
Indexing Land Surface for Efficient kNN Query
Cyrus Shahabi

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
shahabi@usc.edu

Lu-An Tang
Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
lvantang@usc.edu

Songhua Xing
Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
sxing@usc.edu

ABSTRACT

The class of k Nearest Neighbor (kNN) queries is frequently used
in geospatial applications. Many studies focus on processing kNN
in Euclidean and road network spaces. Meanwhile, with the recent
advances in remote sensory devices that can acquire detailed
elevation data, the new geospatial applications heavily operate on
this third dimension, i.e., land surface. Hence, for the field of
databases to stay relevant, it should be able to efficiently process
spatial queries given this constrained third dimension. However,
online processing of the surface k Nearest Neighbor (skNN)
queries is quite challenging due to the huge size of land surface
models which renders any accurate distance computation on the
surface extremely slow. In this paper, for the first time, we
propose an index structure on land surface that enables exact and
fast responses to skNN queries. Two complementary indexing
schemes, namely Tight Surface Index (TSI) and Loose Surface
Index (LSI), are constructed and stored collectively on a single
novel data structure called Surface Index R-tree (SIR-tree). With
those indexes, we can process skNN query efficiently by
localizing the search and minimizing the invocation of the costly
surface distance computation and hence incurring low I/O and
computation costs. Our algorithm does not need to know the value
of k a priori and can incrementally expand the search region using
SIR-tree and report the query result progressively. It also reports
the exact shortest surface paths to the query results. We show
through experiments with real world data sets that our algorithm
has better performance than the competitors in both efficiency and
accuracy.

1. INTRODUCTION
Two recent technological advances are giving rise to a new class
of exciting applications marrying the interactivity and
engagements of computer games with the information richness
and practicality of geospatial information systems. These include
advances in: 1) sensory devices that can acquire imagery,
elevation and other types of data of Earth surface at a very high
resolution from distance, and 2) computer graphics software and
hardware that can quickly render complicated high resolution 3D
graphics on the computer display. This new class of geo-realistic
games has a wide range of applications in the areas of decision
making, entertainment and realistic simulation systems for

training to name a few.

One fundamental technical challenge that prevents the realization
of these applications is in fact in the area of data management.
The challenge is that real-world large geospatial datasets residing
on disk drives need to be queried and accessed as if they are
synthetically rendered data in memory. Unfortunately, most disk-
based data structures are designed to expedite the rendering of
this geo-realistic data (e.g., Google Earth) rather than its querying
and access. This paper is our initial attempt to design an index
structure on a subset of this data set to expedite one class of
spatial queries.

The k Nearest Neighbor (kNN) query is an important class of
queries in geospatial databases. The kNN query searches for sites
(e.g., hotels, gas stations or other points of interest) with
minimum distance with reference to one or more query points [1].
Various studies focused on the problems of kNN and its variations
such as reverse kNN [2], continuous kNN [3] and network kNN
[7]. Most of those queries are carried out in 2-D geospatial
database and not take the elevation information into consideration.
However, incorporating land terrain information becomes critical
to make the aforementioned applications as realistic as possible.
Thus the new generation of geo-databases should be able to
support the kNN query on 3-D data of land surface. In this so
called surface k Nearest Neighbor queries, the objects can only
move on the terrain surfaces and the actual distance depends on
the shortest surface path between two points. Besides the
applications mentioned in [8] [13], skNN query is also useful for
tourism applications, evacuation planning and military operations.
Furthermore, different variations of skNN such as the continuous
skNN query where sites (e.g., vehicles) are moving and the visible
skNN query enable many other interesting applications.

Example 1: Figure 1 shows a sample application for skNN query.
In a virtual environment based on the elevation data of Yosemite
National Park, a trekker wants to know how far the nearest camp
site is. Note that, p1 is the nearest site in 3-D Euclidean distance;
however, since its surface path need to go across the valley, it is
actually farther than site p2 on the other side.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Database
Endowment. To copy otherwise, or to republish, to post on servers or to
redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’08, August 24 -30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Figure 1. The Surface k Nearest Neighbor Query

1020

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Unlike other types of kNN queries, there are few studies on skNN
queries [8] [13], largely due to the following three challenges:

 The huge size of surface model: A surface is usually
represented as the TIN (Triangular Irregular Network) model,
a mesh generated from the sampled ground positions with 3-D
coordinates. A region of 10km×10km using a 10m sampling
interval has about 1 million triangles. The standard TEC
(Topographic Engineering Center) LIDAR data sets are at 1m
resolution (resulting in 100,000,000 triangles to represent a
100 km2 area), with some even higher resolution data
collected for special purposes, e.g., for military applications.

 The high computation complexity to find the shortest surface
path: The state-of-the-art algorithm [10] needs O(N2) time to
compute the shortest surface path between only a single pair
of points, where N is the size of the surface model. In [13], it
is reported that this operation will take tens of minutes on a
modern PC machine. Note that the surface distance
computation is fundamental and frequent in the skNN query.

 There is no existing surface index structure to expedite spatial
querying. Classic indexes for traditional kNN query, such as
R-tree and Voronoi diagrams are difficult to apply directly
due to the complexity of the land surface. The previous
studies on surface data are mostly focused on the compression,
rendering and visualization of this data [9].

Even though the land surface model of TIN can be considered as
a network with triangles’ sides and vertices as edges and nodes of
the network, respectively, the proposed techniques for network
kNN are not suitable for skNN either. First, the road network
distance on TIN is only an approximation of the actual surface
distance, thus the shortest surface path may pass through the faces
of the triangles and not along the edges. Hence, the network kNN
algorithms may not provide exact answers to skNN queries.
Second, TIN is much larger and more complex than a traditional
road network. Many of the existing algorithms cannot scale to
such huge and complex datasets.

We are only aware of one study addressing skNN [8] [13], in
which the authors employed a filter and refinement strategy to
process skNN queries. The idea is to answer skNN queries by
ranking the sites based on the range of their upper and lower
bound distances to the query point. The main drawback is that the
reported k nearest neighbors is not accurate and may be out of
order. Our experiments (see Section 6.3.2) show that even if we
ignore the out-of-sequence results, still the accuracy of this
approach drops to below 50% for k > 5. Moreover, this approach
cannot report the actual shortest surface path between the query
point and the result set and require knowing the value of k a priori.

