history.
This approach helps in the evolution of SQL plan baselines which
is described in the next section.

Also note that the overhead in reproducing accepted plans from a
SQL plan baseline is not significant because each accepted plan is
stored with a full set of optimizer directives. This eliminates all
but one plan alternatives that are normally considered by the
query optimizer.

The SQL plan baseline selection method can be turned off for
individual user sessions or for the entire system by setting the
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configuration parameter optimizer_use_sql_plan_baselines to
FALSE. Alternatively, it can be turned off for specific managed
SQL statements by disabling their SQL plan baselines.

Best-Cost Plan

In SQL Plan

Baseline? Select Best-Cost Plan

In Plan
History?

Add Best-Cost Plan To
Plan History

l‘

Use SQL Plan Baseline

Select Least Costly
Reproduced Plan

Plan(s)
Reproduced?

No >

Select Best-Cost Plan

Figure 3: Plan Selection Process

2.4 SQL Plan Baseline Evolution

A SQL plan baseline is evolved when an accepted plan is added
to it. This process is called SQL plan baseline evolution and its
main objective is to improve the performance of managed SQL
statements by accruing positive impacts of the database system
changes.

The SQL plan baseline of a managed SQL statement normally
starts with a single accepted plan. However, some SQL statements
perform well when executed with different execution plans under
different conditions. For example, a SQL statement containing
host language variables tends to have several good plans. So it is
sensible to evolve its SQL plan baseline from one accepted plan
to several. It is also sensible to evolve a SQL plan baseline
following a significant change in the database system. For
example, the creation of a materialized view can dramatically
improve the performance of a SQL statement when a new plan



using it as an access path is found. Also, after a database upgrade,
the new optimizer may find new plans based on enhanced
optimization techniques, which may result in improved
performance.

There are many ways of evolving a SQL plan baseline. Different
methods of SQL plan baseline evolution are listed below.

1) One or more plans can be loaded from either the cursor
cache or a SQL tuning set into an existing SQL plan

baseline.

2) A managed SQL statement can be tuned using the SQL
tuning advisor [5]. When the SQL tuning advisor finds an
execution plan with better performance, it makes a
recommendation to accept a SQL profile. Accepting the SQL
profile adds the tuned plan to the SQL plan baseline as an

accepted plan.

3) The database user can run an SPM utility (i.e., a
DBMS_SPM package procedure) to evolve one or more SQL
plan baselines. This utility runs a new plan side by side with
an accepted plan chosen by the SPM aware optimizer from
the corresponding SQL plan baseline. The two plans are run
using the same execution context (e.g., host language
variable values) in which the new plan was found. The new
plan is accepted when its performance is better than that of
the accepted plan by an internally defined threshold. A
successful verification results in the evolution of the SQL
plan baseline, which now includes the new plan. Note that
the existing accepted plan is not removed since it may be
better under a different execution context. The processing
logic of this method is illustrated in Figure 4.

Reproduce & Execute
New Plan

Reproduce & Execute
An Accepted Plan

v v

Measure Performance Measure Performance

Is New Plan
Better?

Evolve SQL Plan Baseline:
Accept New Plan

No Action

Figure 4: Plan Performance Verification Process

A setup for automatic SQL plan baseline evolution can be easily
accomplished by running the SPM utility as a job which is
periodically scheduled by the Oracle Scheduler.
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2.5 SQL Management Base

SQL Management Base (SMB) is a part of the Oracle database
dictionary where SPM information such as SQL log, plan history,
and SQL plan baselines are stored. Since the SMB is a disk store
for the management of SQL statements, other SQL management
objects such as SQL profiles [5] are also stored here. The SMB
resides in the SYSAUX tablespace separate from the SYSTEM
tablespace. SYSAUX is a predefined system auxiliary tablespace.

Figure 5 shows the layout of SPM information stored in the SMB.
As can be seen, SQL plan baselines are a subset of the plan
histories, and plan histories are maintained for a subset of SQL
statements (i.e., repeatable ones). The SQL log contains all SQL
statements (repeatable as well as ad hoc) seen by the SPM aware
optimizer.

