
Rewriting Procedures for Batched Bindings

Ravindra Guravannavar
∗

Indian Institute of Technology, Bombay

ravig@cse.iitb.ac.in

S Sudarshan
Indian Institute of Technology, Bombay

sudarsha@cse.iitb.ac.in

ABSTRACT

Queries, or calls to stored procedures/user-defined functions
are often invoked multiple times, either from within a loop
in an application program, or from the where/select clause of
an outer query. When the invoked query/procedure/function
involves database access, a naive implementation can result
in very poor performance, due to random I/O. Query decor-
relation addresses this problem in the special case of nested
sub-queries, but is not applicable otherwise. This problem
is traditionally addressed by manually rewriting the appli-
cation to make it set-oriented, by creating a batch of pa-
rameters, and by rewriting the query/procedure to work on
the batch instead of one parameter at a time. Such manual
rewriting is time-consuming and error prone.

In this paper, we propose techniques that can be used
to do the following. (a) Automatically rewrite programs
to replace multiple calls to a query by a batched call to a
correspondingly rewritten query. (b) Rewrite a stored pro-
cedure/function to accept a batch of bindings, instead of a
single binding. Thereby, for example, a query which would
have been invoked many times from different invocations of
a stored procedure would be automatically replaced by one
(or a few) invocations of a batched version of the query.

Our techniques can be applied to code written in any lan-
guage, such as procedural versions of SQL, or Java. We have
implemented the proposed rewriting techniques for a subset
of Java, where database operations are performed using an
API over JDBC. We demonstrate the benefits due to our
rewrites with three cases from real-world applications, which
faced significant performance problems due to repeated in-
vocations of queries/procedures.

1. INTRODUCTION
Many database applications perform queries and updates

from within procedural code that encodes business logic.
Queries and updates inside the procedural code can use host

∗Work supported by a Bell Laboratories Ph.D. fellowship.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data

Base Endowment. To copy otherwise, or to republish, to post on servers

or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘08, August 2430, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 0000000000000/00/00.

Query 1.
SELECT orderid FROM sellorders
WHERE mkt=’NSE’ AND

count offers(itemcode, amount, curcode) > 0;

INT count offers(INT itemcode, FLOAT amount, VARCHAR curcode)

DECLARE
FLOAT amount usd;

BEGIN
IF (curcode == ”USD”)

amount usd := amount;

ELSE
amount usd := amount * (SELECT exchrate FROM curexch

WHERE ccode := curcode;) /* sql */
END IF

RETURN SELECT count(*) FROM buyoffers /* sq2 */
WHERE itemid = itemcode AND price >= amount usd;

END;

Figure 1: Query Invoking a Simple UDF

language variables as parameters. Programs that use a
mix of procedural constructs and SQL can run either in-
side a database system, as stored procedures or user-defined
functions (UDF), or can run outside the database system.
In such applications, iterative invocation of parameterized
queries and updates is often the main cause of poor perfor-
mance due to random I/O and network round-trip delays.

Iterative invocation of queries and updates can occur in
several situations. For example, (i) programs and UDFs

(including stored procedures) make explicit use of looping
constructs and execute queries or updates inside a loop (ii)

external batch jobs like end-of-day processing call database
stored procedures repeatedly, by iterating over a set of pa-
rameters, causing repeated invocations of the queries and
updates contained in the body of the stored procedure (iii)

UDFs are invoked as part of SQL WHERE/SELECT or LAT-

ERAL clauses. The queries inside the UDF get repeatedly
invoked for different parameters

Figure 1 shows a query that invokes a simple UDF in its
WHERE clause. Standard decorrelation techniques [7, 2, 11]
are applicable only in special cases when the body of the
UDF is very simple, and cannot be applied in this case. In
general, UDFs/procedures can be more complex with arbi-
trary control-flow and looping. Such an example is shown
in Figure 2, where the UDF counts the number of items in
a given category and all its sub-categories recursively.

Parameter batching is an important technique to speedup
iterative execution of queries and updates. Parameter batch-
ing allows the choice of efficient set-oriented plans for queries
and updates.

1107

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

In this paper we present our work on rewriting iterative
programs to fulfill three related needs:

(a) Automatic rewrite of UDFs and stored procedures to
accept batched bindings

(b) Automatic rewrite of programs that repeatedly execute
a parameterized query or stored procedure to use batched
invocation when possible

(c) Unnest queries having complex procedural nested blocks
(e.g., queries that invoke UDFs)

The contributions of this paper are as follows.

1. We introduce the notion of batched forms and batch-

safe operations. We identify the program transforma-
tion goal of pulling expensive operations out of loops
as a key for addressing the needs mentioned above.

2. We present a set of program transformation rules that
together achieve the transformation goal, when the
program satisfies certain conditions. These rules rely
on the data dependence graph of the given program
and can work with complex procedures such as the
ones shown in Figures 1 and 2.

3. We have implemented the proposed rewrite techniques
and present an experimental study to demonstrate the
gains due to the rewrites. Our experiments are based
on real-life examples of performance problems and the
results show significant performance improvements.

Magic set decorrelation [11] employs parameter batches
for decorrelation of nested queries. Our techniques can be
thought of as extending this approach for complex proce-
dures. Related work, including prior work on loop opti-
mization by program transformation [8], is discussed in Sec-
tion 7. Our work is a step towards combining query op-
timization with program analysis and transformation tech-
niques; we believe this combination will give significant ben-
efits for database applications.

Query 2.
SELECT * FROM category
WHERE count items(category id) > f(level);

INT count items(INT catid)
DECLARE

INT totalcount; INT curcat; INT catitems; INT subcat;
INT stack[100]; INT top; RECORD catrec;

BEGIN
s1: totalcount := 0;
s2: top := 0;

s3: stack[top] = catid;
s4: top := top + 1;

s5: WHILE top > 0 LOOP
s6: top := top − 1;
s7: curcat := stack[top];
s8: catitems := SELECT count(item id) FROM item

WHERE category id = curcat;

s9: totalcount := totalcount + catitems;
// Now push all the subcategory ids onto the stack

s10: FOR catrec IN SELECT category id FROM category
WHERE parent category=curcat LOOP

s11: stack[top] := catrec.category id;

s12: top := top + 1;
END LOOP;

END LOOP;
s13: RETURN totalcount;

END;

Figure 2: Query Invoking a Complex UDF

2. REWRITINGFORBATCHEDBINDINGS
In order to exploit the benefits of batching, we must have

an efficient batched form of the operation being invoked and
a way of using the batched form in place of repeated invo-
cations of the operation. In this section, we formally define
batched forms of operations and introduce the problem of
rewriting loops so as to make use of the batched forms of ex-
pensive operations invoked within them. We also consider
the issues in batching invocations of operations that have
side-effects. Finally, we introduce the problem of generating
batched forms of complex procedures.

2.1 Batched Forms of Operations
Informally, the batched form of an operation takes a batch

(or set) of parameters at once and processes them. Batched
forms of operations are typically more efficient than iterative
invocation of the corresponding non-batched forms. For ex-
ample, a database bulk load operation can be thought of as a
batched form of the insert operation. Similarly, a relational
join can be thought of as a batched form of relational selec-

tion with a parameterized predicate. Note that we model a
batch as a set and not a sequence. This choice is due to the
fact that most batched forms do not guarantee the order in
which the elements in the batch are processed and this is
an important reason for their efficiency. We now define the
batched forms formally.

Batched Forms of Pure (SideEffect Free) Functions

Let f : D → R be a side-effect free function, where D is the
domain and R is the range of f . A function fb : BD → BR

is considered a batch form of f if the following are true.

1. The domain BD is the power set of D

2. The range BR is the power set of D × R

3. ∀b ∈ BD, fb(b) =
S

bi∈b
{(bi, f(bi))}

Example: Consider the square function defined as sq(x) =
x2. The corresponding batched form can be defined as
sqb(sx) = {(x, x2) : x ∈ sx}

Intuitively, the batched form of a function takes a set of
parameters and returns a set comprising of all the results.
To establish the correlation between a parameter and the
corresponding result we require the batched form to return
the parameter value along with the result.

Batched Forms of Parameterized Relational Queries

Relational queries are pure functions that return (multi)sets
of tuples. Though we can use the above definition of batched
forms for queries, it makes the return type of batched queries
to violate the first normal form (1NF) as queries may have
set-valued return type. We desire the first normal form on
batched queries so as to be able to make our techniques
easily implementable in existing relational query processing
systems. Hence we use a slightly modified definition for the
batched form of a query.

Let q(p1, p2, . . . pn) be a query with n parameters. Let
v1, v2, . . . vm be the attributes in the result-set that q re-
turns. The batched form qb of q takes a set p of n-tuples as its
parameter (each n-tuple gives a binding for the parameters
p1, p2, . . . pn). The result-set of qb contains the union of q’s
results for all the parameter tuples in p. Each tuple in qb’s

result-set contains n+m attributes p1, p2, . . . pn, v1, v2, . . . vm.

1108

sq1b(r): The batched form of query sq1

SELECT r.curcode, c.exchrate
FROM r JOIN curexch c ON r.curcode=c.ccode;

sq2b(r): The batched form of query sq2

SELECT r.itemcode, r.amount usd,
count(b.itemcode) AS count offers

FROM r LEFT OUTER JOIN buyoffers b
ON b.itemid = r.itemcode AND b.price >= r.amount usd
GROUP BY r.itemcode, r.amount usd;

Figure 3: Batched Forms of Queries in Figure 1

Often only a subset of the parameters are sufficient to estab-
lish the correlation with the corresponding results. However,
for simplicity, we assume the batched form returns all the
parameter values along with the results. Formally,

qb(p) =
[

pt∈p

{{pt} × q(pt)}

When the result of q is an empty set for any parameter bind-
ing, the result-set of qb contains a tuple corresponding to the
specific parameter binding but the attributes v1, v2, . . . vn

will be set to null. In the above formal definition of qb we
omit this detail in the interest of readability.

Example:

Consider a parameterized query:

q(custid) = Πordrid(σcustomer-id=custid(ORDERS))

The corresponding batched form can be defined as:

qb(cs) = Π(custid,ordrid)(cs 1custid=customer-id ORDERS),
where cs is the parameter relation attribute custid.

Batched forms of relational queries have been used in the
context of query decorrelation [11, 7, 3, 2]. As shown in
the above example, batched forms of simple SPJ queries
use a join or an outer join. Batched forms of aggregate
queries either use grouping followed by join or an outer-
join followed by grouping. The details of deriving correct
and efficient batched forms of SQL queries can be found in
the literature on decorrelation. Figure 3 shows the batched
forms of queries sq1 and sq2 used inside the UDF of Figure 1.

