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ABSTRACT
Recent advances in flash media have made it an attractive alter-
native for data storage in a wide spectrum of computing devices,
such as embedded sensors, mobile phones, PDA’s, laptops, and
even servers. However, flash media has many unique character-
istics that make existing data management/analytics algorithms de-
signed for magnetic disks perform poorly with flash storage. For
example, while random (page) reads are as fast as sequential reads,
random (page) writes and in-place data updates are orders of mag-
nitude slower than sequential writes. In this paper, we consider
an important fundamental problem that would seem to be partic-
ularly challenging for flash storage: efficiently maintaining a very
large (100 MBs or more) random sample of a data stream (e.g.,
of sensor readings). First, we show that previous algorithms such
as reservoir sampling and geometric file are not readily adapted to
flash. Second, we propose B-FILE, an energy-efficient abstraction
for flash media to store self-expiring items, and show how a B-
FILE can be used to efficiently maintain a large sample in flash.
Our solution is simple, has a small (RAM) memory footprint, and
is designed to cope with flash constraints in order to reduce latency
and energy consumption. Third, we provide techniques to main-
tain biased samples with a B-FILE and to query the large sample
stored in a B-FILE for a subsample of an arbitrary size. Finally, we
present an evaluation with flash media that shows our techniques
are several orders of magnitude faster and more energy-efficient
than (flash-friendly versions of) reservoir sampling and geometric
file. A key finding of our study, of potential use to many flash algo-
rithms beyond sampling, is that “semi-random” writes (as defined
in the paper) on flash cards are over two orders of magnitude faster
and more energy-efficient than random writes.

1. INTRODUCTION
Recent technological trends in flash media have made it an at-

tractive choice for non-volatile data storage in a wide spectrum of
computing devices such as PDA’s, mobile phones, MP3 players,
embedded sensors, etc. The success of flash media for these de-
vices is due mainly to its superior characteristics such as smaller
size, lighter weight, better shock resistance, lower power consump-
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tion, less noise, and faster read performance than disk drives [3,
6, 15]. While flash has been the primary storage media for em-
bedded devices from the very beginning, many market experts ex-
pect that it will soon dominate the market of personal computers
too. Indeed, several companies including Samsung and Dell have
already launched new lines of laptops containing only flash stor-
age [8]. Several companies including SimpleTech and STec have
launched 512GB flash-based 3.5 inch solid state disk (SSD) drives
with claims of 200× performance over 15K RPM enterprise hard
drives and better reliability [27, 16]. Several Internet service com-
panies are planning to use SSDs in high-end servers, for SSD’s
higher throughput, higher energy efficiency, and lower cooling cost
in data centers hosting the servers [21].

Flash media has fundamentally different read/write characteris-
tics than magnetic disks. For example, reading pages at random is
as fast as reading pages sequentially, unlike magnetic disks where
seek times and rotational latencies make random disk reads many
times slower than sequential disk reads (which are in turn many
times slower than any flash read). On the other hand, flash writes
are immutable and one-time—once written, a data page must be
erased before it can be written again. Moreover, the unit of erase
often spans a block of 32–64 pages—if any of the other pages in
the block contain useful data, that data must be copied to new
pages before the block is erased. (We will discuss flash charac-
teristics in more detail in Section 2.1.) For this reason, it is well-
known that in-place update, i.e., overwriting a page that has al-
ready been written since the last erase, is very slow on flash media.
Efforts to overcome this limitation (such as via a Flash Translation
Layer (FTL) [9]) suffer from another well-known problem: random
writes are very slow [3]. Indeed, the latency and bandwidth (and
energy-efficiency) of both random page writes and in-place page
updates are over two orders of magnitude worse than sequential
page writes.

In this paper, we consider an important fundamental problem that
would seem to be particularly challenging for flash storage: effi-
ciently maintaining a very large (e.g., 100 MBs or more) random
sample of a stream of data items. Such very large random sam-
ples are useful in a variety of applications. For example, consider a
sensor network where each sensor node collects too many readings
to store them all locally (because its on-board and attached flash
storage is limited) or to transmit them all to a base station (because
doing so would rapidly deplete its limited battery). Having each
sensor node maintain a random sample of its readings, perhaps bi-
ased towards more recent readings, is an attractive approach for
addressing the limits of both storage and battery life. Queries can
be pushed out to the sensor nodes, and answered (approximately)
using the sample points falling within a specified time window.
Similarly, random samples are often required in data mining, ap-
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proximate query answering, statistical analysis, machine learning,
and various other streaming applications, which may run in SSD
equipped servers. Note that, in all these applications, a very large
sample is often required in order to have highly-accurate answers
with high-confidence. Specifically, whenever the underlying data
has high variance, the query predicate is highly selective, and/or
the query contains joins (which can amplify variance), the sample
size needs to be in the GBs [11].

There are many existing algorithms for maintaining a bounded-
size random sample of a stream of data items. Unfortunately, these
algorithms were not designed for the unique characteristics of flash
media and hence, not surprisingly, they are ill-suited for flash. For
example, reservoir sampling [23] and geometric file [11] are state-
of-the-art algorithms for maintaining a large fixed-size sample in
memory and on magnetic disk, respectively. However, both rely
heavily on in-place updates and/or random writes (details in Sec-
tions 2.2 and 7.1). Moreover, simple optimizations of these algo-
rithms in order to make them more flash-friendly are unable to over-
come their basic flash-unfriendly structure (details in Section 2.3).
Indeed, intuitively, maintaining a bounded-size sample seems chal-
lenging for flash because new items that are selected for the sample
must replace random items currently in the sample—which can en-
tail both in-place updates and random writes.

In this paper, we present the first flash-friendly algorithm for
maintaining a large bounded-size random sample of a stream of
data items. Our algorithm is based on an efficient abstraction,
called B-FILE (Bucket File), for flash media to store self-expiring
items. A B-FILE consists of multiple buckets, and each item in-
cluded in the sample is stored in a random bucket according to a
distribution dependent (in a non-trivial way) on both the desired
sample properties (uniform, biased, etc.) and various overhead
trade-offs. When the size of the B-FILE grows to reach the max-
imum available flash storage, the B-FILE automatically shrinks
by discarding the largest bucket. The main efficiency of B-FILE
comes from three properties. First, it always appends data to ex-
isting buckets, instead of overwriting any existing data on flash—
appending data is far more efficient than updating in place. Second,
although these writes are not sequential (because they jump from
bucket to bucket), the buckets are structured so that the writes con-
form to a “semi-random” pattern (where blocks can be selected in
any order, but individual pages within blocks are written sequen-
tially from the start of the block; more details in Section 3). A
key finding of our study, of potential use to many flash algorithms
beyond sampling, is that “semi-random” writes on flash cards are
over two orders of magnitude faster and more energy-efficient than
random writes. Third, it solves the above “random replace” prob-
lem by storing sampled items in buckets according to a preselected
random replacement order, so that later all the items in a bucket
can be deleted at the same time (i.e., the items are self-expiring).
While geometric file also uses a preselection of the replacement or-
der, B-FILE is much more efficient because, unlike geometric file,
B-FILE’s bucketing strategy ensures there are no sub-block dele-
tions.

Another key feature of B-FILE is that, like reservoir sampling,
B-FILE is effective even when the amount of standard (RAM) mem-
ory available to the algorithm is very small (e.g., tens of KBs for a
1 GB sample). This contrasts with geometric file, which performs
poorly for a 1 GB sample on flash even with 1–10 MBs of RAM.
Because embedded devices typically have very limited RAM (e.g.,
the Imote and SunSpot sensor nodes have 32 KBs and 512 KBs of
RAM, respectively), and this RAM must be shared across all sen-
sor node functionality, B-FILE’s small memory footprint is critical
to its suitability for a range of embedded devices.

(FTL)

Flash Chip

Flash Translation Layer

Applications

Figure 1: A flash-based storage system

We also provide efficient techniques to maintain biased samples
with a B-FILE, and to query the large sample stored in a B-FILE
for the sample points within an arbitrary time window.

Our evaluation with flash media from several vendors shows that
our sampling techniques are three orders of magnitude faster and
more energy-efficient than previous techniques, including our flash-
friendly variants of reservoir sampling and geometric file.

In summary, this paper makes the following contributions.

1. We propose B-FILE, an energy-efficient abstraction for flash
media to store self-expiring items, and show how B-FILE can
be used to efficiently maintain a large (guaranteed uniform)
random sample in flash. Our solution is simple, has a small
(RAM) memory footprint, and is designed to cope with flash
constraints in order to reduce latency and energy consump-
tion. We determine several important parameters of B-FILE
that optimize the performance of our algorithm.

2. We define the notion of a semi-random write, and show that
such writes are over two orders of magnitude more efficient
on flash cards than completely random writes. This is an im-
portant refinement to the conventional wisdom that random
writes are slow on flash, and is a key enabler for B-FILE.

3. We show how our techniques can be extended to (weighted
and age-decaying) biased samples. We also present (flash-
friendly, skip-list-based) subsampling techniques for answer-
ing ad hoc time-range queries.

4. Using a variety of flash media, we evaluate our B-FILE al-
gorithm versus existing state-of-the-art algorithms. Our re-
sults show that B-FILE is three orders of magnitude faster
and more energy-efficient than existing techniques. More-
over, the number of I/Os and block erases are close to the
idealized optimal.