SYSAUX
SQL Management Base

Plan History

Plan Baseline

Accepted
Plan

Plan History

Plan Baseline
Accepted| .. |[Accepted
an an

Plans to be verified

Figure 5: SPM Information Stored in SMB

Proactive management of SPM information is done through an
automatically scheduled purging task. For example, information
pertaining to a plan left unused for a period exceeding 53 weeks is
purged from the SMB. The database user can configure the SMB
and change the unused plan retention period from a default value
of 53 weeks to a value between 5 weeks and 523 weeks.

For the plan purging method to work properly, the last-executed
timestamp is updated in the SMB when a plan executes, provided
its on-disk value is at least one week old. The staleness criterion is
applied to prevent frequent disk updates and to avoid possible
locking or latching contention.

The total space occupied by the SMB is measured regularly and
checked against a defined limit based on the percent size of the
SYSAUX tablespace. For example, when the total space occupied



by the SMB exceeds 10 percent of the SYSAUX tablespace size,
a warning is generated and written to the alert log. The database
user can configure the SMB and change the SMB space budget
from a default value of 10 percent of the SYSAUX size to a value
between 1 and 50 percent.

2.6 Manageability Monitor Daemon
Manageability Monitor daemon is a background process
periodically scheduled by the Manageability Monitor (MMON).
This process runs nightly and performs the purging of unused
SPM information from the SMB based on a defined plan retention
period. It also manages the space for SQL log by purging very old
batches of SQL statements from it. The daemon process also
measures the total space occupied by the SMB and generates
database alerts when the occupied space exceeds a defined space
budget limit.

2.7 SPM User Interfaces

A database user with appropriate database privilege can access
and manipulate SPM information using either the DBMS_ SPM
PL/SQL package command line interface, or the Oracle
Enterprise Manager graphical user interface. Either interface
allows the database user similar access and manipulation of SPM
information.

The SPM user interfaces allow the database user to perform the
following activities:

1) View plan history and SQL plan baselines of managed SQL
statements using the DBA SQL PLAN BASELINES

dictionary view.

2) Perform explain of plans in the plan history using

DISPLAY SQL PLAN BASELINE.
Configure the SMB using the CONFIGURE procedure.

Load execution plans from cursor cache or SQL tuning set
into the SMB as SQL plan baselines using
LOAD PLANS_FROM_CURSOR_CACHE and
LOAD PLANS_FROM_SQLSET.

Modify selected attributes of plans in the plan history using
ALTER_SQL PLAN BASELINE. For example, the user
can disable all plans in a SQL plan baseline and thus disable
the use of SPM for the corresponding SQL statement.

Drop  plans from  the
DROP_SQL_PLAN_BASELINE.

Evolve SQL plan baselines of one or more managed SQL
statements using EVOLVE_SQL PLAN BASELINE.

Pack plans in the plan history into a staging table using
PACK STGTAB_BASELINE and then, optionally, export
the staging table to another system.

3)
4)

5)

6) plan  history  using

7)

8)

9) Unpack plans into the plan history from an imported staging

table using UNPACK_STGTAB_BASELINE.

The graphical user interface consists of several Oracle Enterprise
Manager screens that show SPM information as well as contain
action knobs representing various SPM operations such as SMB
configuration, SQL plan baseline evolution, and explain of plans
in the plan history.
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3. EXPERIMENTAL RESULTS

We evaluated the SPM feature using an Oracle E-Business Suite
(EBS) workload. EBS is Oracle's end-to-end Enterprise Resource
Planning application software that is comprised of several
components (like Financials, Human Resources, etc.) and
modules (like General Ledger, Payroll, etc.). The application
works with the Oracle database as the underlying data repository.
The functionality in EBS is used for both OLTP and decision
support applications; for example, a simple order entry and a
complex reporting query are both supported within the EBS.

EBS uses SQL statements to interact with the database. Both
DML and queries are used for this purpose. Many of these SQL
statements are very complex referencing several tables, views,
subqueries, functions, operators, expressions, host language
variables and aggregates. As a result, the optimizer sometimes
generates a sub-optimal plan for some of these statements.
Manual or automatic SQL tuning [5] can sometimes remedy this,
but customers are often limited in the solutions they can adopt for
such pre-packaged application suites.