In this paper, we propose two novel spatial indexes for skNN
query, namely Tight Surface Index (TSI) and Loose Surface Index
(LSI). These indexing schemes partition the land surface in the
neighborhoods around the sites similar to the concept of Voronoi
diagram. Since the computation of Voronoi cells on land surface
is more challenging due to the irregularity of surface paths. We
create two approximations of these cells, the tight and loose cells.
Any point inside the tight cell of a site is immediately reported as
its nearest neighbor and those outside the loose cell of the site are
others’ nearest neighbors. For those points in the buffer between
the two cells (which is a small area relative to the entire space),

we need to incur the complexity of computing the actual surface
distance. However, the cells localize this computation to save
significantly on both the I/O and CPU processing. Our techniques
can handle obstacles by modeling obstacles as part of TIN and
setting their elevation to be infinite.

The remainder of the paper is organized as follows. Section 2
discusses some related research. In Section 3, we define the
problem and provide some background materials. Section 4
describes the two surface indexes, their spatial properties, and the
data structure for their implementation. Section 5 provides the
algorithms to process skNN query and Section 6 reports on the
results of extensive experiments. Finally, Section 7 summarizes
the paper and discusses the future work.

2. RELATED WORK

2.1 kNN Query Processing Techniques
Depending on the assumed distance metric, kNN queries can be
divided into the following two categories.

With the first category, the distance computation is performed in
constant time (e.g., the computation of Euclidean distance using
the point’s coordinates). The proposed algorithms and techniques
mainly focus on pruning the site set P to identify kNN.
Roussopoulos et al. [1] propose an R-tree based kNN algorithm
that prunes in a branch-and-bound manner; Korn et al. [2] study
the influence set (reverse nearest neighbors) to the sites; Tao et al.
focus on continuous kNN with moving query points [3] and
aggregate kNN on multiple query points [4].

With the second category, the computation of the distance metrics
is computationally complex due to the underlying constrained
space. One important class is the road network kNN where the
space is constrained due to an underlying graph structure. Shahabi
et al. [5] introduce an embedding technique to transfer the road
network to a constraint-free high dimensional space. Papadias et
al. [6] introduce techniques for network kNN queries by
integrating network and Euclidean information and capturing
pragmatic constraints. Kolahdouzan et al. [7] propose a Voronoi-
based algorithm, VN3, for spatial network databases.

The only previous approach to the skNN problem is discussed in
[8], with an extended version in [13]. Deng et al. propose a
distance range ranking method for the skNN query on the multi-
resolution terrain model. Based on a terrain visualization model
called Direct Meshes [9], the authors design lower and upper
bound metrics for surface distance. Instead of computing the
surface distance directly, the sites are selected out and ranked by
their distance range between lower and upper bounds. Even
though this is an efficient approach to process skNN query, it only
provides approximate answers. That is, the algorithm neither
guarantees the correctness of the computed distance nor provides
the actual shortest surface path between the query point and target
sites. In our experiments (Section 6), we compare the accuracy of
our approach with that of [8].

2.2 Computational Geometry Studies
The shortest path computation on polyhedron surfaces has been
extensively studied by the computational geometry community.
The idea is to first unfold all the faces of the polyhedron in one
plane, and then the surface path will be a straight line in that plane

1021

connecting the two points. However, there are several
combinatorial ways to unfold the polyhedron depending on the
unfolding order of each face. The shortest path is the straight line
with minimum distance connecting two points in all possible
unfoldings. The state-of-the-art algorithm, Chen-Han algorithm
(CH) [10], uses a tree to store and traverse all the possibilities.
This algorithm costs O(N2) time and Θ(N) space, where N is the
number of polyhedron faces. There are several improvements on
Chen-Han algorithm: Kanai et al. [11] propose an approximate
algorithm for surface distance computation. Deng et al. [12]
design an expansion based algorithm to find the shortest path on
surface. However, Deng et al. [13] point out, even the best
algorithm still takes several minutes for the distance computation
between a single pair of points on the complex land surface. Note
that in skNN queries, the surface distance computation is a
fundamental and frequent operation. In our experiments, we
compare the response time of our approach with that of [10].

3. BACKGROUND
Before explaining the approach for surface kNN query, let us first
formally define the metrics used in our approach and the problem.

3.1 Metrics and Problem Definition
TIN (Triangular Irregular Network) is the most popular model to
construct a land surface. TIN is generated from DEM (Digital
Elevation Model) of sampled ground positions at regularly spaced
intervals. Based on these samples, TIN constructs the surface
triangles by connecting the points as non-overlapping triangles.
Note that, the sites and the query points may be located on the
face of triangles. For computational convenience, in such cases,
the system will connect the site/point with the three vertices of
that triangle, making it as one vertex of the TIN model.

Given the real-world application scenarios, we formalize the
definition of surface distance as follows:

Definition 1 (Surface Distance): Let T be the surface model, the
surface distance between two points p and q, DS (p, q), is the
length of the shortest path connecting the two points on T.

Definition 2 (Euclidean Distance): The 3-D Euclidean distance
between two points p and q, DE (p, q), is the length of the straight
line connecting the two points.

Since the land surface is a constrained 3-D space, DE (p, q) is the
lower bound for DS (p, q). Another related distance metric which
is frequently used as the upper bound is the network distance over
the triangles.

Definition 3 (Network Distance): Let T be the surface model, the
network distance between two points p and q, DN (p, q), is the
length of the shortest path between the two points on the graph of
T.

Note that the network distance is computed by accumulating the
length of the triangle sides that exist between two points. Hence,
it is always larger than the surface distance since it does not pass
over the face of the triangles. It is important to note that the
network path is not always an appropriate approximation of the
actual surface path because even though the actual distance values
are close, the actual paths may be quite different. To illustrate,
consider Figure 2 that shows the three types of distances in an

area within the Yosemite National Park. The value of network
distance is close to the surface distance but they are on two
different paths.

Figure 2. Surface, Network and Euclidean Distances

Now we give a formal description of the skNN problem:

Problem Definition: Let T be the surface model and P be the site
set, given a query point q, an skNN query identifies the k nearest
neighbor sites to q based on the metric of surface distance on T.

Evaluating an skNN query consists of two steps: 1) Computing
the shortest surface path from q to a set of candidate sites in P; 2)
Identifying the k nearest neighbors. Without loss of generality, in
the following sections we first address the nearest neighbor query
(k = 1), then later in Section 5 we extend our approach to the kNN
(k > 1) problem.

