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Abstract

We study the efficient evaluation of top-k queries over data
items, where the score of each item is dynamically computed by
applying an item-specific function whose parameter value is spec-
ified in the query. For example, online retail stores rank items
by price, which may be a function of the quantity being queried:
“Stay 3 nights, get a 15% discount on double-bed rooms.” Sim-
ilarly, while ranking possible routes in online maps by predicted
congestion level, the score (congestion) is a function of the time
being queried, e.g., “At 5PM on a Friday in Palo Alto, the con-
gestion level on 101 North is high.” Since the parameter—the
number of nights or the time the online map is queried, in the
above examples—is only known at query time, and online applica-
tions have stringent response-time requirements, it is infeasible to
evaluate every item-specific function to determine the item scores,
especially when the number of items is large. Further, space con-
siderations make it infeasible to pre-compute and store the score
of each item for each value of the input parameter. In this pa-
per, we develop a novel technique that compresses the (large) set
of item scores for all parameter values by dividing the parame-
ter range into intervals, taking into account the expected query
workload. This compressed representation is then used to do top-k
pruning of query results. Our experiments show that the proposed
techniques are scalable and efficient.

1. Introduction

We address the problem of efficiently executing a new class
of top-k queries on very large sets of items. A query can spec-
ify selection criteria on the items and the value v of a parameter
that controls item scores, and ask to see the top k items ranked
by score, where the score of each item is computed by an item-
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specific function that depends on v.
Such queries arise naturally in a number of domains such as

online-shopping, traffic planning, and financial analysis. For ex-
ample, in online-shopping,1 users can specify selection criteria
(e.g., the color/model of a cell phone) over the inventory of items
through a form-based interface, and ask to have selected items
sorted by price. The novel aspect of the problem that we con-
sider is that item price could reflect, for example, price discounts
based on promotional rules such as the following: “Stay 3 nights,
get a 15% discount,” or “Buy 2 Canon printer cartridges, get the
third one free,” or “Buy 2 Motorola Razr cell-phones, get $50 off.”
Thus, the score for ranking (i.e., the price) is a function of a param-
eter in the query—such as the quantity of items being purchased,
or the number of nights stayed—that determines which promo-
tional rules apply.

As another example, consider online traffic information sites,2

which return recommended traffic routes to users, and incorporate
time-of-day traffic congestion data in making a recommendation.
For a particular time-of-day, the congestion level of a route may be
estimated by rules such as “At 3PM, congestion level on highway
280 in a 10-mile radius around Palo Alto is high.” When a user
asks for the least congested routes in a particular geographic re-
gion (the selection criterion) at a given time, the system may wish
to quickly determine the top few least-congested routes in that re-
gion. In this case too, the score (i.e., the congestion level) of a
particular route is not constant but is a function of the time-of-day,
which is a parameter specified in the query.

As a final example, consider predictive financial modeling, where
the prices of individual stocks are modeled as a function of time,
and analysts wish to determine the top few predicted gainers/losers
in a particular category (selection condition) at a future time in-
stant. Again, the score (i.e., the expected gain/loss of a stock) of a
particular stock is a function of the future time instant of interest,
which is a query parameter.

Problem Definition. The top-k problem we consider can be for-
malized as follows. We are given a set of itemsI , a set of param-
eter valuesV, and a family of functions,fi : V → R associated
with each itemi ∈ I . For a queryQ = (Pred, v, k), wherePred
is a selection condition on items,v ∈ V is the value of the parame-
ter controlling item scores, andk is the desired number of results,
we wish to compute a result setR that contains thek lowest-score

1http://travelocity.com, http://shopping.yahoo.com
2http://maps.yahoo.com, http://maps.google.com
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items satisfyingPred, where the score of an itemi is defined to be
fi(v). (Note: lower score⇒ higher rank)

We restrict our attention in this paper to discrete setsV that
have a few hundred to a few thousand parameter values. We note
that whenV is a continuous set, rather than a discrete set, our ap-
proach can be modified by approximating eachfi with a piecewise
linear function, where again, the number of pieces is relatively
small. However, we do not explore these modifications here.

As an illustration of the above problem definition, consider our
online-shopping example. Here,I is the set of products being sold,
V is the set of possible product quantities in an order, andfi(v)
is a function that computes the unit price of producti for a given
quantityv. For a queryQ, Pred is a selection condition on prod-
ucts (e.g., “Make = Canon” and “Color = Blue”),v is the desired
quantity of a given product, andk is the number of products that
can be shown on the result page. For the online traffic information
example,I is the set of routes,V is the set of possible times of day,
andfi is a function that computes the congestion level of routei

for a given time of day. For a queryQ, Pred is a selection condi-
tion on routes (e.g., “Location = Palo Alto”),v is the time of day,
andk is the desired number of least congested routes. The predic-
tive financial modeling example can also be mapped similarly.

A naive solution to this problem is to select all the itemsi that
satisfy the query predicate, compute the scorefi(v) for eachi,
sort by score, and return the items with the lowest score. This ap-
proach does not scale to a large number of items and/or unselective
predicates, especially if the functionsfi are expensive.

Another simple solution is to precompute and store the score
for every (item, parameter value) pair. Queries can then be an-
swered efficiently by simply looking up the top-scored selected
items for a given query value. However, the typically large number
of items (e.g., all products, all stock symbols) taken in conjunction
with many possible parameter values (e.g., all possible quantities,
all times-of-day) makes precomputing prohibitively expensive in
terms of space. Note that even if every item does not have anfi

that varies with the query parameter value (e.g., even if every item
is not on sale), a large number of items have suchfi’s (e.g., a sig-
nificant number of items are on sale online), which results in a
large space overhead. This space overhead is particularly bad for
large online applications, where all the data and indices are stored
in main-memory in order to achieve acceptable throughput and re-
sponse time (see Section 4 for more details).

To address these limitations, we propose a novel approach that
works as follows. Instead of storing the score for every (item,
parameter value) pair as in the precomputation approach, we store
a dramatically compressed representation of this data. We do so
by exploiting the fact that the query parameter values are drawn
from (or can be mapped to) an underlying ordered domain; in our
examples, quantity and time-of-day are such parameters. The key
idea is to split the parameter values associated with an item into
one or moreintervals, and then store only theminimumscore for
each (item, interval) pair. The total number of intervals is chosen
such that they fit within a specified space budget. We then perform
top-k query processing by adapting threshold-based pruning [12,
13] to prune a large number of intervals (and the corresponding
items) that cannot possibly make it to the top few results.

To see the benefits of our approach, consider the functionfi

shown in Figure 1(b). It can naturally be split into two intervals
Ival1 andIval2. Ival1 captures value rangev = 1 (i.e., 1 ≤
v ≤ 1) and the minimum score off in that range is150; Ival2

captures the value rangev ≥ 2 and the minimum score off in
that range is0.90 × 150. Thus, in this example, just by storing
two intervals for the item, we obtain a representation that does not
lose any information about the function. A more complex function
fj is shown in Figure 1(c). Here,fj is split into three intervals, but
the minimum score for each interval only approximatesfj .

