Managing and Querying Transaction-time Databases under
Schema Evolution

Carlo A. Curino

Politecnico di Milano

Hyun J. Moon
UCLA

hjmoon@cs.ucla.edu carlo.curino@polimi.it

ABSTRACT

The old problem of managing the history of database in-
formation is now made more urgent and complex by fast
spreading web information systems, such as Wikipedia. Our
PRIMA system addresses this difficult problem by intro-
ducing two key pieces of new technology. The first is a
method for publishing the history of a relational database in
XML, whereby the evolution of the schema and its underly-
ing database are given a unified representation. This tem-
porally grouped representation makes it easy to formulate
sophisticated historical queries on any given schema version
using standard XQuery. The second key piece of technol-
ogy is that schema evolution is transparent to the user: she
writes queries against the current schema while retrieving
the data from one or more schema versions. The system then
performs the labor-intensive and error-prone task of rewrit-
ing such queries into equivalent ones for the appropriate ver-
sions of the schema. This feature is particularly important
for historical queries spanning over potentially hundreds of
different schema versions and it is realized in PRZMA by
(i) introducing Schema Modification Operators (SMOs) to
represent the mappings between successive schema versions
and (ii) an XML integrity constraint language (XIC) to effi-
ciently rewrite the queries using the constraints established
by the SMOs. The scalability of the approach has been
tested against both synthetic data and real-world data from
the Wikipedia DB schema evolution history.

1. INTRODUCTION

The ability of archiving past database information and
supporting temporal queries over historical databases has
long been recognized as highly demanded in Information
Systems (IS) [19]. This objective, which has provided a
long standing motivation for temporal database research,
is now making significant inroads in the commercial world
with the introduction of concepts such as ‘flashback’ and
related constructs in the DBMS of major database vendors
[1]. But even more telling than the slow movements among

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

882

Chien-Yi Hou
UC San Diego

cyhou@cs.ucsd.edu

Carlo Zaniolo
UCLA

zaniolo@cs.ucla.edu

the DBMS pachyderms, there is the explosive spreading of
collaborative web information systems such as Wikipedia.
Due to their obvious accountability obligations about the
past information divulged to the world, these systems pre-
serve much of the information contained in their underly-
ing databases, and they support versioning for their con-
tent (text and multimedia). In addition to content evolution
[3], these systems experience intense evolution of database
schema: as reported in [9], Wikipedia has experienced more
than 170 schema changes in its 4.5 years of lifetime. Thus,
schema evolution, which represents a serious problem for
traditional information systems [24, 15], is even more criti-
cal for web information systems, particularly when it comes
to preservation of the database history.

Converting the old database to a new one after each schema
change might compromise the archival quality of the histori-
cal database, since information and relationships embedded
in the original database are often lost, especially, those that
are not well-understood or are considered unimportant by
the DBA performing the conversion. In order to avoid this
problem and to achieve perfect archival, it is required to
store the data as is, under their original schema versions.

This important user requirement, however, introduces a
serious challenge to the DBMS, namely managing and query-
ing transaction-time databases with evolving schemas. To
be more specific, the following two major issues need to be
addressed: (i) effective and efficient archiving of transaction-
time databases with evolving schemas and (ii) efficient query
answering on temporal data under schema evolution. In
our transaction-time database system PRIMA!, we ad-
dress these problems as follows:

A unified representation for the history of databases
and their schemas. Representing evolving data with evolv-
ing schema is inherently a difficult problem. Previously,
two solutions have been proposed for such data represen-
tation: single-pool and multi-pool solutions [7]. These solu-
tions, however, are based on the relational model, which is
essentially too restrictive for managing evolving data with
evolving schemas. Instead, we propose to uniformly repre-
sent the history of both databases and their schemas in an
XML document, called Multiversion V-document, or MV-
document. MV-documents use a temporally grouped data
model [8] that naturally and concisely represents tempo-
ral data and also simplify the task of expressing powerful
temporal queries using standard XQuery. In [27], it also
has been shown that advanced RDBMS technology can be

