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ABSTRACT
Brighthouse is a column-oriented data warehouse with an
automatically tuned, ultra small overhead metadata layer
called Knowledge Grid, that is used as an alternative to
classical indexes. The advantages of column-oriented data
storage, as well as data compression have already been well-
documented, especially in the context of analytic, decision
support querying. This paper demonstrates additional ben-
efits resulting from Knowledge Grid for compressed, column-
oriented databases. In particular, we explain how it assists
in query optimization and execution, by minimizing the need
of data reads and data decompression.

1. INTRODUCTION
Beginning from the middle 80’s in academia [10] and the

middle 90’s in industry [42], one can observe a permanent
growth of interest in column-oriented databases [23, 31, 39,
40]. The differences between the column- and row-oriented
architectures show that the first ones are more suitable for
analytic data warehousing, with selective access to small
subsets of columns and emphasis on data compression, while
the second ones seem to be a better choice for OLTP sys-
tems (cf. [17, 38]). There are also approaches attempting to
take an advantage of both strategies, suggesting mixed hori-
zontal/vertical decomposition, not so strictly column-driven
data processing, etc. (cf. [2, 21]).

Regarding logical model, column-oriented and row-orien-
ted architectures provide the same framework, though, e.g.,
denormalization would be more acceptable in the column-
oriented case, if there is a need to apply it at all. Further-
more, the fundamental principles of database tuning and
administration remain of a similar kind, with a need of reor-
ganizing the physical model subject to evolution of the query
workload and data regularities (cf. [9, 36]). Given that it
may be quite a hard task depending on the real-life data
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and querying specifics, we can observe an increasing num-
ber of database solutions that give up the original means for
physical model tuning (see e.g. [18, 35]).

In this paper, we discuss Brighthouse [19, 44], which com-
bines the advantages of being column-oriented and storing
highly compressed data with an alternative approach to in-
dexing. We follow an idea of automatic creation and usage
of higher-level data about data (see e.g. [3, 5, 6, 8]), here re-
ferred to as Knowledge Grid, available while the query opti-
mization and execution with no need of accessing the actual
data. A difference with respect to standard approaches to in-
dexing is that the elements of Knowledge Grid, here referred
to as Knowledge Nodes1, describe relatively large (combina-
tions of) portions of compressed data, referred to as Data
Packs, instead of single data items or rows. With this re-
spect, Brighthouse should be compared, e.g., to Netezza’s
nearly ordered maps (better known as zone maps) [25] or
Sand’s compressed segments’ metadata [16], as well as to
various other, more or less conventional approaches to data
block-level indexing. However, we use the data about data
in a significantly extended way.

Knowledge Nodes are far smaller than standard indexes,
which results in their faster, in-memory processing, as well
as in the ability of storing more of their types, for far more
(combinations of) tables and columns. This advantage fits
well with a growing need of dealing with ad hoc, unpre-
dictable ways of querying [14]. It also helps to eliminate the
previously-mentioned requirements of the physical model
(re-)tuning. For the same reason, we try to avoid also other
“knobs”, treating both simplicity and performance of Bright-
house as important factors. In particular, unlike in many
other solutions, we do not define Data Packs by using any
kind of data partitioning mechanism and, as a result, Bright-
house’s Knowledge Grid should not be interpreted by means
of standard metadata over the partitioned data sets.

Knowledge Grid serves as a kind of “mediator” between
the query optimization/execution and the data storage/(de)
compression layers of Brighthouse. The primary objective
of Knowledge Nodes is to identify Data Packs that do not
require decompression while query resolving, along the lines
of the theory of rough sets – originally established as a

1Our understanding of Knowledge Grid is different than that
in grid computing or semantic web [7], though there are
some intuitive analogies (see Section 3). In the same way,
Knowledge Nodes are not to be confused with any type of
nodes in grid/distributed/parallel architectures [38].
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Figure 1: Brighthouse engine. Data stored within compressed Data Packs; Metadata stored within Data Pack
Nodes and Knowledge Nodes; Query Optimizer and Executor combined together in an iterative fashion.

methodology of data mining and knowledge discovery [32,
33], though recently finding its applications also in a more
database-related research [22, 29]. Knowledge Grid can be
also used, e.g., to improve the flow of data being decom-
pressed, as well as to iteratively refine Knowledge Node-
based information to better assist with dynamic optimiza-
tion of query execution. With this respect, one should also
refer to the principles of adaptive query processing [4, 12].