Clearly, the effectiveness of our approach depends on how well
the intervals are chosen. One of the main technical contributions of
this paper is an algorithm that takes as input a given set of items,
the corresponding functions, and a space budget, and then uses
query workload information to produce a set of intervals that are
provably close to optimal for that workload. The algorithm scales
linearly with the number of items, and makes few assumptions
about the nature of functions. Specifically, the algorithm only as-
sumes that (a) we can efficiently find the minimum value offi

(or a relatively tight lower bound of the minimum value offi) for
a given parameter range, which is true for most rule-based score
computations such as the ones described above, and (b) the num-
ber of distinct parameter values (such as quantities, times-of-day,
etc.),t, in the query workload is of the order of hundreds or thou-
sands because the complexity of the algorithm is cubic int.

We have experimentally evaluated our approach using Yahoo!
Shopping data. Our experimental results show that the proposed
approach offers significant savings in space and time when com-
pared to alternative approaches. Further, our results show that ex-
ploiting the query workload to choose the appropriate intervals for
top-k query processing also results in significant gains. To the best
of our knowledge, this is the first attempt to optimize the perfor-
mance of top-k queries using query workloads.

In summary, the main contributions of the paper are:

• Efficient top-k query processing techniques over function
intervals (Section 2).

• Showing how the the problem of computing optimal inter-
vals for a set of items given a query workload can be de-
composed into a set of small sub-problems corresponding
to each item, which can then be solved and combined effi-
ciently using standard optimization techniques (Section 3).

• Experimental evaluation of the proposed algorithms (Sec-
tion 4).

2. Proposed Approach
Figure 2 describes the high level architecture of our proposed

approach. The query processing module uses the indexed items
and intervals to answer queries (the process is initially started with
a default set of intervals, such as a single interval for each item).
The interval generation module gathers statistics from the query
processing module and refines the intervals so that they are tuned
to the query workload and fit into the space budget. We focus on
the query processing module in this section, and address interval
generation in Section 3.

The query processing module conceptually uses two tables as
shown in Figures 3 and 4 (these tables are physically optimized us-
ing indices, as will be described shortly). TheItem table contains
a row for each itemi, which includesi’s attributes and the function
fi. TheInterval table contains a set of intervals correspond-
ing to each itemi, and each interval contains the low value of
the interval (lowv), the high value of the interval (highv) and the
minimum value offi for that particular interval (That is,minfi
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Figure 2. System Architecture

Id Make Model Weight fi

1 Panasonic DC643 0.35lbs f1

2 Panasonic GDC65 0.22lbs f2

3 Siemens D345 0.45lbs f3

4 Motorola Razr 0.22lbs f4

5 Motorola Sleek 0.21lbs f5

6 Motorola Rokr 0.23lbs f6

7 Motorola Krzr 0.23lbs f7

8 Motorola Q 0.30lbs f8

9 Motorola Rizr 0.26lbs f9

Figure 3. The Item Table

= minv∈[lowv,highv]fi(v).) As an illustration, consider the item
with ItemId 4. A table summarizing its score (i.e.f4) is shown
in Figure 5. We see in Figure 4 that it has 3 intervals associated
with it — [1, 3], [4, 5], [6,∞] — each of which is associated with
a differentIntId and its correspondingminf4. Specifically, the
smallest value off4 on the interval[1, 3], associated withIntId
8, is (referring again to Figure 5)100 = min{150, 135, 100},
while the smallest value off4 on the interval[4, 5], associated
with IntId 10, is112 = min{112, 120}.

Given a queryQ = (Preds, v, k), the main idea of the query
processing algorithm is to (a) identify the intervals containingv

that correspond to items satisfyingPreds, (b) process these inter-
vals in the order of their score, and (c) stop as soon as the top-k

items corresponding to these intervals of found. In order to speed
up (a), we index the item attributes and intervals so that we can
rapidly look up the items that satisfyPreds and intervals that con-

IntId ItemId lowv highv minfi

1 3 2 ∞ 55
2 6 1 ∞ 60
3 3 1 1 80
4 5 3 ∞ 80
5 2 1 ∞ 90
6 7 3 ∞ 95
7 4 6 ∞ 100
8 4 1 3 100
9 1 3 ∞ 110
10 4 4 5 112
11 7 2 2 115
12 5 1 2 120
13 7 1 1 150
14 8 1 ∞ 230
15 1 1 2 250
16 9 1 ∞ 255

Figure 4. The Interval Table

ItemId quantity,v f4(v)

4 1 150
4 2 135
4 3 100
4 4 112
4 5 120
4 6 100
4 7 106
4 8 112

Figure 5. Scores for ItemId 4

tainv. Specifically, we create a (temporary) table that is the join of
the item table and the interval table, index the item attributes using
traditional B+-trees, and index the interval attribute using an inter-
val/segment tree [2]. The temporary table is sorted in ascending
order ofminfi so that the B+-tree indices and interval/segment
tree store the interval row ids in score order. Given these index
structures, producing the intervals that match the query in the or-
der of theirminfi is simple: we look up the indices correspoding
to the attributes inPreds andv and simply do a merge-based in-
tersection to produce ids in score order.

Algorithm 1 shows the query processing algorithm. Given a
queryQ = (Preds, v, k), the algorithm first produces intervals in
minfi order as described in step (a) above (line 2). For exam-
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ple, suppose we had queryQ = (Make = ‘Motorola’, 5,2). Then
the algorithm will (conceptually) generate the listL represented
in Figure 6. Of course in practice, this entire list will not be gen-
erated; only the first few interval ids necessary for the algorithm
will be processed. For each interval id, the algorithm determines
the intervalival corresponding to that id (line 4) and checks to see
if minfi is greater than or equal to the score of thekth element
in the heap (line 5; if there are less thank elements in the heap,
the condition always fails). If this condition is true, then we know
that the item corresponding toival, and all items corresponding to
intervals that occur afterival in L, can never make it to the top-k
results (note that this reasoning is similar to that in the Threshold
Algorithm [12, 13]). Consequently, query processing can termi-
nate and the algorithm can return without accessing the remaining
items. Otherwise, the item corresponding toival is added to the
ResultHeap if itsfi(v) is lower than the score of thekth item in
the result heap (lines 9-10).

Algorithm 1 Query Processing Algorithm
Require: Preds, v, k

1: return top-k answers in order of score (lowest score first)
2: L := List of ids ofIntervals that containv and whose items satisfy

Preds (found via indices on Item and Interval tables)
3: Initialize ResultHeap of sizek
4: for (id in L in increasing order of id)do
5: ival = getInterval(id);
6: if (ival.minfi ≥ score ofkth item in ResultHeap)then
7: break;
8: else
9: iscore = getItem(id).fi(v);

10: if (iscore < score ofkth item in ResultHeap)then
11: ResultHeap.add(ival.itemId, iscore);
12: end if
13: end if
14: end for

In our example withQ = (Make = ‘Motorola’, v = 5,k = 2),
the algorithm first considersItemId 6, with minfi=60, the first
entry in Figure 6. It finds the true scoref6(5), which is 108.5.
Since ResultHeap is empty, it addsItemId 6 to the heap with
score 108.5 (lines 10-11). Next, the algorithm considersItemId
5, with true scoref5(5) = 150, now addingItemId 5 to the
heap with score 150. The algorithm continues on toItemId 7
with scoref7(5) = 130. Since this is smaller than thekth score
of the heap (here,k = 2), it replacesItemId 5 with ItemId 7
in the heap. Next, the algorithm examinesItemId 4 with score
f4(5) = 120. Again, this is better than thekth score of the heap,
thus,ItemId 4 replacesItemId 7. Finally, the algorithm pro-
cessesItemId 8. Now,minfi is larger than thekth score of the
heap, soItemId 8 and any further items in the list cannot possi-
bly be better than what we have seen so far. Thus, the algorithm
terminates (line 7), returningItemId 6 and 4.