3.2 Shortest Surface Path Computation
Chen-Han (CH) algorithm [10] is the state-of-the-art algorithm
and widely used in computing the shortest path on polyhedron
surfaces. We explain it here using an example.

Example 2: Figure 3 shows the process of computing the surface
distance between A and B on a tetrahedron. The triangular face 1,
2, 3 and 4 are unfolded to a plane with different unfolding orders
(Case 1--3). The surface distance is the length of the shortest
straight lines connecting A and B. The algorithm will compare the
unfolding results and output Case 2 as the shortest surface path.

Figure 3. The Unfolding Process of Chen-Han Algorithm

The main drawback of CH algorithm is the expensive costs in
time and space. It computes the surface distance between one pair
of points in O(N2) time, where N is the number of the surface

1022

Property 1: For any query point q ∈ TC(pi), the nearest neighbor
of q in surface distance is pi.

faces. Even worse, the algorithm needsΘ(N) space to store the
unfolding results. Hence, it is too costly to apply it directly on the
fly to compute surface distances in skNN queries.

Proof: q ∈TC(pi) => DN(pi, q) < DE(pj, q) (∀pj ∈P, pj ≠ pi).

3.3 Voronoi Diagram Since DS(pi, q) ≤ DN(pi, q) and DE(pj, q) ≤ DS(pj, q) then
A common method to partition space is by using Voronoi
diagrams. A Voronoi diagram [14] divides a space into disjoint
cells according to the sites. For any query point that falls inside a
cell, the nearest neighbor is the cell’s generator (the site
corresponding to that cell). Voronoi diagrams have been widely
used to process continuous kNN [3] and network kNN queries [7].

DS(pi, q) < DS(pj, q). Hence, pi is the nearest neighbor of q in
surface distance. □

We can now formally define the Tight Surface Index as follows.

Definition 5 (TSI): Let P be the site set P = {p1, p2, … pm}, and T
be a surface model, Tight Surface Index (TSI) is a set of tight
cells generated from P, defined by TSI(P) = {TC(p1), TC(p2), …
TC(pm)}.

Various approaches have been proposed to compute Voronoi
diagrams in 2-D Euclidean spaces [15]. The common boundary
edge between two neighboring Voronoi cells is the perpendicular
bisector of the line connecting the two corresponding sites.
Voronoi diagrams have also been used to partition network spaces;
Kolahdouzan et al. employ network Voronoi diagrams to support
network kNN queries [7]. However, to the best of our knowledge,
none of the proposed algorithms can be extended to compute
Voronoi diagrams on complex land surfaces. The challenges are:

Note that with TSI, the cells do not cover the entire area; there
exist some unclassified areas between the cells. Figure 4 shows
the TSI on the land surface of Yosemite. For the purpose of
clarity, only seven of them with their generators are drawn in the
figure.

1) The dividing edges of the Voronoi cells on land surface are not
only determined by the locations of the sites, but also influenced
by the surface itself. Thus simply finding the perpendicular
bisector line between two sites, which is the foundation of many
existing algorithms, is no longer sufficient or even necessary.

2) The naïve way of constructing Voronoi diagram on polyhedron
[10] has to compute the shortest surface path to all the vertices.
This algorithm needs O(mN3) time and Θ(mN) space, where m is
the total number of sites and N is the number of polyhedron’s
vertices. This cost may be acceptable in the case of a polyhedron
where m and N are relatively small, but in skNN query cases there
are usually thousands of sites and millions of TIN vertices,
rendering the surface distance computation impossible.

Since constructing the Voronoi diagram on land surface is not
feasible. Thus, we will propose two novel indexes to help
processing skNN query.

Figure 4. Tight Surface Index

TSI can be used as a filter step for skNN query processing in the
following way: If the query point q is inside a certain tight cell,
the system will immediately report the generator as q’s nearest
neighbor; but if q locates in the unclassified area (outside any
tight cell), then we have to carry out more computations.

4. INDEXING THE LAND SURFACE
This section presents our two proposed spatial index schemes:
Tight Surface Index (TSI) and Loose Surface Index (LSI) to
process skNN queries. We also analyze their spatial properties.

4.1 Tight Surface Index

4.2 Loose Surface Index
TSI defines a tight area around site p in which any point is
guaranteed to have p as its nearest neighbor in surface distance.
Opposite to TSI, Loose Surface Index (LSI) defines a loose area
around p outside which any point is guaranteed not to have p as
its nearest neighbor in surface distance. Consequently, any query
point q that is outside a site p’s tight cell but inside its loose cell,
require further processing. Any other query point can be
immediately decided upon whether it has p as nearest neighbor or
not using LSI and TSI, respectively. We now formally define LSI
and prove its properties. We also formally show the relationships
between the two indexes.

To explain the core idea of Tight Surface Index, recall that the
surface distance has a lower bound of Euclidean distance and an
upper bound of network distance. Hence, if the upper bound
distance between the query point q and a site p, DN (p, q), is less
than any of the lower bound distances from q to any other site,
then we can safely conclude that p is the nearest neighbor of q. In
such cases, the locations of query points are in an area close to p.
Tight Surface Index (TSI) is devised to specify such a
neighborhood area for each and every site p.

Definition 6 (Loose Cell): Let T be a surface model, loose cell
LC(pi) is a polygon area around site pi, defined by LC(pi)={q: q
∈T and DE(pi, q) < DN(pj, q) (∀pj ∈P, pj ≠ pi)}, pi is called the
generator of LC(pi).

Definition 4 (Tight Cell): Let T be a surface model, tight cell
TC(pi) is a polygon area around site pi, defined by TC(pi)={q: q
∈T and DN (pi , q) < DE(pj, q) (∀pj ∈P, pj ≠ pi)}, pi is called the
generator of TC(pi).

1023

It is easy to see that the loose cell of each site fully contains its
tight cell, because every point in a tight cell also satisfies the
conditions of a loose cell.

Definition 8 (Neighbor): Given a site p, the neighbors of p are
defined as NL(p) = {pi| TC(pi) and LC(p) have common edges}.
LSI will be used as a complementary index for TSI: if the query
point q is in the unclassified area of TSI, then we will investigate
the loose cells that contain q, they are the candidates as q’s
nearest neighbor. Hence, we only need to compute the surface
distance between q and those candidates. This is much more
efficient as compared to the naïve way of computing surface
distances from q to all the sites.

Property 2: Site pi is guaranteed not to be the nearest neighbor of
q if q is outside LC(pi).