The rest of the paper is organized as follows. Section 2 presents
background and related work. Section 3 discusses semi-random
writes. Section 4, 5, and 6 present our basic sampling algorithm,
querying algorithm, and several extensions to basic algorithm, re-
spectively. We present evaluation results in Section 7 and conclude
in Section 8.

2. PRELIMINARIES
In this section, we discuss flash media characteristics, present

related work, and show how the most relevant previous work can
be made somewhat more flash-friendly.

2.1 Flash Characteristics
Figure 1 shows the architecture of a flash-based system. The

system consists of flash chips, an optional Flash Translation Layer
(FTL), and applications.

Flash Chips. The key properties of NAND flash that directly in-
fluence storage design are related to the method in which the media
can be read or written, and are discussed in [17]. In summary, all
read and write operations happen at page granularity (or for some
chips down to 1

8
th of a page granularity), where a page is typically

512–2048 bytes. Pages are organized into blocks, typically of 32 or
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64 pages. A page can be written only after erasing the entire block
to which the page belongs. However, once a block is erased, all the
pages in the block can be written once with no further erasing. Page
write cost (ignoring block erase) is typically higher than read, and
the block erase requirement makes some writes even more expen-
sive. In particular, for an in-place update, before the erase and write
can proceed, any useful data residing in other pages in the same
block must be copied to a new block; this internal copying incurs a
considerable overhead. Our experiments show that an in-place up-
date is over two orders of magnitude more expensive than a write to
an erased page (see Appendix B for measurement results.) A block
wears out after 10,000–100,000 repeated writes, and so the write
load should be spread out evenly across the chip. Because there is
no mechanical latency involved, random read/write is almost as fast
(and consumes as much energy) as sequential read/write (assuming
the writes are for erased pages).
FTL. Portable flash packages such as solid state disks (SSDs),
compact flash (CF) cards, secure digital (SD) cards, mini SD cards,
micro SD cards and USB sticks provide a disk-like ATA bus in-
terface on top of flash chips. The interface is provided through a
Flash Translation Layer (FTL) [9], which is implemented within
the micro-controller of the device. FTL emulates disk-like in-place
update for a (logical) address L by writing the new data to a differ-
ent physical location P , maintaining a mapping between each log-
ical address (L) and its current physical address (P ), and marking
the old data as invalid for later garbage collection. Thus, although
FTL enables disk-based applications to use flash without any mod-
ification, it needs to internally deal with flash characteristics (e.g.,
erasing an entire block before writing to a page). Many recent
studies have shown that FTL-equipped flash devices, although a
great convenience, suffer many performance problems. In partic-
ular, both random writes and in-place updates are very slow, typi-
cally two orders of magnitude slower than sequential writes to an
erased page [3] (see also Table 1 and Appendix B). Similar to pre-
vious work [12, 17], our algorithms address performance problems
in today’s FTL-equipped flash devices. If future FTL technology
eliminates such problems, the algorithms may need to be revisited.

Many embedded devices such as cell phones use internal flash
chips instead of FTL equipped packages. In such cases, the operat-
ing system, e.g. Windows Mobile, implements the FTL in software.
Design principles for flash algorithms. Because of these charac-
teristics of flash media, algorithms designed for flash should follow
a few key well-known design principles, including (P1) avoid in-
place updates and (P2) avoid random writes. Another natural
design principle is (P3) avoid sub-block deletions (deleting only
a portion of a block). Such deletions are over two orders of magni-
tude slower than block deletions (with or without an FTL), because
they require internal copying: any undeleted data in the same block
must first be copied to a new block (see Appendix B). Thus, each
of these principles can effect both latency and energy consumption
by two orders of magnitude or more. In Section 3, we will show
that design principle 2 should be modified as follows: (P2′) avoid
random writes unless they are semi-random.

2.2 Related Work
Algorithms for Flash. Recent studies [1, 3, 12] have proposed
application-independent techniques to improve application perfor-
mance, by optimizing the FTL itself, e.g., to improve the perfor-
mance of random writes. However, this is quite challenging given
that the FTL typically needs to run in a memory-constrained en-
vironment (e.g., within a micro-controller), to be general enough
to support multiple applications, and to recover efficiently after a
crash [1]. Moreover, in most practical scenarios, application devel-

opers do not have access to the FTL (it is either within the micro-
controller, or in a proprietary software module), and therefore, the
only feasible approach is to optimize the application to use algo-
rithms that perform well on flash. We take this latter approach in
this paper. Although, in general, the effort to optimize must be ap-
plied to each application, the performance benefits from restructur-
ing an application’s algorithm are often orders of magnitude larger
than the benefits of application-independent optimizations.

Recent work has shown the feasibility of running a full database
system on flash-only computing platforms [14] and running a light-
weight database system on flash-based embedded computing de-
vices [5, 17]. Several other studies have proposed efficient data
structures and algorithms for flash storage, including flash-optimized
B trees [17], R trees [26], stacks [15], queues [15], and hash ta-
bles [28]. These algorithms seek to avoid in-place updates and
random writes, but they neither study our sampling problem nor
propose anything analogous to the key ideas in this paper: B-FILE,
semi-random writes, and a skip-list-based search structure. More-
over, most of these works are designed solely for memory-constrained
embedded systems with raw flash chips, whereas our algorithm
is also optimized for higher-end flash devices (e.g., SD cards or
SSDs), where applications must access the flash through an FTL.

Sampling Algorithms. Because no prior work addressed the prob-
lem of maintaining a (bounded-size) random sample on flash, we
discuss work related to maintaining bounded-size samples on disk.
We omit previous work that deals with using a sample (e.g., [2,
4]) instead of maintaining one, as well as existing streaming algo-
rithms that maintain small random samples in main memory (e.g., [7]).

The fastest streaming algorithm for maintaining a large fixed-size
random sample on a magnetic disk is due to Jermaine et al. [11].
The algorithm uses an abstraction called the Geometric File. The
algorithm collects sample items in an in-memory buffer, randomly
permutes the items in the buffer, and then divides them into seg-
ments of geometrically decreasing size. The larger segments are
flushed to disk such that each flushed segment overwrites an on-
disk segment of the same size. Smaller segments are maintained
in memory to avoid small writes. The efficiency of geometric file
comes from reducing the number of expensive random writes on
disk: only one random access is required per segment and all items
within a segment are written sequentially. However, because each
new segment overwrites an existing segment, these in-place up-
dates are expensive on flash (see Section 7). Moreover, in addi-
tion to the algorithm being more complex than our proposed algo-
rithm, it has a higher in-memory footprint because (i) small seg-
ments are maintained in memory, and more importantly, (ii) a large
in-memory buffer is required for the algorithm to be effective (a
smaller buffer implies smaller segments, which increases the num-
ber of random writes).

In [11], the authors also propose using multiple geometric files
in parallel for reducing the number of disk head movements. How-
ever, on flash, this scheme may not add a significant benefit since it
does not reduce the amount of data overwrite and flash devices do
not have any mechanical head movements. Moreover, the scheme
has a higher space overhead due to higher internal fragmentation
and special dummy segments. Therefore, we do not consider this
scheme in this paper.

Reservoir sampling [23] is a popular algorithm for maintaining a
fixed-size sample of a stream of unknown size. In the basic version
of the algorithm, a reservoir R is filled with the first n items (where
n is the target size), and after that, the i’th item is selected for
R with probability n/i. The selected item overwrites a random
item in R. Many optimizations have been proposed to improve the
performance of the basic algorithm [11, 24]. Although the original
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Table 1: Costs of different types of I/Os in a Lexar CF card
Access Pattern Latency/page (ms) Energy/page (µJ)

Read Write Read Write
Sequential 0.408 0.425 12.7 13.7
Random 0.594 127.1 26.4 7854
Semi-Random 0.463 0.468 13.5 14.9

algorithm is implicitly designed to maintain a sample in memory,
it can be implemented on secondary storage. However, all variants
of reservoir sampling require overwriting random sample items in
R, and such overwrites are expensive in flash (see Section 7).

Olken and Rotem [18] present techniques for constructing sam-
ples in a database environment. However, in addition to not being
designed for flash media, the techniques assume we are sampling
from disk-resident, indexed data. Single pass streaming is gener-
ally not the goal. When it is, the sample itself is assumed to be
stored in main memory during the single pass—avoiding issues of
efficiently maintaining the sample on disk. Several I/O efficient
index structures such as LSM Trees [19] and Y-Trees [10] can be
used to maintain a large random sample on disk. However, like
geometric file, they also require frequent in-place updates, making
them unsuitable for flash. Moreover, as shown in [11], they require
more random writes and hence perform worse than geometric file.
Therefore, we do not consider them in the rest of the paper.