Most database systems also support batched bindings for
basic data manipulation operations like insert, delete and
update. The insert into . . . select from . . . construct can be
used as the batched form of insert operation. For updates,
we can use the merge construct of SQL:2003 (or the update

. . . from . . . construct of SQLServer), as the batched form.
Batched forms of these operations employ various techniques
such as set-oriented index update and set-oriented integrity
checks to offer increased efficiency over the corresponding
non-batched operations.

Operations having SideEffects

An operation with side-effects, in addition to returning a
value, modifies the system state. Further, the return value
may be a function of not only the arguments (parameters)
but also the system state. We can model such an operation

for each t in select orderid, itemcode, amount, curcode
from sellorders where mkt=’NSE’ loop

< body of the udf with parameters bound from t >

if (return value > 0)
output t.orderid;

end loop

Figure 4: An Iterative Program/Plan for Query 1

with a pair of functions, fv : S×D → R and fs : S×D → S

where S is the set of all possible system states, D is domain
of parameters and R is the domain of result values. Since
we assume batched forms are free to process the arguments
in any order, we can define the batched forms for a only a
restricted class of side-effect causing operations. We call this
restricted class of operations, for which the batched forms
are defined, as batch-safe operations. We call an operation
batch-safe if the following conditions hold:
When processing a set of arguments,

1. the operation’s return value, for any parameter, is in-
dependent of the order in which the parameters are
processed.
∀s ∈ S,∀x, y ∈ D, fv(S, x) = fv(fs(S, y), x)

2. the final system state is independent of the order in
which the arguments are processed.
∀s ∈ S,∀x, y ∈ D, fs(fs(s, x), y) = fs(fs(s, y), x)

For example, an INSERT operation on a table that has no
constraints defined, is batch-safe. However, in the presence
of table constraints (e.g., a unique column), the INSERT
operation may or may not be batch-safe depending on the
exact set of parameters. Operations that write to an exter-
nal file/device or communicate with other systems may or
may not be batch-safe depending on the specific application.
If the programmer has enclosed an operation inside a loop
that gives no guarantee of order, e.g., iteration over the re-
sult set of a query without order-by clause, we may treat
the operation as batch-safe. Such analysis for batch-safety

of an operation can be extended further, but is beyond the
scope of this paper. Further, in this paper we assume that
operations with side-effects do not have a return value, they
just cause a change in the system state.

2.2 Rewriting Loops to Use Batched Forms
Consider a statement that invokes operation q inside loop

L of a program P . We say that the invocation of q is
batchable w.r.t loop L if it is possible to rewrite P into an
equivalent program P ′ by removing the invocation of q from
the body of the loop and making a single invocation of the
batched form of q (i.e., qb) outside the loop. As an example
consider the invocation of the UDF in Figure 1 inside the
loop of Query 1. A program corresponding to the iterative
plan for this query is shown in Figure 4. In this example,
both the queries inside the body of the UDF can be batched
w.r.t the enclosing loop as shown in Figure 5. Note that
the updates performed by the batched version of the func-
tion are only on the temporary table. In the batched version
we still have an iterative loop but it contains only inexpen-
sive operations. It is possible to pull even such operations
out of the loop, we discuss about this Section 6.

Even if an operation is batch-safe, it may not always be
possible to batch a given invocation of the operation w.r.t

1109

Let r1 = SELECT DISTINCT itemcode, amount, curcode
FROM sellorders WHERE mkt=’NSE’;

Now, Query 1 can be written as:

SELECT orderid FROM sellorder so, count offers batched(r1) br
WHERE so.mkt=’NSE’ AND so.itemcode=br.itemcode AND

so.amount=br.amount AND so.curcode=br.curcode AND
br.count offers > 0;

where, count offers batched is the batched form of the UDF
count offers defined as follows. For brevity we omit the schema
details when it is obvious.

TABLE count offers batched(TABLE r1)
DECLARE

TABLE (itemcode, amount, curcode, cond1,
amount usd, count offers) r2; // A temporary table

BEGIN
FOR EACH t1 IN r1 LOOP

FLOAT amount usd; BOOLEAN cond1; INT count offers;
cond1 := (t1.curcode == ”USD”);
cond1 == true? amount usd := t1.amount;
// variables below take default values if unassigned

r2.addRecord((t1.itemcode, t1.amount, t1.curcode,
cond1, amount usd, count offers));

END LOOP

MERGE INTO r2 USING sq1b(e1) AS sq1b
ON (r2.curcode=sq1b.curcode) WHEN MATCHED THEN
UPDATE SET amount usd = amount * sq1b.exchrate;

// where e1 denotes SELECT DISTINCT curcode
// FROM r2 WHERE cond1=false;
// and sq1b, the batched form of query sq2, is shown in Figure 3.

MERGE INTO r2 USING sq2b(e2) AS sq2b
ON (r2.itemcode=sq2b.itemcode AND

r2.amount usd=sq2b.amount usd)
WHEN MATCHED THEN
UPDATE SET count offers = sq2b.count offers;

// where e2 denotes
// SELECT DISTINCT itemcode, amount usd FROM r2;
// and sq2b, the batched form of query sq2, is shown in Figure 3.

RETURN (SELECT itemcode, amount, curcode, count offers
FROM r2;)

END

Note: MERGE is a SQL:2003 construct.

Figure 5: Batched Form of Query 1

a loop, because of side effects within the loop. In Section 4
we provide a set of program transformation rules that al-
low batching invocations of an operation when the program
satisfies certain conditions.

2.3 Generating Batched Forms of Procedures
To speed up applications or queries that make repeated

calls to stored procedures or UDFs we need efficient batched
forms of these procedures. However, batched forms of com-
plex operations like stored procedures and UDFs are (as far
as we know) not available unless implemented by the pro-
grammers manually. We therefore consider the problem of
automatically generating batched forms of stored procedures
and UDFs. Our goal is to generate efficient batched forms
by batching the expensive operations within the body of the
procedure/UDF.

Given any side-effect free function or batch-safe operation
(which could be a complex procedure) f, we can generate its
trivial batched form as shown in Figure 6.

fb-trivial(pt) ⇐⇒ Apply(pt, f)

where the function Apply is defined as :

Apply(pt, f):

r = {} ;
for each t in pt

< body of f with parameters bound from

attributes of t >

rf = return value of f;
r.addRecords({t} × rf);

return r;

Figure 6: Trivial Batched Form of a Procedure

Batched version of any procedure can thus be generated
by enclosing it in a loop that iterates over the parameter
set and invokes the procedure repeatedly. However, such a
rewriting is not of significant benefit as cost(fb-trivial) for a
batch size of k is nearly same as k×cost(f); Such a rewriting
can still be useful in reducing round-trip delays in client
server environments. More interesting batched rewrites are
the ones that use specialized and efficient strategies for batch
processing, e.g., batched selection within the procedure can
be processed as a join, while a query in the procedure which
performs a selection followed by an aggregate would have a
batched form that employs grouping followed by join.

To generate an efficient batched form of a procedure, we
can start with the trivial batched form of the procedure and
try to batch each expensive sub-operation in the body of the
procedure w.r.t. to the enclosing loop. To do so, the sub-
operation must be taken out of the enclosing loop and sub-
stituted by its batched equivalent. If the sub-operation is a
query, its batched form may be known. If the sub-operation
is a procedure call, we recursively invoke the method to gen-
erate the batched form of the called procedure.

As we can see, generating batched form of a complex pro-
cedure reduces to the task of batching selected operations
w.r.t. a loop (see Section 2.2). We address this problem in
Section 4 after introducing some preliminaries in Section 3.

3. BACKGROUND
In this section, we formally outline the language con-

structs we support and provide background material on data

dependency terminology used in this paper.

3.1 Language Constructs
For our illustration, we use a simple procedural language.

The language offers expressions, assignment, conditional -
branching and looping. The supported language constructs
are briefly described below.

• cursor loops are of the form for each record in query/

table loop . . . end loop; An order by clause can be
present if the iteration is over a table. When present,
the order by is assumed to be ascending by default.

• while loops are of the form while(predicate) loop . . .

end loop;. Unlike the more general and powerful while

loops, the cursor loops iterate over the result of a query
and hence their iteration space is known once the query
is evaluated.

• Branching is possible through if-then-else having the
syntax if (predicate) {. . .} else {. . .}.

1110

• Scalar variables. We consider only scalar variables in
our discussion. However, our techniques can be eas-
ily extended to handle arrays, records and collection
types. Each looping block can have variables local to
the block. Statements can access variables local to
their block or variables defined in any of the ancestor
blocks.

• Result of scalar queries (queries that return exactly
one tuple) can be assigned to variables.
e.g., v1, v2, . . . vn = select c1, c2, . . . cn from . . .;
Note that a single assignment can be used to simulta-
neously assign values to multiple variables. Set-valued
queries can be used only in the context of cursor loops.

We also use a few additional constructs in the transformed
code. We assume these constructs are not available for the
end-user and hence cannot be present in the input program.

• The TABLE type is used to construct the parameter
batches. The TABLE type can be implemented so
as to make use of both main memory and disk. We
discuss this in more detail in Section 6.

• Updatable cursor loops are of the form for each record

by ref in table loop . . . end loop; Any updates to the
record modify the underlying table variable.

• The transformed program may use relational operators
such as selection, projection and join.

Assumptions

We make the following assumptions about the program.

1. Unconditional control transfer statements like GOTO,
EXIT and CONTINUE are not used

2. Statements have no hidden side-effects. Information
about all reads and writes performed by a statement
(either on memory locations or on external resources
like files and databases) are captured in the data de-

pendence graph (explained in the next section).

3.2 Data Dependence Graph
The Data Dependence Graph (DDG) (sometimes referred

to as Program Dependence Graph [9]) of a program is a di-
rected multi-graph in which program statements are nodes
(vertices) and the edges represent data dependencies be-
tween the statements. The different types of data depen-
dency edges are explained below.

• A flow-dependency edge (
F D
−−→) exists from statement

(node) sa to statement sb if sa writes a location that sb

may read and sb follows sa in the forward control-flow.

• An anti-dependency edge (
AD
−−→) exists from statement

sa to statement sb if sa reads a location that sb may
write and sb follows sa in the forward control flow.