3. Interval Selection Algorithm

We now focus on the problem of selecting intervals. The key
challenge is to use the query workload to determine the best set
of intervals that (a) reduce the overall query processing time, and
(b) satisfy the space budget constraints. The naive solution—
enumerating all possible sets of intervals—has computational com-
plexity that is exponential in the number of items, which is clearly
infeasible. However, we show that we can exploit some key prop-

IntId ItemId lowv highv minfi fi(5)

2 6 1 ∞ 60 108.5
4 5 3 ∞ 80 150
6 7 3 ∞ 95 130
10 4 4 5 112 120
14 8 1 ∞ 230 230
16 9 1 ∞ 255 260

Figure 6. List of intervals matching query Q =
(Make = ‘Motorola’ , 5, 2)

erties relatingfi’s and item intervals to develop an algorithm that
is both efficient and provably close to optimal. Since the algorithm
is efficient, it can be periodically run offline to tune the intervals
to changing query workloads.

3.1 Problem Statement

We begin by motivating our cost model. If we consider the cost
of evaluating a queryQ using Algorithm 1, we can identify two
components of the overall cost. The first component is thefixed
cost, which is the cost of evaluatingQ, independentof the choice
of intervals. The fixed cost has three parts: (1) the index probes
(line 2),3 (2) k iterations of the for loop that add the top-k results
to the result heap (lines 10-11), and (3) the final iteration of the for
loop when the termination condition is satisfied (lines 6-7). If we
computed and stored all possible intervals, then each query would
only incur the fixed cost. In the example algorithm run usingQ

= (Make = ‘Motorola’, 5,2), processingItemId 6 and 4 count
as fixed cost (part (2)), as does processingItemId 8 (part (3)),
since these are necessary steps regardless of the intervals chosen.
Note that under a different choice of intervals, we may process a
different item than 8 in part 3. However, we must process some
item to trigger our termination condition.

The second component of the cost is thevariable cost, which is
the cost of evaluating a query after excluding the fixed cost. This
component of the cost depends on the choice of intervals. Given
a queryQ and a specific choice of intervalsP , if the Algorithm 1
iterates over its for loopm times, then the variable cost is the cost
of evaluatingm− k − 1 iterations. (We arrive at the numberm−
k− 1 because out of the total ofm iterations,k iterations are used
to produce the actual top-k results, and the last iteration is for the
termination condition.). Thesem− k − 1 iterations correspond to
items/intervals that are processed by the algorithm but which never
make it to the top-k results, i.e., they correspond to intervals whose
minimum score is lower than the max top-k score (otherwise, they
would not have been processed by the algorithm) but whose actual
score for the particular query parameter is greater than the max
top-k score (because they are not part of the top-k results). Each
of the items that correspond to thesem − k − 1 iterations of the
variable cost is called aculprit. In our example, bothItemId
5 and 7 are culprits. The max top-k score was actually 120, but
we processed bothItemId 5 and 7 since their respectiveminfi

scores were 80 and 95, less than 120. The actual score,fi(5), of
these items is 150 and 130, respectively, so they were not in the

3The results of the index probes may differ based on the choice
of intervals, but the number of index probes (which is the main
determinant of the cost) is independent of the choice of intervals.
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top-k list. (Had we chosen different intervals, these items would
never need to be processed.)

Our goal is to minimize the total variable cost over all queries
in a query workloadQW = [Q1, ..., Qn]. In other words, we wish
to minimize all costs other than the minimum fixed cost that must
be incurred for each queryQi. Before formalizing this problem
statement, we define the notion ofpartition. Let I be the set of
items, and letIvals be the set of all possible parameter intervals.

DEFINITION 1. Partition. A partition P is a functionP :
I → 2Ivals such that for alli ∈ I , the intervals inP(i) (a) are
non-overlapping (to avoid redundancy), and (b) cover the entire
value range (to avoid missing values).

Intuitively, a partition is just a formal way to denote a specific
choice of intervals. In particular,P(i) specifies the set of inter-
vals for itemi. For example,P(4) = {[1, 3], [4, 5], [6,∞]} in our
running example, whileP(3) = {[1, 1], [2,∞]}.

Recall that the variable cost of evaluating a queryQ using a
partition P is defined as the cost of evaluating each one of the
m−k−1 iterations (lines 10-11 in Algorithm 1). We consider the
cost of each iteration to be a single unit and then define the variable
cost of queryQ using partitionP , denotedvarcost(I,P , Q), to
bem − k − 1. We use the notationculprits(I,P , Q), to refer to
the set of items whose intervals are processed in them − k − 1
iterations ofQ that contribute to its variable cost. In our example,
culprits(I,P , Q) = {5, 7}, andvarcost(I,P , Q) = 2.

As we mentioned earlier, if there were no limit on the number
of intervals,

∑
i∈I

|P(i)|, then we could choose a partitionP such
thatvarcost(I,P , Q) = 0 andculprits(I,P , Q) = ∅ for all Q

— essentially, this creates an interval for each distinct query pa-
rameter value for each item. In practice, we must limit the number
of intervals due to memory limitations.

We can now formally state our problem:

Problem Definition. Given a set of itemsI , the set of all pos-
sible value intervalsIval , a query workloadQW , and a space
budgets, find a partitionP that minimizes the overall variable
cost

∑
Q∈QW

(varcost(I,P , Q)), subject to the space constraint
∑

i∈I
|P(i)| ≤ s.

3.2 Proposed Algorithm

A simple way to solve the above problem is to explicitly enu-
merate all the partitions that satisfy the space budget, compute the
cost for each such partition, and finally pick the partition that has
the minimum cost. However, this is likely to be very inefficient
due to the large number of possible partitions. Specifically, if the
number of distinct query parameter values ist, then the number of
possible partitions is

(
2t×|I|
s−|I|

)
. (There are2t interval split points

for eachfi, one before and one after every parameter value seen;
thus, the total number of interval split points for all items is2t×|I |.
From these, we need to chooses − |I | split points, since we start
with |I | intervals and each additional split increases the number of
intervals by one.) Thus, for even modest sized databases, such as
one having 10000 items, 10 parameter values and a space budget

of 20000, we have
(
2×105

104

)
possible partitions!

Fortunately, it turns out that we can exploit a key property re-
lating partitions that dramatically reduces the set of partitions that
need to be considered. We first introduce some notation.

