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ABSTRACT 

The class of k Nearest Neighbor (kNN) queries is frequently used 
in geospatial applications. Many studies focus on processing kNN 
in Euclidean and road network spaces. Meanwhile, with the recent 
advances in remote sensory devices that can acquire detailed 
elevation data, the new geospatial applications heavily operate on 
this third dimension, i.e., land surface.  Hence, for the field of 
databases to stay relevant, it should be able to efficiently process 
spatial queries given this constrained third dimension. However, 
online processing of the surface k Nearest Neighbor (skNN) 
queries is quite challenging due to the huge size of land surface 
models which renders any accurate distance computation on the 
surface extremely slow. In this paper, for the first time, we 
propose an index structure on land surface that enables exact and 
fast responses to skNN queries. Two complementary indexing 
schemes, namely Tight Surface Index (TSI) and Loose Surface 
Index (LSI), are constructed and stored collectively on a single 
novel data structure called Surface Index R-tree (SIR-tree). With 
those indexes, we can process skNN query efficiently by 
localizing the search and minimizing the invocation of the costly 
surface distance computation and hence incurring low I/O and 
computation costs. Our algorithm does not need to know the value 
of k a priori and can incrementally expand the search region using 
SIR-tree and report the query result progressively. It also reports 
the exact shortest surface paths to the query results. We show 
through experiments with real world data sets that our algorithm 
has better performance than the competitors in both efficiency and 
accuracy. 

1. INTRODUCTION 
Two recent technological advances are giving rise to a new class 
of exciting applications marrying the interactivity and 
engagements of computer games with the information richness 
and practicality of geospatial information systems.  These include 
advances in: 1) sensory devices that can acquire imagery, 
elevation and other types of data of Earth surface at a very high 
resolution from distance, and 2) computer graphics software and 
hardware that can quickly render complicated high resolution 3D 
graphics on the computer display.  This new class of geo-realistic 
games has a wide range of applications in the areas of decision 
making, entertainment and realistic simulation systems for 

training to name a few. 

One fundamental technical challenge that prevents the realization 
of these applications is in fact in the area of data management. 
The challenge is that real-world large geospatial datasets residing 
on disk drives need to be queried and accessed as if they are 
synthetically rendered data in memory. Unfortunately, most disk-
based data structures are designed to expedite the rendering of 
this geo-realistic data (e.g., Google Earth) rather than its querying 
and access. This paper is our initial attempt to design an index 
structure on a subset of this data set to expedite one class of 
spatial queries.            

The k Nearest Neighbor (kNN) query is an important class of 
queries in geospatial databases. The kNN query searches for sites 
(e.g., hotels, gas stations or other points of interest) with 
minimum distance with reference to one or more query points [1]. 
Various studies focused on the problems of kNN and its variations 
such as reverse kNN [2], continuous kNN [3] and network kNN 
[7]. Most of those queries are carried out in 2-D geospatial 
database and not take the elevation information into consideration. 
However, incorporating land terrain information becomes critical 
to make the aforementioned applications as realistic as possible. 
Thus the new generation of geo-databases should be able to 
support the kNN query on 3-D data of land surface. In this so 
called surface k Nearest Neighbor queries, the objects can only 
move on the terrain surfaces and the actual distance depends on 
the shortest surface path between two points. Besides the 
applications mentioned in [8] [13], skNN query is also useful for 
tourism applications, evacuation planning and military operations. 
Furthermore, different variations of skNN such as the continuous 
skNN query where sites (e.g., vehicles) are moving and the visible 
skNN query enable many other interesting applications. 

Example 1: Figure 1 shows a sample application for skNN query. 
In a virtual environment based on the elevation data of Yosemite 
National Park, a trekker wants to know how far the nearest camp 
site is. Note that, p1 is the nearest site in 3-D Euclidean distance; 
however, since its surface path need to go across the valley, it is 
actually farther than site p2 on the other side. 
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Figure 1. The Surface k Nearest Neighbor Query 
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Unlike other types of kNN queries, there are few studies on skNN 
queries [8] [13], largely due to the following three challenges:  

 The huge size of surface model: A surface is usually 
represented as the TIN (Triangular Irregular Network) model, 
a mesh generated from the sampled ground positions with 3-D 
coordinates. A region of 10km×10km using a 10m sampling 
interval has about 1 million triangles. The standard TEC 
(Topographic Engineering Center) LIDAR data sets are at 1m 
resolution (resulting in 100,000,000 triangles to represent a 
100 km2 area), with some even higher resolution data 
collected for special purposes, e.g., for military applications.  

 The high computation complexity to find the shortest surface 
path: The state-of-the-art algorithm [10] needs O(N2) time to 
compute the shortest surface path between only a single pair 
of points, where N is the size of the surface model. In [13], it 
is reported that this operation will take tens of minutes on a 
modern PC machine. Note that the surface distance 
computation is fundamental and frequent in the skNN query. 

 There is no existing surface index structure to expedite spatial 
querying. Classic indexes for traditional kNN query, such as 
R-tree and Voronoi diagrams are difficult to apply directly 
due to the complexity of the land surface. The previous 
studies on surface data are mostly focused on the compression, 
rendering and visualization of this data [9].  

Even though the land surface model of TIN can be considered as 
a network with triangles’ sides and vertices as edges and nodes of 
the network, respectively, the proposed techniques for network 
kNN are not suitable for skNN either. First, the road network 
distance on TIN is only an approximation of the actual surface 
distance, thus the shortest surface path may pass through the faces 
of the triangles and not along the edges. Hence, the network kNN 
algorithms may not provide exact answers to skNN queries. 
Second, TIN is much larger and more complex than a traditional 
road network. Many of the existing algorithms cannot scale to 
such huge and complex datasets. 

We are only aware of one study addressing skNN [8] [13], in 
which the authors employed a filter and refinement strategy to 
process skNN queries. The idea is to answer skNN queries by 
ranking the sites based on the range of their upper and lower 
bound distances to the query point. The main drawback is that the 
reported k nearest neighbors is not accurate and may be out of 
order. Our experiments (see Section 6.3.2) show that even if we 
ignore the out-of-sequence results, still the accuracy of this 
approach drops to below 50% for k > 5. Moreover, this approach 
cannot report the actual shortest surface path between the query 
point and the result set and require knowing the value of k a priori.    

In this paper, we propose two novel spatial indexes for skNN 
query, namely Tight Surface Index (TSI) and Loose Surface Index 
(LSI). These indexing schemes partition the land surface in the 
neighborhoods around the sites similar to the concept of Voronoi 
diagram. Since the computation of Voronoi cells on land surface 
is more challenging due to the irregularity of surface paths.  We 
create two approximations of these cells, the tight and loose cells. 
Any point inside the tight cell of a site is immediately reported as 
its nearest neighbor and those outside the loose cell of the site are 
others’ nearest neighbors. For those points in the buffer between 
the two cells (which is a small area relative to the entire space), 

we need to incur the complexity of computing the actual surface 
distance. However, the cells localize this computation to save 
significantly on both the I/O and CPU processing. Our techniques 
can handle obstacles by modeling obstacles as part of TIN and 
setting their elevation to be infinite. 

