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ABSTRACT
Dirty data is a serious problem for businesses leading to
incorrect decision making, inefficient daily operations, and
ultimately wasting both time and money. Dirty data often
arises when domain constraints and business rules, meant
to preserve data consistency and accuracy, are enforced in-
completely or not at all in application code.

In this work, we propose a new data-driven tool that can
be used within an organization’s data quality management
process to suggest possible rules, and to identify confor-
mant and non-conformant records. Data quality rules are
known to be contextual, so we focus on the discovery of
context-dependent rules. Specifically, we search for condi-
tional functional dependencies (CFDs), that is, functional
dependencies that hold only over a portion of the data. The
output of our tool is a set of functional dependencies to-
gether with the context in which they hold (for example, a
rule that states for CS graduate courses, the course number
and term functionally determines the room and instructor).
Since the input to our tool will likely be a dirty database,
we also search for CFDs that almost hold. We return these
rules together with the non-conformant records (as these are
potentially dirty records).

We present effective algorithms for discovering CFDs and
dirty values in a data instance. Our discovery algorithm
searches for minimal CFDs among the data values and prunes
redundant candidates. No universal objective measures of
data quality or data quality rules are known. Hence, to
avoid returning an unnecessarily large number of CFDs and
only those that are most interesting, we evaluate a set of
interest metrics and present comparative results using real
datasets. We also present an experimental study showing
the scalability of our techniques.

1. INTRODUCTION
Poor data quality continues to be a mainstream issue for

many organizations. Having erroneous, duplicate or incom-
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plete data leads to ineffective marketing, operational inef-
ficiencies, inferior customer relationship management, and
poor business decisions. It is estimated that dirty data costs
US businesses over $600 billion a year [11]. There is an in-
creased need for effective methods to improve data quality
and to restore consistency.

Dirty data often arises due to changes in use and per-
ception of the data, and violations of integrity constraints
(or lack of such constraints). Integrity constraints, meant
to preserve data consistency and accuracy, are defined ac-
cording to domain specific business rules. These rules define
relationships among a restricted set of attribute values that
are expected to be true under a given context. For example,
an organization may have rules such as: (1) all new cus-
tomers will receive a 15% discount on their first purchase
and preferred customers receive a 25% discount on all pur-
chases; and (2) for US customer addresses, the street, city
and state functionally determines the zipcode. Deriving a
complete set of integrity constraints that accurately reflects
an organization’s policies and domain semantics is a primary
task towards improving data quality.

To address this task, many organizations employ consul-
tants to develop a data quality management process. This
process involves looking at the current data instance and
identifying existing integrity constraints, dirty records, and
developing new constraints. These new constraints are nor-
mally developed in consultation with users who have specific
knowledge of business policies that must be enforced. This
effort can take a considerable amount of time. Furthermore,
there may exist domain specific rules in the data that users
are not aware of, but that can be useful towards enforcing
semantic data consistency. When such rules are not explic-
itly enforced, the data may become inconsistent.

Identifying inconsistent values is a fundamental step in
the data cleaning process. Records may contain inconsis-
tent values that are clearly erroneous or may potentially be
dirty. Values that are clearly incorrect are normally easy to
identify (e.g., a ’husband’ who is a ’female’). Data values
that are potentially incorrect are not as easy to disambiguate
(e.g., a ’child’ whose yearly ’salary’ is ’$100K’). The unlikely
co-occurrence of these values causes them to become dirty
candidates. Further semantic and domain knowledge may
be required to determine the correct values.

For example, Table 1 shows a sample of records from a
1994 US Adult Census database [4] that contains records
of citizens and their workclass (CLS), education level (ED),
marital status (MR), occupation (OCC), family relationship
(REL), gender (GEN), and whether their salary (SAL) is
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Table 1: Records from US 1994 Adult Census database

Tuple CLS ED MR OCC REL GEN SAL

t1 Private Bachelors Married Exec-mgr Husband Male >50K
t2 Private Bachelors Married Prof-specialty Husband Male >50K
t3 Self-emp Masters Married Exec-mgr Wife Male >50K
t4 ? HS-grad Divorced ? Not-in-family Male >50K
t5 Self-emp Masters Married Admin Wife Female >50K
t6 Never-worked 7th-8th Divorced ? Not-in-family Male ≤50K
t7 Self-emp HS-grad Never-married Farming Own-child Male ≤50K
t8 Local-gov Some-college Never-married Admin Own-child Female ≤50K
t9 State-gov Masters Divorced Prof-specialty Own-child Male >50K
t10 ? Bachelors Divorced ? Not-in-family Female ≤50K
t11 Self-emp Some-college Never-married Machine-op Not-in-family Female >50K

above or below $50K. We intuitively recognize the following
inconsistencies:

1. In t3, if the person is a married male, then REL should
be Husband not Wife. Alternatively, the GEN should
be Female. This is clearly an erroneous value.

2. The tuple t6 indicates a person with a missing occupa-
tion (where the ”?” indicates a NULL) and a workclass
indicating he has never worked. Support in the data
reveals that when occupation is missing so is the work-
class value, indicating that if the person is temporarily
unemployed or their occupation is unknown, so is their
workclass. Given this evidence, the discrepancy in t6
indicates either the value ”Never-worked” is dirty and
should be ”?”; or a semantic rule exists to distinguish
people who have never been employed and their salary
must be less than $50K (versus those who are tem-
porarily unemployed or their occupation is unknown).

3. The tuple t9 represents a child (under 18) who is di-
vorced with a salary over $50K. Most children are un-
married and do not have such a high salary.

Cases (2) and (3) are potential exceptions whereby an
analyst with domain knowledge can help to resolve these
inconsistencies, and may enforce new rules based on these
discrepancies.

In this paper, we propose a new data-driven tool that
can be used during the data quality management process
to suggest possible rules that hold over the data and to
identify dirty and inconsistent data values. Our approach
simplifies and accelerates the cleaning process, facilitating
an interactive process with a consultant who can validate
the suggested rules (including rules that may not be obvi-
ous to users) against business requirements so that they are
enforced in the data, and with a data analyst who can re-
solve potential inconsistencies and clean the obvious dirty
values. As described above, data quality rules are known
to be contextual, so we focus on the discovery of context-
dependent rules. In particular, we search for conditional
functional dependencies (CFDs) [5], which are functional
dependencies that hold on a subset of the relation (under a
specific context). For example, the earlier business rules can
be expressed as CFDs:

• φ1a : [status = ’NEW’, numPurchases = 1] →
[discount = 15%]

• φ1b : [status = ’PREF’] → [discount = 25%]

• φ2 : [CTRY = ’US’, STR, CTY, ST] → [ZIP]

Similarly, the semantic quality rules for the Census data
can be represented as:

• φ3 : [MR = ’Married’, GEN = ’Male’] →
[REL = ’Husband’]

• φ4 : [CLS = ’Never-worked’] → [OCC = ’?’, SAL =

’≤ $50K’]

• φ5 : [REL = ’Own-child’]→ [MR = ’Never-married’,

SAL = ’≤ $50K’]

In this paper we formalize and provide solutions for dis-
covering CFDs and for identifying dirty data records. In
particular, we make the following contributions:

• We present an algorithm that effectively discovers CFDs
that hold over a given relation R. We prune redundant
candidates as early as possible to reduce the search
space and return a set of minimal CFDs.

• We formalize the definition of an exception (dirty)
value and present an algorithm for finding exceptions
that violate a candidate CFD. Exceptions are iden-
tified efficiently during the discovery process. Once
found, they can be reported back to an analyst for
verification and correction.

• To avoid returning an unnecessarily large number of
CFDs and only ones that are most interesting, we eval-
uate a set of interest metrics for discovering CFDs and
identifying exceptions. Our results show that convic-
tion is an effective measure for identifying intuitive and
interesting contextual rules and dirty data values.