DEFINITION 2. Variable Cost of an Item. The variable cost
for an itemi ∈ I given a partitionP and a query workloadQW

is defined to be:

vci(I,P , QW ) = |{Q | Q ∈ QW ∧ i ∈ culprits(I,P , Q)}|

(In this definition,{} refers to a bag, not a set, in order to deal
correctly with duplicate queries.)

In other words, the variable cost for an itemi is the number of
times the item appears as a culprit in the query workload, i.e., the
number of times an interval associated with an item is processed
by Algorithm 1 without the item being part of the final top-k result
(recall that a culprit is defined just above the problem definition in
the previous section). It is easy to see that

∑
i∈I

vci(I,P , QW ) =∑
Q∈QW

varcost(I,P , Q), i.e., the sum of the variable costs of
all items is the same as the sum of the variable costs of all queries
(which in turn is the same as the overall variable cost).

Let maxscore(I,Q) denote thekth largest score from among
the results obtained by evaluating Q overI (i.e., the maximum
value offi(v) among the items in the top-k results). The following
lemma says essentially that if two different partitions agree on item
i, thenvci agrees for both partitions, over any query workload.

LEMMA 1. Independence Property.Given a set of itemsI
and a space budgets, let AllParts be the set of all partitions that
satisfy the space budget. Then, given a query workloadQW :

∀i ∈ I,∀P1,P2 ∈ AllParts, (P1(i) = P2(i)

⇒ vci(I,P1, QW ) = vci(I,P2, QW ))

PROOF. Consider a partitionP ∈ AllParts and a queryQ =
(Preds, v, k) ∈ QW . Let vIvalQ,i be the interval inP(i) con-
taining v. (Recall that theP(i)’s are non-overlapping and cover
the entire value range, so there is exactly one interval that satisfies
this condition.) From Algorithm 1, we can see that for an itemi

and queryQ:

i ∈ culprits(I,P , Q) ⇔ maxscore(I,Q) < min
v′∈vIvalQ,i

fi(v
′)

i.e.,i is a culprit iff its minimum score in the interval that contains
v is less than the top-k maximum score. Thus,vci = | {Q | Q ∈
QW∧ maxscoreQ < minv′∈vIvalQ,i

fi(v
′)} |, which only de-

pends onP(i) (in the definition ofvIvalQ,i), and does not depend
onP(j), j 6= i. This proves the claim.

Informally, the property states that the benefit of choosing a
particular set of intervals for itemi is independentof the choice of
intervals for other items. That is, the value chosen forP(i) does
not affect the value ofvcj for item j 6= i. Consequently, we can
solve the problem for each item separately, and then combine to
produce the overall solution. We will show the overall complexity
of our algorithm that exploits this observation isO(t3 × |I | +
s log |I |+ |I | × |QW |), and it produces a solution that is within a
factor(s− |I | − 2t + 1)/(s − |I |) of optimal (we will show later
that in fact, the complexity of the algorithm is usually much less,
especially for the|I | × |QW | component).

Our algorithm works in two steps. It first finds the optimal way
to choosew intervals,1 ≤ w ≤ 2t + 1, for each item (recall that
t is the number of parameter values seen, so there are2t possible
split points, one before and one after each seen value, and thus a
maximum of2t + 1 intervals). It then finds the global optimum
by choosingw1, w2, ...,w|I| such thatw1 + w2 + ... + w|I| ≤ s
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ItemId Value MaxTopKScore

4 5 110
4 5 109
4 5 105
4 5 108.5
4 5 109.75
4 4 108
4 4 106
4 7 102
4 7 104

Figure 7. Example Culprits Table
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Figure 8. Culprits for ItemId 4, shown divided
into regions

and choosingwi intervals for itemi gives us the globally optimal
partition. We now describe these two steps in more detail.

3.2.1 Finding Optimal Intervals for a Single Item
The current problem is to find for each itemi, the optimal way

to choose 1 interval, 2 intervals, ...,2t + 1 intervals. Here, opti-
mal means minimizing the variable costvci. In order to solve this
problem, we first create aCulprits table using the query work-
load. TheCulprits table has three columns,ItemId, Value and
MaxTopKScore, and it contains the following set of rows:

{(ItemId, Value, MaxTopKScore) ∈ Culprits |

Q ∈ QW ∧ ItemId ∈ culprits(I, P0, Q)

∧ Value = Q.v ∧ MaxTopKScore = maxscore(I,Q)}

whereP0 is the partition in which each item is assigned the single
interval that covers its entire value range. Intuitively, theCulprits
table has one row for each culprit of each query, and the row con-
tains theItemId of the culprit, the parameter value of the query,
and the maximum score of the top-k results of the query. Figure 7
shows an exampleCulprits table for different queries/parameter
values for item 4. Note that the culprits table is dependent both on
the score of the item for different values (i.e.fi), as well as the
query workload.

Creating theCulprits table does not require additional pro-
cessing; it can be created easily during regular query processing by

initially running the algorithm using theP0 partition, and logging
information for each culprit.

Given theCulprits table, we can determine the value ofvci

for a given choice of intervals for an itemi. As an illustration of
how this can be done, consider the item corresponding toItemId
4 in Figures 3 and 4, withf4 and intervals shown in Figure 5. We
can augment this figure by selecting the rows in theCulprits
table that correspond toItemId 4, and plotting each of these
rows as a point on the figure where the x-coordinate of a row is its
Value and the y-coordinate isMaxTopKScore. Each of these
points represents a potential culprit. Figure 8 shows Figure 5 aug-
mented by plotting the points forItemId 4 from theCulprits
table (the scale on the x-axis has been altered slightly so that the
points can be seen more clearly; we have also shown the graph di-
vided into cells, which we will use later.). Now, suppose that item
4 is broken into intervals[1, 3], [4, 5], [6,∞]. (We represent this
in Figure 8 by drawing darkened vertical lines just beforex = 4
andx = 6.) For each interval, we can draw a darkened line that
represents the minimum score off4 in that interval. For example,
for the interval[6,∞], the minimum score line (MSL) is drawn
at a value of 100. In this case, exactly two points (i.e. potential
culprits) fall between that line and the function graph in Figure 8.
For the interval[4, 5], the MSL is drawn at a value of 112, and
we see all seven points (i.e. potential culprits) lie below this line.
Finally, the MSL for[1, 3] occurs at score 100, and no points lie
above it. In general, the total number of points that appear above
these MSLs is exactly the value ofvci. The intuition behind this
reasoning is that if we choose a particular set of intervals for an
item i, theni can only be a culprit for a queryQ if the minimum
score of the relevant interval ofi is less than the max top-k score
of Q (otherwise,i would be pruned by the algorithm before it is
processed). Consequently, only the points above the MSL for an
interval contribute tovci. So in this particular case,vc4 = 2. Had
we used just the single interval[1,∞], then all potential culprits
would have contributed, makingvc4 rise to9.