The remainder of the paper is organized as follows. Section 2 
discusses some related research. In Section 3, we define the 
problem and provide some background materials. Section 4 
describes the two surface indexes, their spatial properties, and the 
data structure for their implementation. Section 5 provides the 
algorithms to process skNN query and Section 6 reports on the 
results of extensive experiments. Finally, Section 7 summarizes 
the paper and discusses the future work. 

2. RELATED WORK 

2.1 kNN Query Processing Techniques 
Depending on the assumed distance metric, kNN queries can be 
divided into the following two categories. 

With the first category, the distance computation is performed in 
constant time (e.g., the computation of Euclidean distance using 
the point’s coordinates). The proposed algorithms and techniques 
mainly focus on pruning the site set P to identify kNN. 
Roussopoulos et al. [1] propose an R-tree based kNN algorithm 
that prunes in a branch-and-bound manner; Korn et al. [2] study 
the influence set (reverse nearest neighbors) to the sites; Tao et al. 
focus on continuous kNN with moving query points [3] and 
aggregate kNN on multiple query points [4]. 

With the second category, the computation of the distance metrics 
is computationally complex due to the underlying constrained 
space. One important class is the road network kNN where the 
space is constrained due to an underlying graph structure. Shahabi 
et al. [5] introduce an embedding technique to transfer the road 
network to a constraint-free high dimensional space. Papadias et 
al. [6] introduce techniques for network kNN queries by 
integrating network and Euclidean information and capturing 
pragmatic constraints. Kolahdouzan et al. [7] propose a Voronoi-
based algorithm, VN3, for spatial network databases.  

The only previous approach to the skNN problem is discussed in 
[8], with an extended version in [13]. Deng et al. propose a 
distance range ranking method for the skNN query on the multi-
resolution terrain model. Based on a terrain visualization model 
called Direct Meshes [9], the authors design lower and upper 
bound metrics for surface distance. Instead of computing the 
surface distance directly, the sites are selected out and ranked by 
their distance range between lower and upper bounds. Even 
though this is an efficient approach to process skNN query, it only 
provides approximate answers. That is, the algorithm neither 
guarantees the correctness of the computed distance nor provides 
the actual shortest surface path between the query point and target 
sites. In our experiments (Section 6), we compare the accuracy of 
our approach with that of [8]. 

2.2 Computational Geometry Studies  
The shortest path computation on polyhedron surfaces has been 
extensively studied by the computational geometry community.  
The idea is to first unfold all the faces of the polyhedron in one 
plane, and then the surface path will be a straight line in that plane 
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connecting the two points. However, there are several 
combinatorial ways to unfold the polyhedron depending on the 
unfolding order of each face. The shortest path is the straight line 
with minimum distance connecting two points in all possible 
unfoldings. The state-of-the-art algorithm, Chen-Han algorithm 
(CH) [10], uses a tree to store and traverse all the possibilities. 
This algorithm costs O(N2) time and Θ(N) space, where N is the 
number of polyhedron faces. There are several improvements on 
Chen-Han algorithm: Kanai et al. [11] propose an approximate 
algorithm for surface distance computation. Deng et al. [12] 
design an expansion based algorithm to find the shortest path on 
surface. However, Deng et al. [13] point out, even the best 
algorithm still takes several minutes for the distance computation 
between a single pair of points on the complex land surface. Note 
that in skNN queries, the surface distance computation is a 
fundamental and frequent operation. In our experiments, we 
compare the response time of our approach with that of [10]. 

3. BACKGROUND 
Before explaining the approach for surface kNN query, let us first 
formally define the metrics used in our approach and the problem. 

3.1 Metrics and Problem Definition 
TIN (Triangular Irregular Network) is the most popular model to 
construct a land surface.  TIN is generated from DEM (Digital 
Elevation Model) of sampled ground positions at regularly spaced 
intervals. Based on these samples, TIN constructs the surface 
triangles by connecting the points as non-overlapping triangles. 
Note that, the sites and the query points may be located on the 
face of triangles. For computational convenience, in such cases, 
the system will connect the site/point with the three vertices of 
that triangle, making it as one vertex of the TIN model. 

Given the real-world application scenarios, we formalize the 
definition of surface distance as follows: 

Definition 1 (Surface Distance): Let T be the surface model, the 
surface distance between two points p and q, DS (p, q), is the 
length of the shortest path connecting the two points on T. 

Definition 2 (Euclidean Distance): The 3-D Euclidean distance 
between two points p and q, DE (p, q), is the length of the straight 
line connecting the two points. 

Since the land surface is a constrained 3-D space, DE (p, q) is the 
lower bound for DS (p, q). Another related distance metric which 
is frequently used as the upper bound is the network distance over 
the triangles. 

Definition 3 (Network Distance): Let T be the surface model, the 
network distance between two points p and q, DN (p, q), is the 
length of the shortest path between the two points on the graph of 
T. 

Note that the network distance is computed by accumulating the 
length of the triangle sides that exist between two points. Hence, 
it is always larger than the surface distance since it does not pass 
over the face of the triangles. It is important to note that the 
network path is not always an appropriate approximation of the 
actual surface path because even though the actual distance values 
are close, the actual paths may be quite different. To illustrate, 
consider Figure 2 that shows the three types of distances in an 

area within the Yosemite National Park. The value of network 
distance is close to the surface distance but they are on two 
different paths. 

 
Figure 2. Surface, Network and Euclidean Distances 

Now we give a formal description of the skNN problem: 

Problem Definition: Let T be the surface model and P be the site 
set, given a query point q, an skNN query identifies the k nearest 
neighbor sites to q based on the metric of surface distance on T. 

Evaluating an skNN query consists of two steps: 1) Computing 
the shortest surface path from q to a set of candidate sites in P; 2) 
Identifying the k nearest neighbors. Without loss of generality, in 
the following sections we first address the nearest neighbor query 
(k = 1), then later in Section 5 we extend our approach to the kNN   
(k > 1) problem. 

3.2 Shortest Surface Path Computation 
Chen-Han (CH) algorithm [10] is the state-of-the-art algorithm 
and widely used in computing the shortest path on polyhedron 
surfaces. We explain it here using an example. 