As mentioned in the abstract, column orientation and
data compression have been already widely studied in the
database-related literature. Therefore, we focus on the com-
ponents of Knowledge Grid and the scenarios of their usage
in query optimization/execution. Further, although Bright-
house has been already commercially proven to work effi-
ciently with terabytes of compressed data [19], we regard
this paper as the means for introducing only the basics of
our approach, with experimental framework limited to min-
imum. On the other hand, we should emphasize that the
overall architecture would not be complete without appro-
priately adjusted algorithms providing the average of 10:1
data compression ratio (including the overhead of Knowl-
edge Nodes; with decompression speed meeting the perfor-
mance requirements). We refer to [15, 18, 41, 45] as the
state of the art in database compression. The reader may
find the details of our compression algorithms in [43].

Another layer is to handle the ODBC connectors, query
parsing, permission management, etc. Brighthouse lever-
ages MySQL’s pluggable storage engine platform [28] to a-
chieve full database functionality. In particular, our query
optimizer takes partially an advantage of MySQL’s syntactic
rewrites and parsing mechanisms, though the major part at
this level is replaced by the Knowledge Node-based method-
ology. Replacement of the optimizer is one of differentiators
when comparing to the other data storage engines, limited
to single-table processing [13].

The paper is organized as follows: Section 2 discusses the
basics of column-oriented data storage with compression.
Section 3 introduces Knowledge Grid and presents some ex-
amples of Knowledge Nodes. Section 4 introduces princi-

ples of Knowledge Node-based query optimization/execu-
tion. Section 5 provides an illustration of the Knowledge
Node-based adaptive query processing. Section 6 describes
MySQL environment and reports a few examples of perfor-
mance over real-life data. Section 7 concludes the paper.

2. DATA PACKS
As it has been pointed out already in the middle 80’s, data

compression aims at minimizing the disk I/O costs while ex-
ecuting queries [11]. Brighthouse is vertically decomposed,
which enables to better compress data. Since each column
stores a single data type (as opposed to rows that typically
contain different types and value ranges), compression can
be adjusted to each of columns specifically (cf. [1, 37]). In
Brighthouse, the rows’ values over each of the columns are
stored by the 64K-item2 groupings – Data Packs, which are
illustrated by means of the lowest layer in Fig. 1. We ac-
tually split the rows onto 64K-row groupings and, for each
of them, we store the values of each of the columns in a
separate Data Pack. We refer to such row groupings as Row
Packs and we suggest comparing them with the minipage-
based PAX model [2], further investigated, e.g. with re-
gards to compression efficiency, in [41, 45]. The rows in
Brighthouse are neither sorted nor partitioned with respect
to any column values. It is important for achieving high data
load speed, as well as avoiding administrative overheads and
higher costs of physical model re-tuning [19, 44].

The choice of the number of rows in Row Packs is an
interesting problem, partially referrable to the pagesize tun-
ing in other database frameworks (cf. [42]). Operating with
larger collections of items enables the compression routines
to take more advantage of data regularities. On the other
hand, such regularities may change across the data. Hence,
well-designed compression algorithms may adjust better to
smaller, potentially more locally homogeneous portions of
values. In Brighthouse, compression algorithms vary not
only with respect to the data types but also with respect to

2By 64K we mean 216 = 65, 536 elements.
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regularities automatically observed inside particular Data
Packs. As mentioned in Section 1, we provide, on average,
10:1 compression ratio, counted with all possible overheads,
simply by comparing the size of input data files with the
complete size of Data Packs and Knowledge Nodes.

The number of items put into each Data Pack has also
an impact on dynamics of data accessibility. One would like
to minimize the number of Data Pack reads while querying.
Vertical decomposition helps as analytic queries usually re-
fer to a relatively small percentage of columns (cf. [1, 37]).
Further way to limit the data reads is to equip Data Packs
with such metadata (data about data) that enable to iden-
tify and exclude the data portions irrelevant to a query, or
to resolve it without the need of accessing particular Data
Packs at all, even if they are (partially) relevant. The idea of
fast pre-excluding irrelevant data basing on their compacted
forms and various types of metadata is quite popular (cf.
[3, 22]), easily translatable to the level of larger Data Packs
and Row Packs (cf. [16, 25]). On the other hand, applying
compacted data representation instead of the actual data
portions to answer to a query is assumed to be a domain of
imprecise rather than precise query resolving (cf. [5, 30]).
In the foregoing sections, we describe how this idea is used
in Brighthouse to handle precise querying.

The key features of metadata understood as above should
be quality and size. Smaller Data Packs would be labeled
with more precise metadata, but the resulting larger num-
ber of metadata instances needed for larger number of Data
Packs would decrease efficiency of their usage. On the other
hand, larger packs result in less precise but also less sized
metadata structures, though here we should also remember
about the above discussion on data compression and a po-
tential overhead related to extracting larger pieces of irrele-
vant items together with those really needed. In our tests,
we found 64K items per Data Pack as a reasonable number
to optimize both data accessibility and compression.