Recall that our goal is to minimize the value ofvci for a given
number of intervalsw. Thus, in pictorial terms, we want to choose
w intervals such that the number of points above the MSLs is min-
imized. Since it is convenient to think of this problem as a maxi-
mization problem, we can equivalently view the problem asmaxi-
mizingthe number of pointsbelowthe MSLs. Thus, we can define
the benefit for each interval to simply be the number of points be-
low its MSL, and our goal then is to find a set of intervals such that
the total benefit is maximized. More formally, for intervalIval of
item i, we can define its benefit to be:

BENEFITi(Ival)

= |{(ItemId, Value, MaxTopKScore) ∈ Culprits |

ItemId = i.id ∧ MaxTopKScore < min
v∈Ival

fi(v)}|

and the best benefit for itemi broken intow intervals:

BESTBENEFITi(w) = max
P:|P(i)|=w

∑

Ival∈P(i)

BENEFITi(Ival).

For instance, in our running example, BENEFIT4([4, 5]) = 7,
while BENEFIT4([3, 5]) = 0 since including 3 in the interval drops
minf4 to 100, below themaxscore.

Given the above definitions, we can use a dynamic program-
ming algorithm to find the total benefit for the optimal set of in-
tervals. Algorithm 2 shows the pseudocode. The algorithm is run
on each item. The initialization phase first computes the benefit
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w BESTBENEFIT4(w) bestP(4) with |P(4)| = w

1 0 {[1,∞]}
2 0 {[1, 2], [3,∞]}
3 7 {[1, 3], [4, 5], [6,∞]}
4 7 {[1, 3], [4, 5], [6, 6], [7,∞]}
5 9 {[1, 3], [4, 5], [6, 6], [7, 8], [9,∞]}
6 9 {[1, 2], [3, 3], [4, 5], [6, 6], [7, 8], [9,∞]}

Figure 9. BESTBENEFIT4() for item 4

for every interval. Then, for each point between1 and2t + 1, the
algorithm computes the best number of intervals generated up to
that point. This is done in line 5, by finding the maximum benefit
of a choice of intervals for that point.

Algorithm 2 Interval Generation Algorithm
Require: Intervals{Ival jk} for item i.
1: Initialize B(Ival jk) = BENEFITi(Ivaljk) for j, k = 1, 2, ...,2t+1.
2: Initialize arrj [1] = B(Ival1j) for j = 1, 2, . . . , 2t + 1.
3: for w = 2 to 2t + 1 do
4: for j = 1 to 2t + 1 do
5: arrj [w] = maxj′>j{arrj′−1[w − 1] + B(Ivalj′j)}
6: end for
7: end for
8: BESTBENEFITi(w) = arr1[w] for all w = 1, 2, ...2t + 1.

We summarize the results of Algorithm 2 on our running ex-
ample forItemId 4 in Figure 9.

Once the values for BENEFITi(·) have been computed, the al-
gorithm takes timeO(t3 × |I |). However, we still need to address
how we actually compute these values.

Note that for each entry in the culprits table, there are at most
O(t2) intervals whose BENEFIT(·) value is affected. Hence, a
simple way of implementing the initialization in step 1 is to take
a pass through theCulprits table, updating BENEFITi(Ivaljk)
for each affectedIval jk. This takes timeO(t2 × |Table|), where
|Table| is the size of theCulprits table. However, we can do
much better than this naive implementation, as we now describe.

Fix an itemi. Roughly speaking, we divide the space of Values
× Scores intoO(t3) rectangular pieces (shown, e.g., in Figure 8).
The top and bottom of each rectangle correspond to MSLs of two
intervals associated with itemi, while the left and right side corre-
spond to vertical lines drawn though two consecutive split points.
We will aggregate the number of culprits in each of these cells.

Somewhat more precisely, defineMSLi(Ival) = minv∈Ival fi(v),
and label the

(
2t+1

2

)
intervals associated with itemi by Ival1, Ival2, ...,

so thatMSLi(Ival
j) ≤ MSLi(Ival

j′) for all j < j′. (For nota-
tional convenience, we will also defineMSLi(Ival

0) = −∞.)
Let sℓ denote theℓ-th split point for itemi, and define regionRi

jℓ

as follows, forj = 1, ...
(
2t+1

2

)
, ℓ = 1, 2, ..., 2t:

R
i
jℓ = {(value, score)|

value ∈ [sℓ, sℓ+1)

∧ score ∈ [MSLi(Ival
j−1), MSLi(Ival

j))}.

(In Figure 8, regionR4
6,4 has been highlighted.) Rather than pro-

cessing each entry of theCulprits table individually, we first
aggregate over each of these regions. Specifically, we compute
ci
jℓ = |{(ItemId, Value, MaxTopKScore) ∈ Culprits | ItemId =

i.id, (Value, MaxTopKScore) ∈ Ri
jℓ}|, for eachj, ℓ, and itemi.

(As we can see in Figure 8,R4
6,4 contains 2 entries from the cul-

prits table, hencec4
6,4 = 2.) Note that we can calculate theseci

jℓ

in one pass through theCulprits table. Once these values of
ci
jℓ are known, we can calculate the values of the BENEFITi(·) in

O(t3) time for each itemi. The algorithm for calculating BENEFITi(·)
for a fixed itemi is given below, labeled as Algorithm 3.

Algorithm 3 Benefit Calculation Algorithm

Require: Item i and the values ofci
jℓ

as defined above
1: for ℓ = 1 to 2t do
2: Resetb := 0.
3: for j = 1 to

(2t+1
2

)
do

4: Updateb := b + ci
jℓ

.

5: if intervalIval j contains the interval[sℓ, sℓ+1) then
6: Increment BENEFITi(Ival

j) by b.
7: end if
8: end for
9: end for

The time to calculate theci
jℓ is O(|Table| × log t); for each

entry in theCulprits table, we must find in which regionRi
jℓ

it belongs, takingO(log t) time per entry. Once we have theci
jℓ,

we spend an additionalO(t3 × |I |) time to calculate the values
for BENEFITi(·). Finally, as we mentioned earlier, the dynamic
programming portion runs in timeO(t3 × |I |). Hence, the total
running time for this piece isO(t3 × |I | + |Table| × log t).

3.2.2 Combining Single Item Intervals
In the previous subsection, we saw how to break the interval

of a given item intow pieces in such a way that we maximized
the number of avoided culprits, for any givenw. For the i-th
item, we denoted this number by BESTBENEFITi(w). Recall-
ing that we have a storage constraint limiting us to use at most
s items, we must findw1 + w2 + . . . + w|I| ≤ s such that
BESTBENEFIT1(w1) + . . . + BESTBENEFIT|I|(w|I|) is as large
as possible.

Throughout, we assume that each item will be broken into at
most2t + 1 pieces. For eachi andj, we keep track of the incre-
mental improvement of usingj + 1 intervals to describe thei-th
item, instead of justj. We usecij to denote that improvement.

cij = BESTBENEFITi(j + 1) − BESTBENEFITi(j).

Notice that
∑k

j=1 cij = BESTBENEFITi(k+1) since the sum tele-
scopes. Thus, our problem is equivalent to findingk1+. . .+k|I| ≤

sdiff such that
∑|I|

i=1

∑ki

j=1 cij is maximized. (For readability, we
definesdiff = s − |I |.)