I'PRIMA stands for Panta Rhei Information Management
& Archival

Table 1: Schema evolution in an employee database (V1 to Vs)

l [Schema Versions [Ts [Te “ SMO Sequence
engineerpersonnel (empno, name, hiredate, title, deptname) MERGE TABLE engineerpersonnel, otherpersonnel
Vi | otherpersonnel (empno, name, hiredate, title, deptname) Ty | To INTO empacct;
job (title, salary)
empacct (empno, name, hiredate, title, deptname) CREATE TABLE dept;
Vo | job (title, salary) Ty | T3 COPY COLUMN deptname FROM empacct INTO dept;
ADD COLUMN deptno AS gen_id(deptname) INTO dept;
COPY COLUMN deptno FROM dept INTO empacct
WHERE empacct.deptname = dept.deptname;
DROP COLUMN deptname FROM empacct;
ADD COLUMN managerno INTO dept;
empacct (empno, name, hiredate, title, deptno) CREATE TABLE empbio;
Vs | job (title, salary) Ty | Ty COPY COLUMN empno FROM empacct INTO empbio;
dept (deptname, deptno, managerno) ADD COLUMN sex into empbio;
ADD COLUMN birthdate into empbio;
COPY COLUMN name FROM empacct INTO empbio
WHERE empbio.empno = empacct.empno;
DROP COLUMN name FROM empacct;
empacct (empno, hiredate, title, deptno) ADD COLUMN firstname AS getFirstName(name) INTO empbio;
Vi | job (title, salary) Ty | Ts ADD COLUMN lastname AS getLastName(name) INTO empbio;
dept (deptname, deptno, managerno) DROP COLUMN name FROM empbio;
empbio (empno, sex, birthdate, name) COPY COLUMN salary FROM job INTO empacct
WHERE empacct.title = job.title;
DROP TABLE job;
empacct (empno, hiredate, title, deptno, salary)
Vs | dept (deptname, deptno, managerno) Ts [now
empbio (empno, sex, birthdate, firstname, lastname)

exploited for efficient query execution on this XML-based
transaction-time data. We discuss this in Section 2.

User-friendly Interface for Querying. To retrieve
the contents of the database at a time T, a user can first
identify in the MV-document the tables (and their columns)
valid at time T, and then write a suitable query on them.
While walk back in history is supported by PRZM.A user
interface, which might be invaluable for a new DBA learning
the system, it can be too taxing for casual users who want
to ask simple queries such as: “What was Joe Doe’s salary
on January 1, 19977” Even worse, a query such as “What
is Joe Doe’s salary from January 1, 1997, to date?” would
require a different query on each schema version that was
valid since January 1, 1997.

Therefore, PRZM.A’s unique solution consists in letting
a user express her query based only on the current schema
version (or any other schema version of her choice). Then
PRIMA translates this input query into equivalent queries
against all applicable schema versions and executes them
against the databases underlying such schemas. Unless the
user explicitly asks for the translated queries and their sup-

porting schemas, this process is totally transparent: PRZM.A

returns the same result as if i) the old data had first been
converted to the current schema, and then ii) the input
query had been executed on the data so converted?. In pre-
vious works, it was proposed to literally implement the se-
mantics, to migrate data and then answer the input queries
[20]. This, however, is prohibitively expensive in most of
the serious transaction-time databases where historical data
ever increases in size. PRZMA achieves the same semantics
in an efficient manner, by means of query reformulation.
Taxonomy-based Query Reformulation. Query re-
formulation, recently, has been studied in the context of
snapshot data with a single source version [12, 29]. We,
however, address a different and more challenging problem
of rewriting temporal queries into equivalent ones that will
be evaluated against one or more source versions of evolv-

2This feature is called schema versioning [22].

883

ing data. To address this problem, we propose a novel solu-
tion capable of finding correct and efficient rewritten queries
based on a query taxonomy: we characterize an input tem-
poral query, based on the predefined criteria and the query
analysis algorithms. (Section 3) We then exploit the char-
acteristics of the input query in producing a correct and
efficient rewritten query, as discussed in Section 4.

Optimization. Even though we ensure that the rewrit-
ten query is correct and efficient, the reformulation algo-
rithm itself needs to be efficient also. This turns out to be
another serious challenge, as the real-world data, such as
Wikipedia schema evolution, insist that we need to handle
hundreds of schema versions [9]. In order to perform query
rewriting between two schema versions that are hundreds of
versions away, within a practical time bound, we propose
two optimization techniques in Section 5.

Experimental Study. We validate the proposed ap-
proach using both synthetic and real world data, in terms
of usability, correctness and efficiency of rewritten queries,
and efficiency of reformulation algorithm. Especially, real
data of Wikipedia, which represent 171 schema versions over
4.5 year period, prove the practical effectiveness of our ap-
proach. (Section 6)

1.1 Motivating Example

To better motivate the need for schema evolution support,
we illustrate a schema evolution example in an employee
database, which is used as a running example in the rest of
the paper®. Table 1 outlines our example, which has five
schema versions, Vi through V5. It also shows the schema
modification operators (SMOs), which are discussed in de-
tail in Section 2.1.