Example 2: Figure 3 shows the process of computing the surface 
distance between A and B on a tetrahedron. The triangular face 1, 
2, 3 and 4 are unfolded to a plane with different unfolding orders 
(Case 1--3). The surface distance is the length of the shortest 
straight lines connecting A and B. The algorithm will compare the 
unfolding results and output Case 2 as the shortest surface path. 

 
Figure 3. The Unfolding Process of Chen-Han Algorithm 

The main drawback of CH algorithm is the expensive costs in 
time and space. It computes the surface distance between one pair 
of points in O(N2) time, where N is the number of the surface 
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Property 1: For any query point q ∈ TC(pi), the nearest neighbor 
of q in surface distance is pi.  

faces. Even worse, the algorithm needsΘ(N)  space to store the 
unfolding results. Hence, it is too costly to apply it directly on the 
fly to compute surface distances in skNN queries.  

Proof: q ∈TC(pi)  => DN(pi, q)  < DE(pj, q) (∀pj ∈P, pj ≠ pi). 

3.3 Voronoi Diagram  Since DS(pi, q)  ≤  DN(pi, q)  and DE(pj, q) ≤  DS(pj, q) then 
A common method to partition space is by using Voronoi 
diagrams. A Voronoi diagram [14] divides a space into disjoint 
cells according to the sites. For any query point that falls inside a 
cell, the nearest neighbor is the cell’s generator (the site 
corresponding to that cell). Voronoi diagrams have been widely 
used to process continuous kNN [3] and network kNN queries [7]. 

DS(pi, q) < DS(pj, q).  Hence, pi is the nearest neighbor of q in 
surface distance. □ 

We can now formally define the Tight Surface Index as follows. 

Definition 5 (TSI): Let P be the site set P = {p1, p2, … pm}, and T 
be a surface model, Tight Surface Index (TSI) is a set of tight 
cells generated from P, defined by TSI(P) = {TC(p1), TC(p2), …   
TC(pm)}.  

Various approaches have been proposed to compute Voronoi 
diagrams in 2-D Euclidean spaces [15]. The common boundary 
edge between two neighboring Voronoi cells is the perpendicular 
bisector of the line connecting the two corresponding sites. 
Voronoi diagrams have also been used to partition network spaces; 
Kolahdouzan et al. employ network Voronoi diagrams to support 
network kNN queries [7]. However, to the best of our knowledge, 
none of the proposed algorithms can be extended to compute 
Voronoi diagrams on complex land surfaces. The challenges are:  

Note that with TSI, the cells do not cover the entire area; there 
exist some unclassified areas between the cells. Figure 4 shows 
the TSI on the land surface of Yosemite. For the purpose of 
clarity, only seven of them with their generators are drawn in the 
figure.  

 

1) The dividing edges of the Voronoi cells on land surface are not 
only determined by the locations of the sites, but also influenced 
by the surface itself. Thus simply finding the perpendicular 
bisector line between two sites, which is the foundation of many 
existing algorithms, is no longer sufficient or even necessary. 

2) The naïve way of constructing Voronoi diagram on polyhedron 
[10] has to compute the shortest surface path to all the vertices. 
This algorithm needs O(mN3) time and Θ(mN) space, where m is 
the total number of sites and N is the number of polyhedron’s  
vertices. This cost may be acceptable in the case of a polyhedron 
where m and N are relatively small, but in skNN query cases there 
are usually thousands of sites and millions of TIN vertices, 
rendering the surface distance computation impossible. 

Since constructing the Voronoi diagram on land surface is not 
feasible. Thus, we will propose two novel indexes to help 
processing skNN query. 

Figure 4. Tight Surface Index  

TSI can be used as a filter step for skNN query processing in the 
following way: If the query point q is inside a certain tight cell, 
the system will immediately report the generator as q’s nearest 
neighbor; but if q locates in the unclassified area (outside any 
tight cell), then we have to carry out more computations.  

4. INDEXING THE LAND SURFACE 
This section presents our two proposed spatial index schemes: 
Tight Surface Index (TSI) and Loose Surface Index (LSI) to 
process skNN queries. We also analyze their spatial properties.  

4.1 Tight Surface Index 

4.2 Loose Surface Index 
TSI defines a tight area around site p in which any point is 
guaranteed to have p as its nearest neighbor in surface distance. 
Opposite to TSI, Loose Surface Index (LSI) defines a loose area 
around p outside which any point is guaranteed not to have p as 
its nearest neighbor in surface distance. Consequently, any query 
point q that is outside a site p’s tight cell but inside its loose cell, 
require further processing. Any other query point can be 
immediately decided upon whether it has p as nearest neighbor or 
not using LSI and TSI, respectively. We now formally define LSI 
and prove its properties.  We also formally show the relationships 
between the two indexes.   

To explain the core idea of Tight Surface Index, recall that the 
surface distance has a lower bound of Euclidean distance and an 
upper bound of network distance. Hence, if the upper bound 
distance between the query point q and a site p, DN (p, q), is less 
than any of the lower bound distances from q to any other site, 
then we can safely conclude that p is the nearest neighbor of q. In 
such cases, the locations of query points are in an area close to p. 
Tight Surface Index (TSI) is devised to specify such a 
neighborhood area for each and every site p. 

Definition 6 (Loose Cell): Let T be a surface model, loose cell 
LC(pi) is a polygon area  around site pi,  defined by  LC(pi)={q:  q 
∈T and DE(pi, q)  < DN(pj, q) (∀pj ∈P, pj ≠ pi)}, pi is called the 
generator of LC(pi). 

Definition 4 (Tight Cell): Let T be a surface model, tight cell 
TC(pi) is a polygon area around site pi, defined by  TC(pi)={q: q 
∈T and DN (pi , q)  < DE(pj, q) (∀pj ∈P, pj ≠ pi)}, pi is called the 
generator of TC(pi). 
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It is easy to see that the loose cell of each site fully contains its 
tight cell, because every point in a tight cell also satisfies the 
conditions of a loose cell. 

Definition 8 (Neighbor): Given a site p, the neighbors of p are 
defined as NL(p) = {pi| TC(pi) and LC(p) have common edges}. 
LSI will be used as a complementary index for TSI: if the query 
point q is in the unclassified area of TSI, then we will investigate 
the loose cells that contain q, they are the candidates as q’s 
nearest neighbor. Hence, we only need to compute the surface 
distance between q and those candidates. This is much more 
efficient as compared to the naïve way of computing surface 
distances from q to all the sites. 

Property 2: Site pi is guaranteed not to be the nearest neighbor of 
q if q is outside LC(pi). 

Proof (by contradiction):  If q is outside LC(pi), then ∃pj ∈P (pj 
≠ pi) such that DE(pi, q) > DN(pj, q). 