For the sake of intuition, consider the following rephrasing of
the problem: We are given|I | decks of cards. Each card has some
nonnegative number written on it, and we can see all of these num-
bers. (Thejth card in theith deck has the numbercij .) We must
choosesdiff cards in total from our decks so that the sum of the
numbers is maximized, subject to the constraint that if we choose
the jth card from some deck, then we must also choose the1st,
2nd, ...,(j − 1)th cards from that deck as well.

To continue the running example, the table in Figure 10(a)
contains several items and their interval benefits. The item with
ItemId 4, for example, contains the sequence 0, 7, 0, 2, indicat-
ing that using two intervals gives no benefit over using one, while
using three intervals gives a benefit of 7 over using two intervals.
Using four intervals gives a no benefit over using three intervals,
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and using five intervals gives a benefit of 2 over using four inter-
vals. (That is,c41 = 0, c42 = 7, c43 = 0, c44 = 2.) These values,
of course, follow directly from Figure 9, the output of Algorithm
2 for ItemId 4. (The other values forcij given in Figure 10 are
not derivable from the information we have seen previously in the
running example.) For simplicity, we will assume that there are
only five items inI .

3.2.2.1 Exact Algorithm for Combining Intervals.
There is a dynamic programming algorithm to solve this prob-

lem exactly. Continuing our running example withsdiff = 5, the
exact algorithm would take1, 8 from the item withItemId = 6;
it would take the8, 4 from item7; and it would take the3 from
item 8. Thus, the total benefit is 24, and the algorithm indicates
that item 4 should be described with just one interval, items 6 and
7 using three intervals, and item 8 using two intervals.

Although the dynamic programming algorithm works in poly-
nomial time, the approach takesO(sdiff × |I |) time just to execute
its outer loop. Sincesdiff and|I | are both very large, this approach
is impractical, even in our off-line setting.

However, we note that ifcij ≥ cij′ for all i and allj < j′,
the exact solution can be found very efficiently using the greedy
algorithm: Simply find thesdiff largestcij , where we break ties
in favor of the smallerj. In this case, we thus have an efficient
algorithm.

LEMMA 2. Let t > 0, I ,s andsdiff = s − |I | be as above, and
let cij be nonnegative numbers, as above, fori = 1, 2, ..., |I |, and
j = 1, ..., t, with cij ≥ cij′ for all i and j < j′. Then there is
an algorithm running inO(s log |I |) time that finds nonnegative
integersk1, ..., k|I| that maximize

|I|∑

i=1

ki∑

j=1

cij

subject tok1 + . . . + k|I| ≤ sdiff.

PROOF. It is helpful to think of this algorithm using our “decks
of cards” formulation. Recall that we have|I | decks of cards, each
with a top card (i.e. the1st card of the deck). From these|I | top
cards, take the one with the largest value. (Hence, if we remove
the top card from thejth deck, then the2nd card is now the top
card of the deck.) Simply repeat this until we have takensdiff cards.

Clearly, this algorithm works in the specified time: we sim-
ply need to maintain a heap-like datastructure to find the largest-
valued top card at each step, takingO(log |I |) time. Since we
repeat the stepsdiff times, this isO(sdiff log |I |) time spent iterat-
ing. Counting the set-up time for the heap ofO(|I | log |I |), this is
a total time ofO(s log |I |). However, we still need to argue that
the algorithm produces the maximum value.

But notice that by the assumption thatcij ≥ cij′ for all j < j′,
we have that the largest remaining card is the top card for some
deck. So the algorithm described above actually finds thesdiff cards
with the largest values; hence we must have the cards with the
largest total sum.

3.2.2.2 Smoothing.
Unfortunately, thecijs will not be decreasing in general. In

fact, the table in Figure 10(a) produced from Figure 8 reflects this.
More concretely, consider the example withItemId = 4 in Fig-
ure 8, ignoring the intervals shown. If we want to split this item

into two intervals, then no choice of an interval split point would
avoid any culprits (because queries are only for values4, 5, and
7, and splitting on either side of these values offers no benefit
because the MSLs of the resulting intervals will still be at 100).
Thus,c4,1 = 0 in this case. However, if we decide to split the item
into three intervals, then we can split it into the intervals shown in
Figure 8, and this would avoid 7 culprits. Thus,c42 = 7 > c41.

So in general, it is not the case thatcij ≥ cij′ for all i and
j < j′. To address this, we “smooth” thecij to producec′ij such
that c′ij ≥ c′ij′ for all i andj < j′, along with other important
properties. This smoothing technique corresponds to a “convex
hull” approach that was first discovered by Dyer [10] and, inde-
pendently, by Zemel [22] in the context of the multiple-choice
knapsack problem. Although the majority of work on the multiple-
choice knapsack problem has focused on strong theoretical guar-
antees, several papers [16, 17, 1] have produced much simpler al-
gorithms with incredibly strong guarantees in practice. While pre-
vious work focused on producing a(1 + ǫ) approximation, giving
an algorithm whose running time depended onǫ, the work of [16,
17, 1] gives an an algorithm with no such dependence, and whose
solution in our context is at least(sdiff −2t+1)/sdiff times as good
as optimal. Since we expectsdiff to be thousands of times larger
thant in practice, this shows that the approximate solution is bet-
ter than99.9% of optimal. For the sake of completeness, we de-
scribe the smoothing algorithm below, and give a simple example
to illustrate the main ideas.

For readability, we define the notation AVG(cij , . . . , cik) =
1

k−j+1

∑k

l=j cil

Algorithm 4 Smoothing Algorithm[16, 17, 1]
Require: ci1, ci2, . . . , cit.
1: Initialize ci,t+1 ← −∞, j ← 1.
2: while j ≤ t do
3: Let k = argmaxk′≥jAVG(cij , . . . , cik′).
4: Assignc′

iℓ
← AVG(cij , ..., cik) for all ℓ ∈ [j, k].

5: Updatej ← k + 1.
6: end while

Essentially, the algorithm starts at acij and looks ahead to see
if there is any subsequentcij′ that can increase the average value
of all intermediatecik, j ≤ k < j′. As can be seen, this algo-
rithm has complexityO(t2). Although there is a somewhat faster
algorithm running in timeO(t log t), improvements here do not
significantly improve the overall running time of the entire algo-
rithm.

As an illustration of the smoothing technique, consider again
the item withItemId 4 in Figure 10(a). Intuitively, we would like
to get the 7; however, we need to use the 0 first. So we replace
the 0, 7 with two copies of their average:3.5, 3.5. Notice that
taking 0, then7, is helpful exactly when taking3.5 followed by
3.5 is helpful. Continuing, we replace the0, 2 with two copies of
their average:1, 1. In general, we find the prefix sequence with
the largest average; this may simply be the first item of the se-
quence. We then replace each of those values with the average,
and recursively iterate on the remaining sequence. We repeat this
smoothing for items 6, 7, and 8. The smoothed values are shown
in Figure 10(b).

With the smoothed valuesc′ij in hand, we simply find thesdiff

largest values, as described in Lemma 2. As we noted in the
lemma, this can be done inO(s log |I |) time.