Proof (by contradiction): If q is outside LC(pi), then ∃pj ∈P (pj
≠ pi) such that DE(pi, q) > DN(pj, q).

Thus DS(pi, q) ≥DE(pi, q) > DN(pj, q) ≥DS(pj, q). That is, the
surface distance from q to pi is larger than its distance to pj. Hence
pi cannot be the nearest neighbor of q. □

Another usage of LSI is to improve the efficiency of surface
distance computation. Chen-Han algorithm needs to unfold the
triangles of the entire surface area to find the shortest path.
However, assuming q’s nearest neighbor is p, if we show that not
only q cannot be outside LC(p) but also the shortest surface path
from q to p is fully contained in LC(p), then we can limit the
unfolding only within LC(p).

Definition 7 (LSI): Let P be a site set P={p1, p2, … pm} and T be
a surface model, Loose Surface Index (LSI) is a set of loose cells
generated from P, defined by LSI(P) = {LC(p1), LC(p2), …
LC(pm)}.

Property 4: If pi is the nearest neighbor of q, then the shortest
surface path from q to pi is inside the loose cell LC(pi).

Proof (by contradiction): Suppose that a portion of the shortest
surface path from q to p falls outside LC(p), then suppose a point
m is on that outside portion of the path (Figure 6).

Since m is outside LC(p), then ∃ pj ∈P(pj ≠ pi) that DE(pi, m) >
DN(pj, m) and hence DS(pi, m) > DS(pj, m).

Then DS(pi, q) = DS(pi, m) + DS(m, q) > DS(pj, m) + DS(m, q) =
DS(pj, q), which contradict the fact that pi is the nearest neighbor
of q. □

Figure 5. Loose Surface Index

Figure 5 illustrates an example of Loose Surface Index. Unlike
TSI, the loose cells cover the entire map and have some overlap
areas. Moreover, the overlap areas of LSI are precisely the same
as the unclassified areas in TSI. This is not a coincidence. In fact,
one of the most important contributions of this paper is that we
prove that loose cells and tight cells actually share the same edges.

Property 3: Given that TSI and LSI are generated for the same
site set P, the tight and loose cells have common edges; more
specifically, all the tight cell’s edges are also the edges of loose
cells.

Figure 6. Shortest Surface Path and Loose Cell Proof: To prove the above property, we only need to prove that
for any edge e of the tight cell TC(pi), e is also the edge of another
loose cell LC(pj).

Therefore, Property 4 indicates that we only need to unfold the
triangles inside the candidate loose cells containing q to find the
nearest neighbor. Thus the high computation cost is reduced since
the area of loose cell is on average 1/m of the original map.
Subsequently, the time complexity of surface distance
computation is reduced from O(N2) to O((N/m)2) and the space
complexity is reduced to Θ (N/m), increasing the algorithm’s
efficiency for large number of sites (m is the total number of sites,
N is the size of surface model).

By definition of a tight cell TC(pi), for any point q on e, ∃ pj (pj ≠
pi) that DN(pi, q) = DE(pj, q).
Meanwhile, by definition of the loose cell LC(pj), q is also a point
on its edge, since DE(pj, q) = DN(pi, q). Thus we can safely
conclude that e is also an edge of LC(pj). □
Since the tight cells have unclassified areas in the middle, and the
loose cells overlap with each other, it is a little tricky to determine
their neighbors. Fortunately, since they have common edges we
can define the neighbors in the following manner.

We need to point out that property 4 only holds for the first
nearest neighbor. For kNN with k > 1, the shortest surface path
from q to the generator will not only stay inside its own loose cell.
We will discuss this issue later in Section 5.

1024

4.3 Index Construction
Even though the cells of TSI and LSI serve almost the same
purpose as those of a Voronoi diagram on 2-D Euclidean space,
their construction is much more challenging. In this section, we
discuss our proposed process to construct the cells of TSI and LSI.
We will mainly focus on the construction of tight cells as the
loose cells construction follows a similar process. We start by
describing a naïve approach and then we explain our fast index
construction algorithm.

4.3.1 Naïve Index Construction

4.3.2 Fast Index Construction
We can significantly reduce the complexity of the naïve algorithm,
if we could successfully identify the triangles that overlap with
the edges of the tight cells. Then there would be no need to
examine the vertices of any other triangle. Unfortunately, there is
no way to know these edge triangles in advance. However, we
can start with a rough prediction of those triangles by first
drawing the Voronoi diagram1 of the sites in the Euclidean space.
Those triangles that overlap with the edges of this Voronoi
diagram, termed candidate triangles, are potential edge triangles.
The intuition of using Voronoi diagram is based on the following
observation on the relationship between one site’s tight cell and
its Voronoi cell.

A naïve approach to generate the tight cells is as follows. First,
for each surface triangle of the TIN mesh, we need to make a
decision to identify the tight cell to which it belongs. Property 5: Given any site p1, its tight cell TC(p1) is inside its

Voronoi cell VC(p1). The simple case is when all the three vertices of the triangle
belong to the same site p1. In this case, we immediately consider
the triangle to be a member of the p1’s cell (e.g., Triangle 1 in
Figure 7). In contrast, if none of the vertices belongs to p1, the
triangle is excluded (e.g., Triangle 2 in Figure 7). A more
complicated case is that only one or two vertices of the triangle
belong to site p1 (e.g., Triangle 3, 5 in Figure 7). Then we need to
compute the exact location of the two or three transition points on
the edges of such triangle. A transition point is defined as a point
on an edge whose network distance to its nearest site pN is equal
to the minimal of its Euclidean distances to all the other sites (e.g.,
pt in Figure 7 that DN(pt, p1) = DE(pt, p2)). We could term this
transition point as pN’s transition point. Therefore, a transition
point breaks an edge into two pieces, one belonging to a certain
tight cell and the other one belonging to the unclassified area.
Connecting all the transition points across surface triangles would
eventually generate the border of the tight cells. For each vertex
of the triangle, we need to compute both the Euclidean and the
network distance to all of the m sites in order to decide to which
site’s cell the vertex belongs. Since network distance computation
costs O(NlogN) time, the total time complexity to this naïve
approach is O(mN2logN), where m is the total number of sites and
N is the size of the surface model. Hence, in the following section
we introduce a novel approach that would result in a much lower
time complexity for most practical scenarios.

Proof: To prove the above property, we only need to prove that
all p1’s transition points are inside VC(p1).