For our experiment, we executed 232500 queries from the EBS.
The database was 60GB in size with almost 25000 tables and
45000 indexes. The largest table contained more than 10 million
rows and the smallest tables had fewer than 10 rows. There were
also more than 40000 PL/SQL packages. We used queries
because they are generally more complex than DML statements.
(It is important to note, however, that SPM also supports DML
and complex DDL statements.) Some of these queries were
lightweight while others were very resource-intensive.

Our goal was to evaluate whether SPM was able to effectively
prevent performance regressions due to sub-optimal plans while
also improving performance by using new accepted plans. Plan
changes normally happen because of changes to a system. Two
of the changes that customers are most concerned about are
database upgrades and optimizer statistics gathering. The former
is an infrequent activity while the latter is often very frequent
(daily or weekly). Both changes have the potential to severely
impact system performance if plans regress. We wanted to test
whether SPM provided plan stability (avoiding sub-optimal plans)
and plan adaptability (using verified better plans).

We devised our experiment to measure the success of SPM in the
face of both a database upgrade and statistics gathering. We
executed the query workload seven times with a specific action or
system change (described below) between each run.  The
experiments were performed using Oracle Database 10g Release 2
and Oracle Database 11g Release 1; we call them 10g and 11g,
respectively, in the remainder of this section. We used the CPU
time for each query execution as the performance metric. This is
because we found that the CPU time was the most stable and
reliable indicator of performance; other metrics like elapsed time
and page reads varied widely between multiple executions of the
same execution plan. Also, CPU time is a function of parse time,
execution time, page reads and other indicators of performance,
so it is a convenient metric to use. Thus, for our experiments, the
lower the total CPU time for a query or a workload, the better the
performance.

Table 1 shows the seven experimental runs and the action or
change prior to each run. Each experiment was a full run of the
232500 queries in the workload, with each run executing all the



queries in the same order. The first experiment, Expl, was
performed using 10g while all subsequent runs were on 11g.
Before Expl was run, we captured the plans for all queries in a
SQL Tuning Set. We used the Expl run on 10g as the basis for
measuring the improvement or regression for each of the other six
runs.

Exp2 was executed after upgrading the database from 10g to 11g;
optimizer statistics were not re-gathered nor were any other
changes made to the system.

Table 1: Query Workload Runs

Prior Action Experiment | Database ifelti/[
Save 10g plans in SQL Expl 10g No

Tuning Set

Upgrade database from Exp2 llg No

10gto 11g

Load 10g plans as SQL Exp3 g Yes
plan baselines

Verify and evolve new Exp4 g Yes
plans from Exp3

Gather 11g optimizer Exp5 1lg Yes
statistics

Verify and evolve new Exp6 11g Yes
plans from Exp5

Disable SPM Exp7 lg No

After Exp2, we loaded all the plans from the SQL Tuning Set
(captured prior to Exp1) as SQL plan baselines for the queries. In
Exp3, the SPM aware optimizer used the same plan for each
query as in Expl while at the same time it captured new best-cost
plans in the plan history to be later verified.

After Exp3, we verified all the new plans captured by the SPM
aware optimizer. Some of the new plans were accepted as a result
and became part of the SQL plan baselines. In other words, some
queries now had two accepted plans in their SQL plan baselines.
Exp4 was run at this point.

We then gathered optimizer statistics for all the objects using
Oracle's recommended statistics gathering options.  Statistics
gathering is a frequent customer activity that sometimes causes
the optimizer to generate sub-optimal plans. In our experiments,
even though no DML activity was present, the 11g statistics were
different and more accurate than those in 10g because of various
enhancements in the statistics gathering algorithms in 11g [3].
We ran Exp5 after gathering statistics. For some queries, this
caused the SPM aware optimizer to generate new plans and add
them to the plan history.

