
A Request-Routing Framework for SOA-Based
Enterprise Computing

Thomas Phan
∗

Wen-Syan Li
†

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120 USA

ABSTRACT
Enterprises may use a service-oriented architecture (SOA) to
provide a streamlined interface to their business processes.
To scale up the system, each tier in a composite service usu-
ally deploys multiple servers for load distribution and fault
tolerance. Such load distribution across multiple servers
within the same tier can be viewed as horizontal load dis-
tribution. One limitation of this approach is that load can-
not be further distributed when all servers in the same tier
are fully loaded. In complex multi-tiered systems, a single
business process may actually be implemented by multiple
different computation pathways among the tiers, each with
different components, in order to provide resiliency and scal-
ability. Such SOA-based enterprise computing with multiple
implementation options gives opportunities for vertical load
distribution across tiers. In this paper, we propose a request-
routing framework for SOA-based enterprise computing that
takes into consideration both horizontal and vertical load
distribution. Through experimentation we show that our
algorithm and methodology scale well up to a large system
configuration comprising up to 1000 workflow requests to a
complex composite service with multiple implementations.
We also show that a combination of both horizontal and
vertical load distributions gives the maximum flexibility to
improve performance and fault tolerance.

1. INTRODUCTION
A service-oriented architecture (SOA) can be used to pro-

vide a streamlined interface to underlying business processes.
In enterprise computing, a published SOA may act as a
programmatic front-end to an aggregation of building-block
components distinguished as individual services and their

∗The author is currently affiliated with Microsoft and can
be reached at thomas.phan@acm.org.
†The author is currently affiliated with SAP Research Cen-
ter, China, and can be reached at wen-syan.li@sap.com.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Web and
Application Server

(heavy preprocessing)

Database Server
(light querying)

Analytics Server
(heavy processing)

Web and
Application Server

(light preprocessing)

Database Server
(heavy querying and

processing via
stored procedure

execution)

Implementation 1 Implementation 2

Horizontal load balancing
across servers within a

server pool

V
er

tic
al

 lo
ad

-b
al

an
ci

ng
 a

cr
os

s
m

ul
tip

le
 im

pl
em

en
ta

tio
n

op
tio

ns

Figure 1: Horizontal and vertical load distribution.

supporting servers (e.g. [5]). Incoming requests to this com-
posite SOA must be routed to the correct components and
their respective servers, and such routing must be scalable
to support a large number of requests.

These composite services can be represented as multiple
tiers of component invocations. To scale up the system, each
tier usually deploys multiple servers for load distribution
and fault tolerance. Such load distribution across multiple
servers within the same tier can be viewed as horizontal load
distribution. One limitation of this approach is that load
cannot be further distributed when all servers in a given tier
are fully loaded as a result of misconfigured infrastructures
— where too many servers are deployed at one tier while
too few servers are deployed at another tier.

In complex multi-tiered SOA systems, a single business
process can actually be implemented by multiple different
computation pathways through the tiers (where each path-

996

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

way may have different components) in order to provide re-
siliency and scalability. Such SOA-based enterprise comput-
ing with multiple implementation options gives opportuni-
ties for vertical load distribution across tiers.

While much research and industry work has focused on
request provisioning by balancing load across the servers
of one service [2, 8], there has been little work on balanc-
ing load across multiple implementations of a composite ser-

vice, where each service can be implemented via pathways
through different service types.

The example in Figure 1 illustrates how we differentiate
horizontal load distribution, where load can be spread across
multiple servers for one service component, from vertical

load distribution, where load can be spread across tiers by
using multiple implementations of a given service. Here a
composite online analytic task can be represented as a call to
a Web and Application Server (WAS) to perform certain pre-
processing, followed by a call from the WAS to a Database
server (DB) to fetch required data set, after which the WAS
forwards the data set to a dedicated Analytics Server (AS)
for computationally-expensive data mining tasks.

This composite task can have multiple implementations
in a modern IT data center. An alternative implementation
may invoke the database to perform data mining instead
of having the dedicated analytics server perform this task.
This alternative implementation provides vertical load dis-
tribution by allowing a job scheduler to select the WAS-and-
DB implementation when the analytics server is not avail-
able or heavily loaded.

Multiple implementations are desirable for the purposes
of fault tolerance, load-balancing, scalability, and flexibil-
ity, especially with regard to diverse runtime conditions and
misconfigured infrastructures. Furthermore, this approach
complements the reusability goals of SOA components; in
our scheme each component plays an important role in en-
abling the feasibility and applicability of multiple implemen-
tations.

In this paper we propose a framework for request-routing
and load balancing, both horizontally and vertically, in SOA-
based enterprise computing infrastructures. We suggest that
a genetic search algorithm [10] is appropriate for exploring a
very large solution space in order to properly route requests
to implementations and assign service instances to servers.
Through experimentation we show that our algorithm and
methodology scale well up to a large system configuration
comprising up to 1000 requests to a complex composite web
service with multiple implementations. We also show that
our approach that considers both horizontal and vertical
load distribution is effective in dealing with a misconfigured
infrastructure (i.e. where there are too many servers in one
tier and too few servers in another tier).

The key contributions of this paper are the following:
• We identify the need for intelligent scheduling in work-

loads that consist of composite service requests. Our
problem space lies in the relationship between requesters,
implementation options, service types, and servers.

• We discuss a framework for simultaneously handling
both horizontal and vertical load distribution.