3. KNOWLEDGE GRID
There are two metadata layers in Brighthouse. The first

one, called Data Pack Nodes, is more comparable to other
approaches (see e.g. [16, 25]). Each Data Pack has a corre-
sponding Data Pack Node containing such statistics as the
minimum/maximum values (interpreted specifically for dif-
ferent data types), the sum of values (only in case summing
the values makes sense), the number of null values, and the
number of all elements in the Data Pack. We refer to Fig.
2a, which illustrates the Data Packs’ Data Pack Nodes.3

The second layer, called Knowledge Grid, contains more
advanced structures – Knowledge Nodes, which refer to more
detailed information about Data Packs, as well as to vari-
ous kinds of dependencies between Data Packs belonging to
different Row Packs, columns and tables. It is important to
note that Data Pack Nodes and Knowledge Nodes together
take roughly 1% of the compressed data size. All Data Pack
Nodes and Knowledge Nodes relevant to the given query
can be easily stored in memory, supporting various kinds
of query optimization/execution operations independently
from accessing and decompressing Data Packs.

The term “Knowledge Grid” often refers to web services
and semantic web, as well as to parallel computing and dis-

3In the example related to Fig. 2, we are interested only in
the min and max values, so illustration is simplified.

tributed data, to mention just a few areas. In particular, it
may relate to synthesizing data-based knowledge and to en-
abling the search and/or database engines to answer queries
and draw conclusions from the masses of data (cf. [7]).
We focus on the Database Knowledge Grid, interpreted as
the means for extracting, representing, and applying high-
granularity knowledge about data, at the level of (combina-
tions of) Data Packs. Let us give some basic examples of
Knowledge Nodes implemented in Brighthouse:

• Histograms (HISTs) are built for numeric columns.
HIST collects information about each of Data Packs
for the given column. For each Data Pack, HIST splits
the range between its min and max onto 1024 equal
intervals. HIST contains binary information (which
makes it far smaller than in case of various versions of
widely common histograms). For each Data Pack, each
of 1024 intervals is labeled with 1, if there is a value
in the Data Pack which drops into the given interval,
and 0 otherwise. To summarize, our HISTs are not
so comparable to the histograms widely studied in the
literature [20], as they provide binary and very local
Data Pack-related information. On the other hand, ex-
tensions of the currently implemented HISTs are still
possible, while keeping in mind the constraint of a rel-
atively small size of the Knowledge Grid elements.

• Character Maps (CMAPs) are built for alpha-nume-
ric columns. Like above, CMAP collects information
about each of Data Packs. For each Data Pack, CMAP
stores binary information about occurrence of particu-
lar characters at particular positions of the string val-
ues stored in the Data Pack. For example, if there is
no string value with character “b” at the third posi-
tion in the whole Data Pack, then the corresponding
CMAP’s box for this Data Pack is 0. As a summary,
CMAPs, like HISTs, should be also compared to the
already existing methodologies.

• Pack-to-Packs are built for the pairs of data tables.
Each Pack-to-Pack is related to a specific join relation
based on equality of two columns in two tables. It is
kept in Knowledge Grid only if the given join relation
has already occurred in one of the queries. Pack-to-
Pack is a binary matrix labeled by the pairs of iden-
tification numbers of Row Packs from two tables. We
refer to such numbers as Row Pack IDs. For the pair
of Row Packs from two data tables, the matrix value
is 1, if there is at least one pair of rows belonging to
these Row Packs which satisfy the join relation, and
0 otherwise. Pack-to-Packs should be certainly com-
pared to more traditional indexes. They are, actually,
a simple example of the previously mentioned general
ability to translate widely known index structures to
the language of Data Packs and Row Packs.

The simplest case of using Knowledge Nodes is fast, meta-
data-only-based exclusion of data irrelevant to a query. For
example, given a query with a BETWEEN condition over a
numeric column, we can use its Data Pack Nodes (specifi-
cally the min/max values) and its HIST to identify as many
Data Packs with no items satisfying the condition as pos-
sible. In the same way, Data Pack Nodes and CMAP can
help in exclusion of Data Packs with no items satisfying,
e.g., a LIKE condition. All above Knowledge Nodes can be
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also useful in elimination of collections of tuples not satis-
fying join relations, etc. This most straightforward applica-
tion has been followed by other methodologies described in
the literature, though, as already mentioned, only relatively
simple statistics were used and only relatively simple query
execution steps were considered so far (see e.g. [16, 25]).