Since the establishment of the database at T, schema
version Vi initially had three tables: engineerpersonnel,
otherpersonnel and job. The first two store information
about the engineers and the rest of the personnel, respec-

3The example is borrowed from [23] with some adaptation
and addition.

(sQL)

Schema Changes
(SMOs)

Current query -
(saL) Current

=
]
x

A

Temporal query
(XQuery)

Update
translation
translation

Transaction-time
DB
(XML DB)

Temporal query
translation

Figure 1: PRIMA Architecture

tively. The table job relates the employee job titles to the
corresponding salaries. Now, due to the changes in busi-
ness requirements and operating environment, the schema
receives the following sequence of modifications.

As the company seeks to uniformly manage the depart-
ment information, the DBA applies the first modification at
time T2, which merges two tables engineerpersonnel and
otherpersonnel. We obtain the schema of V4, as a result.

With the growth of the company, the need for storing more
information about departments leads to a new schema ver-
sion V3, which occurred at time Ts. In V3, a new table dept
was created, which stores department number, department
name, and the manager?, for each department.

After a while, due to a new government regulation, the
company is now required to store more personal information
about employees. At the same time, it was required to sepa-
rate employees’ personal profiles from their business-related
information to ensure the privacy. For these reasons, the
database layout was changed at T4, to the one in version
Vi, where the information about the employee is enriched
and divided into two tables: empbio, storing the personal
information about the employee, and empacct, maintaining
business-related information about the employee.

Finally, the company chose to change its compensation
policy: to achieve ‘fair’ compensation and to better motivate
employees, the salary is made dependent on the individual
performance, rather than on his or her job title. To support
this, the salary attribute was moved to the empacct table,
and the table job was dropped. Another modification was
also introduced, to simplify the surname-based sorting of
employees: thus, the employee first name and last name are
now stored in two different columns. These changes, which
were applied at Ts introduced the last schema version, Vs.

2. PRIMA ARCHITECTURE

Figure 1 shows the high-level architecture of PRIMA sys-
tem: given a current or snapshot database in relational
model, we construct its historical database or transaction-
time database. Transaction-time DB is constructed and
evolved using the data changes (SQL insert/update/delete)
and schema changes (SMO) posed on the snapshot DB, with
help of the translation modules, these changes are automat-
ically propagated to the transaction-time database. With
the transaction-time DB, users can ask temporal queries
in XQuery, when they are interested in the history of the
database, while the regular application queries on the cur-

rent database will continue to use the same relational database,

4We assume that the existing empacct.title in V5 does not
contain manager information, which is newly introduced.

884

Table 2: Schema Modification Operators (SMOs)
[SMO]

CREATE TABLE t;

DROP TABLE t;

RENAME TABLE t INTO t7;

DISTRIBUTE TABLE t INTO t; WITH COl’ld7 to WITH cond;

MERGE TABLE t1, to INTO t;

ADD COLUMN c AS f(ci, Ca, ---

DROP COLUMN ¢ FROM t;

RENAME COLUMN c IN t TO C’;

COPY COLUMN ¢ FROM t; INTO to WHERE COHd;

MOVE COLUMN ¢ FROM t; INTO to WHERE COI’Id;

, Cpn) INTO t;

without interruption.

In the following subsections, we first discuss the types and
syntax of the schema changes that we allow and then present
our XML-based transaction-time database (MV-docment),
in greater detail.

2.1 Schema Modification Operators

Schema modification operators (SMOs) are a set of oper-
ators capable of describing schema evolution. These have
been used to describe the schema evolution in our running
employee example in Table 1. We summarize SMOs sup-
ported in PRZMA in Table 2, which shows five table-level
SMOs (first five) and five column-level SMOs (the rest).

SMOs take a schema version as an input and produce a
new schema version. The first three operators in Table 2
are for table creation, destruction, and renaming, which are
taken from the SQL:2003 standard. DISTRIBUTE TABLE and
MERGE TABLE are the two table-level SMOs, for horizontal
table division and table merge.