• We provide a reference implementation of a search
algorithm that is able to produce optimal (or near-
optimal) schedules based on a genetic search heuristic.

The rest of this paper is organized as follows. In Section
2, we describe the system architecture and terminology used

in this paper. In Section 3, we describe how we model the
problem and our algorithms for scheduling and distributing
load for composite web services. In Section 4 we show ex-
perimental results, and in Section 5 we discuss related work.
We conclude the paper in Section 6.

2. OVERVIEW
In this section we give an overview of the system architec-

ture and describe the terms used in this paper. In Figure 2
we show an example in which an analytic process runs on
a Web and Application Server (WAS), a Database Server
(DB), and a specialized Analytics Server (AS). The over-
all process can be implemented by one of three options (as
shown in the upper-right of the figure):

• Implementation 1: Executing some lightweight pre-
processing at the WAS (more precisely, the WAS in-
stance S1) and then having the DB complete most of
the expensive analytic calculation (S2); or

• Implementation 2: Fetching data from the DB (S4) to
the WAS and then completing most of the expensive
analytic calculation at the WAS (S3); or

• Implementation 3: Executing some lightweight pre-
processing at the WAS (S5), then having the DB fetch
data (S6), and finally having the AS perform the re-
maining expensive analytic calculation (S7).

There are three different service types required for the
overall analytic process, namely the WAS service type, the
DB service type, and the AS service type. S1, S3, and S5

are instances of the WAS service type since they are the
services provided by the WAS. Similarly, S2, S4, and S6 are
instances of the DB service type, and S7 is an instance of
the AS service type.

There are three kinds of servers: WAS servers (M1, M2,
and M3); DB servers (M4 and M5); and AS servers (M6).
Although a server can typically support any instance of its
assigned service type, in general this is not always the case.
Our example reflects this notion: each server is able to sup-
port all instances of its service type, except M2 and M4 are
less powerful servers so that they cannot support computa-
tionally expensive service instances, S3 and S2.

Each server has a service level agreement (SLA) for each
service instance it supports, and these SLAs are published
and available for the scheduler. The SLA includes informa-
tion such as a profile of the load versus response time and
an upper bound on the request load size for which a server
can provide a guarantee of its response time.

The scheduler is responsible for routing and coordinating
execution of composite services comprising one or more im-
plementations. One of the scheduler’s outputs is the derived
SLA resulting from the routing of the incoming requests
to the implementations and eventually to the appropriate
servers. Note that the scheduler can derive the SLA and the
corresponding routing logic as well as handle the actual task
of routing the requests. Alternatively, the scheduler can be
used solely for the purpose of deriving SLA and routing logic
while configuring content-aware routers, such as [3], for high
performance and hardware-based routing.

The scheduler can also be enhanced to perform the task of
monitoring actual QoS achieved by workflow execution and
by individual service providers. If the scheduler observes
failure of certain service providers to their QoS published, it

997

SLA for S1, S3, S5 by M1

Composite Service (CS)

S1

S7

S2

S4 S3

S5 S6 S7

WAS service type provider DB service type provider
Analytic Server service

type provider

S5

S1

S5

S3

S1

S5

S3

S1

S6

S4

S6

S4

S2

M1 M2 M3

Scheduler

M5M4 M6

Implementations for CS

Option 2

Option 1

Option 3

SLA for S1, S5 by M2

SLA for S7 by M6

SLA for S1, S3, S5 by M3

SLA for S4, S6 by M4

SLA for S2, S4, S6 by M5

SLA published by providers

M3

S5

M4

S6

M6

S7

SLA for CS by Scheduler

WAS service instances DB service instances

Analytic Server
service instances

Request Routing Logic

Figure 2: Request routing for SOA-based enterprise computing with multiple implementation options.

can recompute the feasible SLA and the routing logic in an
on-demand manner to adapt to the runtime environment.

In this paper, we focus on the problem of automatically
deriving the routing logic of a composite service with con-
sideration of both horizontal and vertical load distribution
options. The scheduler is required to find an optimal com-
bination of a set of variables illustrated in Figure 2 for a
number of concurrent requests. Specifically, it must find
the best assignment of a request to an implementation and
within an implementation, the best assignment of service
type instance to server. We discuss our scheduling approach
next.

3. SCHEDULING COMPOSITE SERVICES
In this section we formally define the problem and de-

scribe how we model its complexity. We provide a reference
design for a heuristic to search the solution space and then
discuss how we can extend this work to treat online arriving
requests.

3.1 Solution Space
We assume the following scenario elements:

• Requests for a workflow execution are submitted to a
scheduling agent.

• The workflow can be embodied by one of several im-

plementations, so each request is assigned to one of
these implementations by the scheduling agent.

• Each implementation invokes several service types, such
as a web application server, a DBMS, or a computa-
tional analytics server.

• Each service type can be embodied by one of several
instances of the service type, where each instance can
have different computing requirements. For example,
one implementation may require a heavy DBMS com-
putation instance (such as through a stored procedure)
and a light computational analytics instance, whereas
another implementation may require light DBMS query-
ing and heavy computational analytics. We assume
that these implementations are set up by administra-
tors or engineers.

• Each service type is executed on a server within a pool
of servers dedicated to that service type.