• We present an experimental evaluation of our tech-
niques demonstrating their usefulness for identifying
meaningful rules. We perform a comparative study
against two other algorithms showing the relevancy of
our rules, and evaluate the scalability of our techniques
for larger data sizes.

The rest of the paper is organized as follows. In Section 2,
we present related work and in Section 3 we give preliminary
definitions and details of our rule discovery algorithm. In
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Section 4, we present our algorithm for identifying records
that are exceptions to approximate rules and lead to dirty
data values. Section 5 presents an experimental evaluation
of our methods and Section 6 concludes our paper.

2. RELATED WORK
Our work finds similarities to three main lines of work:

functional dependency discovery, conditional functional de-
pendencies, and association rule mining.

Functional dependency (FD) discovery involves mining for
all dependencies that hold over a relation. This includes
discovery of functional [13, 18, 24], multi-valued [22] and
approximate [13, 16] functional dependencies. In previous
FD discovery algorithms, both Tane [13] and DepMiner [18]
search the attribute lattice in a levelwise manner for a mini-
mal FD cover. FastFDs [24] uses a greedy, heuristic, depth-
first search that may lead to non-minimal FDs, requiring fur-
ther checks for minimality. We generalize the lattice based
levelwise search strategy for discovering CFDs.

Conditional functional dependencies, are a form of con-
strained functional dependencies (introduced by Maher [19]).
Both Maher and Bohannon et al. [5] extend Armstrong’s ax-
ioms to present a (minimal) set of inference rules for CFDs.
To facilitate data cleaning, Bohannon et al. [5] provide SQL
based techniques for detecting tuples that violate a given set
of CFDs. Both of these papers have assumed that the CFDs
are known, which is not always true. Manual discovery of
CFDs is a tedious process that involves searching the large
space of attribute values. None of the previous work has
focused on this problem.

Recent work in conditional dependencies has focused on
conditional inclusion dependencies (CIND) and finding re-
pairs for tuples violating a given set of CFDs. Inclusion
dependencies are extended with conditional data values to
specify that the inclusion dependencies hold over a subset
of the relation. Bravo et al. [6] study the implication and
consistency problems associated with CINDs and their in-
teraction with CFDs, providing complexity results, infer-
ence rules and a heuristic consistency-check algorithm. Con-
straint based data cleaning searches for a repair database
D′ that is consistent with the CFDs and differs minimally
from the original database D. Cong et al.[9] propose repair
algorithms to repair D based on the CFDs and potential up-
dates to D. We focus on discovering CFDs and identifying
tuples that violate these rules. Any of the proposed repair
algorithms can be used to clean the reported dirty tuples.

There are many statistical approaches for error localiza-
tion, again, assuming the data quality rules are known (and
valid) where the goal is to find errors or rule violations [23].
Many data cleaning tools support the discovery of statis-
tical trends and potential join paths [10], schema restruc-
turing and object identification [21, 12], but to the best of
our knowledge none of these tools focus on the discovery of
contextual dependency rules.

Association rule mining (ARM) focuses on identifying re-
lationships among a set of items in a database. The se-
mantics of association rules differ from CFDs. In ARM, for
itemsets U, V , the rule U → V indicates U occurs with V .
However, U may also occur with other elements. CFDs de-
fine a strict semantics where for a set of attributes X, Y , a
CFD X → Y indicates that the values in X must (only)
occur with the corresponding values in Y . Large itemsets
that satisfy minimum support and confidence thresholds are

Table 2: CFD φ: ([STAT, NUM-PUR] → [DISC], T1)

STAT NUM-PUR DISC
’New’ 1 15
’Pref’ ’−’ 25

most interesting [1, 2]. Statistical significance and convic-
tion tests [7] have also been used to assess itemset quality.
We employ some of these measures to evaluate the quality
of a CFD during our discovery process.

One of the foundational techniques in ARM, the Apriori
algorithm [3], builds large itemsets by adding items only
to large itemsets and pruning small itemsets early that do
not satisfy the support threshold. A superset of a small
itemset will remain small, hence the itemset can be pruned
to reduce the number of itemsets considered. This is known
as the anti-monotonic property. In our work, applying this
pruning technique to our classes of data values may lead us
to miss groupings of smaller constant values that together
may form a valid condition satisfying the support threshold.
We eliminate conditioning on attributes whose maximum
class size is less than the support level since their supersets
will also fall below the support level.

Related to ARM, frequent pattern mining searches for
frequent itemsets that satisfy domain, class, or aggregate
constraints [14, 15, 20, 17]. This helps to focus the min-
ing on desired patterns. A primary objective is to discover
data patterns involving similar values defined by (given)
domain widths [14, 15]. Similar to the anti-monotonic prop-
erty, optimizations for computing frequent patterns involve
constraint push down [20], and pruning strategies that are
specific to the constraint type [17]. Both ARM and frequent
pattern mining focus on value based associations, whereas
our techniques focus on finding rules that allow variables not
just constant values.

3. SEARCHING FOR DATA QUALITY RULES
Given a relation R, we are interested in finding all data

quality rules that exist in R and that satisfy some minimum
threshold. As data quality rules are contextual, we search
for conditional functional dependencies (CFD), which are
functional dependencies that hold under certain conditions.
We first give some preliminary definitions.

3.1 Preliminaries
A CFD φ over R can be represented by φ : (X → Y, Tp)

[5], where X, Y are attribute sets in R and X → Y is a
functional dependency (FD). Tp is a pattern tableau of φ,
containing all attributes in X and Y . For each attribute
B in (X ∪ Y ), the value of B for a tuple in Tp, tp[B], is
either a value from the domain of B or ’−’, representing
a variable value. For example, the rules φ1a and φ1b are
represented as rows in Table 2. A CFD enhances functional
dependencies by allowing constant values to be associated
with the attributes in the dependency. In particular, CFDs
are able to capture semantic relationships among the data
values.

A tuple t matches a tuple tp in tableau Tp if for each
attribute B in Tp, for some constant ’b’, t[B] = tp[B] =
’b’ or tp[B] = ’−’. For example, the tuple (’Pref’,10,25)
matches the second tuple in T1 (in Table 2). A subset I of
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a relation R satisfies the CFD φ, denoted as I |= φ, if for
every pair of tuples t1 and t2 in I, and for each pattern tuple
tp in Tp, if t1[B] = t2[B] for every attribute B in X, and
both t1, t2 match tp[B], then t1[A] = t2[A] and t1, t2 both
match tp[A] for attribute A in Y . Tuple t in R violates φ
if t[B] = tp[B] = ’b’ or tp[B] = ’−’ for every attribute B in
X, but t[A] 6= tp[A] for attribute A in Y . Without loss of
generality, we consider CFDs of the form ϕ : (X → A, tp),
where A is a single attribute and tp is a single pattern tuple.
The general form φ : (X → Y, Tp) can be represented in this
simpler form as (X → A, tp(X∪A)) for each A in Y and tp in
Tp. Intuitively, we decompose Y into its singular attributes
and consider each resulting dependency individually. This
is equivalent to applying the decomposition rule1 [5, 19].
CFDs of this form are minimal (in standard form) when A
does not functionally depend on any proper subset of X so
that each attribute in X is necessary for the dependency to
hold. This structural definition also holds for FDs.

We search for CFDs where X may contain multiple vari-
ables P and (X − P ) conditional attributes. For X → A,
if the consequent A resolves to a constant ’a’ for all values
in variable(s) P (tp[P ] = ’−’), then we report ’a’ in tp and
remove P from the rule since it has no effect on the value
of A. Returning a constant value rather than a variable
A, along with the conditional values, enables the rules to
provide increased information content.

In the next section, we describe the attribute partition
model and how quality rules are generated. We then present
the metrics that we use to evaluate the quality of a discov-
ered rule, followed by a discussion of the pruning strategies
we adopt to narrow the search space and to avoid redundant
candidates.