Thus DS(pi, q) ≥DE(pi, q) > DN(pj, q) ≥DS(pj, q).  That is, the 
surface distance from q to pi is larger than its distance to pj. Hence 
pi cannot be the nearest neighbor of q. □ 

Another usage of LSI is to improve the efficiency of surface 
distance computation. Chen-Han algorithm needs to unfold the 
triangles of the entire surface area to find the shortest path. 
However, assuming q’s nearest neighbor is p, if we show that not 
only q cannot be outside LC(p) but also the shortest surface path 
from q to p is fully contained in LC(p), then we can limit the 
unfolding only within LC(p).   

Definition 7 (LSI): Let P be a site set P={p1, p2, … pm} and T be 
a surface model, Loose Surface Index (LSI) is a set of loose cells 
generated from P, defined by LSI(P) = {LC(p1), LC(p2), … 
LC(pm)}. 

 

Property 4: If pi is the nearest neighbor of q, then the shortest 
surface path from q to pi is inside the loose cell LC(pi).  

Proof (by contradiction): Suppose that a portion of the shortest 
surface path from q to p falls outside LC(p), then suppose a point 
m is on that outside portion of the path (Figure 6). 

Since m is outside LC(p), then ∃ pj ∈P(pj ≠ pi) that DE(pi, m) > 
DN(pj, m) and hence DS(pi, m) > DS(pj, m).  

Then DS(pi, q) = DS(pi, m) + DS(m, q) > DS(pj, m) + DS(m, q) = 
DS(pj, q), which contradict the fact that pi is the nearest neighbor 
of q. □ 

 

Figure 5. Loose Surface Index  

Figure 5 illustrates an example of Loose Surface Index. Unlike 
TSI, the loose cells cover the entire map and have some overlap 
areas. Moreover, the overlap areas of LSI are precisely the same 
as the unclassified areas in TSI. This is not a coincidence.  In fact, 
one of the most important contributions of this paper is that we 
prove that loose cells and tight cells actually share the same edges.   

Property 3: Given that TSI and LSI are generated for the same 
site set P, the tight and loose cells have common edges; more 
specifically, all the tight cell’s edges are also the edges of loose 
cells. 

Figure 6. Shortest Surface Path and Loose Cell  Proof: To prove the above property, we only need to prove that 
for any edge e of the tight cell TC(pi), e is also the edge of another 
loose cell LC(pj). 

Therefore, Property 4 indicates that we only need to unfold the 
triangles inside the candidate loose cells containing q to find the 
nearest neighbor. Thus the high computation cost is reduced since 
the area of loose cell is on average 1/m of the original map. 
Subsequently, the time complexity of surface distance 
computation is reduced from O(N2) to O((N/m)2) and the space 
complexity is reduced to Θ (N/m), increasing the algorithm’s 
efficiency for large number of sites (m is the total number of sites, 
N is the size of surface model). 

By definition of a tight cell TC(pi), for any point q on e, ∃ pj (pj ≠ 
pi) that DN(pi, q) = DE(pj, q). 
Meanwhile, by definition of the loose cell LC(pj), q is also a point 
on its edge, since DE(pj, q) = DN(pi, q). Thus we can safely 
conclude that e is also an edge of LC(pj). □ 
Since the tight cells have unclassified areas in the middle, and the 
loose cells overlap with each other, it is a little tricky to determine 
their neighbors. Fortunately, since they have common edges we 
can define the neighbors in the following manner.  

We need to point out that property 4 only holds for the first 
nearest neighbor. For kNN with k > 1, the shortest surface path 
from q to the generator will not only stay inside its own loose cell. 
We will discuss this issue later in Section 5. 
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4.3 Index Construction 
Even though the cells of TSI and LSI serve almost the same 
purpose as those of a Voronoi diagram on 2-D Euclidean space, 
their construction is much more challenging. In this section, we 
discuss our proposed process to construct the cells of TSI and LSI.  
We will mainly focus on the construction of tight cells as the 
loose cells construction follows a similar process. We start by 
describing a naïve approach and then we explain our fast index 
construction algorithm. 

4.3.1 Naïve Index Construction  

4.3.2 Fast Index Construction   
We can significantly reduce the complexity of the naïve algorithm, 
if we could successfully identify the triangles that overlap with 
the edges of the tight cells. Then there would be no need to 
examine the vertices of any other triangle. Unfortunately, there is 
no way to know these edge triangles in advance. However, we 
can start with a rough prediction of those triangles by first 
drawing the Voronoi diagram1 of the sites in the Euclidean space. 
Those triangles that overlap with the edges of this Voronoi 
diagram, termed candidate triangles, are potential edge triangles. 
The intuition of using Voronoi diagram is based on the following 
observation on the relationship between one site’s tight cell and 
its Voronoi cell. 

A naïve approach to generate the tight cells is as follows. First, 
for each surface triangle of the TIN mesh, we need to make a 
decision to identify the tight cell to which it belongs. Property 5: Given any site p1, its tight cell TC(p1) is inside its 

Voronoi cell VC(p1). The simple case is when all the three vertices of the triangle 
belong to the same site p1. In this case, we immediately consider 
the triangle to be a member of the p1’s cell (e.g., Triangle 1 in 
Figure 7). In contrast, if none of the vertices belongs to p1, the 
triangle is excluded (e.g., Triangle 2 in Figure 7). A more 
complicated case is that only one or two vertices of the triangle 
belong to site p1 (e.g., Triangle 3, 5 in Figure 7). Then we need to 
compute the exact location of the two or three transition points on 
the edges of such triangle. A transition point is defined as a point 
on an edge whose network distance to its nearest site pN is equal 
to the minimal of its Euclidean distances to all the other sites (e.g., 
pt in Figure 7 that DN(pt, p1)  = DE(pt, p2)). We could term this 
transition point as pN’s transition point. Therefore, a transition 
point breaks an edge into two pieces, one belonging to a certain 
tight cell and the other one belonging to the unclassified area. 
Connecting all the transition points across surface triangles would 
eventually generate the border of the tight cells. For each vertex 
of the triangle, we need to compute both the Euclidean and the 
network distance to all of the m sites in order to decide to which 
site’s cell the vertex belongs. Since network distance computation 
costs O(NlogN) time, the total time complexity to this naïve 
approach is O(mN2logN), where m is the total number of sites and 
N is the size of the surface model. Hence, in the following section 
we introduce a novel approach that would result in a much lower 
time complexity for most practical scenarios. 

Proof: To prove the above property, we only need to prove that 
all p1’s transition points are inside VC(p1).  