We assume that the servers make agreements to guaran-
tee a level of performance defined by the completion time for
completing a web service invocation. Although these SLAs
can be complex, in this paper we assume for simplicity that
the guarantees can take the form of a linear performance
degradation under load, an approach similar to other pub-
lished work on service SLAs (e.g. [5]). This guarantee is
defined by several parameters: α is the expected completion
time (for example, on the order of seconds) if the assigned
workload of web service requests is less than or equal to
β, the maximum concurrency, and if the workload is higher
than β, the expected completion for a workload of size ω

998

Algorithm 1 Genetic Search Algorithm

1: FUNCTION Genetic algorithm
2: BEGIN

3: Time t

4: Population P (t) := new random Population
5:
6: while ! done do

7: recombine and/or mutate P(t)
8: evaluate(P (t))
9: select the best P (t + 1) from P (t)

10: t := t + 1
11: end while

12: END

is α + γ(ω − β) where γ is a fractional coefficient. In our
experiments we vary α, β, and γ with different distributions.

We would like to ideally perform optimal scheduling to
simultaneously distribute the load both vertically (across
different tiers by choosing different implementation options)
and horizontally (across different servers supporting a par-
ticular service type). There are thus two stages of schedul-
ing. In the first stage, the requests are assigned to the im-
plementations. In the second stage each implementation
has a known set of instances of a service type, and each
instance is assigned to servers within the pool of servers
for the instance’s service type. The solution space of possi-
ble scheduling assignments can be found by looking at the
possible combinations of these assignments. Suppose there
are R requests and M possible implementations. There are
then MR possible assignments in the first stage. Suppose
further there are on average T service type invocations per
implementation, and each of these service types can be han-
dled by one of S on average possible servers. Across all the
implementations, there are then M ·ST combinations of as-
signments in the second stage. It total, there are MR ·M ·ST

= M (R+1) · ST total combinations.
An exhaustive search through this solution space is pro-

hibitively costly for all but the smallest configurations. In
the next subsection we describe how we use a genetic search
algorithm to look for the optimal scheduling assignments.

3.2 Genetic algorithm
Given the solution space of M (R+1) · ST , the goal is to

find the best assignments of requests to implementations
and service type instances to servers in order to minimize
the running time of the workload, thereby providing our
desired vertical and horizontal balancing. To search through
the solution space, we use a genetic algorithm (GA) global
search heuristic that allows us to explore portions of the
space in a guided manner that converges towards the optimal
solutions [10] [9]. We note that a GA is only one of many
possible approaches for a search heuristic; we use a GA only
as one tool. Others heuristics are available, including A∗,
tabu search, simulated annealing, and steepest-ascent hill
climbing. A GA is a good representative of a larger class of
randomized search heuristics, and it further has the property
that it can be run as a progressive optimizer where it can
trade off running time with optimization precision.

A GA is a computer simulation of Darwinian natural se-
lection that iterates through various generations to converge
toward the best solution in the problem space. A poten-
tial solution to the problem exists as a chromosome, and in

our case, a chromosome is a specific mapping of requests-
to-implementations and instances-to-servers along with its
associated workload execution time. Genetic algorithms
are commonly used to find optimal exact solutions or near-
optimal approximations in combinatorial search problems
such as the one we address. It is known that a GA pro-
vides a very good tradeoff between exploration of the solu-
tion space and exploitation of discovered maxima [9]. Note
that the GA is not guaranteed to find the optimal solution
since several of its steps are stochastic.

Pseudocode for a genetic algorithm is shown in Algorithm
1. The GA executes as follows. The GA produces an initial
random population of chromosomes. (Although research in
the field has shown that the initial configuration does not
have a significant impact [7], we reduced the effect of initial
randomization by reading pre-generated initial chromosomes
from disk.) The chromosomes then recombine, simulating
sexual reproduction, to produce children using portions of
both parents. Mutations in the children are produced with
small probability to introduce traits that were not in either
parent. The children with the best scores (in our case, the
lowest workload execution times) are chosen for the next
generation. The steps repeat for a fixed number of itera-
tions (200 in our experiments), allowing the GA to converge
toward the best chromosome. In the end it is hoped that
the GA explores a large portion of the solution space. With
each recombination, the most beneficial portion of a parent
chromosome is ideally retained and passed from parent to
child, so the best child in the last generation has the best
mappings. To improve the GA’s convergence, we imple-
mented elitism, where the best chromosome found so far is
guaranteed to exist in each generation.

We chose a GA for several reasons. From our own prior
work, we are familiar with modeling problems with a GA
and the factors that affect its performance and optimality
convergence [14]. Additionally, the mappings used in our
problem are ideally suited to array and matrix represen-
tations, allowing us to use prior GA research that aid in
chromosome recombination [4].

Finally, we note that the GA takes a relatively long period
of time to run: a typical configuration for 200 iterations ran
on the order of one minute versus the few seconds of the
competing algorithms described in Section 4. However, this
duration is fairly arbitrary: since it is a progressive opti-
mizer, more or less time can be spent depending on the
desired degree of optimality. We believe that the time spent
performing this optimization is outweighed by the improve-
ments in workload running time.

3.2.1 Chromosome representation of a solution
We used two data structures in a chromosome to repre-

sent each of the two scheduling stages. In the first stage,
R requests are assigned to M implementations, so its repre-
sentative structure is simply an array of size R, where each
element of the array is in the range of [0, M − 1].

The second stage where instances are assigned to servers is
more complex. In Figure 3 we show an example chromosome
that encodes one scheduling assignment. The representation
is a 2-dimensional matrix that maps {implementation, ser-
vice type instance} to a server. For an implementation i

utilizing service type instance j, the (i, j)th entry in the ta-
ble is the identifier for the server to which the request is
assigned.