3.2 Generating Candidates
Let n be the number of attributes in R and let X be an at-

tribute set of R. A partition of X, ΠX , is a set of equivalence
classes where each class contains all tuples that share the
same value in X. Let xi represent an equivalence class with
a representative i that is equal to the smallest tuple id in the
class. Let |xi| be the size of the class and vi be the distinct
value of X that the class represents. For example, in Table
1 for X1 = MR, ΠMR = {{1, 2, 3, 5}, {4, 6, 9, 10}, {7, 8, 11}}, for
X2=REL, ΠREL = {{1, 2}, {3, 5}, {4, 6, 10, 11}, {7, 8, 9}}, and
for X3 = (MR,REL), Π(MR, REL) = {{1, 2}, {3, 5}, {4, 6, 10}, {9},
{11}, {7, 8}}. For ΠMR, x7 = {7,8,11}, |x7| = 3, and v7 =
’Never-married’. A partition ΠX refines ΠY , if every xi in
ΠX is a subset of some yi in ΠY [13]. The FD test is based on
partition refinement where a candidate FD X → Y over R
holds iff ΠX refines ΠY . Since CFDs hold for only a portion
of R, the CFD test does not require complete refinement,
that is, it does not require every class in ΠX to be a subset
of some class in ΠY . We will elaborate on this shortly.

To find all minimal CFDs, we search through the space of
non-trivial2 and non-redundant candidates, where each can-
didate is of the form γ : X → Y , and test whether γ holds
under a specific condition. A candidate γ is non-redundant
if its attribute sets X, Y are not supersets of already dis-
covered CFDs. The set of possible antecedent values is the
collection of all attribute sets, which can be modeled as a
set containment lattice, as shown in Figure 1. Each node
in the lattice represents an attribute set and an edge exists

1Decomposition rule: If X → Y Z, then X → Y and X → Z
2A candidate X → A is trivial if A ⊆ X.

0

A B C D

AC AD BC BD CDAB

ABC ABD ACD BCD

ABCD

Figure 1: Attribute search lattice

between sets X and Y if X ⊂ Y and Y has exactly one more
attribute than X, i.e., Y = X ∪ {A}. We define a candidate
CFD based on an edge (X, Y ) as follows.

Definition 1. An edge (X, Y ) in the lattice generates a
candidate CFD γ : ([Q, P ] → A) consisting of variable at-
tributes P and Q = (X − P ) conditional attributes, where
Y = (X ∪ A). P and Q consist of attribute sets that range
over the parent nodes of X in the lattice.

For example, in Figure 1, for edge (X, Y ) = (AC, ABC),
we consider conditional rules γ1: ([Q = A, C] → B) and γ2:
([Q = C, A] → B), where Q ranges over the parent nodes of
AC, and will take on values from these attribute sets. For
the single attribute case, (X, Y ) = (A, AB), we consider the
conditional rule γ: ([Q = A, ∅] → B). For the rest of the
paper, we will use this notation (based on attribute sets) to
represent candidate CFDs.

Each candidate γ is evaluated by traversing the lattice in
a breadth-first search (BFS) manner. We first consider all
X consisting of single attribute sets (at level k = 1), fol-
lowed by all 2-attribute sets, and we continue level by level
to multi-attribute sets until (potentially) level k = n − 1.
We only visit nodes on the BFS stack that represent mini-
mal CFD candidates. The algorithm efficiency is based on
reducing the amount of work in each level by using results
from previous levels. In particular, by pruning nodes that
are supersets of already discovered rules and nodes that do
not satisfy given thresholds, we can reduce the search space
(by avoiding the evaluation of descendant nodes) thereby
saving considerable computation time.

CFD validity test For attribute sets X, Y a class xi in
ΠX is subsumed by yi in ΠY if xi is a subset of yi. Let
ΩX ⊆ ΠX represent all the subsumed classes in ΠX . Let
X = (P ∪Q) where P represents variable attributes and Q
the conditional attributes, then γ : ([Q, P ] → A) is a CFD
iff there exists a class qi in ΠQ that contains values only
from ΩX .

Intuitively, the CFD validity test is based on identifying
values in X that map to the same Y value. Since values are
modeled as equivalence classes, we are interested in xi that
do not split into two or more classes in Y (due to attribute
A). If there is a condition Q that the tuples in ΩX share in
common, then γ is true under Q. For data quality rules, it
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is generally preferable to find rules that hold for more than
one, or indeed for many, tuples. Hence, we may additionally
impose a constraint that |xi| > l for some threshold value l.

Example 1. The search for CFDs in Table 1 begins at
level k = 1 and we set l = 1. Consider the following par-
titions (for brevity, we show only a subset of the attribute
partitions):

• ΠMR = {{1, 2, 3, 5}, {4, 6, 9, 10}, {7, 8, 11}}
• ΠREL = {{1, 2}, {3, 5}, {4, 6, 10, 11}, {7, 8, 9}}
• Π(R,M)

3 = {{1, 2}, {3, 5}, {4, 6, 10}, {7, 8}, {9}, {11}}
• ΠED = {{1, 2, 10}, {3, 5, 9}, {4, 7}, {6}, {8, 11}}
• ΠCLS = {{1, 2}, {3, 5, 7, 11}, {4, 10}, {6}, {8}, {9}}
• Π(C,E) = {{1, 2}, {10}, {3, 5}, {4}, {6}, {7}, {8}, {9}, {11}}
• Π(M,E) = {{1, 2}, {10}, {3, 5}, {9}, {4}, {6}, {7}, {8, 11}}
• Π(M,E,C) = {{1, 2}, {10}, {3, 5}, {9}, {4}, {6}, {7}, {8}, {11}}

For edge (X, Y ) = (REL, (REL, MR)), x1 and x3 are the
subsumed classes. Since X is a single attribute, if we take
Q = X = REL and P = ∅, then we can condition Q on v1, v3,
to obtain the rules ϕ1: ([REL = ’Husband’] → MR) and ϕ2:
([REL = ’Wife’] → MR) as CFDs. Since the values in x1

and x3 each map to the constant ’Married’, we return the
more informative rule ϕ1 : ([REL = ’Husband’] → [MR =

’Married’]) (similarly for ϕ2), indicating that if a person
is a husband, then he must be married.

Consider the edge (X, Y ) = (ED, (ED, CLS)), there are
no subsumed xi classes. After evaluating edges from level-1,
we consider edges from level-2 nodes. Now consider the edge
(X, Y ) = ((ED,MR), (ED,MR,CLS)). The classes x1 and x3

are subsumed and contained in Ω(ED,MR). We check if there
exists a class qi in ΠQ=MR that contains only values from x1

and x3. We see that q1 ={1,2,3,5} satisfies this requirement.
Therefore, by the CFD test we return ϕ: ([MR = ’Married’,

ED] → [CLS]) as a conditional data quality rule.

The traversal continues to nodes representing CFD can-
didates that require further evaluation. We use informa-
tion about discovered CFDs from previous levels to prune
the search space and avoid evaluating redundant candidates.
We will elaborate on this pruning strategy in Section 3.5.

3.3 Multiple Variables and Conditional At-
tributes

The CFD ϕ is true if there exists some value q (condition
on Q) that holds over ΩX . The remaining non-subsumed
classes ΛX = (ΠX −ΩX) are not considered during the con-
ditioning. If there is no conditional value q that is true over
ΩX , then there does not exist a dependency with condition-
ing attributes Q. However, the classes in ΩX can still be
refined by considering additional variable and conditional
attributes. In particular, we consider the updated set of at-
tributes X ′ (with added variables and conditions), and test
whether a rule exists over the classes in ΩX′ .