• An output-dependency edge (
OD
−−→) exists from state-

ment sa to sb if both sa and sb may write to the same
location and sb follows sa in the forward control flow.

• A loop-carried flow-dependency edge (
LF DL−−−−→) exists

from sa to sb if sa writes a value in the ith iteration of
a loop L and sb may read the value in a later iteration
(jth iteration where j > i).

s12:top = top + 1

s11:stack[top] = cr.cat_id

s5:while top > 0

s10:For each cr in

Q2(curcat)

s8:catitems = Q1(curcat)

s6:top = top − 1

s7:curcat = stack[top]

AD
LFD

LAD

FD − Flow Dependence

AD − Anti Dependence

s9:totalcount += catitems

FD
OD

LAD

LFD − Loop Carried FD

LAD − Loop Carried AD

LOD − Loop Carried OD

OD − Output Dependence

Figure 7: A subgraph of the Data Dependence

Graph for the UDF in Figure 2

• Similarly, there are loop carried counter parts of anti

and output dependencies and are denoted by (
LADL−−−−→)

and (
LODL−−−−→) respectively.

The data dependence graph for the sample UDF of Fig-
ure 2 is shown in Figure 7.

External Dependencies

Statements may have dependencies not only through pro-
gram variables but also through the database and other ex-

ternal resources like files. For example, we have s1
F D
−−→ s2

if s1 writes a value to the database, which s2 may read sub-
sequently. Though standard dataflow analysis performed
by compilers considers only dependencies through program
variables, it is not hard to extend the techniques to consider
external dependencies, at least in a conservative manner.
For instance, we could model the entire database (or file sys-
tem) as a single program variable and thereby assume every
query/read operation on a database/file to be conflicting
with an update/write of the database/file. In practice, it is
possible to perform a more accurate analysis on the external
writes and reads. When referring to external dependencies
explicitly, we use E as a superscript to the corresponding

type of dependence edge e.g., s1
F DE

−−−→ s2.

4. PROGRAM TRANSFORMATION
Recall from Section 2.2 that an invocation of an operation

q inside a loop L is said to be batchable w.r.t loop L if it is
possible to rewrite the program into an equivalent program
where the invocation of q is removed from the body of the
loop and a single invocation of the batched form qb is made
outside the loop. For such a rewrite, it is necessary that the
operation should be batch-safe. However, the data and con-
trol dependencies between program statements may make it
impossible to batch a statement that invokes an operation
even if the operation is batch-safe. In this section, we present
a set of program transformation rules, which enable us to
batch a statement w.r.t. a loop when the program satisfies
certain conditions.

1111

The program transformation rules we present, like the
equivalence rules of relational algebra, allow us to repeat-
edly refine a given program. Applying a rule to a program
involves substituting a program fragment that matches the
antecedent (LHS) of the rule with the program fragment in-
stantiated by the consequent (RHS) of the rule. Some rules
facilitate the application of other rules and together achieve
the goal of batching a desired statement w.r.t. a loop. Ap-
plying any rule results in an equivalent program and hence
the rule application process can be stopped at any point.

Notation Used in the Transformation Rules

• R(s) : The read-set of s is the set of variables read by
statement or statement sequence s.

• W (s) : The write-set of s is the set of variables written by
statement or statement sequence s.

• U(s) : R(s) ∪ W (s). Called the use-set of s.

• pred? s : Conditional statement. Equivalent to if (pred)
then s.

• LV(s) : Set of variables local to the block statement s.

• NLV(s) : Set of variables accessible but not local to the
block statement s. These are variables defined in an ances-
tor block.

• |ss| : Length of the statement sequence ss

• ss[i] : Stmt at the ith position in sequence ss, 1 ≤ i ≤ |ss|.

• s1+s2 : Concatenation (of statement sequences or strings).
• SUBS(s, v, v′) : Statement obtained by substituting all oc-

currences of variable (or expression) v in statement s by
variable v′.

• SUBS(s, vs, map) : Statement obtained as follows. For each
variable v ∈ U(s)

T

vs, where vs is a set of variables, sub-
stitute all occurrences of v in statement s by map(v).

• s
S∗ r : Disjoint union (UNION ALL) of relations s and r.

• Πd
a1,a2,...an

(r) : Projection without duplicate elimination

• (a1, a2, . . . an) : Tuple constructor

• type-of(e) : Data type of expression e.

Predicates on the DDG

• s1
F D
−−→ s2 : True only if the DDG contains a flow-dependence

edge (either internal or external) from s1 to s2.

• s1
F D+
−−−−→ s2 : True only if the DDG contains a path from

s1 to s2 having only FD edges.

• s1
(F D|LF D)+
−−−−−−−−−→ s2 : True only if the DDG contains a path

from s1 to s2 having only FD or LFD edges.

• indep(s1, s2) : True only if there are no dependencies be-
tween statements s1 and s2.

• Similarly we have predicates for the existence of other types
of dependencies.

Conventions

1. Loops of the form “for each t by ref in r” are updatable
cursor loops. The underlying set (r) can be modified
by assignments to the tuple’s attributes.

2. Suppose a table-valued expression e has arity n. The
rename operator ρx(a1, a2, . . . an)(e) returns the result
of expression e under the name x, and with the at-
tributes renamed to a1, a2, . . . an.

3. The merge operator Ma1=b1,...an=bn
(r, s) (based on

the SQL:2003 merge construct) updates relation r by
merging in the records of s. For each record in s that
matches a record in r on the attributes common to
r and s, the record in r is updated by assigning the
values of attributes b1, . . . bn from the s tuple to the
attributes a1, . . . an of the r tuple correspondingly.

4. Projection that removes the specified attributes:
Πā1,ā2,...ān

(r) is equivalent to ΠS−{a1,a2,...an}(r), where
S is the set of all attributes in schema(r)

5. Multi-assignment from scalar queries: Let q be a query
returning exactly one tuple of arity n. The assignment
v1, v2, . . . vm = q (where m ≤ n) assigns the values of
the first m attributes of the returned tuple to the m

variables on the LHS in that order.

In all the rules, unless specified, we assume q to be a batch-

safe operation with qb as its batched form.

4.1 Rewriting Set Iteration Loops (Rule 1)
In the simplest case, the loop contains a single statement

that invokes the operation we want to batch. In this rule,
we consider cursor update loops - the loop iterates over a
set of tuples and the values returned by the operation are
assigned back to the attributes of the tuple associated with
current iteration. Rules 1A through 1C shown in Figure 8
are the basic rules that allow replacing a loop by a batched
invocation. Rule 1D and all the other rules presented in this
section help us transform the program so as to enable the
application Rules 1A, 1B or 1C.

In Rule-1A, q can be any batch-safe operation (with or
without side-effects). Note the use of projection without
duplicate elimination (Πd) for constructing the parameter
multiset. However, in rules 1B and 1C, we require q to be
a pure function returning exactly one tuple (e.g., a scalar

query). In rules 1B and 1C we construct a duplicate-free
parameter set using the standard relational projection. This
avoids the duplicate record problem while merging back the
results of the batched invocation.

For brevity, in rules 1B and 1C we omit the form with
loop invariant parameters. In rules 1B and 1C we deal only
with assignments to cursor attributes and not variables. The
reason for this will be clear when we describe rules 2 and 3.
For now, it suffices to know that the later transformations
bring the program into a form in which we can apply one of
the rules described in this section.

4.2 Splitting a Loop (Rule 2)
In general, the statement to be batched may appear along
with other statements inside the loop. Consider the exam-
ples in Figures 9 and 10. The statements to be batched are
shown in bold. As shown in the figures, we try to split the
loop into multiple set-iteration loops. The aim is to have
the statement to be batched appear in a loop by itself, a
form in which we can apply Rule 1. For example, in the
rewritten code of Figure 9, the loop containing a single IN-

SERT statement can be replaced by a batched invocation, by
first removing the order by using Rule 1D and then applying
Rule 1A(ii).

If the sequence of statements ss in a loop is made up of
two consecutive sub-sequences ss1, ss2 (i.e., ss = ss1 + ss2)
and if there are no loop-carried flow/output dependencies
from any statement in ss2 to any statement in ss1 or in ss2

or to the loop predicate, then the loop can be split such that
ss1 and ss2 appear in separate loops.

Unlike cursor loops, the iteration space for general WHILE

loops cannot be known upfront [10] and is constructed dy-
namically. In general, this transformation, for the case of
while loops, can be expressed as Rule 2A shown in in Fig-
ure 11. Note that after the split, the newly formed loops

1112

Rule 1A: Unconditional invocation & no return value

1A(i) Basic form

for each t in r loop
q(t.c1, t.c2, . . . t.cm); ⇐⇒ qb(Πd

c1,c2,...cm
(r));

end loop;

1A(ii) Form with loop invariant parameters

for each t in r loop
q(t.c1, t.c2, . . . t.cm, v1, v2, . . . vn);

end loop;

m
qb(Πd

c1,c2,...cm
(r) × {(v1, v2, . . . vn)});

Rule 1B: Unconditional invocation with return value

for each t by ref in r loop
t.cw1, t.cw2, . . . t.cwn = q(t.cr1, t.cr2, . . . t.crm);

end loop;
where q is a pure function.

m
Mcw1=c

w1′ ...cwn=cwn′ (r, e)

where e = ρx(cr1, . . . crm, cw1′ , . . . cwn′)qb(Πcr1,...crm
(r));

Rule 1C: Conditional Invocation

for each t by ref in r loop
(t.cv == true)? t.cw1, . . . t.cwn = q(t.cr1, . . . t.crm);

end loop;
where q is a pure function.

m
Mcw1=c

w1′
...cwn=cwn′ (r, e), where

e = ρx(cr1, . . . crm, cw1′ , . . . cwn′)qb(Πcr1,...crm
(σcv=true r));

Rule 1D: Removal of Order-By

for each t [by ref] in r order by cols loop

batch-safe-operation(t)
end loop;

m
for each t [by ref] in r loop

batch-safe-operation(t)
end loop;

Figure 8: Rule 1

that iterate on the loop local table must have an ORDER BY

clause. The ORDER BY clause can then be eliminated if the
statement inside is batch-safe (Rule 1D).

In splitting the loop we introduce a table valued variable
and make the local variables of the loop as attributes of this
table. We call these tables as loop-local tables. Each loop
in the original program, if required to be split, introduces
exactly one table. The table essentially serves to break the
loop carried anti-dependencies (i.e., to avoid overwriting
the same location before the value is read). We call the
table associated with loop L in the original program as the
L-table. Loop local tables, when small enough, can be held
in memory but this may not always be possible. We discuss
the implementation issues of loop-local tables in Section 6.