2.3 Adapting the Previous Algorithms to Flash
As neither geometric file nor reservoir sampling were designed

for flash, it is natural to consider whether they can be readily mod-
ified to be more flash-friendly. We consider each in turn, and show
how to improve their flash performance, at the cost of some extra
space on the flash.
Geometric file. The original geometric file algorithm (described
in Section 2.2) can be adapted as follows for more efficient imple-
mentation in flash. First, to avoid copying valid data from a block
before each erase, a flash block should store data for only a sin-
gle segment. In this way, an on-flash segment can be overwritten
(by erasing entire blocks and writing data to them), without mov-
ing data of other segments to other locations. This will introduce
internal fragmentation in some blocks, because the last block of a
segment can be partially full. However, we can trade additional
space for performance in many situations. Second, to reduce frag-
mentation, very small segments should not be stored in individual
blocks. In platforms where memory is limited, all these small seg-
ments cannot be maintained in memory. Therefore, these small
segments can be stored as append-only log entries in flash. When
the log becomes too big, they can be compacted by discarding seg-
ments which are supposed to be overwritten by newer segments.
Reservoir sampling. The basic reservoir algorithm can be made
more efficient by using some extra space E in addition to the reser-
voir R. Suppose the reservoir R contains a random sample of all
the data items seen so far, and a newly-arriving item v gets selected
to be added to R, replacing a random item w in R. Instead of over-
writing w with v, which would be expensive, we cheaply append v
as a log entry in E, deferring the selection of a random w. When
the space E becomes full, we need to apply the log entries accu-
mulated in E to R. Note that while the last entry in E must be in
R, the second-to-last entry in E must be in R only if the last entry
in E is not selected to overwrite it, and so on. In general, the i’th
entry in E can be discarded without inserting it to R if any of the
(|E| − i) subsequent items in E is selected to overwrite it, which
has a probability (1 − p|E|−i), p = (|R| − 1)/|R|. By avoid-
ing the insertion of items that get selected by subsequent items
in the log, we save expensive replacement operations for them.

Time. . . . . . .
... ...

Block 1 Block 2 Block 3 Block 10

Page writes

... ... ... ...

Figure 2: Semi-random writes

More precisely, for each |E| items, we incur an expected cost of

|E|/l×(cr +cw)+ (1−p|E|)
(1−p)

×(cr +cw) instead of |E|×(cr +cw).
Here, l is the number of log entries in a flash page, and cr (cw) is
the cost of reading (writing) a page. Given a sufficiently large E,
the savings can be significant.
The bottom line. The above two algorithms and their adapted ver-
sions still require frequent in-place updates. In Section 7, we will
show that the adapted algorithms perform better than the original
algorithms; however, our algorithm based on B-FILE can be three
orders of magnitude more efficient than the adapted algorithms.

3. SEMI-RANDOM WRITES
In addition to sequential and random writes, we have also inves-

tigated a semi-random write pattern where blocks can be selected
in any order, but individual pages within blocks are written sequen-
tially from the start of the block. In other words, multiple sequential
writes to blocks are interleaved with one another. Figure 2 shows
an example, indicated by a sequence of (block id, page id) pairs:
(1,1), (1,2), (10,1), (3,1), (1,3), (3,2), (10,2), etc.

Interestingly, our experiments show that while random writes
perform very poorly in existing FTL-equipped devices, semi-random
writes perform very close to sequential writes. As shown in Table 1,
random writes on a Lexar 2GB CF card are well over two orders
of magnitude more expensive than sequential writes, while semi-
random writes are very efficient. Similar results hold for several
other flash cards and SSDs we tried. The result can be explained
by the algorithms used in existing FTLs. The FTL maintains a
mapping table between logical addresses and physical addresses.
If this table were to map logical pages to physical pages, the map-
ping table for a 2GB flash with a 2KB page size and 64 pages/block
would be 64MB! Instead, existing flash packages maintain a map-
ping from logical blocks to physical blocks; for a 2GB flash, this
reduces the mapping table to 1MB [3]. For all but the low-end
platforms, this enables the mapping table to be stored in memory,
which is crucial because its typical access pattern (frequent, ran-
dom reads and in-place updates, at a word granularity) is very ill-
suited for flash. Unfortunately, with a block-level mapping, even
when a single page is modified, the entire logical block needs to
be written to a new physical block, resulting in poor random write
performance.

The performance benefit of semi-random writes come from sev-
eral optimizations within existing FTLs. Many existing FTLs op-
timize write costs by being lazy; when the i’th logical page of a
block is written, the FTL copies and writes the first i pages (instead
of all the pages in the block) to a newly allocated block, leaving
subsequent (unmodified) pages in the old block; later, when page
j > i is modified, pages (i + 1) to j are moved and written to the
new block, and so on [3]. Semi-random writes do not require mov-
ing any unmodified page to the newly allocated block, resulting
in a performance comparable to sequential writes. In many other
existing FTLs, modified pages are temporarily maintained in logs;
logged pages, along with unmodified pages in the same block, are
later copied to newly allocated blocks [13]. With this strategy as
well, semi-random writes do not require copying any unmodified
pages across blocks, resulting in superior performance.
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Algorithm 1 Sample(smin, smax, N)

Require: Minimum and maximum sample sizes smin and smax, number
of B-FILE buckets N (not counting the tail bucket)

1: L ← 0 {L is the current minimum active level}
2: bfile ← new B-FILE(N )
3: for each stream item v do
4: lv ← Level(v, smin, smax) {compute the level}
5: if lv ≥ L {if v selected for the sample} then
6: bfile.AddItem(v, lv−L+1) {append v to bucket Blv−L+1}
7: if |bfile| = smax {if sample size at its max} then
8: bfile.DiscardBucket(1) {discard the items in B1}
9: bfile.LeftShift() {rename each bucket Bi+1 to be Bi}

10: L ← L + 1 {increment the minimum active level}

The good performance of semi-random writes is likely to hold
for applications directly accessing flash chips as well. Most such
applications will maintain a block-level mapping between logical
and physical addresses, resulting in performances similar to exist-
ing FTLs. Some applications may decide to maintain a page-level
mapping, at the cost of a very large memory footprint and crash-
recovery overheads [1]; however, this extreme case will make semi-
random (and random) writes perform almost the same as sequential
writes, as modified pages will be written sequentially irrespective
of the write pattern.

In summary, the orders of magnitude performance benefits of
semi-random writes hold across a broad range of flash configu-
rations, including commercial offerings and research prototypes.
However, in order to use semi-random writes, algorithms need to
know the block boundaries, and hence the block size—the block
size can be readily obtained by querying the flash driver or the FTL.

4. MAINTAINING SAMPLES ON FLASH

4.1 The Basic Algorithm
Our basic algorithm (see Algorithm 1) combines ideas from sev-

eral sampling algorithms (e.g., [7, 11]), in a novel way that is tai-
lored to flash. When describing the algorithm, we will often high-
light its adherence to the design principles (P1–P3) from Section 2.1.
We will use the notation summarized in Table 2.

At a high level, there are three salient aspects of our basic al-
gorithm. First, as in the adapted algorithms in Section 2.3, Al-
gorithm 1 will incur some additional storage overhead beyond the
sample itself, in order to improve performance. In our case, we
allow the sample size to range between a specified lower bound
(smin) and a specified upper bound (smax). This flexibility is use-
ful because it enables us to decouple the addition of a new item to
the sample from the deletion of an existing item (to make room).
The difference between smax and smin represents the additional
flash storage overhead incurred by our algorithm, in order to en-
sure (on expectation) a sample of size at least smin. On the other
hand, because the maintained sample is always uniformly random,
any extra sample points beyond smin are not really wasted, as they
can be put to good use by applications.

Second, when an item is selected for the sample, we immediately
determine its relative priority for deletion compared to other sample
points (i.e., we preselect its random relative replacement order),
and then store the item with sample points of the same priority.
Specifically, each item selected for the sample is randomly assigned
to one of a logarithmic number of “levels” (by the “Level” function
in line 4 of Algorithm 1, details below). This partitions the sampled
items into equivalence classes; all items in the same equivalence
class are stored in the same “bucket” and will later get discarded
at the same time. This allows block-wise erasure (as opposed to

Table 2: Notation used in this paper
N Number of individual B-FILE buckets
BT The tail B-FILE bucket (a log)
Bi, i = 1 · · ·N The i’th individual B-FILE bucket
L Current minimum active level
S′ Data stream seen so far
S Sample, i.e., ∪N

i=1Bi ∪BT

smin, smax Minimum and maximum sample size
α smin/smax

v, lv A stream item and its level
p Probability of heads in each coin toss
R, W Avg. cost to read/write an item in flash

random overwrite) of data, and is the key behind the efficiency of
our algorithm. We use our new B-FILE data structure (described in
Section 4.2) to store the buckets.

Third, we use the same Level function and a rising threshold L
to determine whether an item is selected for the sample. Consider
the main loop of Algorithm 1. An item v is selected if its level lv
(computed in line 4) is at least the current threshold L (line 5). A
selected item is added to the bucket for its level (line 6). Whenever
the sample size reaches smax (line 7), we make room by discarding
all the sample points in the first bucket B1 (line 8), i.e., discarding
all items with level L but retaining all items with level L + 1 or
above. Conceptually, we then shift all the buckets to the left, so that
the buckets containing sample points are always numbered starting
at 1 (line 9). As we are no longer including in our sample any
items with level L, but require at least level L + 1, we increment
the threshold (line 10).

Assigning levels to items to obtain overall guarantees. The fact
that all items in unexpired buckets constitute a random sample holds
as long as the random variable that determines an item’s level is in-
dependent of its arrival order. As a specific implementation, and in
order to have only a logarithmic number of levels, we assign items
to levels such that the expected number of items having a level i de-
creases exponentially with i. Such a random level can be obtained
by tossing a biased coin—the level is determined by the number
of tosses required to get the first head. Let p be the probability of
heads on any given coin toss.

LEMMA 4.1. At any point of time, the items with level≥ L (i.e.,
the items in the buckets), represent a uniform sample of all the items
seen so far.