First, we consider adding another variable attribute B.
Considering an extra attribute can help to further restrict

3For brevity, we abbreviate (REL,MR) to (R,M)

X = AC AD

Y = ABC ACD = X’

Y’ = ABCD

CD

Q

P

Figure 2: A portion of the attribute search lattice

classes that previously were not subsumed. When a can-
didate γ : X → A corresponding to an edge (X, Y ) fails to
materialize to a CFD, we generate a new candidate X ′ → Y ′

in the next level of the lattice where X ′ = (X ∪ B) and
Y ′ = (Y ∪B), B 6= A. The variable attributes P range over
the attribute sets that are parents of X ′ and (X ′−P ) is the
current conditional attribute. See Figure 2 for an example.
If γ: ([A,C] → B) with conditional node A, corresponding
to edge (X, Y ) = (AC, ABC) does not materialize to a CFD,
a new candidate based on the edge (X ′, Y ′) will be evalu-
ated. Specifically, γ′: ([A,C,D]→ B) will be considered with
variable attributes C,D.

If a candidate rule does not materialize to a CFD after
adding a variable attribute, then we condition on an addi-
tional attribute. Similar to adding variables, we consider
conditional attributes Q that range over the attribute sets
that are parents of X ′ (see Figure 2). We add these new
candidates (X ′, Y ′) to a global candidate list G and mark
the corresponding lattice edge (X ′, Y ′). We perform the
CFD test only for classes in ΩX′ . At level k ≥ 2, where
multi-condition and multi-variable candidates are first con-
sidered, we only visit nodes with marked edges to ensure
minimal rules are returned, and thereby also reducing the
search space.

Example 2. Continuing from Example 1, the evaluation
of edge (X, Y ) = ((REL), (REL, MR)) produced classes x4

and x7 that were not subsumed. Consider edge (X ′, Y ′) =
(SAL,REL), (SAL, REL, MR)), with γ: [Q = (SAL), REL] →
[MR]. The attribute partitions are:

• ΠSAL = {{1, 2, 3, 4, 5, 9, 11}, {6, 7, 8, 10}}
• Π(SAL,REL) = {{1, 2}, {3, 5}, {4, 11}, {9}, {6, 10}, {7, 8}}
• Π(S,R,M) = {{1, 2}, {3, 5}, {4}, {11}, {9}, {6, 10}, {7, 8}}

Classes x1, x3, x6, x7 are subsumed classes. However, we
do not condition using x1 and x3 since a CFD was found
previously with these classes. We consider only x6 and x7

in Ω(X=SAL,REL). Under Q = (SAL), we check for a qi in ΠQ

that contains only tuple values from ΩX . The class q1 fails
since it contains tuple values not in ΩX , but q6 = {6,7,8,10}
with v6 = ’≤50K’ qualifies. All tuple values in x6 and x7

share the same conditional value v6, hence, [SAL = ’≤50K’,
REL] → [MR] is a conditional data quality rule.

After visiting all marked edges, the set of discovered rules
and their conditional contexts are reported to the user. Al-
gorithm 1 presents pseudocode to identify conditional data
quality rules over R.
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Algorithm 1 Algorithm to discover CFDs

INPUT Relation R, current level k

1: Initialize CL = {}, G = {}
2: for each X in level k do
3: consider (marked) edge (X, Y )
4: if |ΠX | = |ΠY | then
5: {(X, Y ) represents an FD}. Unmark edge (X, Y ),

remove its supersets from G.
6: else
7: OX = subsumed xi, VX = (X −OX)
8: findCFD(OX , X, Y, k)
9: if OX 6= ∅ then

10: G(X ′, Y ′, Q, P ) = (VX , OX) {Generate next
CFD candidate; add variable, conditional at-
tributes. Mark edge (X ′, Y ′).}

11: if k ≥ 2 and G = ∅ then
12: break {No candidates remaining}
13: return CL {List of conditional rules}

DEFINE findCFD(OX , X, Y, k)

1: If k ≥ 2: itn = 2, ELSE itn = 1
2: for i: 1 to itn do
3: {First check for CFDs with added variables. If none

found, check with added conditions.}
4: for qi in Q do
5: if qi contains values only from OX then
6: if M(xi, yi) ≥ τ then
7: ϕ: X → A {M: interest metric, τ : threshold}
8: CL = (CL ∪ ϕ) {add discovered CFD to list}
9: OX = (OX - (xi in ϕ)) {update classes}

10: If CFDs found, break.
11: return (OX)

3.4 Interest Measures for CFDs
To capture interesting rules we consider three interest

measures, namely support, the χ2-test, and conviction. We
apply these metrics as a filter to avoid returning an unnec-
essarily large number of rules, and to prune rules that are
not statistically significant nor meaningful.

3.4.1 Support
Support is a frequency measure based on the idea that

values which co-occur together frequently have more evi-
dence to substantiate that they are correlated and hence
are more interesting. The support of a CFD ϕ: (X → A),
support(X → A), is the proportion of tuples that match ϕ,
defined as

Sϕ =
s = # tuples containing values in X and A

N = # of tuples inR
(1)

For an attribute set X, support(X) is defined as the num-
ber of tuples containing values in X divided by N . If ϕ
holds, then s = Σ|yi|, for yi that subsume xi in ΩX . For
example, the rule ϕ : [SAL = ’≤50K’, REL] → [MR] holds
for x6, x7 in Ω(SAL,REL), which are subsumed by y6, y7 in
Y . Hence, s = |y6| + |y7| = 2 + 2 = 4, giving Sϕ = (4/11).
In our algorithm, we only consider rules that exceed a mini-
mum support threshold θ, that is, we are interested in rules
with Sϕ ≥ θ.

3.4.2 χ2-Test
Given ϕ : X → A, we expect the support of ϕ to be the

frequency in which the antecedent and consequent values
occur together, i.e., (support(X)∗support(A)). If the actual
support support(X → A) deviates significantly from this
expected value, then the independence assumption between
X and A is not satisfied. Rules with support(X → A) ≈
(support(X) ∗ support(A)) are not interesting. We capture
this idea by using the χ2 test

χ2 =
(E(vXvA)−O(vXvA))2

E(vXvA)
+

(E(v̄XvA)−O(v̄XvA))2

E(v̄XvA)
+

(E(vX v̄A)−O(vX v̄A))2

E(vX v̄A)
+

(E(v̄X v̄A)−O(v̄X v̄A))2

E(v̄X v̄A)
(2)

Let vX , vA be the set of constant values in ϕ from X
and A, respectively. O(vXvA) represents the number of tu-
ples containing both vX and vA (including conditional val-
ues). E(vXvA) is the expected number of tuples contain-
ing vX and vA under independence, that is, E(vXvA) =
O(vX )O(vA)

N
, where O(vX) is the number of tuples where vX

occurs. Similarly, O(v̄X) is the number of tuples where vX

does not occur. The χ2 value follows a χ2 distribution. We
test for statistical significance by comparing the χ2 value to
critical values from standard χ2 distribution tables. For a
critical value of 3.84, only in 5% of the cases are the variables
independent if χ2 is greater than 3.84. Hence, if χ2 > 3.84
then the values X → A under Q are correlated at the 95%
confidence level. We apply the χ2 test both on its own and
in conjunction with support to filter rules that are not sta-
tistically significant according to a given significance level.

3.4.3 Conviction
Various measures have been proposed to quantify mean-

ingful attribute relationships and to capture interesting rules.
Confidence is one of these measures. The confidence of ϕ:
(X → A) can be stated as

Confidence = Cfϕ =
Pr(X, A)

Pr(X)
=

Pr(Q, P, A)

Pr(Q, P )
(3)

where X = (Q∪P ) and Pr(Q, P ) is equal to support(Q, P ).
Confidence measures the likelihood that A occurs given P
under condition Q. We can compute this value by taking
the number of occurrences of P and A (with Q) and divid-
ing this by the number of occurrences of P (with Q). If P
always occurs with A then the confidence value is 1. If they
are independent, then confidence is 0. A drawback of confi-
dence is that it does not consider the consequent A, and it is

possible that Pr(Q,P,A)
Pr(Q,P )

= Pr(Q, A), indicating that P and

A are independent. If this value is large enough to satisfy
the desired confidence threshold, then an uninteresting rule
is generated.