To illustrate, consider our example, again withsdiff = 5. The
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ItemID cij

4 0, 7, 0, 2
6 1, 8, 0, 6
7 8, 4, 0, 2
8 3, 0, 0, 6

(a)

ItemID c′ij
4 3.5, 3.5, 1, 1
6 4.5, 4.5, 3, 3
7 8, 4, 1, 1
8 3, 2, 2, 2

(b)

Figure 10. Example Benefits and Smoothing

smoothed values we would extract are 8, 4.5, 4.5, 4, 3.5, cor-
responding to the original values 8, 1, 8, 4, 0. Notice that the
smoothed values4.5+4.5 exactly equal the original values1+8.
However, the last smoothed value we extracted, 3.5, corresponds
to 0. (Were we able to take another value, in this case 3.5, then we
would again see that the smoothed values3.5 + 3.5 exactly equal
the original values,0+7.) In general, at most the last2t−1 values
(which all come from the same item) will be overestimates of the
original values. Thus, when translating thec′ij back to the original
cij , the total benefit we obtain using these smoothed values is at
least(sdiff − 2t + 1)/sdiff of optimal. So we have the following
theorem, first proven in [16].

THEOREM1 ([16, 17]). LetI , s, andBESTBENEFITi(·) for
i = 1, ..., |I | be defined as in the previous subsection. Then there
is an algorithm running in timeO(|I |t2 + s log |I |) that finds
w1, ..., w|I| such that the value of

BESTBENEFIT1(w1) + . . . + BESTBENEFIT|I|(w|I|)

subject tow1 +w2 + . . .+w|I| ≤ s is at least(sdiff − 2t+1)/sdiff

of optimal.

3.2.3 Overall Complexity
As we already noted, processing the query workload takes time

at mostO(|I | × |QW |), although this is actually the size of the
log, which will usually be much smaller. The running time to find
optimal partitions for each item takes a total ofO(t3 × |I |) over
all items. (We ignore the cost of processing theCulprits table,
since it is subsumed in the processing time of the query workload.)
The running time for finding a nearly optimal combination of inter-
vals across times isO(s log |I |), and smoothing takesO(t2×|I |).
Hence, the total complexity isO(t3×|I |+s log |I |+|I |×|QW |).

4. Experiments

We considered four approaches in our experimental evalua-
tion: (1) NAIVE: the naive approach of looping over all the se-
lected items, (2)PRECOMPUTE: the precomputation approach de-
scribed in the introduction, (3)PI (for Precompute Interval): the
proposed approach, and (4)PS (for Precompute Single): the pro-
posed approach, but using only a single interval per item. These
approaches were implemented using main-memory tables and in-
dices and were evaluated using various data sets, promotional rules,
and query workloads. The main finding from our experiments are
the following:

• NAIVE performs at least an order of magnitude worse in
terms of response time thanPI andPS.

• PRECOMPUTE requires many orders of magnitude more space
thanPI or PS.

• PI outperformsPS by a factor of 2-6 using just 50% more
space, illustrating the effectiveness of our interval selection
algorithm.

• PI scales much better thanPS, i.e., the performance gap be-
tween the two approaches widens with increasing data sizes.

• The backend processing time, i.e., the time needed by our
interval-generation algorithm to generate optimal intervals
given a space budget, is acceptably low and increases only
roughly linearly with increasing size of theCulprits ta-
ble.

4.1 Experimental Setup

We ran our experiments on an Intel machine with 2GB RAM.
We used a real data set from Yahoo! Shopping, which has hun-
dreds of thousands of items for a given category (laptops) due
to products listed from many different vendors. We built regu-
lar main-memory indices on5 searchable attributes of the laptops
table to evaluate query predicates. The size of the relation was
varied from100K to 1M rows with a default value set to200K.
Each run represents the running time of 1000 queries.

4.1.1 Rules and Queries Generation
The promotional rules and queries were synthetically generated

by using the parameters in Figure 11 (the default value for each
parameter is shown in bold).

Our rule generation tries to simulate reality as closely as possi-
ble and takes two parameters: the maximum number of rules per
item, and the maximum discount given by any rule. We generated
three different kinds of rules:

(a) R1(q, d): Buy some quantity> q, getd% off.

(b) R2(q, d): Buy some quantity> q, get$d off.

(c) R3(q1, q2): Buy quantityq1, get quantityq2 free.
To generate rules, we first choose whether an item gives a discount
or not. As in the real world, the probability that an item gives a
discount increases with increasing price of the item. Once an item
is chosen to give a discount, we assign it a number of rules cho-
sen at random between 1 and the maximum number of rules per
item. Each rule is then chosen at random from among the three
types. The quantity threshold at which the rule starts to apply is
also chosen according to price, with more expensive items offering
discounts even for low quantities while cheap ones offering dis-
counts only for high quantities. The amount of discount given by
a rule was chosen based on both the price and the quantity thresh-
old: cheaper items gave less discount than expensive ones, and the
amount of discount given was higher for higher quantities.

Query generation takes two parameters: the maximum quantity
being queried, and the number of results requested (k). The quan-
tity queried was chosen uniformly at random between 1 and the
maximum quantity. Besides, the query had predicates on the lap-
tops table that were chosen at random to ensure that our workload
consisted of queries with varying selectivities.

4.2 Space Overhead of PRECOMPUTE

To investigate the space overhead, we used 1 million listings
(which is only a small subset of all Yahoo! Shopping listings)
and 100 quantities. Using 4 bytes per score, the space overhead
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Parameter Values (default in bold)

Number of items [100K − 1M ] - 200K

Interval budget [100%− 500%] - 200% of number of items
Promotional rulesNumber of rules/laptop:[1− 5] - 3

Maximum Discount:[10%− 60%] - 50%
Queries Maximum quantity:[1− 100] - 50

Results required (k): [1− 100] - 10

Figure 11. Experimental Parameters
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Figure 12. Varying Data Size

for PRECOMPUTE is 2.4GB (1M * 100 * 4 = 400MB for the
Intervals table index, and 400MB each for the 5 searchable
Yahoo! Shopping attribute indices corresponding to each item).
In contrast, thePI method only required 40MB of space (as
shown in the next section), including the space for the regular in-
dices. Consequently,PRECOMPUTE is not a feasible solution to
our problem, and we do not consider it further.

We now describe the impact of the parameters in Figure 11 on
thequery response time(Section 4.3). We also study the process-
ing time of our backend (i.e., interval generation algorithm) as a
function of the size of theCulprits table (Section 4.4).

4.3 Response Time Experiments

We report the performance of thePS andPI approaches. We
do not report the performance ofNAIVE as it is always an order
of magnitude worse thanPS andPI.

4.3.1 Varying Data Size
Figure 12 shows the effect of varying the data set size on the

response time. The performance gap betweenPS andPI in-
creases with increasing data size because the number of culprits
increases correspondingly, andPI is able to avoid these culprits
by an intelligent choice of intervals.