PROOF. Consider an item v and denote the level assigned to it
as lv . Then Pr {lv = i} = (1−p)i−1p. Suppose the current value
of L is k. The item will be part of the sample if lv ≥ k. Thus Pr {v
is in sample |L = k} =

∑∞
j=k(1 − p)j−1p = (1 − p)k−1, which

is constant for given values of p and k. 2

Lemma 4.1 implies that we can maintain a uniform sample us-
ing any value of p ∈ (0, 1). However, the value of p determines
how the sample size fluctuates, because it determines the expected
number of items that are assigned to the current level L (i.e., it de-
termines |B1|) at the point that the total sample size hits the upper
bound smax. Because B1 is discarded at this point, we have that the
expected value of smin is smax minus the expected value of |B1|.
The following lemma (proof in Appendix A) provides a means to
select p in order to keep the sample size within a target range.

LEMMA 4.2. Setting p = 1 − α, where α = smin/smax, en-
sures that the sample size is at least smin on expectation and al-
ways at most smax.

Discussion. At this high level, the algorithm is reminiscent of the
sampling component of our previous algorithm [7] for counting the
number of 1’s in the union of distributed data streams, with mod-
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Figure 3: A snapshot of B-FILE. Solid bars represent applica-
tion buckets, text above a bar represents the level of the items
in the bucket, and text below a bucket represents the B-FILE
bucket number. The tail B-FILE bucket BT contains items with
level at least L + N .
est changes. However, at the next level of detail, the previous al-
gorithm (which is designed for main memory and not flash) suf-
fers from excessive in-place updates, random writes and sub-block
deletions, violating flash design principles P1–P3. Our main inno-
vations are (i) in recognizing that the previous algorithm provides
a basis for a flash-friendly algorithm, (ii) in designing novel flash-
friendly techniques in support of each step of the algorithm (finding
the right data organization, etc.), and (iii) in exploring how various
parameter choices optimize performance.

4.2 B-File Design
In this section, we present our main new data structure: the B-

FILE. Logically, a B-FILE consists of a potentially large set of
application buckets ∪iBi stored on a flash media. Physically, how-
ever, a B-FILE stores these buckets in a collection of N “individ-
ual” buckets holding the first N application buckets and one “tail”
bucket holding all the remaining (typically very small) buckets. To
distinguish these two notions, we will call the former application
buckets and the latter B-FILE buckets. The use of a tail B-FILE
bucket is a key optimization for flash, as discussed below.

At a high level, the B-FILE supports the following operators:

• new B-FILE(N ): Create a new B-FILE with N individual
B-FILE buckets plus one tail B-FILE bucket.

• AddItem(v,i): Add item v to application bucket Bi. Appli-
cation buckets can be of arbitrary size.

• size and size(i): Return the number of items in the entire B-
FILE or in application bucket Bi. (In Algorithm 1, we use
“|bfile|” as a shorthand for the size operator.)

• DiscardBucket(i): Discard the items in application bucket
Bi, and reclaim the space.

(Algorithm 1 also depicts a LeftShift operator, which is used only
to simplify the notations and explanations in this paper.)

When used for our sampling algorithm, the sizes of individual
application buckets exponentially decrease, with the first bucket B1

being the largest. At any point of time, the contents of all the buck-
ets represent the random sample S over the entire data stream S′

seen so far (Lemma 4.1). Figure 3 depicts a snapshot of a B-FILE
as used by Algorithm 1.

Before explaining the B-FILE in further detail, it is useful to mo-
tivate its design by considering its use in our sampling algorithm.
Using the B-FILE enables the steps of the algorithm to be supported
in a flash-friendly way, for the following reasons. First, new items
are always appended into the appropriate buckets (either the tail
bucket or the corresponding individual bucket)—we avoid in-place
updates. Moreover, the B-FILE maintains an in-memory page of
the most recently inserted items for each B-FILE bucket, which,
when full, gets appended to a block associated with the bucket (as
discussed in Section 4.2.1). These page flushes fit a semi-random
access pattern, as defined in Section 3. Namely, while the next
flushed page can be for any bucket, the pages within a bucket’s

1 B1B2 B2 BT
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Figure 4: Physical layout of the buckets

block are written sequentially. Thus, according to Design Princi-
ples P1 and P2′, the write operations are highly-efficient. Second,
the algorithm clusters items with the same level together into ap-
plication buckets. The first such bucket is mapped to the first indi-
vidual B-FILE bucket. As we shall see, individual B-FILE buckets
are stored using as few blocks as possible. According to the Design
Principle P3, this enables highly-efficient deletion of B1. Third,
the B-FILE maintains only a few (N ) large application buckets as
individual B-FILE buckets. Note that the size of the application
buckets exponentially decreases with level number, and therefore,
application buckets with higher levels contain very few items. Be-
cause storage on flash is best allocated in granularity of a block,
allocating a whole block for those small application buckets would
be wasteful. Instead, they are rolled into the tail B-FILE bucket.
Finally, the parameter N provides a tunable control over the B-
FILE’s (RAM) memory footprint. The number of memory words
used by the B-FILE (and hence by the sampling algorithm) is linear
in N , and otherwise constant. Thus, RAM-constrained embedded
devices can use the algorithm with smaller values of N . On the
other hand, as we show in Section 4.2.2, the I/O cost of maintain-
ing buckets decreases with increasing N ; hence, less constrained
devices can take advantage of the larger available RAM by using
larger values of N .

4.2.1 Bucket Layout and Maintenance
Figure 4 depicts the physical layout of B-FILE buckets. The top

half shows the in-memory portion. For each B-FILE bucket Bi (in-
cluding the tail bucket), we maintain an in-memory data structure
called Bi.header. The header contains a page buffer that can tem-
porarily hold one flash page worth of data, and a block pointer that
points to the first flash block and page containing the items in that
bucket. When an item is added to a bucket, it is temporarily put in
its page buffer. When the page buffer holds one page worth of data,
the buffer is flushed to the next available page, which is next to the
page and within the block pointed to by the block pointer. Search
or retrieval of items in a bucket starts with the block pointer.

To cope with the unique properties of flash, the physical lay-
out of the buckets on the flash must be carefully designed in order
to obtain high efficiency. Consider the following alternatives. If
pages of a single block were used by different buckets, discarding
a bucket would violate Design Principle P3, and hence be expensive
in terms of energy and latency. Thus, instead, all pages of a block
are dedicated to a single B-FILE bucket, as shown in the bottom
half of Figure 4, where each shaded (pink) rectangle in the bottom
half depicts a block and is labeled with its associated bucket name.
Unshaded rectangles in the bottom half depict free blocks.

There is also a crucial choice as to how all the blocks for a bucket
are organized. In RAM or magnetic disk, there are a variety of pos-
sible organizations (array, stack, queue, singly- or doubly-linked
list, etc.) that may be desirable depending on the context. How-
ever, on flash, certain organizations can be extremely expensive to
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maintain. For example, suppose a bucket were organized as a data
structure with forward pointers (i.e., pointers from older elements
to newer elements), such as a queue or a doubly-linked list. Older
elements on the flash cannot be modified to point to newer elements
without incurring high costs (Design Principle P1). An array, al-
though efficient, is not a suitable choice because the precise size of
a bucket cannot be determined a priori (see [11] for a discussion on
the complexities of handling sampling variance in geometric file).
A flat in-memory table that maps blocks to buckets is not attrac-
tive either, for its large memory footprint and inefficient bucket to
block mapping. Thus, instead, we will chain the blocks of a bucket
together with backward pointers (i.e., newer blocks point to older
blocks), as depicted in the figure.

B-FILE uses two modules to maintain this layout, described next.
Bucket manager. The Bucket Manager (BM) writes in-memory
buffers to flash pages. When the buffer holds one page worth of
data, the buffer is flushed to the next available page within the
block h, as indicated by the block pointer. When no empty page
is available in that block h, a new block h′ is allocated by the Stor-
age Manager (described below). A pointer to the block h is stored
with the last page of block h′ and the block pointer is updated to
h′. Thus the blocks in a bucket are chained together with backward
pointers and the address of the last block is maintained in the block
pointer.
Storage manager. The Storage Manager (SM) keeps track of avail-
able blocks and allocates them to the Bucket Manager (BM) on de-
mand. When BM discards a bucket, the block pointer of the bucket
is returned to SM. Moreover, when the tail bucket BT is unrolled
(described in Section 4.2.2), the blocks used by BT are also re-
claimed by SM. When BM requests a new block, SM pops a block
from a discarded bucket, erases it, and returns it to BM.

Note that because blocks are allocated dynamically to individual
buckets, B-FILE can accommodate large and variable-size records.
However, for simplicity of cost analyses and parameter optimiza-
tions, we consider fixed-size records in the rest of this paper.

4.2.2 Maintaining the Tail Bucket
Note that the tail B-FILE bucket BT is essentially a log of items

with different levels, all of which are larger than the item levels in
individual B-FILE buckets. Because items are discarded one level
at a time, at some point the log must be scanned in order to separate
out items with certain levels. We call this process unrolling BT .
For example, suppose N = 10 and L = 3. Then, all the items
with level ≥ 13 are kept in BT . The reason we decide to maintain
these levels in one bucket is that very few items so far have these
levels (the numbers decrease exponentially with the level), and so
maintaining a separate bucket (which must be at least one block
in the flash) for each such level is wasteful. However, as more
items arrive, level 13 becomes more frequent within BT and at
some point it may make sense to maintain a separate bucket for
level 13. Separating level 13 items from BT would make it easier
to discard the level 13 items when L = 13 and |bfile| = smax.
Note that after unrolling, separated buckets can be accommodated
within the individual buckets, because at least one individual bucket
is discarded between any two unrollings.

