Oracle SecureFiles System

Niloy Mukherjee, Bharath Aleti, Amit Ganesh, Krishna Kunchithapadam, Scott Lynn,
Sujatha Muthulingam, Kam Shergill, Shaoyu Wang, Wei Zhang

Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

Niloy.Mukherjee@Oracle.com

ABSTRACT

Over the last decade, the nature of content stored on computer
storage systems has evolved from being relational to being semi-
structured, i.e., unstructured data accompanied by relational
metadata. Average data volumes have increased from a few
hundred megabytes to hundreds of terabytes. Simultaneously, data
feed rates have also increased with increase in processor, storage
and network bandwidths. Data growth trends seem to be
following Moore’s law and thereby imply an exponential
explosion in content volumes and rates in the years to come. The
near future poses requirements for data management systems to
provide solutions that provide unlimited scalability in execution,
availability, recoverability and storage usage of semi-structured
content.

Traditionally, filesystems have been preferred over database
management systems for providing storage solutions for
unstructured data, while databases have been the preferred choice
to manage relational data. Lack of consolidated semi-structured
content management architecture compromises security,
availability, recoverability, and manageability among other
features. We introduce a system without compromises, the Oracle
SecureFiles System, designed to provide highly scalable storage
and access execution of unstructured and structured content as
first-class objects within the Oracle relational database
management system. Oracle SecureFiles breaks the performance
barrier that has kept such content out of databases. The
architecture provides capability to maximize utilization of storage
usage through compression and de-duplication and achieves
robustness by preserving transactional atomicity, durability,
availability, read-consistent query-ability and security of the
database management system.

1. INTRODUCTION

Traditionally, database management systems have been designed
to provide maximum throughput of storage and access to
relational data in transaction processing and data warehouse
environments. The requirements primarily arose from the advent
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

1301

of e-commerce based enterprise applications during the mid-
1990s. However, the rapid growth of the Internet has caused a
huge increase in the amount of unstructured and semi-structured
information generated and shared by organizations in almost
every industry and sector. Current estimates by analysts show that
eighty five percent of business information is semi-structured in
the form of emails, research documents, presentations and news
feeds [1]. Moreover, in recent years, multimedia applications
accessing digital images and videos over the Internet, banking
applications storing images of checks, geo-navigation applications
accessing digital map data and scientific applications accessing
mission-critical data are changing the dynamics of data ingestion
in terms of both rate and volumes.

Analysts forecast semi-structured data volumes and rates to
double year after year. Enterprise databases are expected to reach
petabytes in sizes running on more than thousand core systems by
the end of 2010 [2]. As data volumes and ingestion rates step up,
a number of challenges arise in the area of database management.
The challenges include provision for maximum throughput of
storage and access operations, scalability, utilization of storage
usage, highest degree of availability and security of critical data,
and information lifecycle management of such huge data
volumes.

Filesystems have been preferred over database management
systems for providing storage solutions for unstructured data
while databases have been preferred to manage accompanying
relational data for indexing and querying purposes. While
filesystems provide better throughput of storage and access
operations, they lack secure database features such as atomicity,
consistency, durability, manageability and availability. For
example, a recent study [3] has found that most of the journaling
filesystems do not provide the recoverability that one might
expect from them. On the other hand, mission-critical corporate,
scientific and financial applications that do not tolerate data loss
corruptions heavily rely on enterprise database management
systems that are not considered to provide filesystem like
performance for unstructured data. Current and near future
challenges in the area of semi-structured content management
justifies the requirement for a consolidated industry-strength
architecture and solution.

We present Oracle SecureFiles System, a novel data storage
architecture within Oracle 11g database server [4] that aims to
bridge the gap between unstructured and relation data
management by providing clustered temporal filesystem-like or

better throughput and scalability for unstructured content while
preserving the same for relational content. Storage of content as
first-class database objects within the Oracle database server
preserves the rich set of data management features and benefits of
the Oracle database server and hence provides a consolidated
content management solution. Besides providing support for
advanced database features, Oracle SecureFiles provides
advanced filesystem features such as compression and de-
duplication [6] for optimizing storage usage as well as encryption
for maximum content security.

The remainder of the paper is organized as follows. Prior efforts
in the area of consolidated content management are mentioned in
the following section. Section 3 introduces Oracle SecureFiles
System and provides a broad overview. Details of SecureFiles
architecture are presented in section 4. The following section
details the set of advanced database features inherited by
SecureFiles. Sections on conclusion, contributing authors and
acknowledgements follow Section 6, which presents description
of in-house scalability and throughput experiments conducted on
SecureFiles and their evaluations.

2. PRIOR WORK

Previous efforts in design and implementation of semi-structured
content management can be classified in three broad categories.
The first category consists of architectures that provide database
solutions, where the database provides storage for unstructured
content as first class objects. The second category consists of
frameworks that provide hybrid filesystem/database solutions,
storing unstructured content in filesystems and relational data in a
database system to manage relational data and metadata
maintaining transactional atomicity and backup for filesystem
operations. The third category comprises of filesystem solutions,
where filesystems provide frameworks that store both
unstructured and relational data. The rest of the section details a
few examples from each of the categories.

2.1 Database Solutions

Several database management solutions such as Oracle Database
server, Microsoft SQL Server and IBM DB2 provide storage for
unstructured content using LOBs (Large Objects) [7]. LOBs are
database fields that provide underlying storage support for chunks
of unstructured data as single file like entities within the database.
LOBs aren’t themselves a datatype, but rather a class of datatypes
that consist of three ANSI SQL datatypes, BLOB (Binary Large
Objects), CLOB (Character Large Objects) and NCLOBs
(National Character Set Large Objects). We will use the term
‘LOB’ in this document to loosely refer to the concept of a ‘Large
Object’ rather than a specific datatype. Data stored as LOBs do
not share space with the accompanying relational table but are
stored as separate first-class objects within the database. Being
first-class database objects, unstructured data management using
LOBs shares the rich feature set that comes with the database. In
case of Oracle database server, LOBs provide support for
capabilities like transactional atomicity, read consistency,
flashback, consistent backup, and point in time recovery.
However, the main disadvantage of LOBs has been the inability
to provide filesystem-like performance in both throughput and
scalability of execution. Sub-optimal performance for the storage
and access of LOBs has resulted in semi-structured content

1302

management applications choosing filesystems as the primary
storage option for unstructured data.