999

1 2 3 4 5 6 7 8 9 10

+---------------------------------------

1 | 2 6 9 7 8 11 10 12 14 13

2 | 3 6 7 8 9 11 11 14 14 13

3 | 1 5 8 7 8 11 10 13 13 13

4 | 0 5 8 9 8 10 10 13 14 13

5 | 3 6 7 7 9 10 11 14 14 13

6 | 4 5 7 7 9 10 11 13 14 12

7 | 4 5 9 9 7 11 11 13 13 14

8 | 0 5 8 9 8 11 11 12 12 13

Figure 3: An example chromosome representing a

scheduling assignment of (implementation, service type

instance) → server. Each row represents an implementa-

tion, and each column represents a service type instance.

For example, here there are 8 workflows and 10 service

types instances. In workflow 1, any request for service

type 3 goes to server 9.

0

1

2

0

1

1

2

0

0

1

0

0

1

1 2 0 2 1

0 1 2 3 4

0

1

2

1

1

2

1

0

0

0

2

0

1

0 0 0 1 1

0 1 2 3 4

0

1

2

0

1

1

1

0

0

0

0

0

1

1 2 0 1 1

0 1 2 3 4

Parent 1

Parent 2

Child

Figure 4: An example recombination between two par-

ents to produce a child. Elements from quadrants II and

IV from the first parent and elements from quadrants I

and III from the second parent are used to create the

new child.

3.2.2 Chromosome recombination
Two parent chromosomes recombine to produce a new

child chromosome. The hope is that the child contains the
best contiguous chromosome regions from its parents.

Recombining the chromosome from the first scheduling
stage is simple since the chromosomes are simple 1-dimensional
arrays. Two cut points are chosen randomly and applied to
both the parents. The array elements between the cut points
in the first parent are given to the child, and the array el-
ements outside the cut points from the second parent are
appended to the array elements in the child. This is known
as a 2-point crossover.

For the 2-dimensional matrix, chromosome recombina-
tion was implemented by performing a one-point crossover
scheme twice (once along each dimension). The crossover
is best explained by analogy to Cartesian space as follows.
A random location is chosen in the matrix to be coordi-
nate (0, 0). Matrix elements from quadrants II and IV from
the first parent and elements from quadrants I and III from
the second parent are used to create the new child. This
approach follows GA best practices by keeping contiguous
chromosome segments together as they are transmitted from
parent to child, as shown in Figure 4.

The uni-chromosome mutation scheme randomly changes
one of the service provider assignments to another provider
within the available range. Other recombination and muta-
tion schemes are an area of research in the GA community,
and we look to explore new operators in future work.

3.2.3 GA evaluation function
The evaluation function returns the resulting workload

execution time given a chromosome. Note the function can
be implemented to evaluate the workload in any way so long
as it is consistently applied to all chromosomes across all
generations.

Our evaluation function is shown in Algorithm 2. In lines
6 to 8, it initializes the execution times for all the servers
in the chromosome. In lines 11-17, it assigns requests to
implementations and service type instances to servers using
the two mappings in the chromosome. The end result of
this phase is that the instances are accordingly enqueued at
the servers. In lines 19-21 the running times of the servers
are calculated. In lines 24-26, the results of the servers are
used to compute the results of the implementations. The
function returns the maximum execution time among the
implementations.

3.3 Handling online arriving requests
As mentioned earlier, the problem domain we consider is

that of batch-arrival request routing. We take full advantage
of such a scenario through the use of the GA, which has
knowledge of the request population. This approach can
be further extended to online arriving requests using two
techniques that we briefly describe next. We will explore
and discuss this topic more thoroughly in future work.

First, we can continue to use the GA, but instead of having
the complete collection of requests available to us, we can al-
low requests to aggregate into a queue first. When a periodic
timer expires, we can run the GA on those requests while
aggregating any more incoming requests into another queue.
Once the GA is finished with the first queue, it will process
the next queue when the periodic timer expires again. If the
request arrival rate is faster than the GA’s processing rate,

1000

Experimental parameter Comment

Requests 1 to 1000
Implementations 5, 10, 20
Service types used per implementation uniform random: 1 - 10
Instances per service type uniform random: 1 - 10
Servers per service type uniform random: 1 - 10
Server completion time (α) uniform random: 1 - 12 seconds
Server maximum concurrency (β) uniform random: 1 - 12
Server degradation coefficient (γ) uniform random: 0.1 - 0.9
GA: population size 100
GA: number of generations 200

Table 1: Experimental parameters

Algorithm 2 GA evaluation function

1: FUNCTION evaluate
2: IN: CHROMOSOME, a representation of the assign-

ments of requests to implementation and service type
instances to servers

3: OUT: runningtime, the running time of this workload
4: BEGIN

5:
6: for (each server ∈ CHROMOSOME) do

7: set server’s running time to 0
8: end for

9:
10: {Loop over each request and its implementations}
11: for (each request ∈ CHROMOSOME) do

12: implementation := requests’s implementation
13: for (each instance ∈ implementation) do

14: server := implementation’s server
15: Enqueue this job at server

16: end for

17: end for

18:
19: for (each server) do

20: Compute the running time of server

21: end for

22:
23: {Now compute implementations’ running times}
24: for (each implementation ∈ CHROMOSOME) do

25: Aggregate the running time of this implementation

across its instances
26: end for

27:
28: runningtime := maximum running time of each imple-

mentation
29: return runningtime

30: END

we can take advantage of the fact that the GA can be run
as an incomplete, near-optimal search heuristic: we can go
ahead and let the timer interrupt the GA, and the GA will
have some solution that, although sub-optimal, is likely bet-
ter than a greedy solution. This methodology is also shown
in [6], where requests for broadcast messages are queued,
and the messages are optimally distributed through the use
of an evolutionary strategies algorithm (a close cousin of a
genetic algorithm).