Unrolling BT requires reading all its items, writing items to be
separated out into their appropriate buckets, writing the remaining
items into a new BT , and then freeing the old BT . (We cannot
update BT in place since flash does not allow it.) This is the only
occasion where we write the same item more than once to flash—
there is no other such copying overheads in Algorithm 1.

One important design decision is when to unroll BT in order to
separate out one or more buckets from it. This decision can signifi-

cantly affect the performance of the sampling algorithm. After each
unrolling, all N + 1 buckets contain items. Now, on the one hand,
BT can be unrolled every time B1 is discarded. This is feasible
because discarding B1 gives free space that can be used to unroll
BT . This has the advantage that BT cannot grow very long before
unrolling, keeping the cost of scanning it small. On the other hand,
BT can be unrolled lazily. In the extreme, it can be unrolled only
when necessary, e.g., when discarding items of the lowest level in
BT , or when processing queries involving items in BT . This has
the advantage that BT can be unrolled very infrequently, which
may save the unrolling cost.

In general, suppose the algorithm maintains at most N +1 buck-
ets and BT is unrolled after every u times B1 is discarded; i.e., just
before unrolling BT , there are (N − u) individual B-FILE buck-
ets. (The two extreme scenarios above correspond to u = 1 and
u = N ). We now study the following optimization question: What
values of N and u optimize the cost of maintaining the sample?

Cost analysis. Suppose the costs of reading and writing a data
item to flash are R and W , respectively. For example, if y items
can be stored in a flash page, the cost of writing a flash page is cw,
a block contains z pages, and the cost of erasing a block is ce, then
W = (cw + ce/z)/y. Suppose, the expected size of the largest
bucket B1 before it is discarded is s1, and hence on expectation, s1

items are inserted into the sample between two successive bucket
discards. Thus, us1 items are inserted into the sample between two
log unrolls. For these us1 items, we incur the following I/O costs.1

1. All us1 items are written (to individual buckets or to BT ),
incurring a cost of c′ = us1 ·W .

2. The whole BT needs to be read during unroll. Note that,
just before unroll, there will be N − u active buckets, and
the expected size of BT will be sT =

∑∞
i=N−u s1α

i =

s1α
N−u/(1−α), where α = smin/smax as before. Hence,

reading BT will incur a cost of c′′ = sT ·R
3. The items in BT need to be written back, either to individual

buckets or to a new BT , incurring a cost of c′′′ = sT · W .
In the special case u = N , the items with the smallest level
in BT can be discarded, and hence the cost would be c′′′ =
(sT − s1) ·W

Thus the total cost per item included in the sample is

C =
c′ + c′′ + c′′′

us1
= W +

(R + W )αN−u

u(1− α)

Optimal values of N and u. The above equation shows that the
cost of maintaining the buckets decreases with increasing N . In-
tuitively, having a large N implies smaller BT and small log un-
rolling cost. Therefore, it is preferable to have N be as large as
possible. However, the size of the data structures in memory in-
creases linearly with N . Hence, in practice, the desirable memory
footprint places an upper bound on N .

The cost equation also shows that, for a given N , the above cost
function is convex in terms of u. Hence, the cost is minimized
when the derivative dC/du = 0. This yields the following lemma.

LEMMA 4.3. Suppose a B-FILE maintains at most N individ-
ual buckets and BT is unrolled after every u times that B1 is dis-
carded. Then the cost of maintaining the buckets is minimized when
u = −1/ ln(α), where α = smin/smax.
1We here ignore the CPU cost of our algorithm because first, it is
negligible compared to the flash I/O cost, and second, it does not
affect the key parameters we seek to optimize.
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There also exists a non-trivial interaction between the total I/O
cost of a B-FILE and the difference δ = smax − smin. In Ap-
pendix A, we show how the optimal value of smin or smax can be
determined if the size of the stream can be estimated a priori.

5. QUERYING SAMPLES
In this section, we describe efficient techniques for extracting a

subsample Q from the sample S generated by Algorithm 1, under
two important scenarios. First, in Section 5.1, we seek a smaller
random sample of the data stream than the one generated by Al-
gorithm 1. When they suffice for the estimation problem at hand
(e.g., the variance is low), smaller random samples are preferred
because they cost less time and energy to transmit and process.
Second, in Section 5.2, we seek a random sample of the portion of
the data stream that arrived during an arbitrary time window. Such
queries are common when remotely querying energy-constrained
sensor nodes. In both scenarios, the key parameter—the sample
size or the time window—is specified only at query time.

5.1 Random Subsampling
We first present techniques for choosing a random sample Q

from the on-flash sample S such that |Q| < |S|. The most obvious
way to implement such a sampling is to use a reservoir sampling
algorithm to draw a sample of size |Q| from S. However, although
simple, this naive algorithm has two major drawbacks. First, it
requires scanning the entire sample S, which can be as large as
several gigabytes. Second, it would require O(|Q|) space in the
memory, which may not be feasible in many memory-constrained
devices. We therefore develop techniques that exploit the random-
ized bucket structure of the B-FILE generated by Algorithm 1.

We will focus on batch sampling, where the desired sample points
are extracted as a batch. In Appendix A, we present an alternative
algorithm for iterative sampling, where a single sample point is ex-
tracted at a time, with replacement.

Batch sampling. One possible approach would be to adapt Olken
and Rotem’s procedure of batch sampling from a hashed file [18].
The basic idea is first to determine how many samples need to be
drawn from each bucket (using a multinomial distribution), and
then to draw the target number of samples from each bucket with
the acception/rejection algorithm or the reservoir sampling algo-
rithm. However, this approach suffers from the overheads of ex-
tracting random items from each bucket. For example, when the
expected number of sample points per page is around 1, then often
entire pages are read from flash in order to extract a single sample
point from the page. Instead, we can exploit our randomized bucket
structure to develop an approach that uses all the sample points on
most of the pages it reads from flash, as described next.

Because in Algorithm 1, all items are equally likely to have a
given fixed level, each B-FILE bucket is a uniform random sample
of the data stream S′. Thus, any combination of buckets is also a
uniform random sample. If we can find a set of buckets that added
together have the desired size |Q|, we can return the items in those
buckets. On the other hand, if we must take only part of one bucket
in the set in order to achieve |Q|, then we must be careful to ensure
that the part is indeed random. Taking a prefix will not work, be-
cause the items in a single bucket are in arrival time order. Instead,
we use reservoir sampling on that one bucket, as follows.

1. Select a few buckets {Bi1 , Bi2 , . . . , Bik}, where each ij ∈
[1, N + 1] is a distinct integer, such that

∑k
j=1 |Bij | ≥ |Q|

and
∑k−1

j=1 |Bij | < |Q|. That is, only a fraction of the last
bucket Bik needs to be selected to have |Q| items in all. One

greedy heuristic for selecting these buckets is to consider all
B-FILE buckets in increasing order of their size and to des-
ignate the smallest selected bucket to be Bik .

2. Sample Q′, a random set of (|Q|−∑k−1
j=1 |Bij |) items, from

Bik , using reservoir sampling. Return Q = ∪k−1
j=1Bij ∪ Q′

as the target subsample.
It is easy to show that the above algorithm returns a random

sample over the stream. All items have the same probability of
being selected for a given bucket; let pj be the probability that
an item is selected for a bucket Bij . Now consider an item x in
the entire stream S′. Pr {x ∈ Q} =

∑k−1
j=1 Pr {x ∈ Bij} +

Pr {x ∈ Bik} · Pr {x selected by reservoir sampling algorithm
} =

∑k−1
j=1 pj + pk · |Q′|/|Bik |. As this expression is independent

of x, every item in the stream has an equal probability of being
included in Q.

The cost of the above algorithm depends on the size of the small-
est bucket selected in step 1. Selecting an optimal bucket set (that
will minimize the size of the smallest selected bucket) is part of our
future work. Note that a lower bound on the cost for any algorithm
is the size of the smallest B-FILE bucket. Under the experimental
setup described in Section 7, the size of the smallest bucket se-
lected by our greedy approach is, on average, within 12% of this
lower bound.

One caveat is that because buckets are selected for Q determinis-
tically, the same subsample (up to the random choice of items from
Bik ) is selected each time the procedure is called for a given |Q|.

5.2 Samples Within a Time Window
Given arbitrary t1 and t2 at query time, t1 < t2, our goal is

to return a random sample of the items in the part of the original
stream that arrived within the time window [t1, t2]. For the pur-
poses of this section, we assume that each item in S is labeled with
its timestamp. It is easy to show that all the items in S whose arrival
timestamps are in [t1, t2] satisfy our goal.

A naive approach to find the desired subset of items is to scan
all the buckets in the B-FILE and return the items with the desired
timestamps. However, we can do much better by exploiting the
fact that B-FILE fills page buffers and flushes them to flash in such
a way that scanning through the chained set of blocks in a bucket
visits the items in descending timestamp order. Therefore, we just
require a suitable data structure to locate, for each bucket, its most
recent item I0 with a timestamp ≤ t2. We can then sequentially
scan the bucket for as long as we find items with timestamps ≥ t1.

To facilitate efficiently locating I0, we organize blocks within a
bucket as a skip list [20]. A skip list is an ordered linked list with
additional forward links, added in a randomized way with a ge-
ometric/negative binomial distribution, so that a search in the list
may quickly skip parts of the list. In terms of efficiency, it is com-
parable to a binary search tree (O(log n) average time for most
operations, under the standard RAM model). Figure 5 shows an
example bucket as blocks organized as a skip list.