By the definition of transition point, for any of p1’s transition 
points pt, DN(pt, p1)  ≤ DE(pt, pi) (∀pi ∈P, pi ≠ p1). Meanwhile, 
DE(pt, p1)  ≤ DN(pt, p1). Therefore, DE(pt, p1) ≤ DE(pt, pi) (∀pi 
∈P, pi ≠ p1). By the definition of Voronoi diagram, pt must be 
inside VC(p1). □ 

The final step is to investigate each of the candidate triangles, 
using the same process we discussed for the naïve approach, to 
decide whether this triangle is in fact an edge triangle or not. 
Towards this end, we need to compute the Euclidean and network 
distance between each of the vertices of the candidate edge 
triangle to all the m sites in order to decide the tight cell each 
vertex belongs to. There are two possible cases: 1) only one or 
two vertices of the triangle belong to site p1 (e.g., Triangle 3 in 
Figure 7), then it is an edge triangle, the transition points are 
computed and the TSI edge is generated. 2) None of the vertices 
belong to site p1 (Triangle 4 in Figure 7); therefore, this triangle is 
not an edge triangle and we need to find another candidate 
triangle.  Fortunately the area of tight cell is tighter than Voronoi 
cell, we only need to examine whether the candidate triangle’s 
closer neighbors are edge triangles or not (e.g., Triangle 5 in 
Figure 7). Once an edge triangle is determined, the transition 
point on the corresponding edge can be computed by solving 
quadratic equations. In the worst case, for each generator, we only 
need to investigate the triangles inside the corresponding Voronoi 
cell as a result of Property 5. Hence, the total time to generate TSI 
is brought down to O(N2logN).  

  

Algorithm 1 depicts the algorithm of TSI construction approach. 
A stack is maintained to filter and refine the candidate triangles. 
First we compute the Voronoi diagram and push the triangles that 
overlap with the Voronoi edges into the candidate stack (Line 2-
5); then examine each triangle in the stack to identify the edge 
triangles. The algorithms have to search the triangle’s neighbors 
if the one is not an edge triangle (Line 7-10); else we can generate 
the TSI edges on the triangles (Line 11-15).  

                                                                 
1 Note that this Voronoi diagram is built in 3-D Euclidean space. 

A simpler but rougher alternative is the Voronoi diagram on the 
projected 2-D Euclidean space. However, the following 
Property 5 may not hold for 2-D Voronoi diagram resulting in 
more candidate triangles. 

Figure 7. Tight Surface Index Construction 
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In the case of LSI construction, when the candidate triangle is 
found not to be an edge triangle, the search area is expanded to 
farther neighbors, because loose cell is larger than its 
corresponding Voronoi cell.  The algorithm of LSI construction is 
similar to Algorithm 1; however, the farther neighbor instead of 
the closer one is pushed into the stack (Line 9).  

 
 

Algorithm 1: Fast TSI Construction (Site set P, Surface T) 
1 initialize stack C, result set TSI;  
2 compute the Voronoi diagram V(P) in Euclidean space; 
3 for each surface triangle f overlapping with V(P) edges 
4    push (C, f); 
5 end for 
6 while (C is not empty) 
7    t  pop(C); 
8   if (t  is not edge triangle) then 
9         push the closer neighbor triangles into C; 
10   end if 
11   else // t  is edge triangle 
12        compute the edge e on t; 
13        add e to TSI;       
14   end else 
15 end while 
16 return TSI; 

Figure 9. Surface Indexes R-tree  
Figure 8. TSI Construction Algorithm To dynamically maintain SIR-tree, we have implemented the 

insert, delete and update operations. A good property of LSI and 
TSI is the local updatability: when a site changes, only its 
neighbor’s cells need updating. However, TSI has unclassified 
areas in the middle and LSI allows the cells to overlap with each 
other, which make it difficult to determine the cell edges. 
Fortunately, Property 3 shows that, each tight cell shares the same 
edges with neighbor site’s loose cells and vice-versa. Hence, we 
can update LSI with the new tight cell and TSI with the new loose 
cell. The algorithm for SIR-tree insertion is shown in Figure 10 
(the delete and update operations are similar and hence omitted). 

4.4 Surface Index R-tree  
TSI and LSI are ways to partition the land surface space.  To be 
practical for skNN query processing as indexes, they need to be 
stored in an appropriate data structure.  
Many data structures are proposed and employed to facilitate 
kNN processing. R-tree [16] is the most prominent index structure 
widely used in geospatial data management area. In this section, 
we show how we use the R-tree to store the TSI/LSI indexes. We 
refer to this index structure as Surface Index R-tree (SIR-tree). 

As shown in Figure 9, SIR-tree has the basic structure of an R-
tree that is generated on the site set P. The difference lies in that 
the SIR-tree’s leaf nodes not only store the sites inside the 
corresponding MBR, but also record the pointers to the vertex 
lists of tight and loose cells. Since TSI and LSI are both generated 
from the same site set, they share one SIR-tree. To facilitate kNN 
query processing, we also store the site’s neighbor list in SIR-tree. 
Similar to Voronoi diagram in 2-D Euclidean space, where the 
average number of neighbors is bounded by six [14], the 
tight/loose cell has a constant average number of neighbors as 
shown in Figure 19. Therefore, the overhead for maintaining such 
neighbor list is constant per site. 
The SIR-tree index will be constructed only once before query 
processing. Suppose that we have built an R-tree on the site set, 
and the TSI and LSI are also constructed. To incorporate the two 
index schemes into the R-tree, we need to traverse the R-tree and 
add the pointers to the cells and neighbor list in each leaf node.  

 

Algorithm 2: SIR-tree Insertion (SIR-tree I, site p) 
1. locate p in I, find out the loose cell LC(r) containing p; 
2. p.neighbor  LC(r)’s neighbor; 
3. compute TC(p) and LC (p); 
4. for each site pi in p.neighbor 
5.     update LC(pj)’s edges according to TC(p); 
6.     update TC(pj)’s edges according to LC(p); 
7. insert p into I; 
8. return I; 

Figure 10.  SIR-tree Insertion Algorithm 
Example 3: Figures 11 shows the insertion process for TSI: when 
a new site p1 is inserted into SIR-tree, first we compute the loose 
cell LC(p1). Since the neighbor tight cells share the same edge 
with LC(p1), we can easily adjust them according to LC(p1). 
Finally we insert TC(p1) to the index. 

 

1026



 
Figure 11.  SIR-tree Insertion Example 

5. QUERY PROCESSING 
In this section, we explain our algorithms for skNN query 
processing using SIR-tree.  First, we discuss our method for the 
nearest neighbor query processing (k = 1), and then we extend it 
to the kNN (k > 1) case.  