Olson et al implemented the Inversion Filesystem [8], a
filesystem architecture built on top of the Postgres DBMS. Both
relational and unstructured data is stored in Postgres DBMS.
Storage and access occurs through POSTQUEL, the Postgres
Query Language. However, Postgres is not SQL standards
compliant and lacks advanced database features. The authors
claim that their system could only achieve 30-80% of the
throughput of a traditional network filesystem server backed by a
non-volatile RAM cache. The authors do not provide performance
comparisons eliminating the non-volatile RAM cache.

2.2 Hybrid Solutions

Architectural unification of databases and filesystems has been
investigated in the past. Jim Gray along with Russell Sears and
Catherine Van Ingen has investigated the possibilities of
architectural confluence of filesystems and database systems
[9][10]. They conducted experiments on storage and access of
various file sizes using NTFS filesystem as well as SQL Server
2005 [11]. They concluded that file sizes less than 256 KB are
efficiently handled by SQL Server using the BLOBs framework
while NTFS is efficient for file sizes greater than IMB.

There have been few attempts at design and implementation of
filesystems providing database management features. Margo
Seltzer et al [12] developed LIBTP, a UNIX library that provides
basic transactional support functions for UNIX filesystems. Apart
from transactional semantics, LIBTP does not provide other
database features to the filesystem.

Gehani et al [13] designed and implemented OdeFS, a filesystem
interface to an object data store. The design uses NFS clients to
allow access to the OdeFS. The implementation of storage of
objects in OdeFS is purely filesystem based and hence does not
provide advanced data management features of the database.

Murphy et al [14] designed and implemented DBFS, a block
structured user level filesystem that uses Berkeley DB as the
backing store. Unstructured data storage in DBFS is built on top
of the Berkeley Fast Filesystem rather than a database system that
can make use of raw disk usage and performance. The authors
chose Berkeley DB as the metadata store to primarily gain on
performance. However, Berkeley DB is not SQL standards
compliant and provides very only basic database features such as
transactional support and recovery.

The Oracle database server provides a form a of hybrid solution
by providing a datatype called a BFILE. A BFILE is a filesystem
file that can be referenced and read from the database. BFILEs
allowed applications to store data in a filesystem and still access it
like it was a LOB. However, BFILEs have many restrictions.
They cannot be written to or updated through the database. If
updated from outside the database, there is no way of knowing
from the database that the data has changed. If a file referenced
by a BFILE is deleted, the BFILE must be maintained
accordingly. Also, BFILEs are slower than accessing the
filesystem file directly.

IBM DB2 provides support for the SQL compliant DATALINK
type as a form of hybrid solution. The DATALINK type allows
an application to reference a file external to the database and can
be used like any other SQL data type to define columns in tables.

2.3 Filesystem Solutions

Among storage architectures that use filesystems for both
unstructured and relational data management, Lustre [15] and
Google File System (GFS) [16] are examples of distributed
filesystems that aim to provide maximum scalability to meet data
volume and ingestion requirements with provisions of fail-over
and high availability through data replication. However, both
Lustre and GFS are restricted to operate on top of Linux
filesystems. In both cases, the degree of fail-over is proportional
to the degree of replication and hence introduces trade off
between data durability and utilization of storage usage.

Lustre can be integrated with ZFS file system [17] to provide data
snapshots and copy-on-write transaction model. However, Luster
combined with ZFS file system does not provide advanced data
management features such as temporal query ability, metadata
indexing, information lifecycle management, point in time
recovery of data and query ability on standby systems. GFS uses
BigTable [18], a distributed storage system for structured data, for
relational data management. However, BigTable is proprietary
in-house architecture used mainly for Google Applications. As in
case of Lustre, GFS combined with BigTable also lacks the set of
features provided by industry-strength database systems.

3. ORACLE SECUREFILES SYSTEM

In this paper we will give you an anatomy of the new Oracle
Database 11g technology, Oracle SecureFiles, a next generation
‘Database Solution’ that represents a leap for databases into the
area of high performance filesystems.

Oracle SecureFiles is a novel architecture that provides the most
scalable execution of filesystem-like unstructured content and
advanced filesystems features while preserving the rich features
and benefits of the Oracle database server. Oracle SecureFiles
stores data as first-class objects within the database and supports
all types of content and all file sizes without compromising on the
throughput and scalability aspects of performance. SecureFiles
delivers comparable filesystem-like or better performance for
basic reads and writes and provides maximum scalability of
execution compared to traditional network filesystems. Oracle
SecureFiles consists of highly optimized algorithms to scale
performance up on single multi-core processor systems as well as
scale out on distributed systems using Oracle Real Application
Clusters. Being a component of the Oracle database server,
SecureFiles can scale to store from petabytes to exabytes of
unstructured data leveraging Oracle’s Information Lifecycle
Management Capability. Data can be managed with policies on
multiple tiers of storage including SCSI, SATA or tape, without
changing the logical view to the application.

Both database clients and filesystem clients can access data stored
inside SecureFiles. Oracle SecureFiles is 100% backward
compatible with all currently supported Oracle LOB APIs. These
include, but are not limited to, SQL, PL/SQL, OCI, OCCI and
Java. From the application/API perspective, there are no code
changes required to take advantage of the improved performance
of SecureFiles for a LOB based application. Apart from being
SQL standards compliant, SecureFiles provides POSIX-compliant
filesystem interfaces and data can be accessed through open data
protocols such as HTTP, NFS and FTP using such interfaces.
Oracle SecureFiles provides advanced filesystem compression to

1303

optimize utilization of cache and storage. Oracle SecureFiles also
provides the option to detect duplicate file-level data and stores
single instances of the redundant copies of file-like objects. The
Oracle SecureFiles framework provides maximum security of
semi-structured data by providing encryption to both relational
and unstructured data using Transparent Data Encryption (TDE)
semantics.

In addition to these advanced filesystem features, Oracle
SecureFiles has been designed to provide basic Oracle database
capabilities, such as atomicity, consistency, isolation and
durability semantics on unstructured data management operations.
Being part of the Oracle database server, the SecureFiles
framework automatically inherits more advanced database
features, for example, readability on standby systems, consistent
backup, point in time recovery, XML indexing and XML queries
using the Oracle XML DB framework [26], and information
lifecycle management using the Oracle Partitioning technology.

Oracle SecureFiles introduces the concept of ‘delta updates’ that
enables non-length-preserving updates of file-like objects without
undergoing rewrites or overwrites of object data blocks. This is a
major ‘feature’ differentiator with respect to filesystems or LOBs
performing updates through length preserving overwrites.

Oracle SecureFiles is supported by Oracle Flashback Archive [19]

to provide temporal management and query ability of
unstructured and relational data [20] through complete
historization of data. This serves as a major ‘feature’

differentiator with respect to current industry-strength file systems
as well as databases.