The need for conditions (c1) and (c2) in Rule 2A is straight
forward. The need for (c3) arises due to the way in which
we construct the L-tables. Only the variables local to loop
L are made attributes of the L-table. Any variable defined
in an ancestor block Lp of L becomes an attribute of the

for each r in SELECT grantid, empid, gnum FROM grantload loop
int internalid = foo(r.grantid, r.empid);

INSERT INTO grants VALUES

(interalid, r.empid, r.gnum);

total + = r.gnum;

end loop;

⇓
TABLE(key, empid, gnum, internalid) t;
int loopkey = 0;

for each r in SELECT grantid, empid, gnum FROM grantload loop
RECORD(key, empid, gnum, internalid) s;

int internalid = foo(r.grantid, r.empid);
s.key = loopkey++;

s.empid = r.empid; s.gnum = r.gnum;
s.internalid = internalid;
t.addRecord(s);

end loop;

for each s in t loop order by key
INSERT INTO grants VALUES

(s.interalid, s.empid, s.gnum);

end loop;

for each s in t loop order by key
total += s.gnum;

end loop;

Figure 9: Splitting a cursor loop

while (top > 0) loop
top = top − 1;

curcat = stack[top];
catitems = SELECT count(itemid) FROM item

WHERE category=curcat;

totalcount + = catitems;
end loop;

⇓
TABLE(key, curcat, catitems) t;

int loopkey = 0;
while(top > 0) loop

RECORD(key, curcat, catitems) r;
top = top − 1;
curcat = stack[top];

r.key = loopkey++;
r.curcat = curcat;

t.addRecord(r);
end loop;

for each r by ref in t order by key loop
t.catitems = SELECT count(itemid) FROM item

WHERE category=t.curcat;

end loop;

for each r in t order by key loop
totalcount + = t.catitems;

end loop;

Figure 10: Splitting a while loop

Lp-table. Constructing the L-tables in this way avoids re-
dundant space consumption and more expensive updates of
redundant information by giving normalized representation
of the L-tables. By introducing an extra loop local variable,
we can make a loop satisfy condition (c3) even if it did not
satisfy it originally. The extra loop local variable preserves
the value of the non-local variable for each iteration. For
brevity, we omit the transformation rule for this step.

Rule 2 generalizes rule T4 of Lieuwen and DeWitt[8]. We
compare our work with [8] in Section 7.

4.3 SeparatingBatchSafeOperations (Rule 3)
A program statement may contain the expression we want

to batch in combination with other non batch-safe opera-

1113

Rule 2A: Splitting a WHILE Loop

while p loop

ss1 /* Stmt sequence (first part) */

ss2 /* Stmt sequence (second part) */

end loop;

where

(c1) No backward (loop carried) flow/output dependencies from
ss2 to the loop predicate p or to any stmt in ss1 or ss2

Formally, 6 ∃s2 ∈ ss2 such that: (see Note 3)

((s2

LF D|LOD

−−−−−−−−→ p) ∨ (∃s1 ∈ ss1 + ss2 AND s2

LFD|LOD

−−−−−−−−→ s1))

(c2) No external flow dependencies between stmts in ss1 and ss2

6 ∃s1 ∈ ss1, s2 ∈ ss2 s.t. s1
F D

E

−−−−→ s2

(c3) No non-local variable written in the first partition is
read in the second. Formally,
NLV (S)

T

W (ss1)
T

R(ss2) = φ (see Note 1)

m
TABLE(T) t;
int loopkey = 0;
while p loop

RECORD(T) r;
ss1

r.key=loopkey++;
ssr ;
t.addRecord(r);

end loop;

for each r by ref in t order by t.key loop

ss′
2

end loop;

delete t;
where

Let SL (split locals) be the set of local variables written in the
first partition and read in the second.
SL = LV(S)

T

W (ss1)
T

R(ss2) (see Note 1)

(A) The schema T of the table (t) and the record (r) contains
an attribute corresponding to each variable in SL and a key.
(B) ssr contains statements assigning values of split locals to
the corresponding attributes of r.
(C) The stmt sequence ss′

2 is same as ss2 , except that each
reference v to a variable in set SL is replaced by r.v. Formally,

ss′
2[i] = SUBS(ss2[i], SL, map : v → r.v), 1 ≤ i ≤ |ss2|

Note 1: Here we conservatively use the write and read sets
(W (ss1), R(ss2)) for simplicity. Our implementation takes into
consideration only those variables involved in the flow-dependen-
cies that cross the partitions.
Note 2: If the all operations in the loop are batch-safe

we can omit the loopkey and the key attribute.
Note 3: Condition (c1) can be relaxed to allow back edges
(LFDs and LODs) within ss2 if the edge is for a non-local variable.
We have shown a stronger condition for simplicity.

Rule 2B: Splitting a Cursor Loop The rule for splitting

cursor loops is a minor variant of Rule 2A, and we omit details

for brevity.

Figure 11: Rule 2

tions. In such a case, we isolate the batch-safe operation by
introducing an extra variable. Figure 12 shows an example
and Rule 3 expresses the transformation formally.

Rule 3: Isolating Batch-Safe Expressions

Let e be a batch-safe expression in statement stmt. Then,

stmt; ⇔ T v = e; stmt′;
where stmt′ = SUBS(stmt, e, v) and T =type-of(e);

Variable assignment is not batch-safe in general, e.g., as-
signment to a global variable. However, assignments to dif-
ferent locations (e.g., different rows of a cursor loop) can be

for each t in r order by r.key loop
print(q(t.c)); // print() is not batch-safe

end loop;

m
for each t in r order by r.key loop

T v = q(t.c); // where T=type-of(q(...))

print(v);
end loop;

m After loop split
for each t by ref in r loop // order-by removed with Rule 1D

t.v = q(t.c);

end loop;
for each t in r order by r.key loop // order-by is needed

print(t.v);
end loop;

Figure 12: Separating batch-safe operation

for each t by ref in sales loop
if (t.brcode == 58)

t.brcode = 1;

q(t.item, t.qty, t.brcode);

end if

end loop;

m
for each t by ref in sales loop

// Using a control variable remember the branching decision

boolean cv = (t.brcode == 58);
(cv==true)? t.brcode = 1;
(cv==true)? q(t.item, t.qty, t.brcode);

end loop;

Now, we can apply Rule-2 and split the loop. The conditional
invocation of q can then be batched using Rule 1C.

Figure 13: Splitting a loop after transforming con-

trol dependencies to flow-dependencies

performed in any order and hence batch-safe in the context
of loop local variables that are converted to attributes of loop

local table by Rule 2. If the return value of a query is as-
signed to a non-local variable, applying Rule 3 introduces a
new loop local variable and thus enables batching the query.

4.4 Control to Flow Dependencies (Rule 4)
Conditional branching (if-then-else) and while loops lead to
control dependencies. If the predicate evaluated at a con-
ditional branching statement s1 determines whether or not
control reaches statement s2, then s2 is said to be control
dependent on s1. During loop split, it may be necessary to
convert the control dependencies into flow dependencies [6].
Figure 13 shown an example. Rule 4 specifies the transfor-
mation formally.

Rule 4: Converting control-dependencies to flow-

dependencies

if (p) { ss1 } else { ss2 }

m
boolean cv = p;
ss

where ss[i] = (cv == true)?ss1[i],1 ≤ i ≤ |ss1| and
ss[k + j] = (cv == false)?ss2[j],1 ≤ j ≤ |ss2|, k = |ss1|

4.5 Reordering Statements (Rule 5)
Consider the example in Figure 14. Assume we want to

batch the query invocation q(category) in statement s1.
We cannot directly split the loop so as to batch s1 because
there is a loop-carried flow-dependency from s3 to s1 (and

1114

Original Program

s0: while (category != null) loop

s1: int icount = q(category); // Query to batch
s2: sum = sum + icount;

s3: category = getParentCategory(category);

end loop;

m
After Order Reversal

s0: while (category != null) loop

s1’: int category stub = category;
s3: category = getParentCategory(category);

s1: int icount = q(category stub);

s2: sum = sum + icount;
end loop;

m
After Loop Split

TABLE(...) r;
int loopkey = 0;

while (category != null) loop
RECORD(...) t;
int category stub = category;

category = getParentCategory(category);

t.key = loopkey++;

t.category stub = category stub;
r.addRecord(t);

end loop;

for each t by ref in r loop

t.icount = q(t.category stub);

end loop;

for each t in r order by key loop
sum = sum + t.icount;

end loop;

Figure 14: Reordering statements to satisfy condi-

tions c1 of Rule-2A

Rule 5A: Reordering Independent Statements

Two statements can be reordered if there exists no
dependency between them.

s1; s2; where indep(s1, s2) ⇐⇒ s2; s1;

Rule 5B: Reordering with Anti-Dependency

In the presence of an anti-dependency, statements can be
reordered by using an extra variable.

s1; s2;

where s1
AD
−−→ s2 ∧ ¬(s1

F D|OD
−−−−−→ s2)

m
ssstub; s2; s′1;

where ssstub is the sequence of assignment statements to
preserve the values read by s1 in stub variables. s′1 is same
as s1 except that it uses the stub variables. Formally,
(i) ssstub is s.t. ∀v ∈ R(s1)

T

W (s2), the statement
v′ = v; is in ssstub

(ii) s′1 = SUBS(s1, R(s1)
T

W (s2), map : v → v′)

Figure 15: Rule 5: Reordering Statements

also to the loop predicate), which violates condition (c1)

of Rule 2A. Statement s3, which appears after s1, writes
a value and statement s1 reads it in a subsequent itera-
tion. We therefore reverse the order of statements s1 and
s3 before splitting the loop (Figure 14). Intuitively, we first
collect all the categories in the hierarchy and then perform
a batched invocation of the query that computes the item
counts for the categories. The basic rules that allow us to
reorder statements are specified in Rule 5.

Rule 6: Batching Across Nested Loops

Let s be a table valued attribute of table r and S be the
schema of r.s, i.e., S =schema(r.s).