Since new plans were added by Exp5, we verified all of them and
some were accepted and added to the SQL plan baselines. As a
result, some queries now had three accepted plans. We then ran
Exp6.
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Exp3 through Exp6 were run using the SPM aware optimizer. It
was reasonable to ask what the workload performance would have
been had we not used SPM at all. For this reason, we performed
Exp7. It was run with SPM disabled but with 11g optimizer
statistics as mentioned above.

Table 2 shows the number of new best-cost plans that were
automatically added to the plan history by the SPM aware
optimizer in Exp3 and Exp5 and the number of plans that were
subsequently accepted.

Table 2: Number of best-cost plans added by SPM aware
optimizer and the number subsequently accepted

Experiment Number of plans Number of those
P added to plan history | plans accepted
Exp3 29648 811
Exp5 38280 2594

Table 3 shows the number of queries with one, two or three plans
in the plan history and the number of queries with one, two or
three plans in their SQL plan baseline. Thus, 7138 queries had
three plans in their plan history but only 132 of those queries had
three accepted plans. Tables 2 and 3 show that a majority of the
best-cost plans found by the optimizer failed to meet the internal
performance threshold required for SQL plan baseline evolution.

Table 3: Number of queries with one, two or three plans in
their plan history and SQL plan baseline

Number of queries Number of queries
Number of . . . .
lans with those plans in with those plans in
P plan history SQL plan baseline
1 171707 229106
2 53655 3262
3 7138 132

Expl and Exp2 were straightforward workload executions in 10g
and 11g with the same optimizer statistics. We expected that
Exp2 would perform better than Expl because of enhancements
in both the optimizer and SQL execution engine in 11g. As we
will see below, there were some sub-optimal plans in Exp2. We
wanted to see whether the subsequent experiments using the SPM
aware optimizer prevented these plans from being used, thus
boosting performance.

Figure 6 on the next page shows the cumulative CPU time for the
entire query workload for each of the seven experiments. Expl,
on 10g, took 4873s. Exp2, on 11g, took 4508s. Thus, without
any changes in the system apart from the database upgrade, there
was an improvement of 7.5%. There are several things to note
here. First, some of the improvement was undoubtedly due to an
improved optimizer in 11g. Second, even for plans that did not




change between the two versions, the execution performance was
often much better in 11g due to a better SQL execution engine.

The cumulative CPU time for Exp3 was 4552s. Recall that Exp3
was run using SQL plan baselines from 10g. The performance of
Exp3 was worse than Exp2 because it prevented the use of any
new unverified 11g plans, many of which would be better plans.
This becomes clear when we look at the performance of Exp4.

Exp4 was run after SQL plan baseline evolution meaning that
each query was executed using the better of the 10g and 11g
plans. The performance of Exp4 (4490s) was better than that of
Exp2 (4508s) because some of the cost-based plans in Exp2 were
sub-optimal. Exp4 prevented these sub-optimal plans from being
executed because they failed the performance requirement during
the SQL plan baseline evolution process.
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Figure 6. Cumulative CPU Time of EBS Workload

The performance of Exp5 was similar to Exp4 since only
accepted plans were used in each run. However, after SQL plan
baseline evolution, several new plans were accepted and, indeed,
Exp6 showed that using these better plans resulted in a substantial
performance gain of 22%.

Using default best-cost plans without SPM, Exp7 had a
performance of 3937s. The performance of Exp6 was better than
Exp7 by almost 4% because Exp6 executed only the verified
optimal plans, whereas there were some sub-optimal plans in
Exp7.

Figure 6 clearly shows a significant performance improvement of
the entire EBS workload by using SPM. However, there was a
subset of queries for which the SPM aware optimizer was able to
find new best-cost plans. Therefore, this set of queries has the
potential of adversely impacting the system performance. Thus, it
is meaningful to look at the effect of SPM on their performance.