Rest of the SMOs specify column-level schema modifica-
tion. The first three constructs are taken from the SQL
standards: ADD COLUMN introduces a new column, where
the new column can be filled by a user defined function or
constant (NULL by default). DROP COLUMN removes an ex-
isting column from a table, deleting all data in the column.
RENAME COLUMN changes the name of a column, without af-
fecting the data. The last two SMOs are COPY COLUMN and
MOVE COLUMN. With these two operators, users can express
arbitrarily complex structural changes in relational model,
including join, decomposition, and normalization. Thus,
COPY COLUMN makes a copy of a column A from a table
T'1 to another table T2, by (i) taking a join of table T'1 and
T2, (2) projecting T2 U {A} from the join result, and (3)
replacing T2 with the projection. As a special case, if T2
has no existing columns, then WHERE clause is not required
and T2 simply gets a new column A, a copy of all values in
T1.A. MOVE COLUMN is a shorthand for a COPY COLUMN
followed by DROP COLUMN on the first table.

By combining one or more of these SMOs in a sequence,
a new schema version is introduced, as shown in Table 1. It
has been shown that complex schema evolution scenario in
Wikipedia schema’s 171 versions, can be completely and nat-
urally described using these operators [9]. As shown in the
following sections, SMOs are also supportive of efficient stor-
age of historical data under schema evolution (Section 2.2.3)
and efficient query reformulation (Section 5).

2.2 XML-Based Transaction-time Databases

The problem of preserving and querying the history of
a database has long been studied in temporal database re-
search community [19]. While research efforts in 90’s demon-

00 VOO O > OO0 OWOO O™ 00O
:‘.Eu-—csr—lu cﬁuﬂc: - N c:sc.
[N G P 0, gPHP Pad P H
ECOTAg A~ ECcDO A A+ Q&80
0] PP P [} VP 0 P8 0PD

g AR

o kel < 'Ug

Figure 2: Employee DB Schema Versions (XML tree
representation for versions V> and V3)

strated the difficulty of devising simple temporal extensions
to the relational data model, the temporal difficulties of
the relational model and SQL dissolve when the database
information is viewed and queried using XML and its query
languages [21, 27]. In particular, in [27] it was shown that
the history of a relational database can be published in
XML, and viewed under a temporally grouped representa-
tion whereby complex historical queries can be expressed in
standard XQuery. These temporal queries and views can
be managed in any DBMS that provides native support for
XML and XQuery, or more efficiently managed in a Rela-
tional DBMS that supports the SQL/XML standards as in
[27]. We describe this XML-based temporal model, called
V-document, and show how we extend it to model and query
temporal databases with evolving schemas.

2.2.1 V-Document

In Figure 2, an example V-document is shown for schema
V2 and V3 of our running example. Under the db root, we
find the tables for the current schema. Under each table, we
have a set of row elements, where each element represents
the history of a row in the table. At the last level is a history
of each column value in a row, named by the column name.
Using XPath-like notation, the structure of V-document can
be represented as: /db/table-name/row/column-name.
Each such element is timestamped with its period of con-
tinuous existence by its ts (start time) and te (end time)
attributes, where the data is valid on ts (inclusive), but not
on te (exclusive). The only exception to this is where we use
a special value “now” for the end time, which means that
the associated value is currently valid. Moreover, there is
a hierarchical relationship between the timestamp periods,
whereby the period of the db contain the periods of the ta-
bles, which in turn contain the periods of the row elements;
these in turn contain those of the column-name elements
under them.

XQuery can be used as an effective temporal query lan-
guage, over this representation, without requiring extensions
to the standards [27]. This is due to (i) the expressive
power of XQuery which is Turing-complete [14], and (ii) the
fact that by supporting a temporally grouped representation
XML reduces the need for coalescing [8]. We next present
examples of temporal queries on our employee database. For
these queries, we assume that the transaction-time DB is
stored as a V-document, with a single schema version V3.