In Section 6, we experimentally show that operating with
advanced Knowledge Nodes on top of simple Data Pack
Nodes can provide significant improvements. Beforehand,
in Section 4, we show that Data Pack Nodes and Knowledge
Nodes can be applied not only to data exclusion, but also to
other steps of query optimization and execution. Here, let
us finish with just a few more examples, illustrating a variety
of data-driven structures that may be useful (cf. [44]):

• Distribution of numeric values within the given Data
Pack’s range may be biased. There may be large sub-
ranges with no values occurring. Also, some 1’s in
HIST can occur just because of a single item, laying
almost at the edge of a given interval. A more in-
telligent way of cutting the ranges may maximize the
overall length of intervals labeled with 0’s, using as
small number of cuts as possible. This task partially
resembles some of machine learning problems [27] and
may be also compared to inducing multi-dimensional
histogram structures [6, 20].

• Data Pack Nodes and Knowledge Nodes created inde-
pendently for each of columns do not take advantage of
column correlations or dependencies. Being of recently
growing interest in the area of query optimization [12,
24], such inter-column value relationships can be ex-
pressed as Knowledge Nodes too. For example, within
each Row Pack, the Data Pack Node / HIST / CMAP
statistics can be calculated over subsets of only those
rows which satisfy some conditions on other columns.
Again, it looks like a task close to machine learning,
as we want to search for column conditions affecting
statistics of other columns to the largest degree.

• Analytic queries are often aggregations over a table
T1 subject to conditions defined over another table
T2. Statistics related to T2 can be expressed as new
Knowledge Nodes of T1. For example, we can keep
the minimum and maximum values of a column T2.a
over all rows in T2, which are in a T1.b=T2.c relation
with the rows belonging to every given Row Pack in
T1. It may be interpreted as a kind of virtual data de-
normalization where, however, only Knowledge Nodes
are created. Potentially, it has application not only in
case of simple one-to-many relations, but also in case
of more complex joins.

One should not exaggerate with the number of different
Knowledge Nodes. In many cases, combined application
of more standard Knowledge Nodes (HIST, CMAP, Pack-
to-Pack) enables to obtain almost the same performance
characteristics as in case of more complicated structures de-
scribed above. Nevertheless, it is required to conduct further
research also on automatic optimization and maintenance
of the whole Knowledge Node groups, to keep the particu-
lar Knowledge Nodes’ functionalities complementary to each
other, and to keep the Knowledge Node group overall size
at a level around 1% of the compressed data size. Again,
it partially resembles some tasks known from data mining

and, as an optimization problem, it may be addressed by
adapting some well-known heuristics. Certainly, it can be
also discussed in the context of physical data model tuning
(cf. [9]), though we would like to stress that relatively small
sizes of Knowledge Nodes, when compared with the struc-
tures used in other solutions, make the whole Brighthouse
framework more flexible.

4. OPTIMIZATION AND EXECUTION
Given Knowledge Nodes and most simple examples of

their usage introduced, let us proceed with a description of
the top layer of the Brighthouse core solution. As symboli-
cally illustrated by Fig. 1, we regard the modules of query
optimization and execution as entirely combined. The first
reason for this is that, although our design of the query ex-
ecution plan as a result of query optimization is quite stan-
dard, the query optimizer works on the basis of simulating
the query execution against Knowledge Grid. Starting with
(logical combinations of) single-table conditions, the opti-
mizer uses available Data Pack Nodes and Knowledge Nodes
to classify Data Packs into three categories:

• Irrelevant Data Packs, which have no data elements
relevant for further resolving the given query

• Relevant Data Packs, where all of data elements are
relevant for further resolving the given query

• Suspect Data Packs, which cannot be classified as Rel-
evant or Irrelevant on the basis of available Data Pack
Nodes and Knowledge Nodes

In Section 3, while talking about Data Pack Node and Know-
ledge Node-based processes of excluding as many Data Packs
as possible, we referred only to the first above category. Us-
ing all three categories provides far more possibilities. For
example, optimization of multi-join query execution plans
usually starts with estimation of selectivity of single-table
condition components. This is also the case in Brighthouse,
where, given no indexes, the condition components are an-
alyzed against Knowledge Grid. In such a case, identifying
Relevant Data Packs provides valuable information. As an-
other example, consider an analytic query with some after-
SELECT statistics to be calculated. Such statistics can be
partially reconstructed based on Data Pack Nodes of Rel-
evant Data Packs. If we are, e.g., interested in calculating
the total of some column over the rows satisfying some con-
dition, if we know that a given Data Pack is Relevant with
respect to that condition, then we can use the total value
stored in the corresponding Data Pack’s Data Pack Node to
contribute to the final result, avoiding decompression.