6A. No Return Value

for each t in r loop
qb((t.c1, . . . t.cn) × t.s);

end loop;

m
qb(Πd

A(µs(r))) where A = {c1, . . . cn}
S

S

Rule 6B: With Return Value

for each t in r loop
Mc1=c′

1
...cn=cn′(t.s, qb(t.s))

end loop;
where qb is a pure function.

m
rs = µs(r);
Mc1=c′

1
...cn=cn′(rs, qb(ΠS(rs)));

r = νS→s(rs);

Figure 16: Rule 6: Batching Across Nested Loops

4.6 Batching Across Nested Loops (Rule 6)
Loops in a program may be nested within other loops and

form a hierarchy. The query or update operation we are in-
terested in batching may lie anywhere in the loop hierarchy.
It is often desirable to batch the query or update operation
w.r.t. as many ancestor loops as possible. The aim here is
to make fewest possible calls to the expensive operation, in
other words, to make the size of the batch in each invocation
as large as possible.

Consider a loop Lc nested under loop Lp and a query q

inside Lc. When the child loop (Lc) is split using Rule 2, a
TABLE valued local variable (loop local table) is introduced
in the parent loop (Lp). With the application of Rule 1, q is
pulled out of Lc and is replaced by qb that lies directly in-
side Lp. In turn, when the parent loop is split, the loop local

table of the child loop becomes a TABLE valued attribute
(nested table) in the parent’s loop local table. We now per-
form a second level batching of qb w.r.t. Lp by unnesting the
loop local table of Lp. Rule 6 enables this transformation.
Intuitively, we first try to pull the statement out of the inner
most loop enclosing it and then out of the next (higher) level
loops. In Rule 6 we make use of the nest(ν) and unnest(µ)
operators of nested relational algebra [1]. Below we give a
brief description of these operators and refer to [1] for the
formal definitions.
Nest: The nest operator (νS→s(r)) groups the tuples of r

on attributes schema(r) − S, then for each group forms a
single tuple with a relation valued attribute s containing the
S values of the tuples grouped together.
Unnest: The unnest operator (µs(r)), where s is a rela-
tion valued attribute of r, performs the inverse operation of
nest.
µs(r) =

S

t∈r
(ΠR{t} × t.s), where R is the set of all at-

tributes in schema(r) excluding s.
Though we use a nested relational model for the loop local

tables, our techniques are easy to implement on any RDBMS

by storing the nested tables separately.

1115

4.7 Correctness
Let PL be a program fragment that matches the LHS of

a rule and PR be the program fragment instantiated by the
corresponding RHS. Let p be the program position at which
PL begins. Let (G, S) be the pair of any valid program and
system states at p. The program state G comprises of values
for all variables accessible at the program position p and the
system state S comprises of the state of all external resources
like database and file system. To prove the correctness of
a transformation rule, we must show the following. If the
execution of PL on (G, S) results in the state (G′, S′) then
the execution of PR on (G, S) will also result in the state
(G′, S′). Note that we assume intermediate program and
system states are not observable. This is a valid assumption
in many practical applications. The correctness of many
rules directly follows from the definition of batch-safe oper-
ation and that of batched forms. In some cases, we need to
show the multiset equivalence of the loop local table, which
is being updated, at the end of the execution of PL and PR.
The correctness proof of Rule 2 uses an argument on the val-
ues seen by each statement in the ith iteration (1 ≤ i ≤ n),
where n is the number of loop iterations. (Formal proofs of
correctness of all the rules can be found in Appendix A.)

5. EXPERIMENTAL RESULTS
Our rewrite rules can conceptually be used with any lan-

guage. However, to implement the rules we need to per-
form dataflow analysis of a program and build the data de-

pendence graph. For our implementation, we chose Java,
since tools for its dataflow analysis are available in public
domain. Our implementation uses the SOOT optimization
framework [12]. SOOT uses an intermediate code represen-
tation called Jimple and provides dependency information
on Jimple statements. Our implementation transforms the
Jimple code using the dependence information. Finally, the
Jimple code is translated back into a Java program.

Our current implementation requires that queries and up-
dates be performed using our API layer built on top of
JDBC. During rewrite we recognize these calls and trans-
form them for batched bindings when possible. We have
not yet implemented query rewriting to get batched forms
and this step is done manually. The techniques for deriv-
ing batched forms of queries are well known and we plan to
implement them in future.

Tables (batches) used in the rewritten procedures are con-
structed in-memory and transferred to the database before
evaluating the batched queries. Nest/unnest and merge op-
erations are performed on these in-memory tables.

There are no benchmarks for procedural SQL that we
could use for our experiments. However, we had earlier seen
three real-world applications which were facing serious per-
formance problems due to non-set-oriented execution, which
were affecting their usability. We use these scenarios for our
experiments. We do not have access to the actual data used
in these applications and hence we synthesized data with
similar characteristics. In one case we used TPC-H data as
it matched the scenario. As we cannot report timings on
the actual application code, we used independent programs
having only the code required for the specific scenarios. The
experiments were performed on a widely used commercial
database system (we call it SYS1) running on an Intel P4
(HT) PC with 1GB of RAM.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Top(78)Middle(10)Leaf(1)

T
im

e
 (

in
 s

e
c
)

Category Level (Number of Subtree Nodes/Loop Iterations)

Original Program
Transformed Program

Figure 17: Experiment 1

Experiment 1: Traversal ofCategoryHierarchy

For this experiment, we used a program, which is a slight
variant of the UDF in Figure 2. The program finds the
item (part) with maximum size under a given category (in-
cluding all its sub-categories) by performing a DFS of the
category hierarchy. For each node (category) visited, the
program queries the item table. The TPC-H part table,
augmented with a new column category-id and populated
with 2 million rows, was used as the item table. The cat-

egory table had 1000 rows - 900 leaf level, 90 middle level
and 10 top level categories (approximately). A clustering
index was present on the category-id column of the category

table and a secondary index was present on the category-id

column of the item table. All relevant statistics were built.
Figure 17 shows the performance of the program before and
after rewrite.

For the non-batched query on the item table, SYS1’s de-
fault choice was to use the secondary index. This plan re-
sults in a lot of random I/O, and we found an alternative
plan, which performs a sequential scan takes less time since
the entire relation is brought into memory on the first invo-
cation, and there is no I/O on subsequent invocations. Since
this plan was found to be cheaper, we enforced it using opti-
mizer hints. Figure 17 compares the time taken by the best
plan for the original program with the batched version. The
batched version, in this case, performed a group-by followed
by a join, whereas the original program repeatedly executed
a query that performed selection followed by group by; as a
result the batched version showed much better performance.

In transforming the program, Rule-5 (reordering), Rule-2
(loop splitting) and Rule-1 (batching) were applied in that
order (see Appendix B). There was a 12.5% increase in the
program size (lines of code) due to the transformation.

Experiment 2: ESOPManagement Application

For this experiment, an application meant for managing
stock option grants of multiple organizations was considered.
During each upload operation, a large number of records fed
in the form of a delimited file were processed. The appli-
cation performed a mix of queries, inserts and updates. A
brief outline of the program logic is given below to indicate
the complexity of control-flow involved.

For each record read from the input file, the program per-
forms validation and pre-processing of the fields and then
queries the options table to check if a record for the person

1116

 0

 50

 100

 150

 200

 250

50K20K10K1K100101

T
im

e
 (

in
 s

e
c
)

Number of Input Records Processed (Loop Iterations)

Original Program
Transformed Program

Figure 18: Experiment 2

 0.1

 1

 10

 100

100K10K1K100101

T
im

e
 (

in
 s

e
c
)

Number of Forms Processed (Loop Iterations)

18

77

2.2

8.6

0.9

1.4

0.65
0.59

0.58

0.5
0.53

0.49

Original Program
Transformed Program

Figure 19: Experiment 3

already exists. The query predicate is parameterized on the
values read from the input record. If a record is present, the
old values of the various fields and the internal-emp-id are
obtained as part of the same query. Further, the contactinfo

table is queried using the internal-emp-id to obtain contact
info fields. If the input record being processed has empty
values for any of the fields, the old values (when present)
are copied to those fields. Finally, new records are inserted
or existing records updated in both options and contactinfo

tables. Figure 30 in Appendix C shows the procedure.
Our rewrite techniques turn the iterative selections into

an outer join and perform batched update and inserts. Fig-
ure 18 compares the performance of the rewritten program
with the original program for varying number of input records.

In transforming the program, Rule-4 (control-dependencies
to flow-dependencies), Rule-5 (reordering), Rule-2 (loop split-
ting) and Rule-1 (batching) were applied. After transforma-
tion there was a 17% increase in the program size.

Experiment 3: Value Range Expansion

In this application, data about forms issued to various agents
would arrive in the format (agent-id, start-form-number,

end-form-number). The program (shown in Figure 31 of
Appendix C) would iterate over all the form issue records,
expand the issue range and populate the forms-master ta-
ble with entries corresponding to each individual form. The
purpose was to be able to update and track the status of
each individual form subsequent to its issue. The original

program had an outer loop iterating over the form issue

records and an inner loop iterating over the range (start-

form-number, end-form-number). An INSERT operation
was performed inside the inner loop. The transformed pro-
gram could pull the insert operation out of both the loops
and perform a batched insert. The running times of the
original and transformed program are shown in Figure 19.
The batched version performs much better for large batch
sizes. For small batch sizes (less than 1K) the computational
overheads due to batch creation and nest/unnest operations
cause the batched version to perform marginally slower than
the original program.

In transforming the program, Rule-5 (reordering), Rule-2
(loop splitting), Rule-1 and Rule-6 (batching) were applied.
The increase in program size was 16.5%.

Time Taken for Program Transformation

Although the time taken for program transformation is usu-
ally not a concern (as it is a one-time activity), we note
that, in our experiments the program transformation took
very little time (less than a second).