5.1 Nearest Neighbor Query 
Given a query point q, to process the surface nearest neighbor 
query, we have to traverse in the SIR-tree to locate q with the 
TSI/LSI indexes. First we carry out a depth-first search from the 
SIR-tree root to the last node Nl that contains q. Then we get all 
the sites inside Nl, check out the tight/loose cells containing q. If 
none of the cells contains q, we have to go to Nl’s parent node Np 
and continue search. As soon as we find a certain tight cell 
containing q, the cell’s generator is returned as the nearest 
neighbor. If q is in the unclassified area of TSI, we will take the 
sites whose loose cells contain q as candidate NNs. As a 
consequence of Property 3, we know that if we find a certain 
loose cell p containing q in such case, all the other candidate NNs 
are in the neighbor cells of LC(p). Subsequently, each candidate 
NN’s loose cell is unfolded to compute the shortest surface path 
and the one with the minimum distance is selected as the nearest 
neighbor. The algorithm to process the nearest neighbor query is 
depicted in Figure 12. 

Proposition 1: Let N be the size of the surface model T and m be 
the total number of sites, Algorithm 3’s time complexity is 
O((N/m)2 + log(m)). 

Proof: The major time consuming steps are the searching step 
(Line 2-15) and the surface distance computation step (Line 17). 
The algorithm needs O(log(m)) time to locate q in the SIR-tree 
and O((N/m)2) time to compute the surface distance (if necessary) 
by using Chen-Han’s unfolding technique. Thus the total time 
complexity is O((N/m)2+ log(m)). □  
However our experiments show that in most cases, we can locate 
q quickly in a certain tight cell and output the generator as the 
result without any surface distance computation. 
Example 4: In Figure 13, by a depth-first search, query point q1 is 
located in the node N1. Then the algorithm have to check whether 
q1 is contained in the tight/loose cells whose generators are inside 
N1.(e.g: p1, p2 … p8). When the algorithm find q1 is in the tight cell 
TC(p2), thus p2 is immediately returned as the query result and the 
algorithm terminates. For query point q2, first we search in N4 but 
could not find any tight cell containing q2, only a loose cell LC(p3) 
contains q2. Hence it is in an unclassified area. We check p3’s 

neighbors and select p6 as another candidate NN. Consequently, 
we have to compute the surface distance of candidate NNs for 
further processing. LC(p6) and LC(p3) are unfolded to compute the 
shortest surface paths. Finally, DS (p3, q) is identified as the 
shortest distance and p3 is returned as q2’s nearest neighbor.  

 

Algorithm 3: NN Query (SIR-tree I, point q, surface T) 
1. initialize candidate set C, stack nodelist; 
2. for the node N in I that contains q // depth-first search 
3.     push(N, nodelist)  
4. end for 
5. while nodelist is not empty 
6.   N  Pop (nodelist); 
7.   for each site p in N 
8.     if  TC(p) contains q then return p;  
9.     if  TC(p) doesn’t contain q but LC(p) contains q 
10.       add p to C; 
11.      check p’s neighbors, add the one containing q to C;
12.      break; 
13.     end if 
14.   end for 
15. end while 
16. for each p in C  // the candidate NNs  
17.   unfold LC(p) in T to compute DS (p, q); 
18. end for 
19.   select p with the minimum D S (p, q) in C; 
20. return p;    

Figure 12. NN Query Algorithm 

 
Figure 13. Nearest Neighbor Query Example 

5.2 kNN Query  
Our algorithm can be extended to process the kNN query in an 
expanding manner. We start from the first NN and expand the 
search area by including the neighbor loose cells of the first 
nearest neighbor. Once we identify the second nearest neighbor in 
these cells, we continue by investigating the neighbor loose cells 
of the second nearest neighbor to find the third nearest neighbor 
and so on.  Therefore, we can report the results incrementally. 
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In order for this approach to work, we need to prove that the next 
nearest site at each step of the process is the generator of one of 
the neighbor cells of those nearest neighbors found so far.  

Property 6: The next nearest site is the generator of one of the 
neighbors of the NNs found so far. 

Proof (by induction): First, we prove the basis, that is, we need 
to prove that the second nearest site is the neighbor of the first NN. 
This proposition can be proved by contradiction. In Figure 14, 
suppose p3 is the first NN of q, and the second NN is p7, which is 
not the neighbor of p3.  
Since p3 and p7 are not neighbors, a point m on the shortest 
surface path between q and p7 can be found that is outside both 
LC(p3) and LC(p7). And by Property 2, p7 is not a candidate 
nearest neighbor to m since m is not in LC(p7).  

Thus, there exists another site, p1 for instance, which is closer to 
m than p7. That is, DS(m, p7) > DS(m, p1), then DS(q, p7) = DS(q, m) 
+ DS(m, p7) > DS(q, m) + DS(m, p1) = DS(q, p1). Therefore p7 is 
farther to q than both p3 and p1, which contradicts the assumption 
that p7 is the second nearest neighbor. 

Now we prove the inductive step, that is, suppose the inductive 
hypothesis holds for k-1, we prove that it also holds true for k.  
Let G ={p1, p2, … pk-1} be the k-1 nearest neighbors of the query 
point q, we prove that the k-th nearest neighbor pk is among the 
neighbor cells of G.  
The proof is similar to the above prove by contradiction. Consider 
a k-th NN point pk which is not the neighbor of G. Then on the 
surface path from q to pk, there exists a point m which belongs 
neither to LC(pk) nor to LC(p1)…LC(pk-1).  Thus, pk is not the 
nearest neighbor of m. Suppose the nearest neighbor of m is pi, 
where pi  ≠ p1, p2, … pk. Hence, DS(q, pk)= DS(q, m) + DS(m, 
pk) > DS(q, m) + DS(m, pi)=DS(q, pi). Therefore, Thus pk is farther 
to q than p1, p2, … pk-1 and pi, which contradicts the assumption 
that pk is the k-th nearest neighbor. □ 

 
Figure 14. Surface Path to Second NN  

As a consequence of Property 6, we also know that the shortest 
surface path from q to the k-th NN pk will lie in the area of  

LC(G)  LC(pk) = LC(p1) LC(p2) … LC(pk). U U U U

Now we are ready to explain our algorithm to process kNN 
queries: we start by adding all the neighbors of the current NN set 
G to a candidate set. For each candidate pi, we unfold the area of 
LC(pi) and LC(G) to compute surface distance, then we select the 

one with minimum distance as the next NN result. The algorithm 
is depicted in Figure 15. Note that, in this algorithm, we use a 
heap to store the candidates.  Hence, even without a pre-specified 
value for k, the algorithm can still report the results incrementally. 