Our inspiration to consider three categories of Data Packs
grew from the theory of rough sets [32, 33], where the data
is split among positive, negative, and boundary regions with
respect to their membership to the concepts of interest, often
called decisions. In the theory of rough sets, the data rows
can be analyzed only via their values on available columns.
The rows can, e.g., correspond to some bank’s customers
and the concept of interest – to information whether each
given customer had any payment problems. The customers
are organized into groups with the similar values of available
demographic and account history attributes. Positive region
consists of the groups of rows completely included into the
decision; negative region consists of the groups with no in-
tersection with the decision; and boundary region consists of
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Figure 2: (a) Simplified Data Pack Nodes for the table T considered in Section 5; (b,c,d) Status of Data Packs
at particular described stages of query processing. Symbols R/S/I denote Relevant/Suspect/Irrelevant Data
Packs, respectively.

groups of the third kind, where the available attributes are
not sufficient to tell whether the given group of rows fully
supports or negates the decision. Although the ways of un-
derstanding the groups of rows in Brighthouse and in the
original rough set framework are different, the Data Packs
being Relevant, Irrelevant, and Suspect with respect to a
given query intuitively correspond to the positive, negative,
and boundary regions with respect to a given decision.

The three-mode classification can be conducted also for
the Row Packs or their combinations called Tuple Packs. In
case of Row Packs, we use Knowledge Grid to classify their
Data Pack components with respect to, e.g., conjunctions
and disjunctions of multi-column filters. Single-column re-
sults are then combined using a three-valued logic. For ex-
ample, if a Row Pack is evaluated against disjunction of
conditions and one of them turns out to have the Relevant
status, then the Row Pack becomes Relevant automatically.
Relevant Tuple Packs occur relatively rarely in the case of
joins based on equalities – it would mean that, for a pair
of Row Packs from two different tables, the given equality
relation is satisfied for all pairs of their rows. However, it
is more likely for joins based on inequalities – it may often
happen that the minimum of one Data Pack is greater than
the maximum of another Data Pack and, hence, all pairs of
values stored in those two Data Packs satisfy the inequality.
Multi-table and single-table conditions defined over Tuple
Packs can be combined using logical operators or they can
get mixed with Data Pack Node-based estimations of SE-
LECT expressions coming from subqueries. As a summary,
Brighthouse is able to apply Knowledge Grid to thoroughly
analyze Tuple Packs in a way corresponding to the given
query, prior to (or during) accessing the actual data.

Further reason to treat the Brighthouse optimization and

execution modules as so closely related to each other is that
Data Pack Nodes and Knowledge Nodes accompany and po-
tentially modify the query execution through all its steps,
by themselves or in combination with information obtained
from decompressed Data Packs, along the lines of adaptive
query processing (cf. [4, 12]). It also finally clarifies that our
way of using data about data is more advanced than just a
single-step phase of filtering out the irrelevant blocks (cf.
[3, 16, 22, 25]). The next section contains a very simplified
case study to clarify the basics of such a Data Pack Node
and Knowledge Node-based adaptive approach. The reader
is, however, encouraged to consider more advanced possible
scenarios. For example, the “ROUGH ORDER BY” proce-
dure mentioned below may be applied to optimization of the
order of decompressing Data Packs to avoid large interme-
diate structures while resolving ORDER BY, GROUP BY,
or multiple JOIN operations.

5. ILLUSTRATIVE EXAMPLE
Consider table T with 350,000 rows and two columns A

and B. We have six Row Packs: (A1,B1) corresponds to the
rows 1-65,536 with Data Packs A1 and B1 containing their
values on A and B, respectively. (A2,B2) corresponds to the
rows 65,537-131,072, etc., until the last Row Pack (A6,B6)
corresponding to the rows 327,681-350,000. The minimum
and maximum values available in Data Pack Nodes of corre-
sponding Data Packs are displayed in Fig. 2a. For simplic-
ity, assume there are no nulls in T. Let us also remind that
Knowledge Grid may contain more information about Data
Packs, though we do not use it in this simple case study.
The query of our interest is the following:

SELECT MAX(A) FROM T WHERE B>15;
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Figure 3: Integration of the core Brighthouse components with MySQL. Brighthouse Semantic Optimizer &
Executor is the module replacing the original MySQL optimizer in the pluggable storage engine architecture.

For illustration purposes, we use so called approximate query
mechanism, already mentioned in the previous section. One
can consider its potential applications and correspondences
to the imprecise query methodologies applied in various ar-
eas. However, we consider it only inside the Brighthouse
engine, and we purposely use the word “mechanism” instead
of “language”. It is simply a convenient way to talk about
how Knowledge Nodes assist in query processing, but with
no strict relationship to the actual implementation. Having
this in our minds, we can start as follows:

ROUGH MAX(A) FROM T WHERE B>15;

By using the word “ROUGH” we emphasize that we do
not base on exact data, but only on Data Pack Nodes and
Knowledge Nodes. The result of such operation should be
treated as approximation, by a kind of analogy to the rough
set regions discussed in the previous section. Using only the
minimum and maximum values over the column B’s Data
Packs, we can see that B1, B2, B3, and B6 are Suspect,
B4 is Relevant, and B5 is Irrelevant with respect to condi-
tion B>15, as illustrated by Fig. 2b. While approximating
MAX(A), we do not consider A5 at all. Looking at the
maximum value in A4, we obtain that MAX(A) is at least
10. Further, given 18 as the minimum value in A3, we get
MAX(A) equal at least to 18. Further, we check whether
there is any possibility that the result is higher than 18.