Second (and unrelated to genetic algorithms), we can use
online stochastic optimization techniques to serve online ar-
rivals [19]. This approach approximates the offline problem
by sampling historical arrival data in order to make the best
online decision. An online optimizer receives an incoming
sequence of requests, gets historical data over some period
of time from a sampling function that creates a statistical
distribution model, and then calculates and returns an op-
timized allocation of requests to available resources. This
optimization can be done on a periodic or continuous basis.

4. EXPERIMENTS AND RESULTS
We ran experiments to show how our system compared

to other well-known algorithms with respect to our goal of
providing request routing with horizontal and vertical distri-
bution. Since one of our intentions was to demonstrate how
our system scales well up to 1000 requests and since there
is no benchmark workload for SOA applications, we used a
synthetic workload that allowed us to precisely control ex-
perimental parameters, including the number of available
implementations, the number of published service types,
the number of service type instances per implementation,
and the number of servers per service type instance. The
scheduling and execution of this workload was simulated
using a program we implemented in standard C++. The
simulation ran on an off-the-shelf Red Hat Linux desktop
with a 3.0 GHz Pentium IV and 2GB of RAM.

In these experiments we compared our algorithm against
the following alternatives:

• A round-robin algorithm that assigns requests to an
implementation and service type instances to a server
in circular fashion. This well-known approach provides
a fast and simple scheme for load-balancing.

• A random-proportional algorithm that proportionally
assigns instances to the servers. For a given service
type, the servers are ranked by their guaranteed com-
pletion time, and instances are assigned proportionally
to the servers based on the servers’ completion time.
(We also tried a proportionality scheme based on both

1001

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 5 implementations

Greedy
Proportional

Random
Round-robin

GA

Figure 5: Response time with 5 implementations.

the completion times and maximum concurrency but
attained the same results, so only the former scheme’s
results are shown here.) To isolate the behavior of
this proportionality scheme in the second phase of the
scheduling, we always assigned the requests to the im-
plementations in the first phase using a round-robin
scheme.

• A purely random algorithm that randomly assigns re-
quests to an implementation and service type instances
to a server in random fashion. Each choice was made
with a uniform random distribution.

• A greedy algorithm that always assigns business pro-
cesses to the service provider that has the fastest guar-
anteed completion time. This algorithm represents a
naive approach based on greedy, local observations of
each workflow without taking into consideration all
workflows.

In the future we will look to implement more algorithms
for comparison, such as first-fit. Scheduling and assignment
algorithms are a research topic unto themselves, and there
is a very wide of range of approaches that may be explored.

In the experiments that follow, all results were averaged
across 20 trials, and to help normalize the effects of any ran-
domization, each trial started by reading in pre-initialized
data from disk. In Table 1 we list our experimental parame-
ters for our baseline experiments. We vary these parameters
in other experiments, as we discuss later.

4.1 Baseline configuration results
In Figures 5, 6, and 7 we show the behavior of the algo-

rithms as they schedule requests against 5, 10, and 20 im-
plementations, respectively. In each graph, the x-axis shows
the number of requests (up to 1000), and the y-axis is av-
erage response time upon completing the workload. This
response time is the makespan, the metric commonly used
in the scheduling community and calculated as the max-
imum completion time across all requests in the workload.
As the total number of implementations increases across the
three graphs, the total number of service types, instances,
and servers scaled as well in accordance to the distributions
of these variables from Table 1. In each of the figures, it can
be see that the GA is able to produce a better assignment
of requests to implementations and service type instances to

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations

Greedy
Proportional

Random
Round-robin

GA

Figure 6: Response time with 10 implementations.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 20 implementations

Greedy
Proportional

Random
Round-robin

GA

Figure 7: Response time with 20 implementations.

servers than the other algorithms. The GA shows a 45% im-
provement over its nearest competitor (typically the round-
robin algorithm) with a configuration of 5 implementations
and 1000 requests and a 36% improvement in the largest
configuration with 20 implementations and 1000 requests.

The relative behavior of the other algorithms was con-
sistent. The greedy algorithm performed the worst while
the random-proportional and random algorithms were close
together. The round-robin came the closest to the GA.

To better understand these results, we looked at the in-
dividual behavior of the servers after the instance requests
were assigned to them. In Figure 8 we show the percentage
of servers that were saturated among the servers that were
actually assigned instance requests. These results were from
the same 10-implementation experiment from Figure 6. For
clarity, we focus on a region with up to 300 requests.

We consider a server to be saturated if it was given more
requests than its maximum concurrency parameter. From
this graph we see the key behavior that the GA is able to find
assignments well enough to delay the onset of saturation un-
til 300 requests. The greedy algorithm, as can be expected,
always targets the best server from the pool available for a
given service type and quickly causes these chosen servers to
saturate. The round robin is known to be a quick and easy
way to spread load and indeed provides the lowest satura-

1002

tion up through 60 requests. The random-proportional and
random algorithms reach saturation points between that of
the greedy and GA algorithms.