Michael Stonebraker et al mention that implementation of a
specialized solution to any given performance problem can result
in 10x gain over a general implementation [21]. Managing files in
the database has been an area of weakness in databases, as has
been commonly documented. SecureFiles is the next generation
of file technology, built into the database, to make them perform
as fast as filesystems and scale as well as the high performance
filesystems. SecureFiles have been tested in-house as well as by
external customers such as National Ignition Facility at the
Lawrence Livermore National Laboratory to match the
performance of the hardware that they run on [22].

4. SYSTEM ARCHITECTURE

We present the architecture details of the Oracle SecureFiles
System in this section. The section proceeds with the description
of the structural design of Oracle SecureFiles System. Details of
the design and advanced filesystem features follow next. The
section concludes with a detailed discussion of methods
incorporated in the design to extend secure database semantics
such as transactional atomicity, read consistency, and data
durability to unstructured data management operations in the
system.

4.1 SecureFiles Schema

The structural design of SecureFiles is similar to that of
filesystems. Figure 1 describes the structural components of
Oracle SecureFiles.

Unstructured data associated with semi-structured content is
stored as SecureFile objects. A SecureFile object is a collection of
variable sized chunks allocated from and stored in the Oracle

database using the Oracle SecureFiles. Each chunk is a set of
contiguous database blocks.

.

— []
— N _E 1 |

II\[I]mI]]]]]]|||§

Securefiles Segment

Base Table

Securefiles Locator
Column

Securefile Object
Metadata Blocks

- (I

Space Management
Metadata Blocks

Securefile object
data blocks

=]

Figure 1. Structural Layout of SecureFiles

The base table is a typical Oracle table object that stores relational
metadata associated with SecureFile objects. Besides the columns
containing relational metadata, the table consists of one or more
columns that hold locators providing reference pointers to the
associated SecureFile objects. Each row-column intersection
provides a distinct pointer to the very first block of an individual
SecureFile object. Users can create unique and secondary indexes
on the relational columns in the base table. Apart from being a
placeholder for the locator, the row-column intersection contains
metadata associated with the characteristics of the underlying
SecureFile object, for example, the length of the file, whether the
file is compressed, encrypted or de-duplicated. The row-column
intersection also stores the starting block addresses and lengths of
the first few chunks for the underlying data if sufficiently small.

The set of SecureFile objects contained in a single base table
column shares a pool of free space within the database. Space is
not shared across multiple SecureFiles columns to prevent
complexities in load balancing and manageability. The free space
pool is defined as a SecureFiles segment. Each SecureFiles
segment is a collection of Oracle database extents that are
contiguous ranges of data blocks. Logically, a SecureFiles
segment consists of blocks that contain metadata for space
management and blocks that are part of SecureFile objects. The
first block of a SecureFile object may consist of an array of
starting block addresses and lengths of the chunks if the number
of chunks exceeds the maximum number of chunk metadata that
can be kept in the row-column intersection. A SecureFile object
may contain more than one such metadata block depending on the
size and fragmentation of the object. Details about SecureFiles

1304

segment and object metadata management will be described in the
next subsection.

4.2 Components of SecureFiles Architecture
Oracle SecureFiles architecture is layered into six major
components, namely, Delta Update, Write Gather Cache,
Transformation Management, Inode Management, Space
Management and the /O Management as shown in figure 2. The
rest of the subsection details the design of each of these
components as well methods contributing towards overall
execution and scalability performance of the Oracle SecureFiles
System.

Delta Update
Management
Write Gather
Cache
De-duplication
¥ Transformation
Compression Management
h 4
Encryption
Inode
Management
Space
1£0 Management Management

Figure 2. Architecture of SecureFiles

4.2.1 Delta Update

Updates to objects in filesystems as well as databases require
rewrites of portions of objects that preserve length of the updates.
The rewrites therefore span random lengths from being single
bytes to being full object writes. This causes huge waste of /O
bandwidth even for small updates and affects performance for
such operations. The Delta Update component provides the
capability of non-length-preserving update operations on Oracle
SecureFile objects through ‘delta updates’. The feature provides
special APIs to the user to specify the object to update, list of
delta (content change), the length of the delta, and the start offset
and end offsets to replace in the object and ensures I/O cost of
update operations to be linear to the size of the delta.

The delta update component maintains its own metadata
structures to record the mapping of source and destination offsets
for each of the deltas. Queries on delta-updated objects first
access the metadata structures to determine the correct offsets of
deltas. Changes to metadata during delta update operations are
transactionally managed, which guarantees correctness of query.

The delta update component provides substantial benefits in
performance of XML storage frameworks such as Oracle XDB
that depend internally on the performance of document inserts and
updates by the underlying data management system.

4.2.2 Write Gather Cache

The Write Gather Cache (WGC) is a subset of the database buffer
cache private to Oracle SecureFile object data. The gather cache
can buffer large amounts of SecureFiles data up to a user-
specified parameterized value during write operations before
flushing or committing to the underlying storage layer. This
buffering of in-flight data allows for large contiguous space
allocation and large contiguous disk I/O. Write performance is
greatly improved due to reduced disk seek costs. The WGC is
allocated from the buffer cache and maintained on a per-
transaction basis.

4.2.3 Transformation Management

The advanced data transformation management comprises of
three subcomponents, compression, encryption and de-
duplication. Oracle SecureFiles provide the option to
enable/disable all possible combinations of these features.

De-duplication: Oracle database server automatically detects
duplicate SecureFiles, and stores only a single physical copy on
disk, thereby minimizing space usage. For every SecureFile
object that has de-duplication enabled, a secure hash is generated
for a subset of the object (prefix hash) and also for the whole
object (full hash). During streaming writes, once generated, the
prefix hash is compared to a set of prefix hashes stored in an
index. If there is a prefix match, then the SecureFile object
associated with the original prefix hash (master version) is read
and byte-by-byte comparison is performed across the buffered
data and the master version. At the end of the write, if the full
hash matches and the full object matches on a byte-by-byte basis,
then a reference pointer directing to the master version is
maintained in the row column intersection. In this case, there have
been no writes since the object is not materialized to disk. In the
case of mismatch during comparison, then write gather cache
buffers are communicated to the inode management component
for materialization, and a new full hash will be inserted into the
lookup index. Updates on a de-duplicated SecureFile object
results in the materialization of the object on disk.