This can be modeled as follows:

ROUGH ID FROM T WHERE B>15 AND A>18;

ROUGH ID is a command that returns the Row Pack IDs,
together with its Relevant/Suspect/Irrelevant status. Con-
dition A>18 is added to B>15 to let us focus on only those
portions of data, which might put the value of MAX(A)
higher than 18. Row Packs (A2,B2), (A4,B4), (A5,B5), as
well as (A6,B6) become Irrelevant and the two remaining
ones are Suspect, as in Fig. 2c. The above operation could
be enriched by an attempt to sort Row Packs with respect
to a chance of containing the actual maximum. This may
be carried out using a heuristic algorithm based on avail-
able Data Pack Nodes and Knowledge Nodes, informally
employed by command ORDER BY:

ROUGH ID FROM T WHERE B>15 AND A>18 ORDER BY A;

Design of good heuristics of this type is yet another large
research topic remaining beyond the scope of this particu-
lar paper. For illustration purposes, assume that the ap-
plied heuristic algorithm finds (A1,B1) to more likely have
MAX(A) greater than (A3,B3). Now, as there is no more
information applicable at the level of Knowledge Grid (at
least in this simplified case study), this is the time to access
the data. We begin with Data Packs A1 and B1, according
to the above “ROUGH ORDER BY” operation:
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EXACT MAX(A) FROM T WHERE B>15 AND ID=1;

The word “EXACT” means that we go down into the data.
Additional condition ID=1 means that we are interested in
Row Pack (A1,B1). For the sake of illustration, assume the
result of the above operation equals to 23, i.e., the maximum
value of A for the rows in (A1,B1) satisfying condition B>15
is 23. Given information about possible MAX(A) updated,
we iteratively come back to the “rough” level and formulate
the next operation along the following lines:4

ROUGH ID FROM T WHERE B>15 AND A>23;

Now, all the Row Packs become irrelevant, as in Fig. 2d.
There is no data left to update MAX(A) as being higher
than 23. The value of 23 is reported as the result of the
SQL statement. Let us note that only 2 out of 12 Data
Packs needed to be accessed during all above operations.

6. BRIGHTHOUSE IN PRACTICE
Let us first briefly describe how it is possible to use Bright-

house in a real-life scenario. Clearly, the ideas presented in
Sections 2-5 would not be applicable without ODBC connec-
tors, etc., as mentioned in Section 1. Fig. 3 presents how we
leverage MySQL’s pluggable storage engine architecture [28]
to achieve full database functionality. MySQL management
services and utilities are used as the technology around con-
nection pooling. As in the case of other MySQL storage en-
gines (cf. [13]), MyISAM is used to store catalogue informa-
tion such as table definitions, views, users, and their permis-
sions. Brighthouse uses its own load/unload utilities, as this
stage is related to data (de)compression and the updates of
metadata stored in Knowledge Nodes. Brighthouse’s query
optimizer takes partially an advantage of MySQL’s syntac-
tic rewrites and parsing mechanisms. However, the major
part at this level is replaced by the Knowledge Node-based
methodology, with the MySQL’s standard index support
turned off. As also mentioned in Section 1, the other cur-
rently known MySQL storage engines are limited to single-
table processing, using MySQL’s optimizer/executor every
time multi-table operations are involved.

We conducted experiments on benchmarks and databases
we acquired in the proof-of-concept projects. The choice of
reliable benchmarks is important though not easy (cf. [26,
34]). Every approach has its own preferences regarding how
a database is designed or what data properties should be
expected. In this paper, we limit ourselves to the results
over real-life data, with more benchmark-oriented analysis
to be provided in future. Given confidentiality constraints,
we disclose the results only for the data samples, with the
columns’ names changed. More than in the answers to SQL
queries or in the time required to obtain those answers with
various hardware settings, in this paper, we are interested
in comparison of the intensity of Data Pack reads with and
without Data Pack Nodes and Knowledge Nodes applied.
Obviously, one may claim that a more fair comparative ex-
periment should involve the data equipped with Data Pack
Nodes and Knowledge Nodes and, on the other hand, the
same data equipped with standard-like indexes. The reason
we did not follow this path is that, in our experiments, we

4One may claim that we should also add the NOT(ID=1)
condition to prevent going back to (A1,B1). We omit it here
because in the actual Brighthouse implementation we store
information about already visited Row Packs anyway.

did not assume any hints which indexes should be created.
We did not assume any kind of database tuning, provided
that Knowledge Grid is fully automatized, focusing on ad-
dressing the ad hoc query workload.