Interest is an alternative correlation metric that measures
how much two variables deviate from independence. The
interest of ϕ quantifies the deviation of P and A (with con-
dition Q) from independence. We define interest for ϕ as

Interest = Iϕ =
Pr(Q, P, A)

Pr(Q, P )Pr(Q, A)
(4)

The value Iϕ ranges from [0, ∞]. If Iϕ > 1 this indicates
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that knowing P increases the probability that A occurs (un-
der condition Q) . If P and A are independent then Iϕ = 1.
Although Iϕ considers both Pr(Q, P ) and Pr(Q, A) it is a
symmetric measure, that fails to capture the direction of the
implication in ϕ.

The asymmetric conviction metric [7] addresses this short-
coming. It is similar to interest but considers the directional
relationship between the attributes. The conviction for ϕ is
defined as

Conviction = Cϕ =
Pr(Q, P )Pr(¬A)

Pr(Q, P,¬A)
(5)

ϕ : ((Q, P ) → A) can logically be expressed as ¬((Q, P ) ∧ ¬A),
and conviction measures how much ((Q, P ) ∧ ¬A) deviates
from independence. When P and A are independent, con-
viction is equal to 1, and when they are related conviction
has a maximal value approaching ∞. We apply these inter-
est measures in our CFD validity test as shown in Algorithm
1. A qualitative study evaluating these measures is given in
Section 5.2.

3.5 Pruning
We apply pruning rules to efficiently identify a set of min-

imal, non-redundant CFDs in R.
Conditioning Attributes. If a candidate X → A is

a functional dependency over R, then all edges (XB, Y B)
representing supersets of edge (X, Y ) are pruned. This is
because (X ∪ B) → A can be inferred from X → A. Fur-
thermore, supersets of XA → C for all other attributes C
in R are also pruned, since we can remove A without af-
fecting the validity of the dependency (whether it holds or
not) and hence, is not minimal. For CFDs, we must take
extra care since for each distinct conditional attribute value
Q in ϕ : X → A, we get different tuple values satisfying the
rule (since ϕ holds only over a portion of the relation). If
ϕ holds under condition Q, we prune xi in ΩX from being
considered in subsequent evaluations of ϕ with conditions
that are supersets of Q. This is to ensure that the discov-
ered rules are minimal. For example, if Q = U , then xi ε
ΩX are not considered in subsequent evaluations involving
Q = UV, UV W, etc. They are however considered in rules
with conditions not including U . We maintain a hash table
that records which xi to consider for a candidate rule under
specific conditional attributes. The set ΛX is updated to
remove subsumed xi as rules are discovered. For example,
in Example 1 we will consider only x4 and x7 for candi-
dates involving supersets of (X, Y ) = ((REL), (REL,MR))

with conditions that are supersets of (REL).
Support Pruning. In support, we leverage the anti-

monotonic property [3] that if support(X) < θ, then any
supersets of X will also fall below θ. If a set X is not large
enough, then adding further attributes results in a new set
that is either equal to or smaller than X. The first intuition
is to apply this property to prune |xi| < θ. For example, sup-
pose for candidate (X, Y ) = ((SAL,REL), (SAL,REL,MR)) in
Example 2, θ = 0.3. All the classes x1, x3, x6 and x7 have
size equal to 2 and fall below θ, and hence should be pruned.
However, if we were interested in only finding value based
rules, this would work. But we are interested in finding rules
that also contain variables. The rule ϕ: [SAL = ’≤50K’,
REL] → [MR] holds under condition SAL = ’≤50K’ (class
x′6 = {6,7,8,10} in ΠSAL) having support(X → A) = 4 ≥ θ.

We do not prune classes in X whose individual sizes are less
than θ since the sum of these class sizes may satisfy θ under
a common conditional value. Instead, we prune based on
|qi| in Q. If the largest class in Q is less than θ, then clearly
the current candidate rule does not contain sufficient sup-
port. Furthermore, any supersets of Q will also fall below
θ. We maintain a list of these small conditional attribute
sets and prune all candidate rules with conditions involving
these small sets.

Frequency Statistics. When evaluating an edge (X, Y )
in the first level of the lattice (where X and Y resolve to
single value constants), we can leverage attribute value fre-
quency statistics to prune CFD candidates in the reverse
direction. Suppose we are considering a candidate ϕ: [X =
’Toronto’] → [Y = 416]. If the partition classes |xToronto| =
|y416| then ϕ is a CFD. The value |y416| represents the co-
occurrence frequency between the values ’416’ and ’Toronto’.
The actual frequency count of value ’416’, f416, may be
larger than |y416|, indicating that ’416’ co-occurs with other
X values. This indicates that the reverse CFD candidate [Y
= 416] → [X = ’Toronto’] does not hold. More specifically,
for a CFD [X = ’x’] → [Y = ’a’], where X is a single at-
tribute, Y = (X ∪ A), if (fa ≤ ya) for some value ’a’ in A,
then the reverse CFD [A = ’a’] → [X = ’x’] holds. Other-
wise, the y-class representative should be saved for further
conditioning on multiple attributes. Note that we do not
need to explicitly store the fa values since these are the class
partition sizes for the single attribute A. This process allows
us to evaluate two CFD candidates (A → B, B → A) for
the price of one, and we are able to prune half of the level-1
candidates, saving considerable computational effort.

4. IDENTIFYING DIRTY DATA VALUES
Real data often contains inconsistent and erroneous val-

ues. Identifying these values is a fundamental step in the
data cleaning process. A data value can be considered dirty
if it violates an explicit statement of its correct value. Al-
ternatively, if no such statement exists, a value can be con-
sidered dirty if it does not conform to the majority of values
in its domain. In particular, if there is sufficient evidence
in the data indicating correlations among attribute values,
then any data values participating in similar relationships,
but containing different values are potentially dirty. We for-
malize this intuition and search for approximate CFDs over
R. If such approximate rules exist, then there are records
that do not conform to the rules and contain potentially
dirty data values. We report these non-conformant values
along with the rules that they violate. We define what it
means for a value to be dirty using the support and convic-
tion measures.

4.1 Using Support
A conditional rule ϕ : X → A is true if there is some

condition q that holds for xi in ΩX . The remaining non-
subsumed classes xi in ΛX , are not considered during the
conditioning. Each of these xi maps to two or more classes
yk in ΠY indicating that the X value occurs with different
Y values. Let ΥY be the set of yk ε ΠY that xi ε ΛX maps
to. Let ymax represent the largest yk class, and recall that
θ is the minimum support level. If |ymax| ≥ (θ ∗N) and ∃ys

such that |ys| ≤ (α ∗ N), ys 6= ymax, then ψ = ([X = vi]
→ [Y = vs]) is reported as a violation. The parameter α is
an upper error threshold defining the maximum frequency
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(percentage) of a dirty data value. Similar thresholds have
been used to find approximate FDs, where the threshold
defines the maximum number of violating tuples allowed in
order for an FD to qualify as approximate [13].

Intuitively, since there is no 1-1 mapping between any of
the xi in ΛX and a specific yk in ΥY , a CFD cannot hold
over these values. However, we can check if there is a ymax

that satisfies θ, and if so, then this is an approximate CFD
(i.e., if the remaining yk classes did not exist then ([X = vi]
→ [Y = vmax] would be a CFD). We select ymax to be
the largest class. The remaining vk values co-occur with
vi at different frequencies, and if there are vk values that
occur infrequently (less than α), then they are inconsistent
with respect to vmax. Once a set of dirty data values is
found for a candidate (X, Y ), the corresponding classes xi

are not considered again (for dirty values) in rules involving
supersets of (X, Y ). This is to avoid returning redundant
dirty values from the same record.