4.2 Effect of service types
We then varied the number of service types per implemen-

tation, modeling a scenario where there is a heavily skewed
number of different web services available to each of the
alternative implementations. Intuitively, in a deployment
where there is a large number of services types to be invoked,
the running time of the overall workload will increase.

In Figure 9 we show the results where we chose the num-
bers of service types per implementation from a Gaussian
distribution with a mean of 2.0 service types; this distribu-
tion is in contrast to the previous experiments where the
number was selected from a uniform distribution in the in-
clusive range of 1 to 10. As can be seen, the algorithms show
the same relative performance from prior results in that the
GA is able to find the scheduling assignments resulting in
the lowest response times. The worst performer in this case
is the random algorithm. In Figure 10 we skew the number
of service types in the other direction with a Gaussian distri-
bution with a mean of 8.0. In this case the overall response
time increases for all algorithms, as can be expected. The
GA still provides the best response time.

4.3 Effect of service type instances
In these experiments we varied the number of instances

per service type. We implemented a scheme where each in-
stance incurs a different running time on each server; that
is, a unique combination of instance and server provides a
different response time, which we put into effect by a Gaus-
sian random number generator. This approach models our
target scenario where a given implementation may run an
instances that performs more or less of the work associated
with the instance’s service type. For example, although two
implementations may require the use of a DBMS, one im-
plementation’s instance of this DBMS task may require less
computation than the other implementation due to the of-
fload of a stored procedure in the DBMS to a separate ana-
lytics server. Our expectation is that having more instances
per service type allows a greater variability in performance
per service type.

Figure 11 shows the algorithm results when we skewed
the number of instances per service type with a Gaussian
distribution with a mean of 2.0 instances. Again, the rela-
tive ordering shows that the GA is able to provide the lowest
workload response among the algorithms throughout. When
we weight the number of instances with a mean of 8.0 in-
stances per service type, as shown in Figure 12, we can see
that the the GA again provides the lowest response time
results. In this larger configuration, the separation between
all the algorithms is more evident with the greedy algorithm
typically performing the worst; its behavior is again due the
fact that it assigns jobs only to the best server among the
pool of servers for a service type.

4.4 Effect of servers (horizontal balancing)
Here we explored the impact of having more servers avail-

able in the pool of servers for the service types. This exper-
iment isolates the effect of horizontal balancing. Increasing
the size of this pool will allow assigned requests to be spread
out and thus reduce the number of requests per server, re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 s

er
ve

rs

Number of requests

Servers saturated

Greedy
Proportional

Random
Round-robin

GA

Figure 8: Percentage of servers that were saturated. A

saturated server is one whose workload is greater than

its maximum concurrency.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Figure 9: Average response time with a skewed distri-

bution of service types per implementation. The distri-

bution was Gaussian (λ = 2.0, σ = 2.0 service types).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Figure 10: Average response time with a skewed distri-

bution of service types per implementation. The distri-

bution was Gaussian (λ = 8.0, σ = 2.0 service types).

1003

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Figure 11: Average response time with a skewed dis-

tribution of instances per service type. The distribution

was Gaussian (λ = 2.0, σ = 2.0 instances).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Figure 12: Average response time with a skewed dis-

tribution of instances per service type. The distribution

was Gaussian (λ = 8.0, σ = 2.0 instances).

sulting in lower response times for the workload. In Figures
13 and 14 we show the results with Gaussian distributions
with means of 2.0 and 8.0, respectively. In both graphs the
GA appears to provide the lowest response times. Further-
more, it is interesting to note that in the random, random-
proportional, and round-robin algorithms, the results did
not change substantially between the two experiments even
though the latter experiment contains four times the average
number of servers. We believe this result may be due to the
fact that the first-stage scheduling of requests to implemen-
tations is not taking sufficient advantage of the second-stage
scheduling of service type instances to the increased number
of servers. Since the GA is able to better explore all combi-
nations across both scheduling stages, it is able to produce
its better results. We will explore this aspect in more detail
in the future.

4.5 Effect of server performance
In this subsection we look at the impact on the servers’ in-

dividual performance on the overall workload running time.
In previous sections we described how we modeled each
server with variables for the response time (α) and the con-
currency (β). Here we skewed these variables to show how

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Figure 13: Average response time with a skewed distri-

bution of servers per service type. The distribution was

Gaussian (λ = 2.0, σ = 2.0 instances).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Figure 14: Average response time with a skewed distri-

bution of servers per service type. The distribution was

Gaussian (λ = 8.0, σ = 2.0 instances).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Figure 15: Average response time with a skewed distri-

bution of servers’ completion time. The distribution was

Gaussian (λ = 2.0, σ = 2.0 seconds).

1004

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Figure 16: Average response time with a skewed distri-

bution of servers’ completion time. The distribution was

Gaussian (λ = 9.0, σ = 2.0 seconds).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Figure 17: Average response time with a skewed distri-

bution of servers’ maximum concurrency. The distribu-

tion was Gaussian (λ = 4.0, σ = 2.0 jobs).