By the definition of transition point, for any of p1’s transition
points pt, DN(pt, p1) ≤ DE(pt, pi) (∀pi ∈P, pi ≠ p1). Meanwhile,
DE(pt, p1) ≤ DN(pt, p1). Therefore, DE(pt, p1) ≤ DE(pt, pi) (∀pi
∈P, pi ≠ p1). By the definition of Voronoi diagram, pt must be
inside VC(p1). □

The final step is to investigate each of the candidate triangles,
using the same process we discussed for the naïve approach, to
decide whether this triangle is in fact an edge triangle or not.
Towards this end, we need to compute the Euclidean and network
distance between each of the vertices of the candidate edge
triangle to all the m sites in order to decide the tight cell each
vertex belongs to. There are two possible cases: 1) only one or
two vertices of the triangle belong to site p1 (e.g., Triangle 3 in
Figure 7), then it is an edge triangle, the transition points are
computed and the TSI edge is generated. 2) None of the vertices
belong to site p1 (Triangle 4 in Figure 7); therefore, this triangle is
not an edge triangle and we need to find another candidate
triangle. Fortunately the area of tight cell is tighter than Voronoi
cell, we only need to examine whether the candidate triangle’s
closer neighbors are edge triangles or not (e.g., Triangle 5 in
Figure 7). Once an edge triangle is determined, the transition
point on the corresponding edge can be computed by solving
quadratic equations. In the worst case, for each generator, we only
need to investigate the triangles inside the corresponding Voronoi
cell as a result of Property 5. Hence, the total time to generate TSI
is brought down to O(N2logN).

Algorithm 1 depicts the algorithm of TSI construction approach.
A stack is maintained to filter and refine the candidate triangles.
First we compute the Voronoi diagram and push the triangles that
overlap with the Voronoi edges into the candidate stack (Line 2-
5); then examine each triangle in the stack to identify the edge
triangles. The algorithms have to search the triangle’s neighbors
if the one is not an edge triangle (Line 7-10); else we can generate
the TSI edges on the triangles (Line 11-15).

1 Note that this Voronoi diagram is built in 3-D Euclidean space.

A simpler but rougher alternative is the Voronoi diagram on the
projected 2-D Euclidean space. However, the following
Property 5 may not hold for 2-D Voronoi diagram resulting in
more candidate triangles.

Figure 7. Tight Surface Index Construction

1025

In the case of LSI construction, when the candidate triangle is
found not to be an edge triangle, the search area is expanded to
farther neighbors, because loose cell is larger than its
corresponding Voronoi cell. The algorithm of LSI construction is
similar to Algorithm 1; however, the farther neighbor instead of
the closer one is pushed into the stack (Line 9).

Algorithm 1: Fast TSI Construction (Site set P, Surface T)
1 initialize stack C, result set TSI;
2 compute the Voronoi diagram V(P) in Euclidean space;
3 for each surface triangle f overlapping with V(P) edges
4 push (C, f);
5 end for
6 while (C is not empty)
7 t pop(C);
8 if (t is not edge triangle) then
9 push the closer neighbor triangles into C;
10 end if
11 else // t is edge triangle
12 compute the edge e on t;
13 add e to TSI;
14 end else
15 end while
16 return TSI;

Figure 9. Surface Indexes R-tree
Figure 8. TSI Construction Algorithm To dynamically maintain SIR-tree, we have implemented the

insert, delete and update operations. A good property of LSI and
TSI is the local updatability: when a site changes, only its
neighbor’s cells need updating. However, TSI has unclassified
areas in the middle and LSI allows the cells to overlap with each
other, which make it difficult to determine the cell edges.
Fortunately, Property 3 shows that, each tight cell shares the same
edges with neighbor site’s loose cells and vice-versa. Hence, we
can update LSI with the new tight cell and TSI with the new loose
cell. The algorithm for SIR-tree insertion is shown in Figure 10
(the delete and update operations are similar and hence omitted).

4.4 Surface Index R-tree
TSI and LSI are ways to partition the land surface space. To be
practical for skNN query processing as indexes, they need to be
stored in an appropriate data structure.
Many data structures are proposed and employed to facilitate
kNN processing. R-tree [16] is the most prominent index structure
widely used in geospatial data management area. In this section,
we show how we use the R-tree to store the TSI/LSI indexes. We
refer to this index structure as Surface Index R-tree (SIR-tree).

As shown in Figure 9, SIR-tree has the basic structure of an R-
tree that is generated on the site set P. The difference lies in that
the SIR-tree’s leaf nodes not only store the sites inside the
corresponding MBR, but also record the pointers to the vertex
lists of tight and loose cells. Since TSI and LSI are both generated
from the same site set, they share one SIR-tree. To facilitate kNN
query processing, we also store the site’s neighbor list in SIR-tree.
Similar to Voronoi diagram in 2-D Euclidean space, where the
average number of neighbors is bounded by six [14], the
tight/loose cell has a constant average number of neighbors as
shown in Figure 19. Therefore, the overhead for maintaining such
neighbor list is constant per site.
The SIR-tree index will be constructed only once before query
processing. Suppose that we have built an R-tree on the site set,
and the TSI and LSI are also constructed. To incorporate the two
index schemes into the R-tree, we need to traverse the R-tree and
add the pointers to the cells and neighbor list in each leaf node.

Algorithm 2: SIR-tree Insertion (SIR-tree I, site p)
1. locate p in I, find out the loose cell LC(r) containing p;
2. p.neighbor LC(r)’s neighbor;
3. compute TC(p) and LC (p);
4. for each site pi in p.neighbor
5. update LC(pj)’s edges according to TC(p);
6. update TC(pj)’s edges according to LC(p);
7. insert p into I;
8. return I;

Figure 10. SIR-tree Insertion Algorithm
Example 3: Figures 11 shows the insertion process for TSI: when
a new site p1 is inserted into SIR-tree, first we compute the loose
cell LC(p1). Since the neighbor tight cells share the same edge
with LC(p1), we can easily adjust them according to LC(p1).
Finally we insert TC(p1) to the index.

1026

Figure 11. SIR-tree Insertion Example

5. QUERY PROCESSING
In this section, we explain our algorithms for skNN query
processing using SIR-tree. First, we discuss our method for the
nearest neighbor query processing (k = 1), and then we extend it
to the kNN (k > 1) case.