Example 3. Returning to our Census Table 1, let θ =
0.15 and α = 0.1. We remarked that tuples t3, t6 and t9
contained dirty values and we show how these values can be
identified. Consider the following attribute partitions:

• Π(M,G) = {{1, 2, 3}, {5}, {4, 6, 9}, {10}, {7}, {8, 11}}

• Π(M,G,R) = {{1, 2}, {4, 6}, {3}, {5}, {7}, {8}, {9}, {10}, {11}}

• ΠOCC = {{1, 3}, {2, 9}, {4, 6, 10}, {5, 8}, {7}, {11}}

• ΠCLS = {{1, 2}, {3, 5, 7, 11}, {4, 10}, {6}, {8}, {9}}

• Π(C,O) = {{1}, {2}, {3}, {5}, {4, 10}, {6}, {7}, {8}, {9}, {11}}

Consider candidate (X, Y ) = ((MR, GEN), (MR, GEN, REL))
and class x1 = (1, 2, 3), which maps to y1 = (1, 2) and

y3 = (3). Since ymax = y1 and |y1|
N

≥ θ, and ys = y3,
|y3|
N

≤ α, we have a dirty value in tuple t3. That is, [MR =

’Married’, GEN = ’Male] → [REL = ’Wife’] is inconsis-
tent with the rule [MR = ’Married’, GEN = ’Male]→ [REL

= ’Husband’].
For candidate (X, Y ) = ((OCC), (OCC, CLS)), x4 = (4, 6, 10)

maps to y4 = (4, 10) and y6 = (6). Similar to above, ymax =
y4, ys = y6, and we have a non-conformant tuple t6 with
dirty values [OCC = ’?’] → [CLS = ’Never-worked’] vio-
lating [OCC = ’?’] → [CLS = ’?’] with support = (2/11).
Similarly, we discover the following inconsistent values in t9:
[REL = ’Own-child’] → [MR = ’Divorced’] and [REL =

’Own-child’] → [SAL = ’> 50K’] which violate ϕ1:[REL
= ’Own-child’] → [MR = ’Never-married’] and ϕ2:[REL
= ’Own-child’] → [SAL = ’≤ 50K’], respectively.

Dirty data values can prevent underlying rules from be-
ing discovered and being reported concisely. A larger set of
CFDs are generated to get around the exception. For exam-
ple, if a record contains [’Husband’] → [’Female’], the ac-
tual CFD [’Husband’] → [’Male’] does not hold, and an in-
creased number of rules such as [’Husband’, ’Doctorate’]
→ [’Male’] and [’Husband’, ’Exec-mgr’] → [’Male’] are
found. Our data quality tool is able to identify exceptions
along with the potential (and violated) CFD and present
these to an analyst for cleaning.

4.2 Using Conviction
We use the conviction measure to identify data values that

are independent and violate an approximate CFD. Similar
to the support case, we test if an approximate CFD ϕ :
([X = vi] → [Y = vmax]) satisfies a minimum conviction
level C. We sort |yk| in ΥY in descending order to find
rules containing the largest conviction value first. Let ymax

represent the satisfying yk with the largest conviction value
(Cϕ). To identify dirty records, we are interested in finding
all tuples that have independent attribute values relative
to ϕ. This means that for the yk, if their conviction value
Cσ < Cϕ, for σ: ([X = vi] → [Y = vk]), then vk has
less dependence with vi than vmax, and hence is reported
as an exception. We rank these exceptions according to
descending (Cϕ−Cσ) to find those values that deviate most
from ϕ. Algorithm 2 presents pseudocode for the algorithm
to identify dirty data values in R.

Algorithm 2 Algorithm to discover dirty data values

INPUT Relation R

1: Initialize DL = {} dirty list
2: multiSize(xi) = all yi ⊆ xi

3: for each xi in multiSize do
4: Xbench = 0
5: for yi in multiSize(xi) do
6: ymax = yi with largest measure M(xi, yi)
7: if (M(xi, ymax) < τ) and (Xbench == 0) then
8: break {unsatisfied threshold, consider next xi}
9: else

10: if (Xbench == 0) then
11: Xbench = 1 {approximate CFD}
12: ϕ: [X = value of xi] → [Y = value of ymax]
13: else
14: if M(xi, yi) ≤ α then
15: {α: dirty threshold, δ: dirty data value}
16: δ : [X = value of xi] → [Y = value of yi]
17: DL = (DL∪(δ, ϕ)) {save δ and violated rule

ϕ}
18: return DL

5. EXPERIMENTAL EVALUATION
We ran experiments to determine the effectiveness of our

proposed techniques. We report our results using seven
datasets (six real and one synthetic) and provide examples
demonstrating the quality of our discovered rules and ex-
ceptions.

Real Datasets. We use six real datasets from the UCI
Machine Learning Repository [4], namely the Adult, Census-
Income (KDD), Auto, Mushroom, Statlog German Credit,
and Insurance Company Benchmark datasets. The Adult
dataset from the 1994/95 US Census contains 32561 records
of US citizens describing attributes related to their salary
(above or below $50K). The Census-Income dataset is a
larger dataset (similar to Adult) containing 300K tuples
(299285 from the original dataset plus we append extra
records) with 347 domain values. The Auto dataset de-
scribes characteristics of automobiles used for insurance risk
prediction, with 205 tuples and 10 attributes. The Mush-
room dataset describes physical characteristics of mushrooms
and classifies them as either edible or poisonous and contains
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Table 3: Experimental Parameters

Parameter Description Values

n number of attributes in R [8,17]
N number of tuples in R [25K, 300K]
d attribute domain size [270, 2070]
θ minimum support level [0.05, 0.5]

8124 tuples with 10 attributes. The Statlog German Credit
dataset contains credit information for 1000 customers and
rates them with either good/bad credit. Lastly, the Insur-
ance Company Benchmark contains 9822 records describ-
ing product usage and socio-demographic information on
customers from a real insurance company. We use these
datasets in our qualitative study described in Section 5.2.

Synthetic Tax Dataset. This is a synthetic dataset
consisting of individual US tax records. The data is popu-
lated using real data describing geographic zip codes, area
codes, states, and cities, all representing real semantic re-
lationships among these attributes. Furthermore, real tax
rates, tax exemptions (based on marital status, number of
children), and corresponding salary brackets for each state
are used to populate the tax records. We use this dataset
to test the scalability of our techniques.

Parameters. Our experiments were run using a Dual
Core AMD Opteron Processor 270 (2GHz) with 6GB of
memory. The parameters we evaluate are shown in Table
3. We use the χ2 critical value equal to 3.84, representing a
95% confidence level. We set the minimum conviction level
C = 10 to ensure that a sufficient number of rules are re-
turned. We explored different values of θ and α and their
individual effect on the discovery time. We observed exper-
imentally (using the Adult dataset) that varying θ (and α)
had a minimal effect on the running time. We tested this
for each n = [5, 9] and the running times did not vary sig-
nificantly. For the qualitative study in Section 5.2, we set
confidence Cf = 0.5, and interest I = 2.0 to capture rules
that include dependent attributes.