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Figure 18: Average response time with a skewed distri-

bution of servers’ maximum concurrency. The distribu-

tion was Gaussian (λ = 11.0, σ = 2.0 jobs).

the algorithms performed as a result.
In Figures 15 and 16 we skewed the completion times with

Gaussian distributions with means of 2.0 and 9.0, respec-
tively. It can be seen that the relative orderings of the algo-
rithms are roughly the same in each, with the GA providing
best performance, the greedy algorithm giving the worst,
and the other algorithms running in between. Surprisingly,
the difference in response time between the two experiments
was much less than we expected, although there is a slight
increase in all the algorithms except for the GA. We believe
that the lack of a dramatic rise in overall response time is
due to whatever load balancing is being performed by the
algorithms (except the greedy algorithm).

We then varied the maximum concurrency variable for the
servers using Gaussian distributions with means of 4.0 and
11.0, as shown in Figures 17 and 18. From these results it
can be observed that the algorithms react well with an in-
creasing degree of maximum concurrency. As more requests
are being assigned to the servers, the servers respond with
faster response times when they are given more headroom
to run with these higher concurrency limits.

4.6 Effect of response variation control
We additionally evaluated the effect of having the GA

minimize the variation in the requests’ completion time. As
mentioned earlier, we have been been calculating the work-
load completion as the maximum completion time of the
requests in that workload. While this approach has been
effective, it produces wide variation between the requests’
completion times due to the stochastic packing of requests
by the GA. This variation in response time, known as jitter

in the computer networking community, may not be desir-
able, so we further provided an alternative objective function
that minimizes the jitter (rather than minimizing the work-
load completion time). In Figure 19 we show the average
standard deviations resulting from these different objective
functions (using the same parameters as in Figure 6). With
variation minimization on, the average standard deviation
is always close to 0, and with variation minimization off,
we observe an increasing degree of variation. The results in
Figure 20 show that the reduced variation comes at the cost
of longer response times.

4.7 Effect of routing against conservative SLA
We looked at the GA behavior when its input parameters

were not the servers’ actual parameters but rather the pa-
rameters provided by a conservative SLA. In some systems,
SLAs may be defined with a safety margin in mind so that
clients of the service do not approach the actual physical
limits of the underlying service. In that vein, we ran an
experiment similar to that shown in Figure 6, but in this
configuration we used parameters for the underlying servers
with twice the expected response time and half the available
parallelism, mirroring a possible conservative SLA. As can
be seen in Figure 21, the GA converges towards a scheduling
where the extra slack given by the conservative SLA results
in a slower response time.

4.8 Summary of experiments
In this section we evaluated our GA reference implementa-

tion of a scheduler that performs request-routing for horizon-
tal and vertical load distribution. We showed that the GA
consistently produces lower workload response time than its

1005

 0

 5

 10

 15

 20

 25

 100 200 300 400 500 600 700 800 900 1000

S
ta

nd
ar

d
de

vi
at

io
n

of
 r

eq
ue

st
 r

es
po

ns
e

tim
e

Number of requests

Request response time standard deviation, with/without variation minimization

GA, variation minimization on
GA, variation minimization off

Figure 19: Average standard deviation from the mean

response for two different objective functions.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time of GA with/without variation minimization

GA, variation minimization on
GA, variation minimization off

Figure 20: Average response time for two different ob-

jective functions.

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations, with and without conservative SLA-based routing

Conservative SLA
Normal SLA

Figure 21: Response time with 10 implementations for

normal and conservative SLA.

competitors. Furthermore, as can be expected, the sched-
uler is sensitive to a number of parameters, including the
number of service types in each implementation, the num-
ber of service type instances, the number of servers, the
per-server performance, the desired degree of variation, and
the tightness of the SLA parameters.

5. RELATED WORK
[16] described a distributed quality of service (QoS) man-

agement architecture and middleware that accommodates
and manages different dimensions and measures of QoS. The
middleware supports the specification, maintenance, and
adaptation of end-to-end QoS (including temporal require-
ments) provided by the individual components in complex
real time application systems. Using QoS negotiation, the
middleware determines the quality levels and resource allo-
cations of the application components. This work focused on
analysis tradeoff between QoS and cost instead of ensuring
QoS requirements in our paper.

[20] presented two algorithms for finding replacement ser-
vices in autonomic distributed business processes when web
service providers fail to meet the QoS requirement: (i) follow
alternative predefined routes or (ii) find alternative routes
on demand. This approaches provide the QoS brokerage ser-
vice with a fault tolerance capability and are complementary
to our work.

[21, 22, 23] discuss a set of algorithms for Web services
selection with end-to-end QoS constraints. A key point is
that these algorithms simplify and reduce the complexity
space considerably, something which we do not do. These
methods take all incoming workflows, aggregate them into
one single workflow, and then schedule the one workflow
onto the underlying service providers. We do not do this
aggregation, and therefore our approach provides a higher
degree of scheduling flexibility.

In the work [14], a genetic algorithm was used for load
distribution of analytic workloads across a database cluster.
The load distribution algorithm found near-optimal place-
ments for the collocation of queries and their needed MQTs
(i.e. materialized views), the collocation of MQTs and the
base tables required to construct the MQTs, and the min-
imization of the execution time of the whole workload on
the database cluster. This work may be considered a type
of horizontal load distribution. Additionally, a genetic algo-
rithm is also used in [13] to find a near-optimal view mate-
rialization permutation for minimal overall execution time
of workloads.

Our work is related to prior efforts in web service composi-
tion, web service scheduling, and job scheduling. A web ser-
vice’s interface is expressed in WSDL, and given a set of web
services, a workflow can be specified in a flow language such
as BPEL4WS [11] or WSCI [12]. Several research projects
have looked to provide automated web services composition
using high-level rules (e.g. eFlow [1], SWORD [15]). Our
work is complementary to this area, as we schedule business
processes within multiple, already-defined workflows to the
underlying servers.