4.3.2 Varying Space Budget for Intervals
Figure 13 reports the response time ofPI andPS with in-

creasing space budget to store intervals. SincePS uses only one
interval per item, the performance ofPS remains constant with
the space budget. The response time ofPI however improves
drastically as soon as it is given some extra space budget to store
intervals. In fact, with a space budget which is only 1.5 times the
size of the laptops relation,PI outperformsPS by a factor of 5.
Thus, much of the performance benefit ofPI can be obtained with
very little space overhead. remains constant. The performance of
PI, however, improves. Note that for a space budget factor of 1,
PI performs slightly worse thanPS because it has the overhead
of indexing general intervals.
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4.3.3 Varying Promotional Rules
Figure 14 reports the response time ofPI andPS as we vary

the maximum number of rules per item.PI performs substantially
better thanPS and as the number of rules is increased, the perfor-
mance gap between them increases. As more rules are added, the
probability that an item gives a high discount increases, and so
does the probability of that item being a culprit for a low-quantity
query. This increase in the number of culprits slows downPS, but
the effect onPI is not substantial as the culprits are avoided by
using intervals.
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Figure 15. Varying the Maximum Discount

Figure 15 reports the response time ofPI andPS as we vary
the maximum amount of discount offered by any rule. Here again,
the trend is similar to the previous experiment. For low discounts,
the probability of an item being a culprit is small, hence the perfor-
mance ofPI andPS is similar. However, with higher discounts,
more culprits are generated and the performance ofPS severely
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worsens, but that ofPI only degrades slightly.

4.3.4 Varying Query Parameters
Figure 16 reports the response time ofPS andPI as we varied

the maximum quantity being queried in the workload. We observe
that whilePI outperformsPS, the difference between their per-
formance decreases as higher quantities are queried: with a higher
quantity value in the query, more rules are likely to apply, thus re-
ducing the number of culprits. Hence the performance ofPS im-
proves with increasing quantities. Note that in our workload the
quantities are chosen uniformly at random. In practice, we expect
a query distribution that is very heavily biased towards low quanti-
ties (which is similar to reducing the maximum quantity), in which
case,PI performs 2 to 6 times better thanPS.

Figure 17 shows the response time ofPI andPS as the num-
ber of results requested (k) is varied. With increasingk, more
items have to examined in order to return the topk results. Thus,
the response time of bothPS andPI increases linearly withk. At
the same time, the probability of an item being a culprit decreases
with increasingk. Thus, the response time ofPS (in terms of its
ratio to the response time ofPI ) improves with increasingk. In
the limit whenk = number of query results, we expectPI and
PS to have the same performance.

Figure 18 shows the response time ofPS andPI for queries
of different selectivity. We grouped queries according to selectiv-
ity and measured the average response time in each group. As the
number of items satisfying the query increases, the number of cul-
prits also proportionally increases and hence the performance of
PS worsens. However, the performance ofPI remains constant
with an increasing query selectivity.

4.4 Backend Processing Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0.5-0.60.4-0.50.3-0.40.2-0.30.1-0.20-0.1

R
u
n
n
in

g
 T

im
e 

(s
ec

)

Selectivity of Queries

PI
PS

Figure 18. Varying Query Selectivity

 40

 60

 80

 100

 120

 140

 160

 180

54321

B
ac

k
en

d
 R

u
n
n
in

g
 T

im
e 

(s
)

Size of Culprits Table (in 10
6
)

Backend

Figure 19. Backend Processing Time

In this experiment, we study the time needed by our interval-
generation algorithm (Section 3) to generate the optimal intervals
given a space budget. Our experiments show that the overall back-
end processing time increases only roughly linearly with the size
of theCulprits table. Even when the number of distinct quanti-
ties being queried is 50, and there are as many as 4 million culprits,
our interval generation algorithm runs in under 3 minutes. Since
the interval-generation algorithm runs in the backend, it does not
have any stringent response-time requirements. Hence this over-
head is entirely acceptable in return for the huge performance ben-
efits of PI. We also found that the backend processing time is
roughly independent of the space budget for intervals.

5. Related work

The problem introduced in this paper bears some resemblance
to top-k processing in Information Retrieval (IR) systems using
query-dependent scores such as TF-IDF [20]. Just as IR systems
build an inverted list of documents for each term, where the list
corresponding to a term is ordered by the TF score corresponding
to that term, we could build a list of items for each parameter value,
where each list is ordered by the score of item for that parameter
value. While this technique works for IR systems because the in-
verted list is usually sparse (a term does not usually occur in all
documents), it can be very large in our context because each item
has a score for every/most parameter values (e.g., every product
has a price for every quantity). In fact, this approach directly cor-
responds to the naive pre-computation strategy, which was shown
to be infeasible in our experimental evaluation.

The most prominent family of top-k algorithms is the one by
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Fagin et al [12, 13] over multimedia repositories. These algorithms
use equi-joins to evaluate top-k answers over multiple sources and
assume monotonic score aggregation functions. In relational databases,
existing work has focused on extending the evaluation of SQL
queries for top-k processing when scoring is achieved through a
SQL order-by clause [4, 6, 8]. For example, Carey and Koss-
mann [4] study how to optimize such queries by limiting the car-
dinality of intermediate result tuples while Ilyas et al [18] propose
a score-aware relational algebra and show how a scoring function
can be pushed in a query plan in order to achieve early pruning.
The use of a query plan to produce scored results has a dynamic as-
pect where scores depend on the algebraic operators. In our work,
scoring functions are black boxes and we focus on pre-computing
indices for the efficient evaluation of selection queries.

Other works [3, 5, 14] use statistical information to map top-
k queries into selection predicates which may require restarting
query evaluation when the number of answers is less thank. The
key difference with our work is that the score of an item is not
static and is not assumed to be monotonic. Hence, we index our
functions in a way that (i) optimizes finding applicable functions
per item by computing appropriate parameter value intervals and
(ii) identifies the items to prune by associating the lowest score to
each interval.

We could model item-specific functions such as promotional
rules as queries in publish/subscribe systems [7, 11] or triggers in
rule-based databases [21]. While this would address the efficient
evaluation of a large number of functions, these systems are not
designed to process top-k answers. To the best of our knowledge,
our solution is the first that could be considered as an extension to
these systems by introducing scoring and top-k pruning.

One of the main contributions of this paper is showing that the
problem of computing the optimal set of intervals for a set of items
can be decomposed into a set of small problems for each item,
which can then be solved independently and combined together
efficiently. In order to solve the interval problem for each item, we
use a standard dynamic programming algorithm (Section 3.2.1),
which has also been used in other contexts [15].

6. Conclusion

We have introduced a new class of top-k queries over query-
dependent functions that arise in a variety of applications ranging
from online shopping to online maps to predictive financial mod-
eling. We have developed efficient algorithms for evaluating such
queries using function intervals, and our experimental evaluations
have shown that the proposed approach is efficient both in terms
of performance and in terms of space.

There are several avenues for future work. One possible exten-
sion is to deal with functions over multiple parameters and items,
e.g., travel packages such as “Stay 3 nights, get a 10% discount on
Casino tokens.” Another possible extension is incorporating sug-
gestions based on function values, e.g., “Leave one hour later and
save 30 minutes in traffic.” Both of these extensions require en-
hancing the model with crossitem queries and multi-dimensional
indices on functions.
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