5.1 Scalability Experiments
We used the Tax dataset and varied the parameter of in-

terest to test its effect on the discovery running time.
Scalability in N . We studied the scalability of the dis-

covery algorithm (with and without identifying exceptions)
with respect to N . We considered the support, χ2-test, and
conviction measures. We fixed n = 8, θ = 0.5, α = 0.01
and d = 173. We ran the discovery algorithm for N rang-
ing from 25K to 200K tuples. Figure 3 shows the results.
The algorithm scales linearly for all the metrics considered.
Support and conviction showed the best results (with sup-
port marginally outperforming conviction). There is a small
overhead for computing exceptions. The results with the χ2-
test did not prune as many rules as expected (for N = 25K,
over 234 rules were returned). Furthermore, the rules with
the highest χ2 value were often ones that occurred least fre-
quently. This lead us to consider support and the χ2-test
together as a measure to capture rules that are both sta-
tistically significant and that have a minimum frequency to
substantiate their usefulness. Using the support with the
χ2-test returned the same number of rules as using support
alone, but the χ2-test ranks the set of rules satisfying θ.
Since the number of rules returned is equal to the support

0

3

6

9

12

15

18

21

24

27

30

25 50 75 100 125 150 175 200
N - Number of tuples (x1000) 

ti
m

e 
(m

in
)

support w/ exceptions
support-and-chi-sq
support
chi-sq
conviction
conviction w/ exceptions

Figure 3: Scalability in N (Tax dataset)

0

20

40

60

80

100

120

140

50 100 150 200 250 300
N - Number of tuples  (x 1000)

ti
m

e 
(m

in
)

support

support w/ exceptions

conviction

conviction w/ exceptions
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measure, we only consider the support measure in subse-
quent tests. Figure 4 shows the running times using the real
Census-Income dataset with a linear scale-up wrt N up to
300K tuples for n = 8. In both the Tax and Census-Income
datasets, the support based measure performs slightly better
than conviction particularly for larger N .

Scalability in n. We studied the impact of n on the
discovery times. We considered N = 30K, θ = 0.5, α = 0.01
and d in [12,31]. Figure 5 shows that the number of at-
tributes does affect the running time. This is due to the
increased number of possible attribute sets X that need to
be evaluated. An increased number of attributes causes a
larger number of conditions and variables to be evaluated for
a candidate rule. For smaller n < 15, we observe that the
overhead of computing exceptions remains small for both
the support and conviction measures. For larger n, this
overhead increases more rapidly as there are more poten-
tial dirty values to evaluate. For each potential exception,
we verify that it has not been considered previously (mini-
mal) and that it satisfies the α threshold. For wide relations
(n > 15), vertical partitioning of the relation into smaller
tables can help reduce the time for finding exception tuples.
However, for relations with up to n = 16 attributes, the dis-
covery times for rules and dirty values are found reasonably
in about 13 and 30 min respectively.

Scalability in d. We evaluate the effect of the domain
size d on the discovery time. We fix N = 30K, n = 6, θ = 0.5
and α = 0.01 and varied d from 270 to 2070. Figure 6 shows
the results using support and conviction. We expect d to
affect the discovery times since an increase in d leads to
a larger number of equivalence classes that must be com-
pared. The running times using the support measure with
and without exceptions are similar, and show a gradual in-
crease. The execution times using conviction are slower,
and there is an average overhead of about 40% for finding
exceptions. This is likely due to weaker pruning strategies
for conviction. In support, we prune all supersets of condi-
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tional attributes that do not satisfy the minimum support
level (this property unfortunately does not hold when using
conviction). This pruning can have a considerable benefit
for increasing d as the number of classes increases. One so-
lution to this problem is to group (stratify) the values (when
d is excessively large) to reduce the domain size, where the
stratification may be dataset dependent.

5.2 Qualitative Evaluation
We evaluate the quality of the discovered conditional rules

and exceptions using the real datasets. Specifically, we con-
sider the top-k discovered rules using support, the χ2-test,
support with χ2-test, conviction, confidence and interest.

Data cleaning is subjective and we do not have a gold
standard containing a complete set of cleaning rules. Hence,
we do not report the recall of our approach. However, we
can evaluate the rules that are returned based on their use-
fulness. Precision is a measure used in information retrieval
to measure the percentage of documents retrieved that are
relevant to a user’s query. For each top-k set of returned
rules, we compute precision to evaluate the effectiveness of
each measure in returning rules that are interesting and that
are useful towards data cleaning. We do this by manually
evaluating each of the top-k rules and selecting those that
are most relevant and that convey interesting information.4

We compute the precision for the top-k rules for k = 20.
This is also known as the precision at k, defined as

Precision =
# relevant rules

# returned rules
(6)

In cases where less than k rules are returned, we set k to
the number of returned rules. Table 4 shows the precision for
each metric and dataset, along with the total number of rules

4This follows a similar process of computing relevance and
precision in information retrieval where a user study deter-
mines the relevance of returned documents for a query.

Table 5: Sample of discovered rules. (*) indicates
the rule was also found using conviction.

Support

[OCC = ’?’] → [IND = ’?’] (*)
Unknown occupation implies industry is also unknown
[ED = ’Children’] → [SAL = ’≤ 50K’] (*)
School aged children should make less than $50K
[[BODY = ’hatchback’, CYL] → [PRICE]
For hatchbacks, num cylinders determines price
[[CLR = ’yellow’, BRUISE, ATTACH] → [CLS] (*)
Yellow mushrooms, bruising and gills imply if it’s poisonous
[[PUR = ’education’] → [FGN = ’yes’]
Education loans normally taken by foreign workers

Conviction

[RATE = 3] → [DRS = 2]
Dangerous cars have two doors
[BAL = ’delay’] → [FGN = ’yes’]
Foreign workers normally delay paying off credit
[BAL = ’< 0’, PUR = ’educ’, AMT] → [RATE]
For low, educ loans, amount determines credit rating
[S-TYPE = ’large,low class’] → [M-TYPE = ’adult fam’]
Lower class families have more adults living together
Confidence

([SM=foul,fishy, CLR=’buff’] → [CLS=’poison’] (*)
Buff colour mushrooms, foul or fishy smell, are poisonous
Interest

([MR = ’single’, PROP = ’yes’] → [LIFE = ’minimal’]
Single persons owning property have minimal life insurance
χ2

([S-TYPE = ’76-88% family’] → [LIFE = ’none’]
76-88% of average families have no life insurance
([ED = ’Masters’, FAM] → [SAL]
For Masters educated, family type determines salary range

returned in parentheses. Conviction is the superior measure
providing the most interesting rules (across all datasets) fol-
lowed by confidence, and with support and interest perform-
ing similarly. Conviction addresses the limitations of confi-
dence, and interest and support, respectively, by considering
the consequent and the direction of the implication. Both
these characteristics are important for identifying meaning-
ful semantic relationships. The German Credit dataset re-
turned rules containing specific credit amounts that were
not meaningful, hence giving lower precision values.

We found that the χ2-test produced an unmanageably
large number of rules, and rules with high χ2 values oc-
curred infrequently and were not interesting. This made it
difficult to decipher which rules were most important, and
manually evaluating each rule was not feasible. Instead, we
used the χ2-test (with support) to find rules that are statis-
tically significant after satisfying a minimum support level.
This returned a more reasonable number of rules with pre-
cision results similar to support. A sample of the discovered
rules are given in Table 5. The results show that our tech-
nique is able to capture a broad range of interesting rules
that can be used to enforce semantic data consistency. This
is particularly useful when rules are unknown or are out-
dated, and new rules are required to reflect current policies.
Many of the rules in Table 5 reveal intuitive knowledge and
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Table 4: Precision results for discovered rules and exceptions. The total total number of returned rules and
exceptions are shown in parentheses.