Implementing a general skip list, which allows inserting items in
the middle of the list, would be expensive in flash. For example,
consider inserting a node (a block) with time range [112, 117] into
the skiplist in Figure 5. This would require changing forward point-
ers of some of the existing skip list nodes. Because these pointers
cannot be updated in place, these nodes, with pointers to the new
node, must be written to new locations. However, this would re-
quire updating forward pointers of nodes that point to the updated
nodes, and so on. Thus, recursively, many nodes would be required
to be written to new locations due to a single insertion operation.
Similarly, a deletion operation can be very expensive.
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Figure 5: Blocks of a bucket are organized as a skip list. Solid rectangles are blocks and the text within each solid block denotes the
time window of the items stored in that block. Items are stored in descending timestamp order.

Algorithm 2 InsertBlock(Block f b, Bucket m bucket)
Require: m bucket.header.forward[i] initialized to NULL for all

i ∈ [1, MaxLevel]; m bucket.level initialized to 0
1: lvl ← RandLevel()
2: if lvl > m bucket.level then
3: m bucket.level ← lvl
4: for i = 1 to lvl do
5: f b.forward[i] = m header.header.forward[i]
6: m bucket.header.forward[i] = f b.address

Fortunately, blocks in a bucket of B-FILE are always inserted at
the front of the bucket and inserting a new node at the front of a skip
list can be efficiently implemented in a flash. Algorithm 2 depicts
the steps to insert a new block at the front of a bucket. In memory,
each bucket maintains a header that keeps maxLevel number of
forward pointers. (Here, “level” refers to the skip list pointers, and
is not to be confused with the notion of level in Algorithm 1.) To
insert a block into the list, a level, lvl, is generated for it such that
all blocks have level ≥ 1, and a fraction p (a typical value for p
is 1

2
) of the nodes with level ≥ i have level ≥ (i + 1). (See [20]

for more details.) For each level i, the bucket header maintains the
most recent block with level≥ i. For each level i up to lvl, the new
block copies the level i pointer from the bucket header into its level
i pointer and then writes a pointer to itself as the new level i pointer
in the bucket header. Thus, inserting a block requires writing to just
the bucket header and the first page of a new block, both of which
are in memory. This takes constant time.

Searching for items within a time window uses a combination
of skip search and binary search. Skip search is used to locate the
block containing I0 in logarithmic time, as follows. Starting from
the header of the bucket, we search for a block by traversing for-
ward pointers that do not overshoot the block containing the item
with timestamp t2 (recall that items are sorted in descending order
of timestamps). When no more progress can be made at the cur-
rent level of forward pointers, the search moves down to the next
level. When we can make no more progress at level 1, we must be
immediately in front of the block that contains the desired item (if
it is in the list). The gray curvy line in Figure 5 shows the search
path for locating the block containing timestamp 90. After we lo-
cate the block, we use binary search to locate the page that contains
the most recent item with timestamp ≤ t2. After locating the page,
subsequent pages are read sequentially from the same block. If the
last page of the block does not contain a timestamp < t1, the read
continues from the first page of the next block of the bucket (the
pointer forward[1] of a block gives the next block of the bucket).
The scan halts as soon as a timestamp < t1 is encountered.

6. EXTENSIONS OF BASIC ALGORITHM

6.1 Weighted Sampling
Thus far, we have described how the B-FILE can be used to ef-

ficiently maintain a very large unbiased random sample. We have
assumed that each item produced by the stream has an equal proba-
bility of being sampled. In many applications, however, the relative
importance of the data items to be sampled is not uniform, in which

case the random sample should over-represent the more important
records. Such weighted sampling is desirable in many sensor net-
work applications where different sensed events have different im-
portance. The database literature also contains many applications
of weighted sampling [2, 4].

We here present a weighted sampling algorithm where each item
i in the stream has a weight wi, and at a given point in time, the
probability that the item is included in the sample is proportional to
wi. Interestingly, to ensure this property, the only thing we need to
change in Algorithm 1 is how the level of an item is generated—the
rest of the algorithm remains the same.

Recall that, for uniform sampling, we use a coin with Pr(head) =
p and the level of an item is the number of coin tosses required to
get the first head. Let us denote the outcome of such a coin tossing
experiment as l̂u. Then, if we assign l̂u + log(1−p) wi as the level
of an item i with weight wi, then Algorithm 1 maintains a sample
with the desired weighting property:

LEMMA 6.1. Suppose an item i with weight wi is assigned a
level l̂w = l̂u +log(1−p) wi. Then Algorithm 1 maintains a sample
such that at any point in time, the probability that the item i is
included in the sample S is proportional to wi.

PROOF. Suppose the current minimum active level is L. Then,
Pr {i ∈ S} = Pr {l̂w ≥ L} = Pr {l̂u ≥ L + log(1−p) wi} =

(1 − p)(L+log(1−p) wi−1) = wi(1 − p)L−1. The lemma follows
because (1− p)L−1 is fixed independent of i. 2

The level of an item must be an integer. However, l̂w may be
fractional. To deal with this, we generate an integer level l̂′w which
is either bl̂wc or dl̂we, depending the magnitude of the fractional
part of l̂w. More precisely, l̂′w = dl̂wewith probability (l̂w−bl̂wc),
and l̂′w = bl̂wc otherwise.

6.2 Age-Decaying Sampling
Another important type of sampling is where the probability of

an item to be included in the sample decays with its age; i.e., at
any point in time, the sample includes more newer items than older
items. E.g., consider the problem of sensor data management—
most queries will be over recent sensor readings. Another example
is sampling-based techniques for network intrusion detection where
recent events are more important than older events.

We here present a sampling algorithm where the most recent item
is always in the sample and the probability that an item is included
in the sample decays exponentially with its age. We define age
agei of an item i as the number of items in S′ that arrived after
i.2 In our algorithm, the inclusion probability of items decays in
discrete steps. More precisely, the inclusion probability of items
stays the same for every s1 item arrivals, where s1 is the expected
size of B1 in B-FILE. Thus, the inclusion probability of an item i
exponentially decreases with the number of item groups of size s1

2This is in contrast to the definition of age in terms of time elapsed
after the item i has arrived. Within our sampling framework, tech-
niques for exponentially-decayed sampling with time-based age is
still open. One can use weighted sampling with weight = arrival
time, but as timestamps grow large, the decay becomes very slow.
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Table 3: Generating levels for different sampling algorithms
Sampling scheme Level of a newly arrived item

Uniform sampling l̂u = # tosses of a p-biased
coin to get the first head

Weighted sampling l̂w = l̂u + log(1−p) w

Exponentially decayed sampling l̂e = l̂u + L

Weighted + Decayed l̂we = l̂u + log(1−p) w + L

that arrived after i. Although this does not provide a smooth decay,
this is acceptable in many practical scenarios. For example, it is
perfectly fine for many applications to maintain a sample where
all the items that arrived today have the same inclusion probability
p0, all the items that arrived yesterday have the same probability
p1 < p0, and so on. In such a case and with a constant daily arrival
rate, our algorithm can be used with a value of s1 such that s1 items
arrive each day.

As before, this sampling algorithm also requires generating the
levels of newly arrived items in a special way, while everything else
of Algorithm 1 remains the same. Now, on arrival of an item i, we
assign it a level l̂e = l̂u +Li, where l̂u is the level generated by the
coin toss experiment for uniform sampling, and Li is the minimum
active level at the time of the arrival of item i. Then the following
lemma shows that our basic algorithm maintains a sample where
the inclusion probability decreases exponentially.

LEMMA 6.2. Suppose an item i is assigned a level l̂e = l̂u+Li,
where Li is the minimum active level at the time of the arrival of
item i. Then Algorithm 1 maintains a sample S such that at any
point in time, the probability that item i is included in the sam-
ple exponentially decreases with (L − Li), where L is the current
minimum active level.

PROOF. Suppose the current minimum active level is L. Then,
Pr {i ∈ S} = Pr {l̂e ≥ L} = Pr {l̂u ≥ L − Li} = (1 −
p)(L−Li−1), as required. 2

Note that the above two sampling techniques can be combined to
maintain a sample where, at any point in time, the inclusion prob-
ability of an item is proportional to its weight and the probability
decreases exponentially based on its age. Table 3 summarizes the
level generation algorithms for different sampling schemes.

6.3 Optimizations with More Memory
We briefly outline two optimizations that can be used when more

memory is available. The first optimization uses more buckets to
reduce the cost of maintaining the sample. As mentioned in Sec-
tion 4.2.2, more buckets reduce sampling overheads at the cost of
a bigger memory footprint. The second optimization maintains the
skip pointers (of the skip list described in Section 5.2) and time-
stamp ranges of blocks in separate flash pages, instead of storing
them at the end of each block. This reduces subsampling cost by
retrieving multiple successive skip pointers with a single page read.
This requires an additional in-memory page buffer to temporarily
hold skip pointers before they are written to flash.