 

Algorithm 4: kNN Query (SIR-tree I, point q, surface T) 
1. p  Nearest Neighbor Query(I, q, T); //Algorithm 3 
2. add p to kNN set G; 
3. initialize minimum heap H; 
4. while(G.size < k) 
5. for each neighbor site pi of G; 
6.    unfold LC(G) U LC(pi) to compute surface distance;
7.    add pi to H; 
8.  end for 
9.  p  deheap H; 
10.  add p to G;  
11. end while; 
12. return G; 

Figure 15. kNN Query Algorithm 
Example 5: Figure 16 shows the process to query third nearest 
neighbor on the land surface of Yosemite National Park. p1 and p2 
are the first and second nearest neighbor found so far. The 
neighbors of them: p3, p4 … p10 are selected as the candidate sites. 
To compute the shortest surface path from query point q to a site 
p3, we only need to unfold the area of LC(p1) U LC(p2) U  LC(p3). 
When all the candidates are pushed in the heap, the one with 
minimum surface distance will be selected out as the third nearest 
neighbor.  

 
Figure 16. kNN Query Example 

Proposition 2: Let N be the surface model size, m be the number 
of sites, and s be the average number of each site’s neighbors, 
Algorithm 4’s time complexity is O(sk3(N/m)2 + log(m)). 
Proof: Calling Algorithm 3 has the time complexity of O((N/m)2 
+ log(m)). The major time consuming step of Algorithm 4 is the 
surface distances computation (Line 6). In the worst case, there 
are s × k candidates, with each candidate’s surface distance 
computation requiring O((kN/m)2) time. The total time complexity 
is O (sk3(N/m)2 + log(m)).  Our experiments will show that s is a 
relatively small number less than 10 in real applications. □ 
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6. PERFORMANCE EVALUATION 

 

6.1 Experimental Setup 
As the skNN problem is motivated by real-world applications, 
two large scale land surface datasets in real world are used in the 
experiments. They are downloaded from USGS [17] and the same 
as the datasets used in previous studies [8]. 
1. Eagle Peak (EP) area at Wyoming State: The data set covers 

an area around 10.7km×14km. 

2. Bearhead (BH) area at Washington State: The area is almost 
the same size as EP, but has more mountains.  Figure 18. TSI Coverage       Figure 19. Average Neighbors 

 

6.3 Competing Approaches 
The main contribution of our Surface Index (SI) approach is that 
it provides the exact k nearest neighbors with their corresponding 
surface paths to the query point in a relatively short time. The two 
competitions are the Range Ranking (RR) method [8] that 
provides approximate answers quickly and the original CH 
algorithm [10] that generates exact results but slowly. In this 
section, we use variations of both algorithms to show that our 
results are more accurate than the most accurate variation of RR 
and faster than the fastest variation of CH.  

Figure 17. EP and BH Areas With RR method [8], a four-step filter and refinement framework 
is designed to process the skNN queries: 1) Perform an Euclidean 
kNN query in the 2D projection plane; 2) Rank the selected k sites 
based on the upper and lower bounds of surface distance; 3) 
Employ the k-th site’s upper bound as the threshold, perform a 
range query using query point q as the center and the threshold as 
the radius; 4) Rank the candidates generated in step 3 to find 
skNN, using the same algorithm as in step 2.  

Figure 17 shows an airscape of the two areas from Google Earth. 
The sites are uniformly distributed on the surface with varying 
densities from 1% to 5%. 
As mentioned in previous sections, three types of distance metrics 
are frequently used in the skNN query: Euclidean distance, 
surface distance and network distance. Euclidean distances are 
computed directly using the coordinates. We use the most recent 
implementation of CH algorithm [18], although localized because 
of our technique, to compute surface distances, and employ the 
classic Dijkstra algorithm [19] for network distance computation.  

In [8], the authors designed two upper/lower bounds (DMTM and 
MSDN) based on network/Euclidean distance. The two new 
metrics are generated from a multi-resolution terrain model called 
Direct Mesh (DM). In our variation of their method, termed RR 
for the rest of this section, we do not consider the DM structure 
and directly use the network distance as the upper bound and 
Euclidean distance as the lower bound at the highest resolution 
(10 meters DEM). This variation of RR results in the most 
accurate computation of surface kNN (since it is on the highest 
resolution), which is the main purpose of our comparison2. 

The experiments were conducted on a PC with Intel 6420 Dual 
CPU 2.13G Hz and 3.50 GB RAM. The operating system is 
Windows XP SP2. All the algorithms are implemented in 
Microsoft Visual Studio 2005.  

6.2 Parameters of the Surface Index 
As mentioned in Sections 4.1 and 5.1, if the query point q is 
located in a certain tight cell TC(p), our algorithm can 
immediately report p as the nearest neighbor. Figure 18 shows the 
coverage ratio of the TSI with varying site densities on the two 
data sets. The average TSI coverage is about 75% of the whole 
area (for both EP and BH), which means that 3/4 NN queries 
could be processed immediately with no further computation. 

To compare our response time, we use a variation of the original 
CH algorithm which has similar filter and refinement framework 
as the RR method, but in steps 2 and 4 the precise surface 
distances are computed to rank the sites. This approach generates 
the same accurate results as ours but as we show has a much 
worse response time. 

Another parameter influencing the skNN query is the average 
number of neighbor cells for each site. In the Voronoi diagram of 
2D Euclidean space, each site on average has only six neighbors 
[15]. This is a good property: when expanding the search area for 
k nearest neighbors, a relatively small number of neighbors means 
lower I/O cost.  Unfortunately, this property does not hold in the 
cases of TSI and LSI, because the cells are no longer convex 
polygons. However, the statistics on real data sets (Figure 19) 
show that TSI/LSI’s average number of neighbors is still less than 
10 for uniformly distributed sites. Thus it incurs a relatively low 
I/O cost when we expand the search area for kNN queries. 

                                                                 
2 Note that the response time of this variation may be worse than 

the response time of the original approach with multi-resolution. 
Unfortunately, we did not have access to the implementation of 
DM to compare the actual response time.  From the numbers 
reported in [10], our results are comparable but we make no 
claim on the comparison between our response times and those 
of the original approach, and we only focus on the accuracy 
comparison given this most accurate variation, i.e., RR, on the 
highest resolution. 
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Figure 20. Query Efficiency, I/O Cost vs. Value of k 

6.3.1 Efficiency 
First we compare the performance of the three algorithms by 
varying the value of k from 2 to 20. The experiments are carried 
out for two site densities (2% and 4%) on the EP and BH data sets. 
We performed 500 skNN queries with uniformly distributed query 
points in each case. Figure 20 shows the average query processing 
time and number of I/O operations (as a function of number of 
TIN triangles retrieved).  
The results indicate that CH algorithm performs the worst. The 
accessed TIN triangles and response time grow rapidly as the 
value of k increases, thus rendering this approach infeasible for 
frequent skNN queries on land surface. Our SI algorithm has an 
obvious predominance over other competitors from k > 6. In the 
case of k = 20, SI only requires half the time of RR, and 20% of 
CH. With its two spatial indexes, SI avoids accessing unnecessary 
surface triangles and yields the best performance in I/O. By 
limiting the number of candidates, SI reduces the number of 
costly distance computations; by partitioning the area to surface 
index cells, SI brings down the size of the areas in which it 
performs the distance computation and hence achieves a better 
performance. 
We also study the effect of site density d, by fixing k at 10. Figure 
21 shows the response time and number of I/O operations on the 
two data sets. In general, the cost of all three algorithms decreases 
as the site density increases. This is because a higher density leads 
to a smaller search area for a fixed value of k, thus less number of 
surface triangles accessed. The RR’s filter threshold is strongly 
influenced by the land surface, especially when the sites are 
sparse. Our SI consistently outperforms the other two in both 
metrics, the average costs are about half of RR and 30% of CH. 