Compression: Oracle automatically detects if SecureFile object
data is compressible and compresses using special multiple file
compression algorithms. If compression does not yield any
savings or if the data is already compressed, SecureFiles will
automatically turn off compression for such objects. Compression
is performed when buffered contiguous data exceeds a configured
boundary threshold. These compressed data chunks are referred to
as compression subunits. Multiple contiguous compression
subunits are encompassed within a larger unit whose size is
determined by the WGC flush threshold. Compression is
performed piecewise in such a way that efficient random access
of large files is possible. Compression not only results in
significant savings in storage but also improves performance by
reducing I/O sizes, database buffer cache requirements, data
logging for media recovery, and encryption overheads.
SecureFiles compression allows for random reads and writes to
SecureFile data. Oracle SecureFiles architecture provides varying
degrees of compression that represent a tradeoff between storage
savings and CPU costs. Compression and De-duplication
technology is designed with large RAM and Flash memory trends
of the future in mind by enabling significantly better effective
utilization of memory.

1305

Encryption: Oracle SecureFiles uses Transparent Data Encryption
(TDE) syntax for encryption of SecureFile objects along with the
accompanying relational metadata. Oracle SecureFiles supports
automatic key management for all SecureFile columns within a
table and transparently encrypts/decrypts data as well as redo
logs. SecureFile object buffers are encrypted/decrypted on
database block size units. Oracle SecureFiles supports the
following encryption algorithms: Triple Data Encryption Standard
with a 168-bit key size, Advanced Encryption Standard with a
128 bit key size, Advanced Encryption Standard with a 192-bit
key size (default) and Advanced Encryption Standard with a 256-
bit key size.

4.2.4 Inode Management

The inode management layer is responsible for initiating on-disk
storage and access operations on SecureFile object buffers being
communicated by the upper layers in the SecureFiles architecture.
As a client of the space management layer, the inode manager
requests for on-disk free space to store the amount of data being
flushed by the write gather cache. Based on the array of chunks
returned by the space management layer, the inode manager
stores the metadata either in the row-column intersection of the
base table associated with the object, or in the most current header
block of the SecureFile object. The metadata information includes
start block address and length of a chunk as well as the start and
end offsets of the object being mapped by the chunk. For
compressed SecureFile object, the metadata structure is also used
to map logical offsets to physical offsets on disk. The metadata
structures are transactionally managed and are recoverable after
process, session and instance failures.

SecureFile objects maintain inodes independent of each other.
This prevents single points of contention in concurrent
environments during update, delete and append operations on
SecureFile objects. Metadata maintained in the inode can remain
extremely compact because the space management layer provides
the support to return a set of variable sized chunks, each scaled up
to 64M each, to store the data being written to disk. The metadata
management structures can therefore scale to map terabyte-sized
objects very efficiently.

4.2.5 Space Management

The space management layer is responsible for allocating free
disk space to SecureFile objects and de-allocating used space
from SecureFile objects to the SecureFiles segment on disk
keeping the real density and seek amortization trend in mind. The
space management layer supports allocation of variable sized
chunks. With SecureFile objects being cached in the Write Gather
Cache, the space management layer is able to meet larger space
requests from the inode manager through more contiguous layout
on disk, therefore providing more efficient read and write access.

The space management layer is also responsible for managing
SecureFiles segments. A SecureFile segment comprises of a
collection of database extents that are spread across the entire
underlying storage system. A specialized background process
manages the growth of the segment based on heuristics of recent
allocation demands on the segment.

Figure 3 demonstrates the flow of free space in Oracle
SecureFiles system. Extents allocated to SecureFiles segments are
first pre-split into chunks using methods that preserve the benefits
of the WGC. The metadata associated with the chunks are stored

on various on-disk metadata blocks (Committed Free Space
Blocks or CFS) in the segment. The CFS blocks are hashed on
chunk sizes and meet space requests on a best-fit basis. The free
space mapped by these blocks is shared across all the instances in
a distributed Oracle Real Application Cluster environment. Based
on allocation demands per instance in the cluster, the free space is
distributed to each of the instances. Each database instance
thereafter creates an in-memory dispenser in the database cache.
The in-memory dispenser contains metadata mapping all free
space assigned to the instance and meets future variable-sized
space allocation requests from that instance. The dispenser scales
with the concurrency of processes requesting allocation and
performs in-memory operations during space allocations. As the
in-memory dispenser runs out of space, the in-memory metadata
cache is invalidated; check pointed to disk and recreated with new
metadata entries. Although, the dispenser operations are in-
memory, algorithms have been developed to support consistency
of metadata after process, transaction or instance failures between
successive checkpoints.

Per-Instance Space
Allocation Operations

!

Storage

Securefiles Segment

; 4 Area
Committed Free Space Blocks Nelwork
F A Fy
Iy A A
Per-Instance Space
De-allocation Operations
Lincommitted Free In memory Space
Space Blocks Dispenser

Figure 3. Space Management Architecture — Flow of Free
Space

Operations such as full overwrites / rewrites, updates and deletes
of SecureFile object follow ‘copy-on-write’ semantics resulting in
de-allocation of space previously occupied by the offsets affected
by the operation. In such cases, the space management metadata
entries are inserted back to a different set of on-disk metadata
blocks (Uncommitted Free Space Blocks or UFS) while
maintaining transactional atomicity. The background process
coalesces the free space entries if possible and moves them from
UFS to CFS blocks if and only if the transactions associated with
the generation of these free space entries have committed. The
free space entries are transferred to the in-memory dispensers as
and when requested.

1306

4.2.6 1/O Management

The /O Management Layer is responsible for satistfying 1/O
requests during reads and writes of SecureFile objects. During
writes, the Inode Manager communicates the set of chunks
obtained from the space layer as well as the write gather cache
buffers to the I/O Manager. Based on a user parameter, the I/O
Manager either copies the write gather cache buffers to database
buffer cache buffers or schedules asynchronous disk writes for the
set of chunks. The I/O Manager tries to further coalesce the set of
chunks to optimize disk throughput. Transactions undergoing
such writes do not commit as long as there are pending
asynchronous I/Os

The 1/0 Manager supports read-ahead or pre-fetching data from
disk. It keeps track of access patterns of SecureFile objects and
issues intelligent pre-fetching of chunks before the request is
actually made. Read latency is reduced by overlapping the
network and storage throughput.

The design of the components in Oracle SecureFiles architecture
enables the system to provide filesystem-like throughput and
scalability of execution of read and write operations on objects of
various sizes and types. Section 6 presents a few test cases that
evaluate SecureFiles scalability and performance on reads and
writes on a range of file sizes and types.