885

<db ts=T1 te="now">
<job ts=T1 te="now">
<row ts=T1 te="now">
<title ts=T1 te="now">Engineer</title>
<salary ts=T1 te="now">78000</salary>
</row>
<l/job>
<empacct ts=T1 te="now">
<row ts=T2 te="now">
<epno ts=T2 te="now">10925</empno>
<name ts=T2 te="now">John Smith</name>
<title ts=T2 te=T3>Engineer</titie>
<title ts=T3 te="now">Senior Engineer</titie>
<deptname ts=T2 te=T4>Testing</deptname>
<deptname ts=T4 te=T5>R&D</deptname>
<hiredate ts=T2 te="now">1995-01-01</hiredate>
<deptno ts=T5 te=T6>d005</deptno>
<deptno ts=T6 te="now">d006</deptno>
</row>

>t*'>

MultiV-DOC

</empacct >
<dept ts=T5 te="now">

<row ts=T5 te="now">
<deptno ts=T5 te="now">d006</deptno>
<deptname ts=T5 te="now">Sales</deptname>
<managerno ts=T5 te="now">10734</managerno>
</row>

(3

</dept>
<Idb>

T1="1989-01-01",
T4="2001-01-01",

T2="1995-01-01",
T5="2002-01-01",

T3="1999-01-01",
T6="2003-01-01"

Figure 3: Employee DB example: MV-Document

Q1. Find the number of employees working in the RE€D
department on 1992-01-01.

for $db
$r1
$r2

in
in
in

doc("empdb.xml")/db,
$db/empacct/row,
$db/dept/row,
$cl in $ri/deptno,
$c2 in $r2/deptno
where $r2/deptname="R&D" AND $cl=$c2 AND
$c1/0ts<="1992-01-01" AND $c1/@te>"1992-01-01"
return count($ri);

Q2. Find all department names in history for the employee
10925.

for $db in doc("empdb.xml")/db,

$r1 in $db/empacct/row,

$r2 in $db/dept/row
where $ri1/empno="10925" AND $ri1/deptno=$r2/deptno
return $r2/deptname;

2.2.2 V-Document with Evolving Schemas

In order to represent the history of a relational database
where the schema evolves along with the content, we natu-
rally extend V-document. For instance, assume that there is
a major change in the schema, such that we move from the
two-table schema version V5 to a three-table schema version
V3 shown in Figure 2. This change is represented in XML
by simply appending the names of the columns and tables
after the old ones as shown in Figure 3. The timestamp val-
ues associated with tables and tuples unambiguously iden-
tify which schema a tables belongs to, and which table each
tuple belongs to. This is highlighted in Figure 3 with boxes.

Thus we have a general representation, named MV-Document,

capable of representing both the content and the history of

our database using a standard XML representation. Note
that all historical data are stored under their original schema
version, satisfying our archival requirement. However, query-
ing such a database can become quite complex. For instance,
for a snapshot query at time ¢ we will have to first find which
subschema is valid at time ¢ and formulate the query accord-
ingly. Thus, queries posed on different schema version may
need to be rewritten to fit the correct schema, e.g., query Q1
posed in terms of schema V3 should be rewritten in terms of
schema V5 (since it refers to data prior to the schema evolu-
tion). Furthermore, for a history query that spans a certain
period of time, the user will have to write one query for each
schema version valid in the period. In the worst case, the
user will have to revisit and understand the list of all past
schemas, a list that is bound to grow as the years go by.
Thus, in PRZMA, we seek a much easier-to-use solu-
tion: we propose automatic rewriting of input queries that
are expressed on a schema version into equivalent queries
against one or more applicable source schema versions. For
example, PRZMA rewrites queries Q1 and Q2 as follows:

Q1’. Find the number of employees working in the RE€D
department on 1992-01-01. (written against Va, the only
source version of Q1)

for $db in
$r1 in

doc("empdb.xml")/db,
$db/empacct/row,
$cl in $ri/deptname

where %Cl= "R&D" AND $c1/@ts <="1992-01-01" AND
cl/0te>"1992-01-01"
return count($ri);

Q2’. Find all department names in history for the employee
10925. (written against all five source versions)

for $db in doc("empdb.xml")/db,

$r1l in $db/empacct/row,

$r2 in $db/dept/row,
where $ril/empno="10925" AND $rl/deptno=$r2/deptno
return $r2/deptname

union

for $db in doc("empdb.xml")/db,
$r1 in $db/empacct/row,

where $ri/empno="10925"

return $ril/deptname;

Note that the first subquery of Q2 queries V; and Vs, and
the second one queries V3, V4, and V5.

Schema Version Each schema version V; (1 <4 < N) is
valid for its validity period P;, [start-time, end-time). Note
that the last schema version Vn has now as its end time
of validity period, which means that it is valid up to now
(inclusive) and it will continue to be valid until a new schema
version is introduced. When given an input query, we call
the schema version against which the query is written as
target version, and the schema versions that contain the data
that may contribute to the query answers as source versions.