Figure 7 shows the cumulative CPU time for each experiment but
limited to those queries where the SPM aware optimizer found
new plans in Exp3 and Exp5. There were 60793 such queries
with a total of 67931 new plans. Compared to 10g (i.e., Expl),
we can see that using SPM in Exp6 gave us a 44% improvement.
Without SPM (Exp7), we realized an improvement of 38% over
10g. The improvement was less than in Exp6 because of the
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adverse effects of a few sub-optimal plans in Exp7. In other
words, SPM prevented sub-optimal plans from being executed in
Exp6. Thus, while there are significant enhancements in the
optimizer and SQL execution engines in 11g to improve
performance compared to 10g, using SPM provided an even
greater improvement.
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Figure 7. Cumulative CPU Time of 60793 Queries with New
Plans in EBS Workload

A main objective of SPM is to prevent performance regressions of
individual SQL statements. Figure 8 shows the number of
improved and regressed plans for each experiment compared to
Expl. Exp2 was the 11g run with 10g statistics and we can see
that there were a few plan regressions. Likewise, Exp7 was the
11g run with 11g statistics; it, too, had a few regressions from
Expl. All the other experiments used SPM and thus, had no
regressions. The number of improved plans increased steadily in
each experiment as each new plan that was found by the SPM
aware optimizer was verified and accepted.
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Figure 8. Number of Improved Plans and Regressed Plans in
11g Compared to 10g



Note that Exp7 (with SPM disabled) had slightly more improved
plans than Exp6 (using SPM). This is because some best-cost
plans failed to meet the internal performance threshold for SQL
plan baseline evolution and thus were not used in Exp6. The most
noteworthy observation in Figure 8 is that there were 32 sub-
optimal plans in Exp7 while Exp6 had none; SPM prevented all of
these plans from being used.

Our experimental results using an industrial-strength application
and DBMS provide clear validation that SPM boosts performance
by preventing any sub-optimal plans from being executed while
simultaneously ensuring that the most optimal plans are
recognized as accepted plans. In other words, SPM accomplishes
its dual objectives of plan adaptability and plan stability.

4. RELATED WORK

Several commercial databases provide plan stability features. For
example, SQL Server provides a series of hints [13] that can
override any execution plan the query optimizer might select for a
query. The hints provided include join hints, table hints and query
hints. A join hint specifies that query optimizer enforce a join
strategy between two tables. A table hint, for example, specifies
that the query optimizer use a table scan, one or more indexes, or
a locking method with the specified table. While join hints and
table hints affect only part of the query (e.g., the specified joins
and tables), query hints in contrast apply to the whole query. For
example, a query hint can specify that nested-loops must be used
for all joins in the query.

SQL Server also provides a new feature called Plan Guides [15].
This feature injects query hints into SQL statements in batches,
stored procedures, and so forth. However, it does not require any
modification to the query itself. This is very useful when the
query for which the plan has to be influenced or forced originates
in a non-modifiable application. When this feature is enabled,
every SQL query statement or batch is first compared against the
optimizer’s cached plan store to check for a match. If one exists,
the cached query plan is used to execute the query. If not, the
query or batch is checked against the set of existing plan guides in
the current database for a match. If an active plan guide exists for
the statement and its context, the original matching statement is
substituted with the one from the plan guide. After this is done,
the query plan is compiled and cached and the query executed.

DB2 Version 9 allows users to provide optimization profiles to
guide the optimizer to generate a desired execution plan [4][16].
An optimization profile is stored in the XML format. It specifies
the target query and the guidelines for the optimizer (e.g., use a
certain index for table access). All running SQL statements look
for matches in active optimization profiles. A successful text
match of a query specified in the profile triggers the guidelines
associated with the query.

All of the above approaches constrain the whole plan or a part
thereof. As noted in Section 1, the advantage of these approaches
is that there are no unexpected plan changes that could possibly
lead to performance regressions. The disadvantage of fixing plans
is a potentially lost opportunity for better plans.

Another approach to addressing plan regression is adaptive query
optimization. During plan execution, the optimizer learns which
parts of the plan are potentially sub-optimal. It then uses the
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feedback either to re-optimize the currently running SQL
statement or in the optimization of other SQL statements.

Adaptive query optimization has been actively studied in
academia [6][7][8][9][18]. For example, Kabra and Dewitt [9]
propose a new statistic collector operator which is placed at
critical points in a query plan. This operator collects the real-time
cardinality and size of the input tuples. If a significant
discrepancy is found between the observed and estimated
cardinality or input sizes, the plan execution is stopped and the
sub-optimal portion of the plan is re-optimized.