6. DISCUSSION
Implementation of Parameter Batches: The loop local

table, discussed in Section 4, serves to hold the parameter
batch with which the batched form of an operation is in-
voked. Though small batches can be held in memory, in
general we may need to materialize the batches and the cost
of materialization must be taken into account while decid-
ing to batch an operation. However, for procedures that run
entirely inside the database engine (e.g., UDFs) it may be
possible to avoid materialization of batches by constructing
a single dataflow containing both relational and procedural

nodes. Our loop splitting transformation is designed to facil-
itate such an approach. Appendix A contains few additional
rules that can be used for (i) avoiding creation of intermedi-
ate batches by passing a relational expression, instead of a
table, to the batched forms and (ii) mapping program state-
ments that perform simple and inexpensive operations (e.g.,
expression evaluation and variable assignment) to operators
that work on sets. The later of these helps in eliminating
loops such as the one left over in Figure 5. When a sin-
gle dataflow is thus built, code that cannot be mapped to
relational operators is executed by procedural nodes in the
dataflow. Variable bindings inside such nodes are obtained
from input tuples. Depending on the specific code, each
procedural node may be blocking or non-blocking. The loop

local tables become streams in the pipeline.
Cost-Based Choice of Queries to Batch: The opera-
tions to batch must be chosen taking into account the po-
tential benefits and costs associated with the transformed
code. Our current implementation requires the user to spec-
ify which operations to consider for batching. The impor-
tant parameters on which this decision depends include (i)
cost model for the operation as a function of batch size, (ii)
expected number of iterations of the program loop and (iii)
branch probabilities for the branching statements (if-then-

else) in the program. Automating the choice of operations
to batch is a future work.
Applicability of Transformation Rules: The proposed
set of transformation rules succeed in rewriting fairly com-
plex programs for batched bindings. However, it may not be
always be possible to rewrite a program to batch the invo-

1117

s0: while(eid ! = NULL) loop
s1: mgr =SELECT manager

FROM emp WHERE empid=eid;
s2: idx = SELECT perfindex FROM rating

WHERE reviewer=mgr and reviewed=eid;
s3: sumidx += idx;
s4: eid = mgr;

end loop;

Figure 20: Cyclic Flow-Dependencies

cation of a specific operation. As an example, consider the
program shown in Figure 20. Our transformation rules can
batch the query in statement s2 but not the one in statement
s1. The query in statement s1 lies on the flow-dependency

cycle s1
F D
−−→ s4

LF D
−−−→ s1 and hence cannot be batched. If

an operation has no side-effects, in some cases, it may be
possible to derive a superset of the parameters and batch
the operation even if it is on a flow-dependency cycle. But
such an approach is beyond the scope of our transformation
rules. Similarly, in the DDG of Figure 7, the query in state-
ment s8 is batchable, whereas the query in statement s10
is not batchable due to the presence of a flow-dependency
cycle.

7. RELATED WORK
Queries such as those shown in Figures 1 and 2 can be

thought of as nested queries with complex inner blocks.
However, the inner block in such cases may contain mul-
tiple subqueries embedded in procedural code. Hence, stan-
dard decorrelation techniques such as [7, 4, 11, 3, 2] can-
not be directly applied. The techniques we propose in this
paper help in rewriting of procedural code so as to enable
set-oriented evaluation of the embedded subqueries through
batched bindings. This is an essential step in decorrela-
tion [11]. Further optimizations such as pipelining the out-
put of the expression that produces the parameter batch
into the expression that consumes it are possible and we are
investigating these optimizations. Graefe [5] highlights the
benefits of batched bindings for speeding up index nested
loops joins. Batched bindings not only help in performing
I/O efficiently but can also make it possible to employ a
set-oriented strategy at the operator level.

Lieuwen and DeWitt[8] consider the problem of optimiz-
ing set iteration loops in database programming languages.
Their techniques can convert nested set iteration loops into
joins. However, their work does not address the issue of
batching procedure calls. Their transformation rules work
on a restricted syntax. The program transformation rules
in this paper can work with complex control-flow including
if-then-else and while loops and can even deal with loop car-
ried dependencies (Rule-5). Rule-2 in this paper is a more
general version of Rule T4 in [8].

Some of the program transformation techniques we em-
ploy are derived from those proposed in the area of paral-
lelizing compilers [6, 10]. However, the problem of batch-
ing differs from the problem of parallelizing in the following
ways: (i) Presence of flow-dependencies (described in Sec-
tion 3) does not allow parallelization. However, batching
is possible even if the order of two operations cannot be
changed due to flow-dependencies (ii) As the aim of batch-
ing is to improve the performance of expensive I/O bound
queries and other database operations, it may be accept-
able for the transformations to introduce additional CPU

operations or consume extra memory to make the batching
possible. However, such approaches do not generally yield
significant benefits in the context of parallelizing the instruc-
tions and are not considered to the best of our knowledge.

8. CONCLUSION
Procedural extensions to SQL and SQL extensions to pro-

gramming languages offer new challenges and opportuni-
ties for query optimization. To deal with these challenges
query optimization must be augmented with program anal-
ysis and transformation techniques developed for procedural
languages. The work presented in this paper enables auto-
matic rewriting of database applications for set-orientation
execution of database operations. Our implementation and
performance study show the practicality and usefulness of
the the proposed techniques. Our work is a step towards
combining query optimization with program analysis and
transformation techniques; we believe this combination will
give significant benefits for database applications.

Acknowledgments

We would like to thank Yogesh Murarka for the many dis-
cussions on techniques used in parallelizing compilers.

9. REFERENCES
[1] L. S. Colby. A Recursive Algebra and Query

Optimization for Nested Relations. SIGMOD Rec.,
18(2), 1989.

[2] U. Dayal. Of Nests and Trees: A Unified approach to
Processing Queries That Contain Nested Subqueries,
Aggregates, and Quantifiers. In VLDB, 1987.

[3] C. A. Galindo-Legaria and M. M. Joshi. Orthogonal
Optimization of Subqueries and Aggregation. In ACM

SIGMOD, 2001.

[4] R. A. Ganski and H. K. T. Wong. Optimization of
Nested SQL Queries Revisited. In SIGMOD, 1987.

[5] G. Graefe. Executing Nested Queries. In 10th

Conference on Database Systems for Business,

Technology and the Web, 2003.

[6] K. Kennedy and K. S. McKinley. Loop Distribution
with Arbitrary Control Flow. In Proceedings of

Supercomputing, 1990.

[7] W. Kim. On Optimizing an SQL-like Nested Query. In
ACM Trans. on Database Systems, Vol 7, No.3, 1982.

[8] D. F. Lieuwen and D. J. DeWitt. A transformation
based approach to optimizing loops in database
programming languages. In ACM SIGMOD, 1992.

[9] S. S. Muchnick. Advanced Compiler Design and

Implementation. Morgan Kaufmann.

[10] L. Rauchwerger and D. Padua. Parallelizing While
Loops for Multiprocessor Systems. In Proc. of the 9th

International Parallel Processing Symposium, 1995.

[11] P. Seshadri, H. Pirahesh, and T. C. Leung. Complex
Query Decorrelation. In ICDE, 1996.

[12] Soot: A Java Optimization Framework
www.sable.mcgill.ca/soot.

1118

APPENDIX

A. EXTRA RULES AND CORRECTNESS
In this section we present a few additional program trans-

formation rules, and proofs of correctness for all the trans-
formation rules.

A.1 Extra Rules
Rule 7 in Figure 21 and Rule 8 in Figure 22 are useful in re-

placing loops containing simple expressions and assignment
with relational operators and avoiding materialization of in-
termediate results. As mentioned in Section 6 these rules
can be used to build a single dataflow for queries, which in-
voke UDFs that run inside the database. The trivial batched

form (see Figure 6) constructs the return table iteratively.
Rule 9 in Figure 23 is useful to convert this into a set valued
expression. The example in Appendix B illustrates the use
of this rule.

Rule 7

FOR EACH t BY REF IN r [ORDER BY key] LOOP
t.b = arith-expr(t.a1, t.a2, . . . t.an);

END LOOP;

m
r = ΠA,arith-expr(t.a1,t.a2,...t.an) as b(r),
where A=schema(r)−{b}

Figure 21: Loops with Arithmetic Expressions and

Assignment

Rule 8

Let expr1 be a side-effect free expression (e.g., a query).

TABLE r1 = expr1();
TABLE r2 = expr2(r1); ⇔ TABLE r2 = expr2(expr1);
dead(r1) // r1 unused hereafter

Figure 22: Rule for Avoiding Materialization

Rule 9

TABLE result;
FOR EACH t [BY REF] IN r [ORDER BY key] LOOP

result.addRecord((c1, c2, . . . cn));
// where each ci is a function of attributes of t.

END LOOP;
RETURN result;

m
RETURN SELECT c1, c2, . . . cn FROM r;

Figure 23: Rule for RETURN Statement

A.2 Proof of Correctness
The program state G comprises of values for all variables

accessible at a program position p and the system state S

comprises of the state of all external resources like database
and file system. Let PL be a program fragment that matches
the LHS of a rule and PR be the program fragment instanti-
ated by the corresponding RHS. Let p be the position in the
program at which PL begins. Let (G, S) be the pair of any

valid program and system states at p. To prove the correct-
ness of a transformation rule, we must show the following.
If the execution of PL on (G, S) results in the state (G′, S′)

then the execution of PR on (G, S) will also result in the
state (G′, S′).

• Rule 1A(i): In Rule 1A(i), both PL and PR do not
modify the program state (as we use a call by value
semantics and there are no global variables).

Consider the multiset S = Πd
c1,c2,...cm

with which qb is
invoked. Let S′ be the multiset of tuples constructed
from parameters passed to each invocation of q inside
the loop. We can see that S is multiset equivalent to
S′. Now the equivalence of the two program fragments
follows directly from the definition of batch-safe opera-
tion (when an operation is batch-safe the final system
state depends only on the set of parameters and not
the order of invocations).

• Rule 1A(ii): Proof is similar to that of Rule 1A(i).

• Rule 1B: The only program state PL and PR modify
is the table r. Let the initial state (state at the point
where PL/PR begins) of the table be rinit. Let r′ be
the state the table reaches if PL is executed and r′′ be
the state the table reaches if PR is executed. We show
r′ and r′′ to be multiset equivalent.

Since q is a scalar query, from the definition of batched

forms it follows that, during merge, each tuple in rinit

matches with exactly one tuple in the result of the
batched invocation, qb(Πcr1,...crm

(r)). As a result, (i)

cardinalities of r′, r′′ and rinit are equal, i.e., |r′| =
|r′′| = |rinit| and (ii) For each tuple t ∈ rinit, there ex-
ists a distinct tuple t′ ∈ r′ and a distinct tuple t′′ ∈ r′′

such that t, t′ and t′′ have the same values for all at-
tributes except (possibly) the updated attributes viz.,

cw1, cw2, . . . cwn.

Let tr be the tuple in the result of the batched invo-
cation (qb) that matches (during merge) with tuple t

of rinit. Let (v1, v2, . . . vm) be the values of attributes
cr1, cr2, . . . crm of t. Therefore, attributes cr1, cr2, . . . crm

of tr must also have the values (v1, v2, . . . vm). Let
(w1, w2, . . . wn) be the values of the remaining attributes
(named cw1′ , cw2′ , . . . cwn′) of tr. From the definition of
batched forms, we have (w1, w2, . . . wn) = q(v1, v2, . . . vm).
i.e., the tuple resulting from the merge (t′′ in r′′) has
values assigned from q(v1, v2, . . . vm) for its attributes
cw1, cw2, . . . cwn. From the LHS of the rule, it is clear
that the corresponding tuple t′ ∈ r′ also has the values
of q(v1, v2, . . . vm) assigned for its attributes cw1, cw2, . . .

cwn. This makes t′ = t′′ and hence r′ = r′′.