7. EVALUATION
In this section we experimentally evaluate our B-File-based sam-

pling algorithm and a few existing algorithms.
Flash Devices. Unless otherwise stated, we use a smax = 1.2GB
flash device to maintain a smin = 1GB sample from a data stream
consisting of 1.5 billion 32-byte records. We use two flash devices
for our experiments: (1) FLASHCHIP: a Toshiba flash chip, and (2)
FLASHCARD: a Lexar 2GB CF card. Each flash page is 2KB and
each block contains 64 pages. To measure the performance num-
bers for the FLASHCARD experiments, we connect the flash card,

through a CF Extend 180 Extender Card [22], to the PCMCIA slot
of an Intel P4 1.7 GHz laptop. We then connect a low ohmage (1
Ohm) current sense resistor in series with the extender card and
measure the current with an oscilloscope. For the FLASHCHIP
experiments, we have written a “driver” that emulates a Toshiba
TC58DVG02A1FT00 NAND flash chip, whose performance has
been accurately measured and profiled in a recent work [15]. Ta-
ble 1 shows the energy consumption and latency of both these flash
media. We also studied a few other flash cards from Kingston and
SanDisk and SSD drives from Samsung and SanDisk, and the con-
clusions were identical; hence we omit results for those cards here.
Workload. We use a datastream coming from a set of sensors de-
ployed in a large Microsoft datacenter, although the performance
of a sampling algorithm does not depend on the content of the data
items. We synthetically generate the weights of data items for bi-
ased sampling and the subsample lengths for subsampling experi-
ments, as we will describe in Sections 7.2 and 7.3.
Algorithms Compared. We evaluate the following five algorithms:
(1) Reservoir (RES): the original reservoir sampling algorithm [23].
(2) Adapted Reservoir (A-RES): the adapted reservoir algorithm
described in Section 2.3. (3) Geometric File (GEOFILE): the orig-
inal geometric file based sampling algorithm [11]. However, to re-
duce its memory footprint, small segments are maintained in flash
as a log, instead of in memory. (4) Adapted Geometric File (A-
GEOFILE): the adapted geometric file based algorithm described
in Section 2.3. Lastly, (5) B-File (B-FILE): the main algorithm
described in this paper. Based on our analysis in Section 4.2.2, we
select u = 5. Note that, RES does not use any extra flash storage;
i.e., 1GB space is used to maintain a 1GB sample. All other algo-
rithms use the extra space (smax − smin) to maintain logs and/or
to accommodate internal fragmentation.
Memory footprint. We configure the B-FILE to use 15 buckets,
and it incurs a memory footprint of 31KB. For RES and A-RES,
we use a 2KB (= size of a flash page) buffer to temporarily hold
samples before writing them to the flash. (Increasing the footprint
100-fold has only a few percentage points performance impact.)
GEOFILE and A-GEOFILE require a large in-memory buffer; we
use 1MB and later discuss the impact of using even a larger buffer.

7.1 Cost of Maintaining Samples
Figure 6 shows the energy consumed by different algorithms to

maintain a random sample from a data stream of varying length
with FLASHCHIP and FLASHCARD and the time elapsed for the
same with FLASHCARD. Note that the relative performance of dif-
ferent algorithms with FLASHCHIP and FLASHCARD is the same;
moreover, the time consumed by different algorithms with FLASH-
CARD is proportional to the energy consumed. Therefore, in the
rest of the section, we restrict our discussion to energy consump-
tion for FLASHCARD; our conclusions naturally hold for energy for
FLASHCHIP and for time for both FLASHCHIP and FLASHCARD.

Figure 6(b) makes several important points. First, the energy
consumed by all algorithms decreases exponentially with the stream
size. This is due to the fact that we are maintaining an unbiased
sample and fewer new records are included into the existing sam-
ple as the stream size increases. Second, compared to RES, A-RES
reduces energy consumption by≈ 10%, which comes from the fact
that some of the samples that need to overwrite random records in
RES are discarded directly from the log in A-RES, avoiding ex-
pensive overwrite operations. Third, compared to GEOFILE, A-
GEOFILE reduces energy consumption by ≈ 13%, highlighting
the benefit of allocating entire blocks for individual segments. The
last two points demonstrate the benefit of our adapted algorithms.
However, their performance improvements look insignificant com-
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Figure 6: Energy and time consumed by a flash chip and a flash card under varying stream sizes

pared to the performance improvement of B-FILE. For a stream of
size 1.5 billion records, B-FILE is 3 orders of magnitude more effi-
cient than the best of all the other algorithms considered. Benefits
of similar magnitude are observed for the time elapsed to maintain
the sample, and with FLASHCHIP instead of FLASHCARD.

To better understand the relative performance of different algo-
rithms, we show in Table 4 the total count of various primitive I/O
operations incurred by different algorithms after sampling from 1.5
billion data items. A hypothetical optimal algorithm OPT would
incur at least the cost of sequentially writing the minimum number
of pages required to hold all the data items ever added to the sample
and erasing the minimum number of blocks required to hold all the
items ever deleted (to make space for new items) from the sample.
OPT ’s cost is shown in the last row of the table; this cost is a lower
bound for any algorithm. In practice, the lower bound may not be
achieved due to the following overheads: C1) random writes; C2)
sub-block granularity deletion or in-place update, which require
backing up valid data before and copying it back after the required
block erase operation; and C3) multiple writes of a data item, be-
cause of log compaction. Both C2 and C3 result in increasing the
number of sequential reads and writes.

A-RES improves upon RES by reducing C1 and C2, at a cost
of a small C3 overhead, as shown in Table 4 by A-RES’s fewer
random and slightly higher sequential I/Os than RES. GEOFILE
improves upon RES or A-RES by nearly eliminating C1. How-
ever, it still incurs a high C2 overhead, because segments are not
aligned to block boundaries. We found that > 90% of the reads
and writes of GEOFILE are due to C2. A-GEOFILE improves GE-
OFILE by reducing C2. However, because allocating space at a
block granularity in A-GEOFILE may waste space and we use only
(smax − smin) = 0.2GB of extra space, it is not possible to al-
locate entire blocks to all segments in A-GEOFILE. Therefore,
A-GEOFILE can not completely eliminate C2. Our experiments
show that to significantly eliminate C2 in A-GEOFILE, we need
to allocate full blocks to a large number of segments; and to af-
ford the resulting internal fragmentation, we need to use smax =
10GB. Performance of GEOFILE and A-GEOFILE can also be im-
proved by using a larger in-memory buffer; our experiments show
that by using a 10MB memory, instead of our default 1MB mem-
ory, the performance can be improved by around 10%. In other
words, significantly improving the performance of A-GEOFILE re-
quires using both a very large (e.g., 10× the sample size) flash and
and a large memory (e.g., > 1% of the sample size). In contrast,
B-FILE naturally performs very close to OPT with very little extra
space and memory. As shown in Table 4, B-FILE’s I/O counts are
quite close to optimal (note that semi-random and sequential writes
have similar costs), thanks to its following all the desirable design
principles; the additional reads and writes are due to C3 overheads
incurred while maintaining the tail bucket.

7.2 Biased Sampling

Table 4: Number, in millions, of basic operations for mainte-
nance (Seq: sequential, Rnd: random, S-Rnd: semi-random)

Read Write Erase
Seq Rnd Seq Rnd S-Rnd

RES 0 8160 0.52 8160 0 128
A-RES 1.89 7120 2.5 7121 0 111

GEOFILE 2880 0 799 4.7 0 10.2
A-GEOFILE 2747 0 511 0 0 12.6

B-FILE 0.4 0 0 0 3.418 0.048
OPT 0 0 2.7 0 0 0.032

Figure 7 shows the cost of maintaining different types of random
biased samples on a B-FILE. For the weighted samples, the weights
of individual records have a Gaussian distribution with mean 3 and
variance 1. As shown, the cost of maintaining a weighted sample
is slightly higher than maintaining an unbiased sample; moreover,
the cost exponentially decreases with stream size because fewer
items are included into the sample as the stream size grows. How-
ever, maintaining an age-decaying sample is expensive, because
every new record needs to be added to the sample (and possibly
discarded later as the record grows older). The effect is that the
cost increases linearly with stream size, as shown by the Decaying
and the Weighted+Decaying curves in Figure 7. Note that the per-
formance difference for B-FILE and other algorithms (e.g., A-RES
and A-GEOFILE) will be even greater for age-decaying sampling
than for unbiased sampling; all algorithms will add roughly the
same number of records into the sample, but adding a new record
is much cheaper in B-FILE than in the other algorithms.

7.3 Subsampling
To evaluate subsampling cost, we first construct a 1GB random

unbiased sample from 1.5 billion records, with exponentially dis-
tributed inter-arrival times. We then measure the energy consumed
to extract all the records in the sample that arrived within a time
window [t1, t1 + length], where t1 is uniformly randomly dis-
tributed within the window [0, 1.5×109−length]. Figure 8 shows
the energy consumed for different values of length. We consider
three alternatives to locate the first record (≥ t1) in each bucket: se-
quentially scanning the bucket, using skip lists with pointers stored
at the end of data blocks, and using skip lists with pointers stored in
separate pages (recall Section 6.3). The results show that the cost
of extracting subsamples increases with the substream size length
(which is proportional to subsample size). For smaller substreams
(< 105), using skip lists provides an order of magnitude greater
energy savings than sequential scan, and using the skip lists in
separate pages provides another order of magnitude greater energy
savings. The benefit comes from a small number of page reads re-
quired to locate the first record in the subsample. However, the ben-
efit diminishes as the subsample is taken over a longer substream,
as the cost of locating the first record becomes insignificant com-
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pared to the cost of reading subsequent records in the subsample.