Adaptive query optimization techniques have also been explored
in commercial databases. Oracle Rdb [1][2], a commercial
database system on VMS platforms, chooses access methods at
run time. It runs multiple access methods competitively and then
picks the best one. LEO [10][11][12][17], DB2’s learning
optimizer, is designed to repair incorrect statistics and cardinality
estimates in a query execution plan. By monitoring previously
executed queries, LEO compares the statistics and the cardinality
estimates with the actual values. If significant discrepancies are
found, LEO feeds the actual values back into the optimizer for re-
optimization. LEO also materializes the partial results obtained in
the execution of the current plan so they can be reused in the re-
optimized plan.

A possible drawback of adaptive query optimization is that the re-
optimization is done in an iterative manner. For example, the
optimizer may choose a different access method in the first re-
optimization cycle and then choose a different join order in the
second re-optimization cycle. It may take several cycles (and
possibly a long time) to converge to an optimal plan.

Adaptive query processing addresses the plan regression in a
reactive manner. In other words, it tries to correct a plan when the
plan is found to have degraded performance. In contrast, SPM
addresses the plan regression in a proactive manner. It directs the
optimizer to choose from a set of plans, which are known to have
good performance. Plan regression is prevented in the first place.

SPM is seamlessly integrated with two important features in
Oracle. The first is Automatic SQL Tuning [5]. Given a
problematic query and a time limit, the SQL tuning advisor
performs a comprehensive analysis to determine how to generate
a better plan for the given query within the specified time limit. It
analyzes three aspects that are most likely to affect the plan
optimality. First, it analyzes whether the statistics that are needed
by the query are missing or stale. Second, it verifies whether the
optimizer’s cardinality estimates of intermediate results are
correct. Third, it uses the past execution history of a SQL
statement to determine the correct optimizer settings. Users can
implement recommendations made by the SQL tuning advisor to
apply potential fixes for a query, such as re-gathering optimizer
statistics. Users can also accept SQL profiles recommended by
the SQL tuning advisor. When SQL profiles are created, the SQL
tuning advisor evolves the SQL plan baselines of managed SQL
statements by adding tuned plans to them.

SPM is also integrated with SQL Performance Analyzer (SPA)
[19]. SPA enables a database user to analyze the impact of
planned system changes, such as upgrades, configuration
parameter changes, schema changes, or new optimizer statistics.
This analysis helps the user to tune the system before the changes
are implemented in a production database. SPA takes a SQL
workload, executes each SQL statement before and after the



planned change, compares the results of the two executions, and
reports the impact of the change on the SQL workload and on
ecach SQL statement. For those SQL statements whose
performance would degrade after the planned change, SPA
recommends the creation of SQL plan baselines.

5. CONCLUSION

Poor system performance caused by sub-optimal query execution
plans is a well-known problem and one that continues to vex
database users. Remedial measures, like adding query directives,
are often needed to fix such problems, but these techniques may
be error-prone and have the possibility of introducing unknown
risks in a production application. Such measures also require a
high level of expertise and can be costly, requiring an
unscheduled outage to apply patches.

In this paper, we have described the SQL Plan Management
feature introduced in Oracle 11g. It provides a novel, unique, and
comprehensive solution to managing execution plan changes.
Database users can identify their critical SQL statements in
advance and use SPM to manage plan changes for them. This
ensures that plan changes for these statements will occur only for
provably better plans, thus eliminating the risk posed by sub-
optimal plans.

We used a large real-world commercial application suite to
validate that SQL Plan Management provides stable and optimal
performance for a set of SQL statements. Our experiments
showed that not only were there zero performance regressions for
the workload, there were significant performance improvements
due to new and better plans.

We have also described how SQL Plan Management can be used
manually or automatically via command-line or graphical user
interfaces. Once enabled, SQL Plan Management provides a
complete solution to managing optimizer plan changes with
minimal user intervention. Thus, it is a very cost-effective means
of ensuring a predictable system performance for mission-critical
applications.
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