5.1 Nearest Neighbor Query
Given a query point q, to process the surface nearest neighbor
query, we have to traverse in the SIR-tree to locate q with the
TSI/LSI indexes. First we carry out a depth-first search from the
SIR-tree root to the last node Nl that contains q. Then we get all
the sites inside Nl, check out the tight/loose cells containing q. If
none of the cells contains q, we have to go to Nl’s parent node Np
and continue search. As soon as we find a certain tight cell
containing q, the cell’s generator is returned as the nearest
neighbor. If q is in the unclassified area of TSI, we will take the
sites whose loose cells contain q as candidate NNs. As a
consequence of Property 3, we know that if we find a certain
loose cell p containing q in such case, all the other candidate NNs
are in the neighbor cells of LC(p). Subsequently, each candidate
NN’s loose cell is unfolded to compute the shortest surface path
and the one with the minimum distance is selected as the nearest
neighbor. The algorithm to process the nearest neighbor query is
depicted in Figure 12.

Proposition 1: Let N be the size of the surface model T and m be
the total number of sites, Algorithm 3’s time complexity is
O((N/m)2 + log(m)).

Proof: The major time consuming steps are the searching step
(Line 2-15) and the surface distance computation step (Line 17).
The algorithm needs O(log(m)) time to locate q in the SIR-tree
and O((N/m)2) time to compute the surface distance (if necessary)
by using Chen-Han’s unfolding technique. Thus the total time
complexity is O((N/m)2+ log(m)). □
However our experiments show that in most cases, we can locate
q quickly in a certain tight cell and output the generator as the
result without any surface distance computation.
Example 4: In Figure 13, by a depth-first search, query point q1 is
located in the node N1. Then the algorithm have to check whether
q1 is contained in the tight/loose cells whose generators are inside
N1.(e.g: p1, p2 … p8). When the algorithm find q1 is in the tight cell
TC(p2), thus p2 is immediately returned as the query result and the
algorithm terminates. For query point q2, first we search in N4 but
could not find any tight cell containing q2, only a loose cell LC(p3)
contains q2. Hence it is in an unclassified area. We check p3’s

neighbors and select p6 as another candidate NN. Consequently,
we have to compute the surface distance of candidate NNs for
further processing. LC(p6) and LC(p3) are unfolded to compute the
shortest surface paths. Finally, DS (p3, q) is identified as the
shortest distance and p3 is returned as q2’s nearest neighbor.

Algorithm 3: NN Query (SIR-tree I, point q, surface T)
1. initialize candidate set C, stack nodelist;
2. for the node N in I that contains q // depth-first search
3. push(N, nodelist)
4. end for
5. while nodelist is not empty
6. N Pop (nodelist);
7. for each site p in N
8. if TC(p) contains q then return p;
9. if TC(p) doesn’t contain q but LC(p) contains q
10. add p to C;
11. check p’s neighbors, add the one containing q to C;
12. break;
13. end if
14. end for
15. end while
16. for each p in C // the candidate NNs
17. unfold LC(p) in T to compute DS (p, q);
18. end for
19. select p with the minimum D S (p, q) in C;
20. return p;

Figure 12. NN Query Algorithm

Figure 13. Nearest Neighbor Query Example

5.2 kNN Query
Our algorithm can be extended to process the kNN query in an
expanding manner. We start from the first NN and expand the
search area by including the neighbor loose cells of the first
nearest neighbor. Once we identify the second nearest neighbor in
these cells, we continue by investigating the neighbor loose cells
of the second nearest neighbor to find the third nearest neighbor
and so on. Therefore, we can report the results incrementally.

1027

In order for this approach to work, we need to prove that the next
nearest site at each step of the process is the generator of one of
the neighbor cells of those nearest neighbors found so far.

Property 6: The next nearest site is the generator of one of the
neighbors of the NNs found so far.

Proof (by induction): First, we prove the basis, that is, we need
to prove that the second nearest site is the neighbor of the first NN.
This proposition can be proved by contradiction. In Figure 14,
suppose p3 is the first NN of q, and the second NN is p7, which is
not the neighbor of p3.
Since p3 and p7 are not neighbors, a point m on the shortest
surface path between q and p7 can be found that is outside both
LC(p3) and LC(p7). And by Property 2, p7 is not a candidate
nearest neighbor to m since m is not in LC(p7).

Thus, there exists another site, p1 for instance, which is closer to
m than p7. That is, DS(m, p7) > DS(m, p1), then DS(q, p7) = DS(q, m)
+ DS(m, p7) > DS(q, m) + DS(m, p1) = DS(q, p1). Therefore p7 is
farther to q than both p3 and p1, which contradicts the assumption
that p7 is the second nearest neighbor.

Now we prove the inductive step, that is, suppose the inductive
hypothesis holds for k-1, we prove that it also holds true for k.
Let G ={p1, p2, … pk-1} be the k-1 nearest neighbors of the query
point q, we prove that the k-th nearest neighbor pk is among the
neighbor cells of G.
The proof is similar to the above prove by contradiction. Consider
a k-th NN point pk which is not the neighbor of G. Then on the
surface path from q to pk, there exists a point m which belongs
neither to LC(pk) nor to LC(p1)…LC(pk-1). Thus, pk is not the
nearest neighbor of m. Suppose the nearest neighbor of m is pi,
where pi ≠ p1, p2, … pk. Hence, DS(q, pk)= DS(q, m) + DS(m,
pk) > DS(q, m) + DS(m, pi)=DS(q, pi). Therefore, Thus pk is farther
to q than p1, p2, … pk-1 and pi, which contradicts the assumption
that pk is the k-th nearest neighbor. □

Figure 14. Surface Path to Second NN

As a consequence of Property 6, we also know that the shortest
surface path from q to the k-th NN pk will lie in the area of

LC(G) LC(pk) = LC(p1) LC(p2) … LC(pk). U U U U

Now we are ready to explain our algorithm to process kNN
queries: we start by adding all the neighbors of the current NN set
G to a candidate set. For each candidate pi, we unfold the area of
LC(pi) and LC(G) to compute surface distance, then we select the

one with minimum distance as the next NN result. The algorithm
is depicted in Figure 15. Note that, in this algorithm, we use a
heap to store the candidates. Hence, even without a pre-specified
value for k, the algorithm can still report the results incrementally.