Since q is a pure function the system state remains un-
affected by both PL and PR.

• Rule 1C: Proof is similar to the proof for 1B.

• Rule 1D: The equivalence directly follows from the
definition of batch-safe operation.

• Rule 2: Let PL be the program fragment matching
the LHS of the rule and PR be the program fragment
instantiated by the RHS. Let us call the while loop in
PL as L, the first loop of PR as L1 and the second loop
of PR as L2.

First, we note that there exists a one-to-one correspon-
dence between statements in ss2 of L and statements
in ss′2 of L2. This follows from the construction of
ss′2. For every statement s in ss2, the corresponding

1119

statement s′ in ss′2 performs exactly the same set of
operations, the only change being in the names of the
local variables (uses r.a instead of a).

Let v be the value of a variable a at statement s ∈ ss1

in the ith iteration of L. Because there are no back
edges from ss2 to ss1, we can see that v will be the
value of a at s′ (the statement corresponding to s) in
the ith iteration of L1.

Similarly, if v is the value of a variable a at statement
s ∈ ss2 in the ith iteration of L, we can see that v will
be the value of r.a at s′ (the statement corresponding
to s) in the ith iteration of L2.

Since there are no inter-statement dependencies involv-
ing external system state, the output and change in sys-
tem state produced by s and the corresponding state-
ment s′ will be the same. Further, for every non lo-
cal variable gv, if the last assignment in PL was made
by a statement s in the ith iteration of L, then in PR

the last assignment will be made by the corresponding
statement s′ in the ith iteration of L1 or L2. The only
additional change introduced by PR to the program
state is the new variable loopkey, which is not used af-
ter the point where PR ends and hence does not affect
the program. Hence, the execution of both the PL and
PR result in equivalent program and system states.

• Rules 3, 4 and 5: The equivalence of these rules is
straight forward to infer.

• Rule 6A: As in the proof for Rule 1A, we can observe
that the multiset of parameters passed to qb in PR is
equivalent to the multiset of parameters passed over all
the iterations of PL. Hence, from the definition of the
batch-safe operation, the equivalence holds.

• Rule 6B: The proof is similar to that of Rule 1B.

• Rules 7, 8 and 9: The equivalence of these rules is
straight forward to infer.

B. CONTROL ALGORITHM FOR RULE

APPLICATION
Rewriting a program for set-orientation involves the fol-

lowing steps. (i) Identify iteratively invoked query execu-
tion statements (ii) Decide whether it is beneficial to batch
the query execution and the ancestor loop (in the hierarchy
of loops enclosing the statement) with respect to which the
statement must be batched and (iii) Rewrite the program by
systematically applying the transformation rules presented
in this paper.

Identifying the query execution statements in a loop is
usually straight forward. However, the decision on whether
a statement should be batched and the level in the loop
hierarchy up to which the statement must be pulled-out, re-
quires a cost-based analysis. Some of the parameters needed
for cost-based analysis are discussed in Section 6. We plan to
address cost-based analysis in the future. In this paper, we
assume these two inputs (the query invocation to be batched
and the ancestor loop up to which the query must be pulled-
out) are available from the user. Given a query execution
statement and a loop with respect to which the statement
must be batched, the transformation rules presented in this
paper can be used to rewrite the program. However, it is
important to apply the rules in a systematic way so as to
achieve the goal of batching the given statement.

Inputs:

s: The query execution statement to be batched
l: A program loop w.r.t. which the query must be batched

(i.e., s must be pulled out of l). s may be present directly
inside l or within a descendant loop of l.

Note: As discussed in Section 6, deciding the above inputs in a
cost-based manner is a future work.

Goal:

Rewrite the program to batch the query execution in statement s

w.r.t. loop l.

procedure batch(Stmt s, Loop l)

begin

Let lp be the loop which directly encloses s.
// Pull s out of lp. Let the batched statement be sb.
sb = do-batching(s, lp);
if (lp != l)

Let lpp be the parent loop of lp

batch(sb, lpp);
end;

procedure do-batching(Stmt s, Loop l)

begin

Rewrite s using Rule-3 so that s is a simple assignment
with only the query invocation expression on its RHS.

If s is control dependent on any statement inside loop l (other
than the loop predicate), convert the control-dependency to flow
dependency (using Rule-4).

Reorder the statements in l to satisfy pre-conditions for Rule-2.
(making use of Rule 5)

Applying Rule-2 split the loop l at the program points before
and after s.

Batch the query execution using Rule 1 or Rule 6.

Return the reference to statement sb, the batched form of s.
end;

Figure 24: Control Algorithm for Rule Application

In Figure 24 we give an algorithm for applying the rules so
as to batch a given query execution statement w.r.t. a given
ancestor loop enclosing it. The procedure batch recursively
pulls out the given statement, starting from the inner most
loop enclosing it. Procedure do-batching performs the actual
task of rewriting by applying the rules. First, we apply Rule-
3 on the statement and ensure the RHS contains only the
query execution expression. We then convert all the control-
dependencies to flow-dependencies by applying Rule-4. This
allows us to treat the entire body of the loop as a basic block

(a straight-line sequence of statements with no branches into
or out of the sequence). We perform a reordering of the
statements (if needed) to satisfy the pre-conditions for Rule-
2 and then split the loop before and after the query execution
statement. This leaves the query execution statement in a
loop by itself - a form in which we can apply Rule-1 or Rule-
6 and make use of the batched form. Rule-1 gets applied for
the inner most loop enclosing the statement and Rule-6 gets
applied for the higher level loops.

We now illustrate the transformation of the UDFs in Fig-
ure 1 and Figure 2 as the rules get applied following the
batching procedure in Figure 24. We call these two UDFs
as UDF-1 and UDF-2 respectively. Here, we assume that

1120

TABLE count-offers-batched(TABLE r1)
DECLARE

TABLE result;
BEGIN

FOR EACH t IN r1 LOOP

FLOAT amount-usd;
INT count-offers; // The return value named after the function

IF (t.curcode == ”USD”)
amount-usd := t.amount;

ELSE
amount-usd := t.amount * (SELECT exchrate FROM curexch

WHERE ccode = t.curcode);

END IF
count-offers := SELECT count(*) FROM buyoffers

WHERE itemid = t.itemcode AND
price >= amount-usd;

result.addRecord((t.itemcode, t.amount, t.curcode, count-offers));

END LOOP;
RETURN result;

END;

Figure 25: UDF-1: Trivial Batched Form

TABLE count-offers-batched(TABLE r1)
DECLARE

TABLE result;
BEGIN

FOR EACH t IN r1 LOOP
FLOAT amount-usd; INT count-offers;

BOOLEAN cond1; FLOAT exchrate;
cond1 := (t.curcode == ”USD”);
cond1 == true? amount-usd := t.amount;

cond1 == false? exchrate := SELECT exchrate FROM curexch
WHERE ccode = t.curcode;

cond1 == false? amount-usd := t.amount * exchrate;
count-offers := SELECT count(*) FROM buyoffers

WHERE itemid = t.itemcode AND

price >= amount-usd;
result.addRecord((t.itemcode, t.amount, t.curcode, count-offers));

END LOOP;
RETURN result;

END;

Figure 26: UDF-1: After Applying Rules 3 and 4

every query needs to be batched (when possible) and with
respect to all the loops enclosing it.

B.1 Rewriting UDF1

• Generate the Trivial Batched Form: First, we
generate the trivial batched form of the procedure as
explained in Section 2.3. Figure 25 shows the resulting
procedure.

• Isolate the Query Execution: We isolate the query
(expression) to be batched using Rule-3 and convert the
control-dependencies to flow-dependencies using Rule-
4. The resulting procedure after applying these two
rules is shown in Figure 26.

• Split the Loop: Split the loop (by applying Rule-2)
before and after the query execution statements. In
this example, the pre-conditions for Rule-2 are directly
satisfied and we do not need to reorder any statements.
However, in some cases we may need to reorder the
statements using Rule-5 to satisfy the pre-conditions
for Rule-2. Figure 27 shows the resulting program.

• Replace Loops with Batched Calls: Apply Rule-
1D to remove the order-by clauses around batch-safe
operations and then replace the iterations with batched
calls using Rules 1B and 1C. We further apply Rule 9
(Figure 23) for the RETURN statement. The resulting
program is given in Figure 28. Earlier, in Figure 5 we

TABLE count-offers-batched(TABLE r1)
DECLARE

TABLE result; INT loopkey = 0;
TABLE (key, itemcode, amount, curcode, cond1, exchrate,

amount-usd, count-offers) r2;

BEGIN
FOR EACH t IN r1 LOOP

FLOAT amount-usd; BOOLEAN cond1;
RECORD rec;

cond1 := (t.curcode == ”USD”);
cond1 == true? amount-usd := t.amount;

rec.key = loopkey++;
rec.itemcode = t.itemcode;

rec.amount = t.amount;
rec.curcode = t.curcode;
rec.cond1 = cond1;

rec.amount-usd = amount-usd;
r2.addRecord(rec);

END LOOP;

FOR EACH t BY REF IN r2 ORDER BY key LOOP
t.cond1 == false? t.exchrate :=

SELECT exchrate FROM curexch

WHERE ccode = t.curcode;
END LOOP;

FOR EACH t BY REF IN r2 ORDER BY key LOOP

t.cond1 == false? t.amount-usd := t.amount * t.exchrate;
END LOOP;

FOR EACH t BY REF IN r2 ORDER BY key LOOP
t.count-offers := SELECT count(*) FROM buyoffers

WHERE itemid = t.itemcode AND
price >= t.amount-usd;

END LOOP;

FOR EACH t BY REF IN r2 ORDER BY key LOOP

result.addRecord((t.itemcode, t.amount, t.curcode,
t.count-offers));

END LOOP;

RETURN result;

END;

Figure 27: UDF-1: After Loop Split

had shown this batched form with minor simplifications
for readability.