4.3 Extending Database Semantics to Oracle

SecureFiles

The inode, space and I/O management components contain
methods that assist in providing the essential relational database
management features such as transaction atomicity, read
consistency and data durability for unstructured data management
in Oracle SecureFiles. The rest of this subsection details the
methods implemented for each of the features

4.3.1 Transaction Atomicity
Oracle SecureFiles guarantees transaction atomicity on all
filesystem-like operations on SecureFile objects.

Relational data associated with SecureFile objects is managed
using the transaction semantics associated with the relational
database kernel. The database kernel implements these semantics
by generating undo records for all data and metadata operations.
The undo records are stored as first-class objects within the
database and are used to roll back database operations during
failures thereby maintaining transactional consistency in the
database.

Unstructured data manipulation operations in Oracle SecureFiles
are responsible for modification of metadata maintained in inode
and space management layers as well as inserts and updates of
SecureFile objects. Metadata modifications follow transaction
semantics similar to the methods described above. SecureFile
objects undergo ‘copy on write’ semantics for larger update and
overwrite operations. Such a semantic alleviates the requirement
to store previous object images, partial or entire, for rollback
purposes. However, small-size length-preserving updates on
SecureFiles object data in ranges of few hundred bytes generate
undo records for transaction atomicity purposes thereby
preventing unnecessarily large 1/O sizes. A single transaction can
comprise of one or both forms of updates based on the length-
preserving sizes.

When a transaction aborts, the relational metadata associated with
SecureFile objects, inode metadata and space metadata roll back
using the undo records. As a result, the SecureFile object locators
point to the previous image of the inode metadata blocks that in
turn point to the previous versions of the objects. Rollback of in-
place updates of SecureFiles objects applies undo records to
generate consistent previous data images. The rollback of space
metadata prevents space leakage by freeing up space requested by
the aborted transaction. Because of ‘copy-on-write’ semantics for
large updates and overwrites, the rollback is not required to
perform additional I/O to restore the previous object images. As a
result, transaction recovery becomes independent of the sizes of
the changes on the SecureFile objects

4.3.2 Read Consistency

Oracle database server supports multi-version read consistency
for relational data. Queries retrieve data by re-creating snapshots
of modified data blocks as of the time of their issuances. The
snapshots or versions of relational data blocks are created through
application of undo records that were generated during data
manipulation operations.

Oracle SecureFiles supports similar read consistency semantics.
While accompanying relational metadata in base tables and
indexes use the above techniques to achieve read consistency,
SecureFile objects achieve this through the following mechanism.

As has been mentioned in the previous subsection, data
manipulation on SecureFile objects follow ‘copy-on-write’
semantics. The space management component maintains chunk
metadata associated with object updates and deletes. The space
freed during the update and delete operations map to old versions
of data. The space management component retains such freed up
space for a user-specified amount of time. Depending on the
expiration of the retention period, the space management
component either retains such space or reuses them for future
allocations. Therefore, a query or a read operation issued on a
SecureFile object at a point in time within the retention period is
guaranteed to return the most consistent version of the object as of
that point in time.

4.3.3 Data Durability

Oracle SecureFiles System design provides a range of data
durability options. The I/O management component provides
choice to the users to either use the database buffer cache to stage
writes on SecureFile object buffers or to use the underlying
storage for direct writes of SecureFile object buffers. The
accompanying relational data, inode metadata and on-disk space
metadata changes modify Oracle data blocks in the buffer cache
itself and are logged in Oracle Redo logs. Metadata changes in the
in-memory space management structures are not logged.
However, such changes are recoverable after database instance
failures thus guaranteeing consistency of on-disk space
management metadata structures.

User data in SecureFile objects that are directly written to disk
within transaction boundaries need not be separately logged into
Oracle Redo Logs to achieve data durability across transaction
and instance failures. However, users may choose to log
operations on SecureFile object data for recovery from media
failures and Point in Time Recovery purposes.

SecureFile objects that use the database buffer cache are required
to log data operations in Oracle Redo Logs to achieve user data

1307

durability across transaction and instance failures. Relational data
operations associated with SecureFile objects as well as inode and
space management operations during data manipulation are
always logged to keep the database consistent across failures.

5. ADVANCED FEATURES

Being stored as first-class objects within the database, Oracle
SecureFiles System automatically inherits most of the current
advanced data management features provided by the Oracle
relational database server that are not provided by traditional
filesystems, namely, temporal data access, readability in standby
databases, secure backup, point in time recovery of SecureFiles
data, usage in Real Application Clusters environments, and
information lifecycle management. Apart from that, the system is
also inherently capable to provide support for storage on low-cost
flash devices in future.

5.1 A Temporal File System

Oracle Flashback framework is an extension of read consistency
to provide capabilities to database users to query, retrieve as well
as recreate relational data consistent as of any point in time in the
past. The framework presented the concept of retention of undo
records even though transactions generating them have
committed. The current version of Oracle provides advanced
enhancements called Flashback Archive that enable users to
retrieve and recreate data as of several years before.

Oracle SecureFiles extends read consistency as described in the
previous subsection to support Oracle Flashback and Flashback
Archive features. Database users can set retention periods for
SecureFile segments. If not explicitly specified by a user,
previous versions of SecureFile objects are retained as long as
their accompanying relational metadata is retained. This ensures
consistency of SecureFiles data retrieval at any point in time as
long as the accompanying relational data can be retrieved.
SecureFiles with Flashback Archive provide a tamper-proof
filesystem to applications that have many practical uses in the
area of data security.

5.2 Data Retrieval in Standby Systems

Physical standby databases in Oracle function as standby systems
which gather and apply Oracle Redo logs from current active
database systems to produce a consistent snapshot of the entire
database at a point in time so that they can replace the primary
systems in case of failures. In previous versions of Oracle
database server, users were not able to perform data management
operations on standby databases.

The current version of Oracle database server provides the
capability to query and retrieve database objects from physical
standby database systems. Being first-class database objects,
Oracle SecureFiles support query-ability of both unstructured and
relational content on standby database systems if data
manipulation operations on SecureFile objects are logged in the
Oracle database Redo logs.

5.3 Secure Backup and Point in time

Recovery

Oracle provides the option to encrypt data during database backup
thereby retaining confidentiality of the backed up data. Being first
class database objects, encrypted backup of the database system

ensures encrypted backup of SecureFile objects as well as
accompanying relational data.

Oracle provides the capability to perform point in time recovery
of the database by restoring backed up database and applying
operations logged up to the chosen point in time in the Oracle
database Redo logs. Point in time recovery can be performed on
SecureFile objects if users choose to record manipulation
operations on SecureFile object data.