2.2.3 Storage Partitioning at Schema Changes

Given an MV-document, when schema changes are intro-
duced there are several options on temporal data storage
method. Among others, we consider the following two: the
first is, to break all tables, at any schema change. Breaking
a table, consists of i) terminating the existing table by set-
ting all end times in the table that are equal to “now”, to
the current timestamp at the schema change, and ii) start-
ing a new table for those terminated rows and tuples by the

886

engineering
personnel

Figure 4: Partitioning of Employee Database

schema change. Another storage option is to break a table
only if the table was affected by the schema change. We call
the former as global break and the latter as local break.

Global break is simpler and more intuitive as all tables are
broken at all schema changes. It, however, incurs significant
storage overhead: often, schema changes are local to parts of
schemas and it brings unnecessary storage overhead to break
majority of the tables that are not affected by SMOs. We
therefore choose to use local break for our MV-document,
where the tables are broken only when it’s necessary.

For local break, we again have two following options: we
may break tables i) at all SMOs, or ii) at the table-level
SMOs only. Since fewer break implies the less storage over-
head, we choose the second option. For example, as shown
in Table 1.1, when deptname was dropped from empacct
and deptno was added into empacct between V5 and Vs,
we do not need to break the table, but can instead set the
end times of all deptname column values as 2003-01-01 and
start a new column deptno.

The table break that we discussed above, is also called
hard break and for a table, all versions between two hard
breaks are called a hard partition. Given that, we discuss
another type of break, called soft break, which creates a soft
partition. When there is a column-level SMO, the affected
tables do not need to be broken. However, as column-level
SMO affects the schema, we need two different queries to
access the data before and after the column-level SMO. We
note that all SMOs cause a soft break, except for DROP COL-
UMN: dropping a column does not require a query valid on
the post-SMO version to be rewritten on the pre-SMO ver-
sion and the same query can be run on the pre-SMO version.

ExAMPLE 2.1. Using this storage scheme, Table 1 stored
as MV-document has six table-level elements, namely en-
gineerpersonnel, otherpersonnel, job, empacct, dept,
empbio. This is shown in Figure 4, which represents hard
partitions with six rounded-rectangles. The figure also shows
two soft partitions in empacct, around a curly line that in-
dicates the only soft break in employee database example.
This soft break is caused by COPY COLUMN smo between V3
and V3 that copies DEPTNO from DEPT table to EMPACCT
table. (see Table 1) [J

3. TEMPORAL QUERY TAXONOMY

Reformulating a temporal query into multiple source ver-
sions is a nontrivial task. In order to produce a correct and
efficient rewritten queries, we characterize an input query,
based on our temporal query taxonomy, which is presented
in this section.

Number of Source Versions?

Number of Tablesin Query?

Two or more
Number of Tablesin Query?

One Two or more

[CZ:1] [[C'&f’] [

Temporal Jolnsunl/%\lon-tempor joinsonly oth Tempora Joinson%\lomempor joinsonly oth

[CIas—Z] [Class-3] [Class4] [Class6] [C|ass7] [uaass]

Two or more

Types of Joins?] Types of Joins?]

Figure 5: Temporal Query Taxonomy

3.1 Criteria and Query Classes

We use three criteria to categorize input queries into eight
different query classes, as shown in Figure 5. The first crite-
rion tests whether the query has only a single source version
or two or more source versions. Recall that source versions
of an input query @ are all schema versions where @ can
find its answers.

EXAMPLE 3.1. Let us consider the schema versions in Ta-
ble 1 whose two schema versions have the following validity
periods: Vi between [2001-01-01, 2002-01-01), and V> be-
tween [2002-01-01, 2003-01-01). If a user input query Q1,
written on V3, asks to retrieve the salary value of Joe Doe
at 2001-07-01, the query @1 has only one source version,
namely Vi. Similarly, if Q2 written on V3 asks to retrieve
all salary values of Joe Doe during [2001-01-01, 2001-07-01),
this also has only one source version, V;. If another query
Q3 asks to retrieve the same information as in @2, but dur-
ing [2001-12-01, 2002-02-01), then Q2 is a multiple source
version query, with two source versions, V7 and V. [

In general, it is cumbersome to ask users for source ver-
sions of input queries as they may not precisely know the
schema version history. Instead, we analyze the input query
to find out the source version of a given query, which is done
by our MinSourceFind algorithm in Section 3.2.1.