6.3.2 Accuracy 
Although the CH algorithm is the slowest option, it is an exact 
technique that guarantees the precision of surface distances and 

query results. In this set of experiments, the generated kNN 
results (k = 1 to 10) of RR and SI are compared with that of CH. 
We carry out 500 skNN queries with uniformly distributed query 
points in the two data sets for 4% site density. 

 
Figure 21. Query Efficiency, I/O cost vs. Density (k=10) 

Since RR does not report the result incrementally, we use a relax 
standard of precision for RR in these experiments. We assume the 
query result of RR is precise if RR reports the same kNN sites as 
those of CH, even if the sites are in wrong order. And if the two 
sites cannot be identified by only checking the range between the 
upper and lower bound distances, we use the network distance as 
the approximate metric to rank them. Figure 22 shows the 
accuracy ratio.  
As expected, the results show that SI is a precise algorithm with 
100% accuracy. It not only finds the skNN correctly, but also lists 
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Figure 22. Accuracy Ratio of RR and SI 

them in the right order and provides the shortest surface paths. On 
the other hand, even with the relax standard of precision; RR’s 
accuracy is still not acceptable. The accuracy drops quickly as the 
value of k increases. With k =10, only 20% of the results are valid. 
This drawback is due to the fundamental assumption of using 
network distance as the upper bound/approximation for surface 
distance. Figure 23 shows the average distance values in the 
skNN queries. Although the network distances are close to surface 
distance with less than 10% relative error, we observed that the 
average network distance of 8th site is even larger than the 
average surface distance of 10th site, which means that the RR 
fails to rank the sites because the surface distance of 10th site is in 
the range of 8th site. As the size of the query result grows (larger 
values of k), the probability to encounter sites with discrepancy 
between their actual surface distance and their threshold bounds 
increases, thus the algorithm is more likely to fail. 

 
Figure 23. Surface and Network Distance Values 

Some improved lower bounds are discussed in [8], however, no 
matter how tight the lower bound is, RR’s accuracy cannot 
improve with the fixed upper bound as network distance. 
Furthermore, the computation cost also increases for computing 
more complex distance metrics. Finally, the precise distance and 
surface path still cannot be provided by RR.  

7. CONCLUSION AND FUTURE WORK 
In this paper, we introduced an efficient skNN processing method 
that provides: 1) exact answers to the queries, 2) the actual 
shortest surface paths and 3) incremental results. We also 
compared our approach in accuracy with the range ranking 
method [8] and in response time with the Chen-Han algorithm 
[10].  We showed that while our results are 100% accurate (vs. 
lower than 50% accuracy for the most accurate variation of [8] 
when k > 5) its response time is 4 to 5 times better than an 
efficient variation of [10] for most cases. 

Our future plan includes further evaluation of the performance of 
our approach with synthetic datasets where we can vary the 
values of several parameters (e.g., coverage, average number of 

neighbors).We also plan to study variations of the skNN query 
such as the continuous skNN query, visible skNN query and 
aggregate skNN query.  

8. ACKNOWLEDGMENTS 
This research has been funded in part by NSF grants IIS-0238560 
(PECASE), IIS-0324955 (ITR), IIS-0534761 and IIS-0742811 
(SGER), the NSF Center for Embedded Networked Sensing 
(CCR-0120778) and in part under JPL SURP program. Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science Foundation. 

9. REFERENCES 
[1] N. Roussopoulos, S. Kelley, and F. Vincent: Nearest 

neighbor queries. SIGMOD 1995. 
[2] F. Korn, S. Muthukrishnan: Influence Sets Based on Reverse 

Nearest Neighbor Queries. SIGMOD 2000. 
[3] Y. Tao, D. Papadias, Q. Shen: Continuous Nearest Neighbor 

Search. VLDB 2002. 
[4] D. Papadias, Y. Tao, K. Mouratidis, C.K. Hui: Aggregate 

nearest neighbor queries in spatial databases. TODS 2005. 
[5] C. Shahabi, M. R. Kolahdouzan, M. Sharifzadeh: A road 

network embedding technique for k-nearest neighbor search 
in moving object databases. ACM-GIS 2002. 

[6] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao: Query 
Processing in Spatial Network Databases. VLDB 2003. 

[7] M. Kolahdouzan, C. Shahabi: Voronoi-based k nearest 
neighbor search for spatial network databases. VLDB 2004. 

[8] K. Deng, X. Zhou, H. T. Shen, K. Xu, X. Lin: Surface k-NN 
Query Processing. ICDE 2006. 

[9] K. Xu, X. Zhou, and X. Lin. Direct mesh: A multiresolution 
approach to terrain visualisation. ICDE 2004. 

[10] J. Chen and Y. Han. Shortest paths on a polyhedron. 6th 
ACM Symp. Comput. Geometry, pages 360–369, 1990. 

[11] T. Kanai and H. Suzuki. Approximate shortest path on 
polyhedral surface based on selective refinement of the 
discrete graph and its applications. Geometric Modeling and 
Processing, pages 241–250, 2000. 

[12] K. Deng and X. Zhou. Expansion-based algorithms for 
finding single pair shortest path on surface. W2GIS 2004. 

[13] K. Deng, X. Zhou, H.T. Shen, Q. Liu, K. Xu and X. Lin. A 
Multi-resolution Surface Distance Model for k-NN Query 
Processing. The VLDB Journal, June 2007. 

[14] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf: 
Computational Geometry: Algorithms and Applications. 2nd 
edition, 2000. 

[15] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu: Spatial 
Tessellations, Concepts and Applications of Voronoi 
Diagrams. 2nd edition, 2000. 

[16] A. Guttman: R-trees: a Dynamic Index Structure for Spatial 
Searching. SIGMOD 1984. 

[17] Http://data.geocomm.com 
[18] B. Kaneva and J.O’Rourke: An implementation of Chen & 

Han’s shortest paths algorithm. Proc. of 12th Canadian Conf. 
on Comput. Geom, pages 139–146, 2000. 

[19] E. W. Dijkstra: A note on two problems in connection with 
graphs. Numeriche Mathematik, 1:269–271, 1959. 

 

1031