In the context of service assignment and scheduling, [24]
maps web service calls to potential servers, but their work
is concerned with mapping only single workflows; our prin-
cipal focus is on scalably scheduling multiple workflows (up
to one thousand). [18] presents a dynamic provisioning
approach that uses predictive and reactive techniques for

1006

multi-tiered Internet application delivery. However, the pro-
visioning techniques do not consider the challenges faced
when there are alternative execution paths and replicated
data sources. [17] presents a feedback-based scheduler for
multi-tiered systems with back-end databases, but unlike
our work, it assumes a tighter coupling between the various
components of the system.

6. CONCLUSION AND FUTURE WORK
Enterprises may use an SOA to provide a streamlined in-

terface to their business processes. To scale up the num-
ber of business processes, each tier usually deploys multiple
servers for load distribution and fault tolerance. Such load
distribution across multiple servers within the same tier can
be viewed as horizontal load distribution. One limitation
of this approach is that load cannot be further distributed
when all servers in the same tier are fully loaded. Another
option for providing resiliency and scalability is to support
multiple implementation options that give opportunities for
vertical load distribution across tiers. In this paper, we pro-
pose a request-routing framework for SOA-based enterprise
computing that takes into consideration both horizontal and
vertical load distribution. Specifically, a job scheduler finds
the best assignment of a request to an implementation and
a service type instance to a server. Experiments show that
our algorithm and methodology can scale well up to a large
scale system configuration comprising up to 1000 workflow
requests to a complex composite service with multiple im-
plementation options available. The results also show that
our framework is more agile in the sense it is effective in
dealing with misconfigured infrastructures in which there
are too many or too few servers in one tier.

We look to extend our work in a number of directions.
We hope to obtain a real-world SOA trace to complement
our synthetic workload. Additionally, we will compare other
search heuristics to the GA, including other randomized
heuristics as well as greedy approximation algorithms. Fi-
nally, in a later journal version of this paper, we will explore
our experimental results in finer detail, particularly the im-
pact of having more servers for horizontal balancing.

7. REFERENCES
[1] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and

M.-C. Shan. Adaptive and Dynamic Service
Composition in eFlow. In Proceedings of CAISE, 2000.

[2] Cisco. Ace application-level load balancer.

[3] Cisco. Scalable content switch.

[4] L. Davis. Job Shop Scheduling with Genetic
Algorithms,. In Proceedings of the International

Conference on Genetic Algorithms, 1985.

[5] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP, 2007.

[6] R. Dewri, I. Ray, I. Ray, and D. Whitley. Optimizing
on-demand data broadcast scheduling in pervasive
environments. In EDBT, 2008.

[7] A. E. Eiben and J. E. Smith. Introduction to

Evolutionary Computing. Springer, 1998.

[8] F5 Networks. Big-ip application-level load balancer.

[9] D. Goldberg. Genetic Algorithms in Searth,

Optimization, and Machine Learning. Kluwer
Academic, 1989.

[10] J. Holland. Adaptation in Natural and Artificial

Systems. MIT Press, 1992.

[11] IBM. Business process execution language for web
services, v 1.1, 2005.
www-128.ibm.com/developerworks/library/ws-bpel/.

[12] J. Josephraj. Web Services Choreography in Practice.
In www-128.ibm.com/developerworks/library/ws-

choreography.

[13] T. Phan and W.-S. Li. Dynamic Materialization of
Query Views for Data Warehouse Workloads. In
ICDE, 2008.

[14] T. Phan and W.-S. Li. Load Distribution of Analytical
Query Workloads for Database Cluster Architectures.
In EDBT, 2008.

[15] S. Ponnekanti and A. Fox. Interoperability among
Independently Evolving Web Services. In Proceedings

of Middleware, 2004.

[16] M. Shankar, M. De Miguel, and J. W.-S. Liu. An
end-to-end qos management architecture. In
Proceedings of the Fifth IEEE Real Time Technology

and Applications Symposium.

[17] G. Soundararajan, K. Manassiev, J. Chen, A. Goel,
and C. Amza. Back-end Databases in Shared Dynamic
Content Server Clusters. In ICAC, 2005.

[18] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal.
Dynamic Provisioning of Multi-Tier Internet
Applications. In Proceedings of ICAC, 2005.

[19] P. Van Hentenryck and R. Bent. Online Stochastic

Combinatorial Optimization. MIT Press, 2006.

[20] T. Yu and K.-J. Lin. Adaptive algorithms for finding
replacement services in autonomic distributed business
processes. In Proc. of the 7th International Symposium

on Autonomous Decentralized Systems, Chengdu,
China, 2005.

[21] T. Yu and K.-J. Lin. Service selection algorithms for
web services with end-to-end qos constraints. Inf.

Syst. E-Business Management, 3(2):103–126, 2005.

[22] T. Yu and K.-J. Lin. Qcws: An implementation of
qos-capable multimedia web services. Multimedia

Tools and Applications, 30(2):165–187, 2006.

[23] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms
for web services selection with end-to-end qos
constraints. ACM Transactions on the Web (TWEB),
1(1), 2007.

[24] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Sheng. Quality Driven Web Services
Composition. In Proceedings of WWW, 2003.

1007