The first sample is a single table – five days of data of
one of our customers. We call it FACT TABLE. It has 676
million rows and 66 columns. There are 10,320 Data Packs
for every column. The 0.25TB of raw data is compressed
to 35.5GB, including Knowledge Grid. It gives us 7:1 com-
pression ratio (comparing to the other data sets we analyzed,
this one was relatively hard to compress). We conducted the
tests on a machine with 3.2GHz Xeon processor and 6GB
RAM. Let us start with the following:

SELECT COUNT(*) FROM FACT_TABLE

WHERE CUSTOMER_ID BETWEEN 13000 AND 14000;

With Knowledge Grid turned off, we have to scan through
all of the Data Packs of CUSTOMER ID, even given the
fact that the above BETWEEN range is expected to be
very selective. With Knowledge Grid turned on, although
the values of CUSTOMER ID are quite unordered across
the table and therefore the minimum and maximum values
stored in Data Pack Nodes cannot help, about 90% of inter-
vals in HIST of this column turn out to be labeled with 0.
In case of this particular query, HIST narrows us down to
only 7 Suspect Data Packs, with the rest of them classified
as Irrelevant. Hence, the above query is completed nearly
immediately, just a fraction of a second. The next query
allows localizing customers from another range, who used a
particular advertising banner:

SELECT COUNT(DISTINCT CUSTOMER_ID) FROM FACT_TABLE

WHERE CUSTOMER_ID BETWEEN 8000 AND 9000

AND BANNER_ID = 10891;

The query took 23.8 seconds. With Data Pack Nodes and
Knowledge Nodes turned off, we would have to scan through
20,640 Data Packs. With Data Pack Nodes and Knowledge
Nodes turned on, in the case of this particular BETWEEN
range, the CUSTOMER ID’s HIST is not so efficient. BAN-
NER ID’s HIST has 75% of 0 labels and quite useless Data
Pack Nodes. If applied separately, those two HISTs result
with 10,400 Suspect Data Packs. If combined, given that the
conjunction of Irrelevant and Suspect Data Packs within the
same Row Pack results with its Irrelevant status, the final
number of Suspect Data Packs goes down to 6,136. Al-
though, after all, this is rather a disappointing example, it
illustrates potential benefits of the three-valued logic applied
at the level of Data Pack classification. The next example’s
complexity is comparable to the above ones, though now we
deal with alpha-numeric data types:

SELECT COUNT(*) FROM FACT_TABLE

WHERE REFERRER LIKE "http://ozzyozbourn%";

Although we create Data Pack Nodes also for such cases
(with min and max values interpreted lexicographically),
this query is optimized mainly by CMAPs, which enable
to determine 99 Suspect Data Packs out of 10,320. The
query took 19.6 seconds. When comparing with the previ-
ous queries, we can see that the time required to access RE-
FERRER’s values is much longer than in the case of CUS-
TOMER ID and BANNER ID, given Data Packs’ larger
size. The following is a case of analytic query counting rows
in different time intervals and action groups:
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SELECT HIT_DATE, ACTIONS, AVG(CLICK) FROM FACT_

TABLE GROUP BY HIT_DATE, ACTIONS ORDER BY 1, 2;

In our FACT TABLE, there are only 10 combinations of the
values of columns HIT DATE and ACTIONS, resulting with
10 groups to be considered. Moreover, the values are quite
regularly distributed. By using available Data Pack Nodes
we identify a significant number of Data Packs as Relevant,
i.e., fully belonging to one of the 10 HIT DATE/ACTIONS
groups. As Data Pack Nodes provide sufficient information
to contribute to AVG(CLICK) in the case of Relevant Data
Packs, it eventually turns out that we need to decompress
only 5,261 out of 3×10,320=30,960 Data Packs being under
consideration. It is interesting given that the above case is a
typical “full scan” query. It took 118 seconds. The following
one is a different example of large aggregation:

SELECT HIT_DATE, CAMPAIGN_ID, SUM(IMPRESSIONS),

SUM(CLICKS), SUM(ACTIONS), SUM(VIEWS),

SUM(INCOME), SUM(EXPENSE) FROM FACT_TABLE

WHERE CAMPAIGN_ID > 0 GROUP BY 1, 2;