7.4 Concurrent sampling and querying
So far we have evaluated our sampling and subsampling algo-

rithms in isolation. Now, we consider them together; i.e., we query
(subsample) the sample on a flash device at the same time the sam-
ple is being collected. Because a flash device can support a limited
number of concurrent I/Os, concurrently sampling and querying the
sample may affect the performance (especially the latency) of both
operations. We consider the following scenario: data items arrive at
the maximum rate our most expensive sampling scheme (Weighted
+ Decaying) can handle, and we run one sampling thread to main-
tain the sample on flash and 10 query threads each of which contin-
uously asks for random subsamples of size 10, 000 items. For the
sampling thread, we report the average cost after seeing 100 mil-
lion(M) data items; the cost would decrease with additional items.
(Note that the flash device can hold around 40M items, so even af-
ter 100M items, the sampling cost per arriving item is reasonably
high). Our results show that the impact of concurrent sampling
on query latency is very small (< 5%; details in Appendix B).
In contrast, as shown in Figure 9, the impact is more significant
on sampling latency (upto 35%). This is because with concurrent
reads and writes on flash, write performance suffers more than read
performance [1].

8. CONCLUSION
In this paper, we have presented the first flash-friendly algorithm

for maintaining a very large (100 MBs or more) random sample of a
data stream. We proposed B-FILE, an energy-efficient abstraction
for flash media to store self-expiring items and showed how B-
FILE can be used to efficiently maintain a large sample in flash. We
also provided techniques to maintain biased samples with a B-FILE
and to query the large sample stored in a B-FILE for a subsample
of an arbitrary size. Evaluation with flash media shows that our
techniques are three orders of magnitude (or more) faster and more
energy-efficient than existing techniques.

We believe that the B-FILE is a general abstraction and can be
used for many purposes other than sampling. For example, it can
be used to archive data and to automatically age it, based on arrival
time or priority of the data, to reclaim storage space for newly-
arriving data (e.g., on a sensor node). Moreover, our study revealed
an important subclass of random writes, which we called semi-
random writes, that defy the common wisdom to avoid all random
writes. We believe that semi-random writes can also be used for
many purposes, e.g., it is the write pattern for external memory dis-
tribution sort [25]. Moreover, for some algorithms, sufficient write-
buffering and scheduling might be able to transform most of the
random writes to flash into semi-random writes. Exploring other
uses for B-FILE and semi-random writes is part of our future work.

Acknowledgements. The authors thank the anonymous reviewers
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APPENDIX
A. ADDITIONAL B-FILE ALGORITHMS

AND OPTIMIZATIONS
Randomized batch sampling from a B-File. The batch sampling
algorithm in Section 5.1 is not truely randomized in the sense that
there might be a significant overlap between two subsamples (since
if both subsamples select a bucket, all items within the bucket will
be in both subsamples). Although it might not be a problem for
most applications, we here outline another batch sampling algo-
rithm which is truely randomized, but less efficient than the algo-
rithm in Section 5.1.

The algorithm is analogous to Olken and Rotem’s procedure of
batch sampling from a hashed file [18]. The basic idea is first to de-
termine how many samples need to be drawn from each bucket (us-
ing a multinomial distribution), and then to draw the target number
of samples from each bucket with the acception/rejection algorithm
or the reservoir sampling algorithm.

We would like to mention that geometric file can support a more
efficient implementation of the above algorithm. Since the items
in each segment are stored in a random order, the target number of
samples from each segment can be drawn efficiently by sequential
reads. In contrast, each B-FILE bucket keeps items stored in the
order of their arrival times. Although requiring reading more flash
pages during sampling within a bucket, the B-FILE approach has
two advantages: (1) it avoids having to randomize data items before
writing to flash, and (2) it enables efficiently producing a sample for
any specified time window, as described in Section 6.2.

Algorithm 3 GetNext()

1: while true do
2: r = RAND(1, N + 1)
3: j = RAND(1, b∗) {b∗ is the size of the largest bucket}
4: if j ≤ |Br| then
5: Return the j’th item in Br

Iterative sampling from a B-File. Algorithm 3 shows an itera-
tive algorithm that uses an acceptance/rejection test, like [18], to
produce a random sample from a B-FILE. Although many loops
may be required before an acceptance, accessing the flash is re-
quired only on an acceptance (assuming the N +1 bucket sizes are
cached in memory). Note that to access the selected item in flash
(line 5), one must traverse the chain of blocks of the corresponding
bucket. The number of pointers required to follow in order to locate
the selected item can be reduced by using skip lists (Section 5.2),
and the number of page reads required to extract the pointers can
be reduced by maintaining the skip pointers in separate pages (Sec-
tion 6.3).

Algorithm 4 Search(Bucket m bucket, Time t1, Time t2)

1: x ← m bucket.header
2: for i = m bucket.level downto 1 do
3: while the first item in block x.forward[i] has timestamp > t2 do
4: x ← x.forward[i]
5: x ← x.forward[1]
6: Binary search block x for the page p containing the item I0 with the

largest timestamp ≤ t2
7: Sequentially read the bucket starting from page p, for as long as

the timestamp is ≥ t1; if needed jump to the next block by using
forward[1] of the current block

Searching within a skip list bucket. Algorithm 4 shows the pseu-
docode of the algorithm, described in Section 5.2, to locate the first

Table 5: Energy consumed by different types of I/Os on two
flash devices

Operation Energy (µJ)
Device: Toshiba NAND TC58DVG02A1FT00 flash chip (128MB)

Basic operations
Page read [15] 57.83
Page write [15] 73.79
Block erase [15] 65.54

Append vs. update of a 32-byte record
Append 1.17
In-place update 8854.21

Batch deletion of 32-byte records
Delete 1 record 8357.6/record
Delete 16 consecutive records (1 page) 1.96/record
Delete 4096 consecutive records (1 block) 0.02/record

Device: a Lexar CF card (2 GB)
Append vs. update of a 32-byte record

Append 0.21
Update 7880.41

record within a bucket satisfying a time range query.

Proof of Lemma 4.2. We now present a proof of Lemma 4.2 from
Section 4.1. Suppose at a given point of time, the sample has been
computed over a total of n data items. Then, on expectation, (1 −
p)i−1p·n of these items are assigned to level i, and are placed in the
(i−L+1)’th bucket B(i−L+1). This gives, on expectation, |Bk| =
(1−p)k−1·|B1| and hence smax =

∑w
k=1 |Bk| = |B1|

∑w
k=1(1−

p)k−1 = |B1|/p. Plugging this into our goal that, on expectation,
|B1| = smax− smin, we get (1−p)smax = smin, i.e., p = 1−α,
where α = smin/smax. 2

Optimizing smin and smax of B-File. The size of a B-FILE fluc-
tuates between two user-specified bounds smin and smax. Interest-
ingly, there exists a non-trivial interaction between the cost of main-
taining samples in a B-FILE, and the difference δ = smax− smin.
Consider a fixed N . Intuitively, a large value of δ is not desir-
able, since buckets are discarded less frequently and more items
are added to the B-FILE (some of which are discarded later). A
small value of δ is not desirable either, because then the tail bucket
contains a large number of items, increasing the cost of log unroll.
If a user has the freedom to choose a value of smax (or smin) for a
given smin (or smax, respectively), the value must be chosen care-
fully to balance the trade-off.

If the approximate size of the stream is known a priori, it is pos-
sible to determine the optimal smax given an smin (or vice versa).
We here briefly outline how this can be done. Suppose the sam-
ple is being collected over a stream of size |S′| and the B-FILE is
configured to maintain N individual buckets. Then, it is possible
(applying Lemma 4.3) to compute t: the expected number of times
the tail bucket is unrolled, sT : the expected size of the tail bucket
just prior to an unroll, and a: the expected number of items added
to the B-FILE, all as functions of smin, smax, |S′|, and N . Then,
the total cost of maintaining the sample can be computed numeri-
cally as C = a · W + t · sT · (R + W ), where R and W are as
defined in Section 4.2.2.

One can use the above cost function to search the design space
of smin and smax for combinations that minimize the total cost.
Our experiments show that for a given smin, the cost function is
convex with a single minima, thus the optimal smax can be found
by simple binary search.
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B. ADDITIONAL EXPERIMENTAL RESULTS
Additional Measurements of Flash Devices. Table 5 shows the
energy costs of the different flash I/Os discussed in Section 2. It
presents the basic I/O costs, demonstrates the advantage of ap-
pending over overwriting data, and demonstrates the advantage of
batching record deletions. Note that consumed energy is roughly
proportional to latency, and hence any advantage in energy natu-
rally translates to an advantage in latency.
Experimental Validation of Optimal B-File Parameters. Fig-
ure 10 shows the effect of doing log unroll in batch (from this point
on we use energy measure as the cost and FLASHCARD as the flash
media). As discussed in Section 4.2.2, the cost per sampled item
depends on how many unrolls, u, are batched together and there is
an optimal value for u. For our particular experimental setup, our
analysis in Section 4.2.2 gives uopt = 5, same as what we see from
our experiment (Figure 10).

Figure 11 shows the effect of different smax with a fixed smin

= 1GB. As explained in Appendix A, the cost is optimized for a
certain value of smax, and for our experimental setup, the optimal
value is ≈ 1.5GB. The numerical analysis outlined in Appendix A
also gives the value 1.5GB.
Cost of queries with concurrent sampling. Figure 12 shows the
average subsampling cost reported by the query threads when the
sampling thread uses different sampling schemes. It shows that
the impact of concurrent sampling on query latency is very small
(< 5%).
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