The second criterion checks how many tables a query @
accesses® and tells whether it has only one table or two or
more tables. This can be easily tested, by parsing the input
query. One thing to note is, for our purpose, we count mul-
tiple accesses to the single table as multiple accesses. For
example, if a query has a self-join, then it accesses two ta-
bles, we say. The reason becomes clear in the next criterion.

The last criterion checks the types of joins between the
queried tables, when a query accesses two or more tables.
We see whether the joins in the given query are i) all tem-
poral joins, ii) all non-temporal joins, or iii) both. Temporal
join is a join where two tuples from two tables are required
to temporally overlap and to have a non-empty intersection
of validity periods. We present an algorithm called TJoin-
Find, which analyzes the types of joins in the given query.

EXAMPLE 3.2. Let us assume that a user writes a query
Q4 against V3, asking for the employees who worked in the
department where Joe Doe worked in, with an overlapping
period. This query then has a temporal join between em-
pacct and empacct. If we remove the phrase “with overlap-
ping period” from Q4’s description, it becomes a query with
non-temporal join. []

5 Accessed tables mean the tables in queries’ FROM clause,

in case of SQL query, and the number of table-level elements
used, in case of MV-Document XQueries.

887

Using these three criteria, we classify queries into eight
classes, as shown in Figure 5. In the next subsection, we
present how the two criteria in this subsection, except the
second one, can be tested.

3.2 Query Analysis Algorithms

3.2.1 MinSourceFind

We present an algorithm MinSourceFind, which finds the
minimal set of source versions, given an input query. The al-
gorithm exploits the temporal conditions in the input query
to prune the hard partitions and soft partitions as in the fol-
lowing two phases. For the discussion, we use HP5p (SPs7)
to denote the hard partition (the soft partition) with a va-
lidity period that contains the timestamp T.

Phase 1: Hard Partition Pruning We begin by as-
signing all possible hard partitions to each of element nodes
that a given query accesses. We then repeatedly apply the
pruning rules Al through B3 in Table 3, which shows how
we prune, given a temporal condition on an element node.
We illustrate this using the following example, explaining
why they are safe rules.

ExaMPLE 3.3. Consider the following query Q3 posed on
the employee database V5, which retrieves all employees who
were working on 1997-07-01.

for $c in doc("empdb.xml")/db/empbio/row/empno
where $c/@ts<"1997-07-01" AND $c/@te>"1997-07-01"
return $c;

With this query, let us examine how its hard partitions are
pruned. We assume that 1997-07-01 falls within V2’s valid-
ity period. In the beginning, we determine that $c has three
hard partitions, HP1={V1}, HP2={Va, V5}, HP3={V4, V5}
(see Figure 4), as $c is a column of the table empbio. Based
on the condition $c/@ts<"1997-07-01", we apply the rule
Al in Table 3 with HP91997_01_01:HP2, and can prune
away HP3s={Vy, V5} from $c’s hard partitions. This is a safe
pruning, because all data items in HP3 have its @ts greater
than 1997-07-01, and would never satisfy the given condi-
tion. Similarly, using $c/@te>"1997-07-01" and the rule A3
in Table 3, we prune out HP1={V4 }, leaving HP2={V%, V3}
as $c’s only hard partition to query. []

Pruning rules B1, B2, and B3 are similar to A1, A2, and
A3, except that the pruning is based on the hard partitions
of another element, rather than HP5r. For example, rule
B2 shows that, if we are given a query condition that an
element e has a start time equal to start time or end time of
another element ez, then we can prune some hard partitions
from e based on the already-pruned hard partitions of es: if
e has a certain hard partition that does not overlap with any
of e2’s hard partitions, then we can safely prune it because
it cannot have any tuple with a start time equal to ez2’s
start time or end time. Similarly, we establish B1 and B3 in
Table 3. Note that one temporal condition between e and
e2 (e.g. e < ez) can be used twice for pruning by changing
the roles of e and ez (e.g. e2 > e).