Dataset Support χ2 Supp-χ2 Conviction Confidence Interest Supp-Ex Convic-Ex

Adult 0.46 (13) 0.15 (9082) 0.46 (13) 0.75 (22) 0.7 (25) 0.6 (25) 0.33 (5749) 0.76 (1456)
Census-Income 0.83 (6) 0.55 (86) 0.83 (6) 0.92 (12) 0.89 (9) 0.83 (6) 0.56 (264) 0.9 (3148)
Auto 0.5 (18) 0.2 (1498) 0.35 (18) 0.65 (57) 0.65 (161) 0.55 (397) 0.56 (61) 0.83 (765)
Mushroom 0.75 (58) 0.5 (919) 0.6 (57) 0.75 (117) 0.65 (68) 0.65 (32) 0.67 (198) 0.7 (780)
German Credit 0.37 (8) 0.0 (62005) 0.43 (7) 0.45 (9710) 0.45 (6237) 0.1 (3053) 0.76 (581) 0.83 (11415)
Insurance 0.625 (8) 0.4 (17716) 0.63 (8) 0.8 (112) 0.5 (43) 0.5 (355) 0.37 (451) 0.67 (7921)

Average 0.59 0.3 0.55 0.72 0.64 0.54 0.54 0.78

Table 6: Sample of dirty values and violated rules.

Support

[REL = ’Husband’] → [GEN = ’Female’]
Violates: → GEN = ’Male’ (*)
[SH = ’Convex’, SM = ’none’] → [CLS = ’edible’]
Violates: → CLS = ’poison’ (*)
[REL = ’Own-child’] → [SAL = ’>50K’]
Violates: → [SAL = ’≤50K’] (*)
Conviction

[MR=’single-male’, PROP=’rent’] → [RATE=’good’]
Violates: → RATE = ’bad’

[EMP=’<1yr’, PROP=?] → [RATE=’good’]
Violates: → RATE = ’bad’

[CTRY = ’China’] → [RACE = ’White’]
Violates: → RACE = ’Asian’

[S-TYPE=’affluent young family’] → [AGE=’40-50’]
Violates: → AGE = ’30-40’

semantic patterns in the data.
Exception Values. We evaluated the quality of the iden-

tified exceptions (dirty values) using the support and con-
viction measures. Our definition of an exception using sup-
port is based on values that occur infrequently. Hence, we
compute the inverse of support, and consider precision for
the top-k violations returned where k = 30. Table 4 (’Ex’
columns) shows the precision values, with the total number
of dirty values returned in parentheses. Conviction clearly
outperforms support and does a better job at capturing se-
mantic deviations. Support returns values that may occur
infrequently but are not necessarily incorrect. By consider-
ing both the magnitude of deviation from independence, and
the direction, conviction captures intuitive, dirty values. A
sample of the identified exceptions are given in Table 6.

The examples highlight that we are able to identify data
values that are instinctively anomalous. Capturing dirty
data values is important to avoid making poor, costly deci-
sions. For example, the incorrect credit rating of ’good’ to a
renter and a person employed less than a year, classifying a
type of mushroom as edible when it is poisonous, and incor-
rectly categorizing a young family into an older age group
for a life insurance policy.

5.3 Comparative Evaluation
There are no equivalent techniques for discovering con-

ditional functional dependencies. However, there are algo-
rithms for discovering functional dependencies (FD) (one of

the best known being Tane [13]), and for discovering fre-
quent association rules (the best known being the Apriori
algorithm [3]). In relation to our work, Tane discovers CFDs
that have only variables so the rules must hold (or approx-
imately hold) over the full relation. In contrast, an associ-
ation rule is a CFD that contains only constants (not vari-
ables), and most association rule miners focus on rules with
high support (frequent rules). Our work generalizes these
techniques to find rules with both constants and variables.
In our evaluation, we consider directly the quality of the
rules we find compared with these two, more limited (but
well-known), mining algorithms.

Given an error threshold ε, Tane searches for approximate
FDs where the maximum percentage of tuples violating the
FD is less than ε. We run Tane with ε = (1 − θ). Apriori
finds association rules between frequent itemsets by adding
to large sets, and pruning small sets. We run Apriori using
support and confidence. We use all the real datasets, and
set N = 100K, n = 7 for the Census-Income dataset.

For ε = (1− θ), where θ ranges between [0.05, 0.2], Tane
returned zero dependencies across all datasets. Since Tane
does not search for conditional values where partial depen-
dencies may hold, it prunes candidates more aggressively
and performs poorly for high ε > 0.5 (low θ support). Given
these negative results, we ran Tane again using ε = θ = 0.5,
and 4-15 approximate FDs were returned across all datasets
except the German Credit dataset (104 approximate FDs).

Precision results are based on identifying dependencies
that convey potentially meaningful attribute relationships
(not arbitrary associations involving unique attribute val-
ues). The precision results are given in Table 7, and con-
sider the top-20 dependencies. The CFD precision values
show that informative rules are consistently identified over
Tane. For example, in the mushroom dataset, Tane dis-
covers an approximate dependency of ([BRUISE, SHAPE] →
[CLR]) with a support of 50%, and while this is interesting,
we are able to discover a more specific and accurate de-
pendency ([CLR = ’red’, SPACE, BRUISE] → [CLS]) with
support 21% that Tane was unable to find. The running
times for Tane were in the order of a few seconds to less than
a minute. Although our discovery times are longer (in the
range of 3-14 min) the performance overhead is dominated
by the larger search space. The conditional dependencies we
discover are more expressive than FDs and reveal specific se-
mantic relationships that FDs are not able to capture.

We ran the Apriori algorithm with the corresponding θ
support level from CFD discovery, and with confidence equal
to 0.5. The Apriori algorithm runs quickly (with similar per-
formance as Tane). However, it returns an unmanageably
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Table 7: Comparative precision results between
CFD, Tane (TNE), and Apriori (APRI) algorithms.

ε ≥ 0.8 θ = ε = 0.5 Conf = 0.5
Data CFD TNE APRI CFD TNE CFD APRI

Adult 0.46 0 0.1 0.53 0.67 0.7 0.16
Census 0.83 0 0.4 0.83 0.5 0.88 0.4
Auto 0.5 0 0.23 0.82 1 0.65 0.46
Mushrm 0.75 0 0.43 1 1 0.65 0.3
Credit 0.375 0 0.5 0.875 0.07 0.45 0.5
Insure 0.625 0 0.5 0.625 0.57 0.5 0.3

large number of rules. Many of these rules are redundant
(i.e., extensions of simpler rules with attributes added to
the antecedent), and many rules can be inferred from other
rules. Apriori returned [408, 24103] and [569, 34159] associ-
ation rules using support and confidence, respectively. Our
CFD discovery algorithm identified [8, 58] rules using sup-
port, and [9, 6237] rules using confidence; a more reasonable
number of rules to manage. Although there are techniques
for pruning and aggregating association rules, such as us-
ing closed frequent itemsets [25], seeking highly correlated
itemsets [8], and dimension hierarchies, these techniques can
still return a larger number of rules than our method. For
example, in the Mushroom dataset at θ = 0.1, Apriori re-
turns 24103 rules, the closed itemset method returns 1197
rules at θ = 0.2 [25], whereas our CFD discovery algorithm
returns only 58 rules at θ = 0.1, a reduction of 415 and 20
times, respectively. Furthermore, in addition to supporting
variable based dependencies, CFDs are a more informative
model when the goal is data cleaning rather than general
modeling of frequent patterns. The precision results in Ta-
ble 7 show that our CFDs provide more meaningful and
understandable rules using either support or confidence.

Our discovery algorithm helps to bridge the gap between
variable dependencies and value based association rules. The
experimental results show that our techniques are able to
capture interesting semantic rules to enforce a broad range
of domain constraints, and for identifying data values that
do not conform to these constraints.

6. CONCLUSIONS
We have presented a data-driven tool that discovers condi-

tional functional dependencies which hold over a given data
instance. These rules are useful in data cleaning and to-
wards enforcing semantic data consistency. Furthermore, to
help identify and correct dirty data values, we presented an
algorithm that searches for approximate conditional rules
and identifies exceptions to these rules, which are poten-
tially dirty. Identifying both erroneous values and contex-
tual data quality rules is a primary task towards improved
data quality. Our qualitative and comparative studies (using
various interest measures) demonstrated the effectiveness of
our techniques for discovering a reasonable number of rules
and those that are most interesting.
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