5.4 Real Application Clusters

Real Application Clusters or RACs allow multiple instances of an
Oracle database across multiple server systems to share access of
the entire underlying disk subsystem staging the database. Apart
from providing maximum availability and fail-over capacity in
the database as all servers in the cluster have the capability to
access the entire database, RAC provides opportunities for
maximizing scalability of execution of database operations.

Oracle SecureFiles inherit the capabilities provided by Real
Application Clusters. The design of the space management
component in SecureFiles is tuned to provide scalability in
throughput proportionally with the number of active database
instances.

5.5 Information Lifecycle Management
Information Lifecycle Management has evolved as an important
component in the area of content management. Growth in data
volumes has posed requirements to monitor evolution lifecycle of
data. Based on access activities, content management applications
are required to migrate data between several storage devices in its
lifetime to optimize storage utilization and cost.

Partitioning technology built in Oracle database server is a
powerful tool to achieve effective lifecycle management of data.
It enables applications to partition data based on various
parameters. Applications can monitor temporal access patterns on
such segments and may choose to migrate such segments from
high-end storage devices to low end archiving devices.

Oracle SecureFiles makes use of similar partitioning techniques to
achieve lifecycle management of SecureFile objects. Partitioning
of base tables containing the relational and SecureFile metadata
result in partitioning underlying SecureFiles segments.
SecureFiles partitions can be independently migrated across
storage devices.

5.6 Storage on Flash Devices

The exponential growth of flash memory has initiated active
research to make use of such devices for database and filesystems
storage [23][24]. Due to inherent properties of flash memory [25],
these devices are optimized to support storage frameworks that
simulate log-structured filesystem [24] like behavior.

The Oracle SecureFiles architecture provides a variant of a log-
structured filesystem. Write operations on Oracle SecureFile
objects follow ‘copy on write’ semantics, thereby preventing in
place update operations on the storage system. Reclamation of
storage space allocated to previous versions of SecureFile objects
is based on several retention policies. The space management
framework in Oracle SecureFiles assists the architecture to adapt
to storage on flash devices. With current implementations of flash
devices equipped with optimal wear leveling, content

1308

management on flash devices becomes highly feasible with
Oracle SecureFiles.

6. PERFORMANCE EVALUATION

In this section, we present a set of benchmarks and performance
evaluation data to showcase the impact of Oracle SecureFiles
architecture on throughput and scalability of storage and access of
semi-structured content. We compare performance of SecureFiles
with a traditional network filesystem. We also demonstrate the
scalability of SecureFiles on various content types and sizes in a
single instance Oracle database as well as Real Application
Clusters. Comparison with existing LOB architecture is out of
scope for this paper.

Clients

ocCl OCI +NFSv3

TCPAP

A
ﬂade NFSR
Server Server
ASM on Ex13 FS

RAWW

Unstructured
data in Cracle

Unstructured
data in
EXT3FS3

Relational
Data

RFedo Logs

—_

Oracle Database Traffic

MNFSv3 + Bt3F S Filesystem
Traffic

Figure 4. Hardware Setup

6.1 SecureFiles vs. Filesystem

The experiment simulates a real world DICOM application
consisting of digital diagnostic images accompanied by patient
metadata. We compare read and write throughput of SecureFiles
to that of an NFSv3 filesystem. In both cases patient metadata is
stored in the Oracle database. In the case of filesystem, the images
are stored on Ext3 FS file servers that are accessed using NFSv3.
In case of SecureFiles, images are stored as SecureFile objects
within the database.

6.1.1 Dataset and Configuration

The dataset consists of images ranging from 10kb to 100 MB. The
experiment consists of tests individually run on sizes averaging 10
KB, 100 KB, 1 MB, 10 MB and 100 MB. For tests on sizes 100

MB, 10MB and 1 MB, the total amount of unstructured data
inserted as files as well as SecureFile objects is 100 GB. For tests
on size 100 KB, the total amount is 10GB and for size 10 KB, the
total of data used is 1 GB. For sizes of 100 MB and 10 MB, write
transactions are committed after every insert. For file sizes of 1
MB, 100 KB and 10 KB, write transactions are committed every
100 inserts to avoid test source-code specific overheads.

We configured Oracle SecureFiles to directly issue I/O to the
underlying storage system without using the database buffer
cache. We also set Oracle SecureFiles to enable logging of
metadata and relational operations to Oracle Redo logs while
disabling logging of operations on data. The setting is similar to
filesystems that provide metadata journaling and disables
recovery from hardware failures. However, the setting is more
advanced compared to NFSv3 as it provides transactional
atomicity, read consistency and data durability semantics across
database failures. Multi-stream experiments were configured to
avoid conflicts on the same sets of rows of the base table across
processes.

?.’; 100 -
(7]
m 80 -
S 60+
2 40 -
S 20
2
£ 0 - T T T T 1
=
0.01 0.1 1 10 100
Avg. File Sizes (MB)

NFS sync NFS async Securefiles
B
b3 150 -
1]
£ 100 4
H
S 50 1
=]
£ 0
I T T T T 1
= 0.01 0.1 1 10 100

Avg. File Sizes (MB)
NFS sync NFS async Securefiles

Figure 5. Throughput comparisons between NFS and Oracle
SecureFiles: single process reads

Figure 6. Throughput comparisons between NFS and Oracle
SecureFiles: four processes reads

6.1.2 Setup

Figure 4 describes the hardware setup for the experiment. The
setup consists of a client and a server connected across a gigabit
Ethernet.

The Dell 2650 client machine consists of 2 hyperthreaded Intel
Xeon 2.8 GHz processors with 0.5 MB processor cache each,

1309

6GB of RAM and uses Red Hat Enterprise Linux 4.0. The Dell
2850 server consists of 2 hyperthreaded Intel Xeon 3.2 GHz
processors with 2 MB processor cache each, 6GB of RAM, Red
Hat Enterprise Linux 4.0 and 2Gbit Fiber Channel SAN Host
Adapter. The client machine uses OCI interface and TCP/IP to
communicate with the server for SecureFiles operations as well as
database metadata operations for filesystem experiments. NFSv3
client is used for filesystem operations. Storage drives are
allocated as two identically configured 2TB Raid 5 arrays. One of
the units was allocated to Oracle and was managed using Oracle
Automatic Storage Management. The other was configured as
Ext3 FS made available to the client using NFSv3.