Algorithm 4: kNN Query (SIR-tree I, point q, surface T)
1. p Nearest Neighbor Query(I, q, T); //Algorithm 3
2. add p to kNN set G;
3. initialize minimum heap H;
4. while(G.size < k)
5. for each neighbor site pi of G;
6. unfold LC(G) U LC(pi) to compute surface distance;
7. add pi to H;
8. end for
9. p deheap H;
10. add p to G;
11. end while;
12. return G;

Figure 15. kNN Query Algorithm
Example 5: Figure 16 shows the process to query third nearest
neighbor on the land surface of Yosemite National Park. p1 and p2
are the first and second nearest neighbor found so far. The
neighbors of them: p3, p4 … p10 are selected as the candidate sites.
To compute the shortest surface path from query point q to a site
p3, we only need to unfold the area of LC(p1) U LC(p2) U LC(p3).
When all the candidates are pushed in the heap, the one with
minimum surface distance will be selected out as the third nearest
neighbor.

Figure 16. kNN Query Example

Proposition 2: Let N be the surface model size, m be the number
of sites, and s be the average number of each site’s neighbors,
Algorithm 4’s time complexity is O(sk3(N/m)2 + log(m)).
Proof: Calling Algorithm 3 has the time complexity of O((N/m)2
+ log(m)). The major time consuming step of Algorithm 4 is the
surface distances computation (Line 6). In the worst case, there
are s × k candidates, with each candidate’s surface distance
computation requiring O((kN/m)2) time. The total time complexity
is O (sk3(N/m)2 + log(m)). Our experiments will show that s is a
relatively small number less than 10 in real applications. □

1028

6. PERFORMANCE EVALUATION

6.1 Experimental Setup
As the skNN problem is motivated by real-world applications,
two large scale land surface datasets in real world are used in the
experiments. They are downloaded from USGS [17] and the same
as the datasets used in previous studies [8].
1. Eagle Peak (EP) area at Wyoming State: The data set covers

an area around 10.7km×14km.

2. Bearhead (BH) area at Washington State: The area is almost
the same size as EP, but has more mountains. Figure 18. TSI Coverage Figure 19. Average Neighbors

6.3 Competing Approaches
The main contribution of our Surface Index (SI) approach is that
it provides the exact k nearest neighbors with their corresponding
surface paths to the query point in a relatively short time. The two
competitions are the Range Ranking (RR) method [8] that
provides approximate answers quickly and the original CH
algorithm [10] that generates exact results but slowly. In this
section, we use variations of both algorithms to show that our
results are more accurate than the most accurate variation of RR
and faster than the fastest variation of CH.

Figure 17. EP and BH Areas With RR method [8], a four-step filter and refinement framework
is designed to process the skNN queries: 1) Perform an Euclidean
kNN query in the 2D projection plane; 2) Rank the selected k sites
based on the upper and lower bounds of surface distance; 3)
Employ the k-th site’s upper bound as the threshold, perform a
range query using query point q as the center and the threshold as
the radius; 4) Rank the candidates generated in step 3 to find
skNN, using the same algorithm as in step 2.

Figure 17 shows an airscape of the two areas from Google Earth.
The sites are uniformly distributed on the surface with varying
densities from 1% to 5%.
As mentioned in previous sections, three types of distance metrics
are frequently used in the skNN query: Euclidean distance,
surface distance and network distance. Euclidean distances are
computed directly using the coordinates. We use the most recent
implementation of CH algorithm [18], although localized because
of our technique, to compute surface distances, and employ the
classic Dijkstra algorithm [19] for network distance computation.

In [8], the authors designed two upper/lower bounds (DMTM and
MSDN) based on network/Euclidean distance. The two new
metrics are generated from a multi-resolution terrain model called
Direct Mesh (DM). In our variation of their method, termed RR
for the rest of this section, we do not consider the DM structure
and directly use the network distance as the upper bound and
Euclidean distance as the lower bound at the highest resolution
(10 meters DEM). This variation of RR results in the most
accurate computation of surface kNN (since it is on the highest
resolution), which is the main purpose of our comparison2.

The experiments were conducted on a PC with Intel 6420 Dual
CPU 2.13G Hz and 3.50 GB RAM. The operating system is
Windows XP SP2. All the algorithms are implemented in
Microsoft Visual Studio 2005.

6.2 Parameters of the Surface Index
As mentioned in Sections 4.1 and 5.1, if the query point q is
located in a certain tight cell TC(p), our algorithm can
immediately report p as the nearest neighbor. Figure 18 shows the
coverage ratio of the TSI with varying site densities on the two
data sets. The average TSI coverage is about 75% of the whole
area (for both EP and BH), which means that 3/4 NN queries
could be processed immediately with no further computation.

To compare our response time, we use a variation of the original
CH algorithm which has similar filter and refinement framework
as the RR method, but in steps 2 and 4 the precise surface
distances are computed to rank the sites. This approach generates
the same accurate results as ours but as we show has a much
worse response time.

Another parameter influencing the skNN query is the average
number of neighbor cells for each site. In the Voronoi diagram of
2D Euclidean space, each site on average has only six neighbors
[15]. This is a good property: when expanding the search area for
k nearest neighbors, a relatively small number of neighbors means
lower I/O cost. Unfortunately, this property does not hold in the
cases of TSI and LSI, because the cells are no longer convex
polygons. However, the statistics on real data sets (Figure 19)
show that TSI/LSI’s average number of neighbors is still less than
10 for uniformly distributed sites. Thus it incurs a relatively low
I/O cost when we expand the search area for kNN queries.

2 Note that the response time of this variation may be worse than

the response time of the original approach with multi-resolution.
Unfortunately, we did not have access to the implementation of
DM to compare the actual response time. From the numbers
reported in [10], our results are comparable but we make no
claim on the comparison between our response times and those
of the original approach, and we only focus on the accuracy
comparison given this most accurate variation, i.e., RR, on the
highest resolution.

1029

Figure 20. Query Efficiency, I/O Cost vs. Value of k

6.3.1 Efficiency
First we compare the performance of the three algorithms by
varying the value of k from 2 to 20. The experiments are carried
out for two site densities (2% and 4%) on the EP and BH data sets.
We performed 500 skNN queries with uniformly distributed query
points in each case. Figure 20 shows the average query processing
time and number of I/O operations (as a function of number of
TIN triangles retrieved).
The results indicate that CH algorithm performs the worst. The
accessed TIN triangles and response time grow rapidly as the
value of k increases, thus rendering this approach infeasible for
frequent skNN queries on land surface. Our SI algorithm has an
obvious predominance over other competitors from k > 6. In the
case of k = 20, SI only requires half the time of RR, and 20% of
CH. With its two spatial indexes, SI avoids accessing unnecessary
surface triangles and yields the best performance in I/O. By
limiting the number of candidates, SI reduces the number of
costly distance computations; by partitioning the area to surface
index cells, SI brings down the size of the areas in which it
performs the distance computation and hence achieves a better
performance.
We also study the effect of site density d, by fixing k at 10. Figure
21 shows the response time and number of I/O operations on the
two data sets. In general, the cost of all three algorithms decreases
as the site density increases. This is because a higher density leads
to a smaller search area for a fixed value of k, thus less number of
surface triangles accessed. The RR’s filter threshold is strongly
influenced by the land surface, especially when the sites are
sparse. Our SI consistently outperforms the other two in both
metrics, the average costs are about half of RR and 30% of CH.