B.2 Rewriting UDF2
UDF-2 (Figure 2) contains two queries, one in statement

s8 and the other in statement s10. As mentioned in Sec-
tion 6, we cannot batch the query in statement s10 due to
cyclic flow dependence. However, we can batch the query
in statement s8 with respect to the WHILE loop (of s5) as
well as the outermost cursor loop, which iterates over all the
parameters (in the trivial batched form).

In Figure 2, observe that splitting the WHILE loop (of s5)
before and after the query execution statement (of s8) is not
directly possible due to the loop-carried dependencies from
s11 and s12 to s5, s6 and s7, which violate pre-condition
c1 of Rule-2. We therefore, reorder of statements by mov-
ing statements s8 and s9 past s12 (using Rule-5). We then
split the WHILE loop and batch the query execution. The
batched query execution is further pulled out of the outer-
most cursor loop in the trivial batched form using Rule-6.

Figure 29 shows the final batched form of UDF-2. The
functions NEST and UNNEST implement the nest and unnest

operations discussed in Section 4.6 and take the correspond-
ing arguments. NEST takes as its arguments the table,
columns to be nested and the name for the resulting table-
valued column. Similarly, the UNNEST method takes the

1121

TABLE count-offers-batched(TABLE r1)
DECLARE

TABLE (key, itemcode, amount, curcode, cond1, exchrate,
amount-usd, count-offers) r2;

INT loopkey = 0;

BEGIN
FOR EACH t IN r1 LOOP

FLOAT amount-usd; BOOLEAN cond1;
RECORD rec;

cond1 := (t.curcode == ”USD”);
cond1 == true? amount-usd := t.amount;
rec.key = loopkey++;

rec.itemcode = t.itemcode;
rec.amount = t.amount;

rec.curcode = t.curcode;
rec.cond1 = cond1;
rec.amount-usd = amount-usd;

r2.addRecord(rec);
END LOOP;

MERGE INTO r2 USING sq1b(b1) AS sq1b

ON (r2.curcode = sq1b.curcode) WHEN MATCHED THEN
UPDATE SET exchrate = sq1b.exchrate;

// where the parameter batch b1 is constructed as:
// SELECT distinct curcode FROM r2 WHERE cond1=false;

// and the batched form sq1b(b1) is defined as:
// SELECT b1.curcode, c.exchrate

// FROM b1 JOIN curexch c ON b1.curcode=c.ccode;

FOR EACH t BY REF IN r2 ORDER BY key LOOP

t.cond1 == false? t.amount-usd := t.amount * t.exchrate;
END LOOP;

MERGE INTO r2 USING sq2b(b2) AS sq2b
ON (r2.itemcode=sq2b.itemcode AND r2.amount-usd=sq2b.amount-usd)

WHEN MATCHED THEN
UPDATE SET count-offers = sq2b.count-offers;

where b2 = SELECT distinct itemcode, amount-usd FROM r2;

and sq2b(b2) = SELECT b2.itemcode, b2.amount-usd,
count(o.itemcode) AS count-offers

FROM b2 LEFT OUTER JOIN buyoffers o

ON o.itemid = b2.itemcode AND
o.price >= b2.amount-usd

GROUP BY b2.itemcode, b2.amount-usd;

RETURN SELECT itemcode, curcode, amount, count-offers FROM r2;

END;

Figure 28: UDF-1: The Final Batched Form

table and the name of the table-valued column that needs
to be unnested.

C. PROCEDURESUSEDINEXPERIMENTS
This section gives pseudocode for the additional proce-

dures used for performance evaluation (Section 5). Figure 30
shows the procedure for experiment-2 and the procedure for
experiment-3 is given in Figure 31. The logic implemented
by these procedures was explained earlier, in Section 5.

D. JAVA API AND CODE PATTERNS
As mentioned in Section 5, we implemented the transfor-

mation rules for Java because tools for Java program analy-
sis are available in public domain. We make use of the SOOT

optimization framework for obtaining data dependence in-
formation. To simplify the task of recognizing query exe-
cution statements and code patterns that match a rule, our
current implementation requires that queries and updates be
performed using our API layer built on top of JDBC. Dur-
ing rewrite, we recognize these calls and transform them for
batched bindings when possible. In this section, we give the

TABLE count-items-batched(TABLE pb)
DECLARE

TABLE (key, catid, loop-table2, totalcount) loop-table1;
INT loopkey1 = 0;

BEGIN

FOR EACH t IN pb LOOP
INT totalcount := 0; INT top := 0; INT stack[100];
RECORD rec1;

stack[top] := t.catid;
top := top + 1;

TABLE (key, curcat, catitems) loop-table2;
int loopkey2 = 0;

WHILE top > 0 LOOP
RECORD rec2;
top := top - 1;

curcat := stack[top];

// Now push all the subcategory ids onto the stack
FOR catrec IN SELECT category-id FROM category

WHERE parent-category=curcat LOOP
stack[top] := catrec.category-id;
top := top + 1;

END LOOP;

rec2.key = loopkey2++;
rec2.curcat = curcat;

loop-table2.addRecord(rec2);
END LOOP;

rec1.key = loopkey1++;
rec1.catid = t.catid;

rec1.loop-table2 = loop-table2;
loop-table1.addRecord(rec1);

END LOOP;

temp = UNNEST(loop-table1, ”loop-table2”);

MERGE INTO temp USING qb(b) AS qbr(curcat, res)
ON temp.curcat = qbr.curcat

WHEN MATCHED THEN UPDATE SET catitems = res;

// where the parameter batch b is constructed as:

// SELECT distinct curcat FROM temp;
// and the batched form qb(b) is defined as:

// SELECT b.curcat, count(itemid) AS catitems
// FROM b LEFT OUTER JOIN item ON category-id=curcat
// GROUP BY curcat;

loop-table1 = NEST(temp, schema(loop-table1.loop-table2),
”loop-table2”);

FOR EACH rec1 BY REF IN loop-table1 ORDER BY key LOOP

FOR EACH rec2 BY REF IN rec1.loop-table2
ORDER BY key LOOP

rec1.totalcount := rec1.totalcount + rec2.catitems;

END LOOP;
END LOOP;

RETURN SELECT catid, totalcount FROM loop-table1;
END;

Figure 29: UDF-2: The Final Batched Form

details of our API layer and the Java code patterns, which
map to constructs described earlier, in this paper. SOOT

uses an intermediate code representation called Jimple. Our
implementation works on Jimple and transforms it back to
Java. Recognizing Jimple code patterns corresponding to
each of our API calls and Java code patters is relatively
straight forward and we omit the details.

• Query/Update Execution Statements: The class
DBI in our implementation provides various methods
for executing queries and updates.

– Record executeScalarQuery(int queryId, Record params)

– Table executeQuery(int queryId, Record params)

– int executeUpdate(int queryId, Record params)

1122

PROCEDURE emp-upload(VARCHAR filename)
DECLARE

// Data types omitted for brevity.
empid, clientid, iempid, optcode, optinfo, termcode, taxinfo,
city, state, zip, operation, curtaxinfo, curcity, curstate, curzip

BEGIN
fd := open(filename);

linestr := readline(fd);
WHILE (linestr ! = null) LOOP

tokenize linestr and extract empid, clientid, optcode, . . . zip
// some validation and pre-processing code
if(optcode == 0)

optinfo = ... ;
. . .

SELECT internl-empid into iempid, tax-info into curtaxinfo,
FROM options

WHERE client-id=clientid AND emp-id=empid;

// If options has no record for the employee
if(iempid == null) {

operation := 1; // we must insert
iempid := gen-new-id();

}
else {

operation := 2; // we must update

SELECT city into curcity, state into curstate, zip into curzip

FROM contactinfo
WHERE internal-empid=iempid;

// Retain the current values if new ones are blank
if(taxinfo == ””)

taxinfo := curtaxinfo;
if(city == ””)

city := curcity;

. . .

. . .

}
if(operation == 1) {

INSERT INTO options VALUES (iempid, clientid, ...
optinfo, ... taxinfo);

INSERT INTO contactinfo VALUES(iempid, city, state, zip);

}
else {

UPDATE options set option-info=optinfo, . . . tax-info=taxinfo
WHERE internal-empid=iempid;
UPDATE contactinfo SET city=city, state=state, zip=zip

WHERE internal-empid=iempid;
}
linestr := readline(fd);

END LOOP;

END;

Figure 30: Procedure for Experiment 2

The queryId specifies a parameterized SQL query or up-
date statement in a query registry. Unlike JDBC, where
the query string is directly specified in the program, we
make use of a registry. The query registry, in addition
to the query string, also contains the manually writ-
ten batched form for the query. Unlike position-based
parameters in JDBC, we use named parameters. The
Record class is used to pass parameters as name-value
pairs and also to obtain the result of a scalar query.
The class Table implements a tuple set and is used to
retrieve query results and for constructing parameter
batches.

• Looping Statements: The WHILE loops have a di-
rect mapping to Java. Unlike some of the procedural
languages offered by database systems (e.g., PL/SQL),
Java does not have cursor loops. Each cursor loop maps
to a sequence of statements in Java. Figure 32 shows
the code pattern.

PROCEDURE expand-issued-forms(DATE issuedate)
DECLARE

INT num;
BEGIN

FOR EACH irec IN SELECT agent id, start no, end no, issue date

FROM issued forms
WHERE issue date = issuedate LOOP

num := irec.start no;
WHILE (num <= irec.end no) LOOP

INSERT INTO forms-master VALUES (num, irec.agent id,
irec.issue date, ’NEW’);

num := num + 1;

END LOOP;
END LOOP;

END;

Figure 31: Procedure for Experiment 3

Table res = DBI.executeQuery(. . .);
Iterator resIter = res.iterator();
while(resIter.hasNext()) {

Record r = (Record) resIter.next();
. . .

}

=⇒
for each r in query

. . .

end loop;

Figure 32: Pattern for Cursor Loops

• Batched Execution: The class Table in our implemen-
tation can be used for constructing parameter batches
row by row using the method addRecord(Record r). The
DBI class has methods for executing batched forms of
queries by passing a batch of parameters and also for
merging back the results. These methods are used by
the transformed program (generated code).

– Table executeBatchedQuery(int queryId,
Table paramBatch, FilterPred pred)

– void executeBatchedUpdate(int queryId,
Table paramBatch, FilterPred pred)

• Other Constructs: Control flow, assignment and -
other constructs in the simple procedural language of
this paper have a direct mapping to Java. Conditional
statements, generated when control-dependencies are
converted to flow-dependencies, are Java if statements,
where the if-block contains a single statement and the
predicate is a boolean variable.

1123