6.1.3 Experiment and Results

Single and multi-stream tests were performed to showcase both
performance and scalability. The best performing options for
NFSv3 (async and rwsize of 32KB) were used. Figures 5-8
demonstrate the throughput ratios between SecureFiles and
NFSv3 on the tests performed.

g
b3 100
i)
g 80
= 60
2 40
K=
%’ 20
l_E 0 T T T T T 1
0.01 0.1 1 10 100
Avg. File Sizes (MB)
NFS sync NFS async Securefiles
2
b 100
i)
g 80
~ 60
2 40
)
3 20
l_E 0 T T T T 1
0.01 0.1 1 10 100
Avg. File Sizes (MB)
NFS sync NFS async Securefiles

Figure 7. Throughput comparisons between NFS and Oracle
SecureFiles: single process writes

Figure 8. Throughput comparisons between NFS and Oracle
SecureFiles: four processes writes

SecureFiles outperforms the NFSv3 access for all sizes with
respect to read performance. Gains for the smaller file sizes are
also due to reduced roundtrips where metadata and data is
accessed in one roundtrip unlike the NFSv3 case where metadata
and file data are accessed in separate roundtrips. Read
performance for larger file sizes is contributed by intelligent pre-
fetching, larger I/O sizes due to better contiguous space

allocations and network optimizations. SecureFiles outperforms
the NFSv3 access for all sizes in write operations. Again as in the
read case, for small file sizes the NFSv3 case has the overhead of
writing metadata and file separately in two roundtrips. This
demonstrates the improvements due to the write gather cache,
larger contiguous I/O through in-memory space allocation and
space pre-allocation optimizations. For smaller file sizes the
throughput is limited by the roundtrip overheads and the disks are
not utilized completely. Increasing the number of concurrent
threads ensures increased throughput. For larger file sizes the
throughput is limited by the network and I/O subsystem.

6.2 Scalability on SecureFiles on Single DB

Instance

The test setup configuration for single instance scalability
experiments is similar to that described in subsection 6.1.1.
Oracle SecureFiles was configured to directly issue I/O to the
underlying storage system for SecureFile object data bypassing
the database buffer cache. Hardware setup as described in Section
6.1 was used for this set of experiments.

The scalability experiments were performed on three distinct sets
of data. The first dataset consists of 1.5 GB of documents, each
ranging between 60KB to 120 KB. The second dataset consists of
10GB of digital images, each ranging between 700 KB to 1.2 MB.
The third set consists of 100GB of digital multimedia video files,
each ranging between 60MB to 100MB.

B

b3 200

S 150 —

5 100 /

£

o 50

3

E 0 T T T T T T T T T T T 1
1 2 4 6 8 10 12 16 20 25 50

No. of concurrent processes
Securefiles Device Throughput

B

b3 200

E 150 o m—

S 100

£ 7

o 50

3

E 0 T T T T T T T T T T T 1
1 2 4 6 8 10 12 16 20 25 50

No. of concurrent processes
Securefiles Device Throughput

Figure 9. Average Throughput of Oracle SecureFiles on
Document Archiving Workload

Figure 10. Average Throughput of Oracle SecureFiles on
Document Modification Workload

1310

6.2.1 Experiments on Documents Dataset

We simulated two types of document management applications on
the dataset. The first application involves insert-only operations
on the entire dataset for archiving the documents as SecureFile
objects. Degree of concurrency of inserts was varied from 1 to 50
streams. The second application simulates modification
operations on archived documents. The simulation consists of two
phases. The first phase deletes 50% of the documents in random
order and then re-inserts the documents. The second phase deletes
and re-inserts the other 50% of the documents. Degree of
concurrency of inserts was varied from 1 to 50 streams in both the
cases. Multi-stream configurations were implemented to avoid
conflicts on the same sets of rows across processes. Average
throughput of inserts was measured for both the applications.

As evident from the figures 9 and 10, throughput of insert
execution for both simulated applications scale up with the degree
of concurrency on the hyper-threaded dual process server
machine. Throughput of Oracle SecureFiles reach approximate
hardware throughput at concurrency of 6 streams and converges
thereafter with the device throughput in both cases. The hardware
throughput was estimated using ‘dd’ Unix program. The average
throughput for the archiving application is around 140MB/sec,
thereby supporting data ingestion rate of approximately 1500
documents per second. The random insert-delete workload results
in an average throughput of approximately 130 MB/sec, thereby
supporting data ingestion rate of 1400 documents per second.
100

50/

0 —rr ¢t 1 1 1. 1. 1.1 °rrrrrr1

N e A N B

250
200
150

Throughput (MB/sec)

No. of concurrent processes

Images Videos

Figure 11. Average Throughput of Oracle SecureFiles on
Image and Video Datasets

06.2.2 Experiments on Image and Video Dataset
Insert-only experiments were performed for both image and video
dataset. The hardware setup is similar to the previous
experiments. However, for this set of experiments, the server
machine acted as both the client as well as the server, thereby
preventing network bandwidth bottlenecks on the system
throughput. The degree of concurrency of loading the data in
Oracle SecureFile objects was varied from 1 to 16. Figure 11
demonstrates that in both scenarios, SecureFiles write throughput
scales with the number of clients loading the data. The
SecureFiles throughput gets driven to asymptotically converge
with the disk system throughput.

6.3 Scalability of SecureFiles on Real
Application Clusters

The test setup and dataset configuration for this set of
experiments is the same as mentioned in section 6.1.1. The dataset
comprised of files of sizes ranging around 1MB, 10MB and
100MB for the scope of these experiments.

6.3.1 Hardware Setup

The hardware setup consists of four Real Application Cluster
node set on four server machines, each consisting of two 3.4 GHz
hyper-threaded Intel Xeon processors and 6 GB RAM. HBA is
2GBps that limits I/O bandwidth of the node to 276 MB/sec. The
storage system consists of three EMC CX700 disk arrays
connected through 2 switches with 12 LUNs spanning the three

arrays.
F]
b3 500
)
S 400
—~ 300
2 200
K=
%’ 100
_E 0 T T T 1
= 1 10 100
Avg. File Sizes (MB)
1 node 2 nodes 4 nodes |
F]
b3 800
2 600
5 400 /
s
@ 200
3
_E 0 T T T 1
= 1 10 100
Avg. file Sizes (MB)
1 node 2 nodes 4 nodes

Figure 12. Throughput scalability of inserts operations of
SecureFiles with number of DB instances in RAC

Figure 13. Throughput scalability of read operations of
SecureFiles with number of DB instances in RAC

6.3.2 Experiments and Results

Experiments were performed on three different RAC
configurations. Read and write operations were issued on a single
database instance, on two instances and on all four instances.
Single processes performed the operations from each of the nodes
in all three configurations.