6.3.2 Accuracy
Although the CH algorithm is the slowest option, it is an exact
technique that guarantees the precision of surface distances and

query results. In this set of experiments, the generated kNN
results (k = 1 to 10) of RR and SI are compared with that of CH.
We carry out 500 skNN queries with uniformly distributed query
points in the two data sets for 4% site density.

Figure 21. Query Efficiency, I/O cost vs. Density (k=10)

Since RR does not report the result incrementally, we use a relax
standard of precision for RR in these experiments. We assume the
query result of RR is precise if RR reports the same kNN sites as
those of CH, even if the sites are in wrong order. And if the two
sites cannot be identified by only checking the range between the
upper and lower bound distances, we use the network distance as
the approximate metric to rank them. Figure 22 shows the
accuracy ratio.
As expected, the results show that SI is a precise algorithm with
100% accuracy. It not only finds the skNN correctly, but also lists

1030

Figure 22. Accuracy Ratio of RR and SI

them in the right order and provides the shortest surface paths. On
the other hand, even with the relax standard of precision; RR’s
accuracy is still not acceptable. The accuracy drops quickly as the
value of k increases. With k =10, only 20% of the results are valid.
This drawback is due to the fundamental assumption of using
network distance as the upper bound/approximation for surface
distance. Figure 23 shows the average distance values in the
skNN queries. Although the network distances are close to surface
distance with less than 10% relative error, we observed that the
average network distance of 8th site is even larger than the
average surface distance of 10th site, which means that the RR
fails to rank the sites because the surface distance of 10th site is in
the range of 8th site. As the size of the query result grows (larger
values of k), the probability to encounter sites with discrepancy
between their actual surface distance and their threshold bounds
increases, thus the algorithm is more likely to fail.

Figure 23. Surface and Network Distance Values

Some improved lower bounds are discussed in [8], however, no
matter how tight the lower bound is, RR’s accuracy cannot
improve with the fixed upper bound as network distance.
Furthermore, the computation cost also increases for computing
more complex distance metrics. Finally, the precise distance and
surface path still cannot be provided by RR.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced an efficient skNN processing method
that provides: 1) exact answers to the queries, 2) the actual
shortest surface paths and 3) incremental results. We also
compared our approach in accuracy with the range ranking
method [8] and in response time with the Chen-Han algorithm
[10]. We showed that while our results are 100% accurate (vs.
lower than 50% accuracy for the most accurate variation of [8]
when k > 5) its response time is 4 to 5 times better than an
efficient variation of [10] for most cases.

Our future plan includes further evaluation of the performance of
our approach with synthetic datasets where we can vary the
values of several parameters (e.g., coverage, average number of

neighbors).We also plan to study variations of the skNN query
such as the continuous skNN query, visible skNN query and
aggregate skNN query.

8. ACKNOWLEDGMENTS
This research has been funded in part by NSF grants IIS-0238560
(PECASE), IIS-0324955 (ITR), IIS-0534761 and IIS-0742811
(SGER), the NSF Center for Embedded Networked Sensing
(CCR-0120778) and in part under JPL SURP program. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

9. REFERENCES
[1] N. Roussopoulos, S. Kelley, and F. Vincent: Nearest

neighbor queries. SIGMOD 1995.
[2] F. Korn, S. Muthukrishnan: Influence Sets Based on Reverse

Nearest Neighbor Queries. SIGMOD 2000.
[3] Y. Tao, D. Papadias, Q. Shen: Continuous Nearest Neighbor

Search. VLDB 2002.
[4] D. Papadias, Y. Tao, K. Mouratidis, C.K. Hui: Aggregate

nearest neighbor queries in spatial databases. TODS 2005.
[5] C. Shahabi, M. R. Kolahdouzan, M. Sharifzadeh: A road

network embedding technique for k-nearest neighbor search
in moving object databases. ACM-GIS 2002.

[6] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao: Query
Processing in Spatial Network Databases. VLDB 2003.

[7] M. Kolahdouzan, C. Shahabi: Voronoi-based k nearest
neighbor search for spatial network databases. VLDB 2004.

[8] K. Deng, X. Zhou, H. T. Shen, K. Xu, X. Lin: Surface k-NN
Query Processing. ICDE 2006.

[9] K. Xu, X. Zhou, and X. Lin. Direct mesh: A multiresolution
approach to terrain visualisation. ICDE 2004.

[10] J. Chen and Y. Han. Shortest paths on a polyhedron. 6th
ACM Symp. Comput. Geometry, pages 360–369, 1990.

[11] T. Kanai and H. Suzuki. Approximate shortest path on
polyhedral surface based on selective refinement of the
discrete graph and its applications. Geometric Modeling and
Processing, pages 241–250, 2000.

[12] K. Deng and X. Zhou. Expansion-based algorithms for
finding single pair shortest path on surface. W2GIS 2004.

[13] K. Deng, X. Zhou, H.T. Shen, Q. Liu, K. Xu and X. Lin. A
Multi-resolution Surface Distance Model for k-NN Query
Processing. The VLDB Journal, June 2007.

[14] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf:
Computational Geometry: Algorithms and Applications. 2nd
edition, 2000.

[15] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu: Spatial
Tessellations, Concepts and Applications of Voronoi
Diagrams. 2nd edition, 2000.

[16] A. Guttman: R-trees: a Dynamic Index Structure for Spatial
Searching. SIGMOD 1984.

[17] Http://data.geocomm.com
[18] B. Kaneva and J.O’Rourke: An implementation of Chen &

Han’s shortest paths algorithm. Proc. of 12th Canadian Conf.
on Comput. Geom, pages 139–146, 2000.

[19] E. W. Dijkstra: A note on two problems in connection with
graphs. Numeriche Mathematik, 1:269–271, 1959.

1031