With ACTIONS instead of CAMPAIGN ID as the group-
ing column, the query processing dynamics would be quite
the same as before because the SUMs are resolvable by
Data Pack Nodes of Relevant Data Packs like in the case of
COUNT(*). However, with CAMPAIGN ID we get 3,762
groups instead of 10. The three-mode classification based
on Knowledge Grid restricts the number of Suspect Data
Packs down to 74,113. However, given the overall num-
ber of involved Data Packs equal to 8×10,320=82,560, it is
not too much of the gain. Moreover, with specific mem-
ory settings, it may be impossible to create an intermediate
structure enabling to calculate the statistics for all groups
during a single scan through the data. Here, given 6GB
of RAM available, we were able to avoid multiple reads of
the same Data Packs from disk to a large extent. Still, it
turned out that smart ordering (a kind of “ROUGH OR-
DER BY” mentioned in previous sections) of the Data Pack
reads saves 10% of time required for multiple scans. Namely,
the Brighthouse engine is able to put in order the reads of
Data Packs, which are likely to correspond to the same sets
of HIT DATE/CAMPAIGN ID value combinations, basing
on Data Pack Nodes and Knowledge Nodes. Such additional
metadata-based optimization is going to give more savings
if the proportion of data cardinalities to available RAM in-
creases. It is also an additional illustration confirming that
the future performance tests of Brighthouse should be far
more advanced than it is presented in this paper.

We finish with an example of multi-table query. The
above-discussed data set was not challenging enough with
this respect because dimension tables contained just several
thousands of rows. Let us consider the data coming from an-
other project. There are two tables: SERVER CONTENTS
(112 million rows) and SERVER USERS (18.6 million rows).
As in the previous case, the names of tables and columns are
not original. We choose to report the following query:

SELECT T1.X_CONTENT, T2.VISIT_TIME,

COUNT(DISTINCT T2.URS_ID),

COUNT(DISTINCT T2.SITE_ID), COUNT(*) FROM

SERVER_CONTENTS T1, SERVER_USERS T2 WHERE

T1.SITE_ID = T2.SITE_ID AND

T1.ADD_KEY = T2.ADD_KEY GROUP BY

T1.X_CONTENT, T2.VISIT_TIME;

Although Data Pack Nodes, HISTs, and CMAPs can par-
tially assist in identifying Irrelevant pairs of Row Packs, the
main benefit for the above query comes from Pack-to-Packs
corresponding to the conditions T1.SITE ID=T2.SITE ID
and T1.SITE ID=T2.SITE ID. When combined together a-
long the lines of conjunction of two join relations, these two
Pack-to-Packs allow for elimination of over 90% of Tuple
Packs as being Irrelevant. One can note that operating with
such a sparse matrix of pairs of Row Packs that need to be
analyzed together opens various possibilities including, e.g.,
decomposing the JOIN execution step onto several reason-
ably sized substeps that can be merged later. Here, we re-
strict ourselves to reporting that conjunction of the above
Pack-to-Packs resulted in complete irrelevance of over 66%
of Row Packs from table SERVER USERS. This means that
over 66% of Row Packs in one of the tables did not contain
any rows, which could match both join equalities with at
least a single row in another table. Having such information
available in memory, without accessing Data Packs, enabled
to speed up this particular query three times.

7. CONCLUSION
We discussed the Brighthouse’s [19, 44] approach to data

organization based on compressed Data Packs (which should
be compared to other known techniques of data storage and
compression, see e.g. [15, 18, 41, 45]), the Brighthouse’s
Knowledge Grid layer (which should be compared to other,
both academically and commercially developed metadata
strategies [3, 16, 22, 25]), as well as the Knowledge Grid-
based query optimization/execution principles seeking their
origins in the theory of rough sets [32, 33] and remaining
in general analogy with widely known techniques adaptive
query processing [4, 12]. We wrapped up with reporting the
experiments emphasizing the promising performance char-
acteristics with respect to ad-hoc analytic queries, as well as
with outlining the overall framework based on the MySQL
pluggable storage engine platform [13, 28].

Although Brighthouse has been already proven to be a
reliable and efficient commercial product, the performance
analysis reported in this paper needs to be further devel-
oped, by carefully reconsidering the most popular database
benchmarks (though we should also keep in mind the ar-
guments presented in Section 6, cf. [26, 34]), as well as by
more thoroughly investigating the most fundamental scaling
parameters considered in the literature (cf. [2, 17]). Only
such an extended framework will enable us to fully compare
our approach with the others, especially those based on the
column orientation (cf. [31, 37, 39, 40]).

Our objective in this introductory paper was mainly to
present the concept of our data about data framework, Know-
ledge Grid, as one of the most innovative, key components
of the whole architecture. Certainly, the results that we ob-
tained with the particular components of Knowledge Grid
being turned on and off require a deeper understanding in
comparison other adequately indexed solutions like, e.g.,
the open source column-oriented databases [21, 23] or the
data storage engines available within the above-mentioned
MySQL platform. On the other hand, one should remem-
ber that the whole concept of Knowledge Grid was designed
to cope with highly ad hoc querying scenarios, where the
ability to appropriately index the data or, more generally,
to appropriately tune the physical database model is highly
questionable in its traditional meaning (cf. [14, 35]).
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