Figures 12 and 13 demonstrate throughput for all file sizes for
read and writes. Both read and write throughputs of SecureFiles
scale proportionally to the number of nodes across all file sizes.

1311

7. CONCLUSIONS AND FUTURE WORK

In the past, Database management systems have been designed to
provide scalable execution of storage and access of relational
data. However, throughout the last decade, document
management and multimedia applications have changed the
dynamics of data ingestion in terms of rates, volumes and
structures. This has resulted in around eighty five percent of data
being non-relational that is not managed by database systems.

Current content management applications use filesystems to store
unstructured data as they provide better throughput of data and
access operations across all sizes and types and use database
systems to manage accompanying relational metadata for
indexing and querying purposes. This dichotomy in storage
creates a need for compromises in one or more of high
availability, scalability, performance or functionality. With Oracle
11g Database Server’s SecureFiles capabilities we now have a
next generation unified unstructured and relational data
management platform without compromises. Our in-house
performance evaluations demonstrate that Oracle SecureFiles is
capable of providing optimal execution throughput and scalability
for unstructured content while preserving the advantages of
relational database management.

Oracle SecureFiles System is a consolidated industry-strength
storage management solution for relational as well as unstructured
data that does not compromise filesystem performance as well as
secure database management features. New applications
developed on top of Oracle SecureFiles will receive all the
benefits of the framework. Future work includes efforts to provide
efficient migration of existing applications based on LOBs.
Efforts to support all existing filesystem interfaces are required to
achieve higher adoption across filesystem based content
management developers. Detailed evaluation experiments are
required to be conducted on workloads comprising of hundreds of
terabytes to petabytes of unstructured data under various
hardware and system configurations.

8. ACKNOWLEDGMENTS

We acknowledge all members of the Oracle SecureFiles team for
conducting research, design, development, implementation,
functional testing and productization of Oracle SecureFiles. We
also acknowledge the contributions of K. Baloglu, B. Baddepudi,
J. Djegaradjane, Joy Forsythe, Vipin Gokhale, Liwen Huang,
Nirman Kumar, Chao Liang, Xiaoming Liu, Karthik Rajan,
Dheeraj Pandey and Niraj Srivastava.

9. REFERENCES
[1] Blumberg, R., Atre, S. The Problem with Unstructured Data.
DM Review Magazine, Feb. 2003.

Lallier, J. Storage Management in the Year 2010. Computer
Technology Review, September 2004.

(2]

Vijayan, P. Iron File Systems. Thesis Submitted for Doctor
of Philosophy in Computer Sciences, University of
Wisconsin-Madison, 2006.

Oracle Database 11g Product Family. An Oracle White
Paper, January 2008.

Labhiri, T., Srihari, V., Chan, W., Macnaughton, N.,
Chandrasekaran, S. Cache Fusion: Extending Shared-Disk

Clusters with Shared Caches, Proceedings of the 27" VLDB
conference, Roma, Italy, 2001.

Biggar, H. Experiencing Data De-Duplication: Improving
Efficiency and Reducing Capacity Requirements. A
SearchStorage.com White Paper, Feb 2007.

Shapiro, M., Miller, E. Managing Databases with Binary
Large Objects. Proceedings of the 16™ IEEE Mass Storage
System Symposium, San Diego, CA, March 1999.

Olson, M. A., The Design and Implementation of Inversion
Filesystem. Proceedings of the winter 1993 USENIX
Conference, Berkeley, CA, 1993.

Gray, J. Greetings! From a Filesystem User. 4™ USENIX
Conference on File and Storage Technologies, San
Francisco, CA, DEC 2005

[10] Sears, R., Ingen, C., Gray, J. To BLOB or not to BLOB:
Large object Storage in a database or a Filesystem?
Microsoft Research Technical Report, MSR-TR-2006-45,
June 2006.

[11] Dumler, M. Microsoft SOL Server 2005. A Microsoft
Product Guide, September 2005.

[12] Seltzer, M., Olson, M. LIBTP: Portable, Modular
Transactions for UNIX. Proceedings of the 1992 Winter
Usenix, San Francisco, CA, JAN 1992.

[13] Gehani, N., Jagadish, H. V., Roome, and W. D. OdeFS: 4
Filesystem Interface to an Object-Oriented Database.
Proceedings of the Twentieth International Conference on
Very Large Databases, Santiago, Chile, 1994.

[14] Murphy, N., Tonkelowitz, M., and Vernal, M. The Design
and Implementation of the Database Filesystem.
www.eecs.harvard.edu/vernal/learn/cs26 1r/index.shtml,
January 2002.

[15] LUSTRE FILE SYSTEM: High Performance Storage
Architecture and Scalable Cluster File System. A Sun
Microsystems White Paper, DEC 2007.

(9]

1312

[16] Ghemawat, S., Gobioff, H., Leung, S. The Google File
System. 19™ ACM Symposium on Operating Systems
Principles, NY, OCT 2003.

[17] Architecture of ZFS for Lustre. Sun Micorsystems, FEB
2008

[18] Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R. Bigtable: 4
Distributed Storage System for Structured Data.7th Usenix
Symposium on Operating Systems Design and
Implementation, Seattle, WA, Nov 2006.

[19] Rajamani, R. Oracle Total recall/ Flashback Data Archive.
An Oracle White Paper, June 2007.

[20] Jensen, Christian S., Snodgrass, Richard T. Temporal Data
Management. IEEE Transactions on Knowledge and data
Engineering, Vol. 11, No. 1, January 1999.

[21] Stonebraker, M., Madden, S., Abadi, D., Harizopoulos, S.,
Hachem, N., Helland, P. The End of an Architectural Era
(1t’s Time for a Complete Rewrite). Proceedings of VLDB,
Vienna, SEP 2007

[22] Adams, P. National Ignition facility and 11g SecureFiles.
Oracle Openworld, NOV 2007.

[23] Gray, J., Graefe, G. The Five-Minute Rule Ten Years Later,
and Other Computer Storage Rules of Thumb. Proceedings
of ACM SIGMOD, Tucson, AR, 1997.

[24] Nath, S, Kansal, M. FlashDB: Dynamic Self-tuning Database
for NAND Flash. Proceedings of the International
Conference on Information Processing in Sensor Networks,
Cambridge, MA, APR 2007.

[25] Flash Filesystems Overview. An Intel White Paper, 2006.

[26] Geoff Lee. Oracle Database 11g XML DB Technical
Overview. An Oracle White Paper, July 2007.