When we have a conjunctive or a disjunctive of temporal
conditions for an element node, we compute its hard parti-
tions as follows. Conjunction (AND) of temporal conditions
for an element node, has an intersection of two sets of hard

Table 3: Storage Partition Pruning Rules based on Input Query Conditions

[Rule [Query Condition [Partitions to Prune

Al e/Qts < T or e/Qte < T e’s HPs after HP5

A2 e/Qts =T or e/Qte =T e’s HPs except HP 57

A3 e/Qts > T or e/Qte > T e’s HPs before HP 51

Bl e/Qts < ex/(Qts|Qte) or e/Qte < ey /(Qts|Qte) | e’s HPs after the last HP that overlaps with es’s HPs

B2 e/Qts = ey /(Qts[Qte) or e/Qte = ey /(Qts]Qte) | e’s HPs that do not overlap with any of ex’s HPs

B3 e/Qts > ey /(Qts|Qte) or e/Qte > ez /(Qts[@Qte) | e’s HPs before the first HP that overlaps with es’s HPs
[C1 [e/@Qts =T or e/Qts > T [€’s SPs before SP51 |
[C2 [e/@Qte <T or e/Qte = | e’s SPs after SP5r |
[Dl [e/Qts = e3 /(Qts[Qte) or e/Qts > ey /(Qts[Qte) | e’s SPs before the first SP that overlaps with ep’s SPs |
[D | e/Qte < ep/(Qts[Qte) or e/@te = e /(Q@ts[Q@te) | e’s SPs after the last SP that overlaps with ep’s SPs |
[E1 [e/Qts <T or e/Qts = [e’s SPs after SP57, if e has SP5r |
[E2 | e/Qte =T or e/Qte > T | e’s SPs before SP5, if e has SPyr |

partitions from the two conditions, as its set of hard parti-
tions, while disjunction (OR) has a union of two sets.

After finding hard partitions for each element node at
all levels, we merge them as follows, to come up with the
hard partitions of table-level element nodes: parent element
node® has an intersection of all children element nodes’ hard
partitions and its own hard partitions, as its new set of hard
partitions. Under a table-level element, all element nodes
are temporally bound within a hard partition, so if one of
the element nodes has a condition that cannot be satisfied
in a hard partition, we do not need to access the table in
that particular partition and can safely prune that hard par-
tition. After this, we assign table-level hard partitions to all
element nodes under the table-level element. From these
hard partitions of each element node in a query, we get all
soft partitions that will be further pruned in Phase 2.

Phase 2: Soft Partition Pruning Sometimes, it may
not be possible to prune a hard partition as a whole, but it
might be possible to prune some soft partitions contained in
it. Pruning soft partition, however, requires different rules
because data are not broken into two different tables in the
storage, at the soft breaks. Rules C1 through E2 in Table 3
show those rules. Rule C1, as an example, tells that we can
safely prune a soft partition, if it precedes SP57, because no
element data in that soft partition will satisfy the condition.
As in the case of hard partition pruning, D1 and D2 can
be applied together with C1 and C2 to further prune soft
partitions using other element nodes’ already-pruned soft
partitions.

Rules E1 and E2 also prune soft partitions, but the reason
that they work is a bit different from that of C1,C2,D1, and
D2. We explain this in the following example.

ExAMPLE 3.4. We continue to discuss the Q3 in Exam-
ple 3.3. From the only hard partition left to $c, we obtain
two soft partitions contained in it, namely SP1={V2} and
SP,={V3} (see Figure 4). By applying rule E1 with the con-
dition $c/@ts<"1997-07-01" and SP91997_01_01=SP1, we
prune away SP3. This pruning is safe, since all data item
that satisfy the given condition must be spanning (or valid
on) SP1, and thus querying SPs is not necessary. There-
fore, after pruning we return SP1={V2}, as the only soft
partition, and also the only source version of Q3. [J

Note that rules E1 and E2 are used only after D1 and
D2 are applied, since applying D1 and D2 after E1 and E2

SRecall that the hierarchy of parent-child relationship of
node elements is as follows: DB-level>table-level>row-
level >column-level.

888

produces unsafe pruning: all pruning rules from A1l through
D2 prune partitions when they don’t produce answers for
the query, but E1 and E2 prune soft partitions where they
have answers.

After these two phases, we merge all soft partitions of all
element nodes, by unioning them and breaking whenever
there is a soft break. We return one source version from
each soft partition. If we have only one source version, it
means that the given query is among Class-1,2,3, or 4. If
it has two or more source versions, we still use the minimal
source versions found for optimal query reformulation.

3.2.2 TJoinFind

Now we present an algorithm that tests whether two ta-
bles in a query are joined by temporal join or not. We first
introduce terminologies used in discussion as follows:

When an input query specifies that two of its element
nodes have overlapping intervals, we say that these two ele-
ment nodes are temporally overlapped. Also, for a set of el-
ement nodes, if any pair of two element nodes in the set are
temporally overlapped, we call the set as a temporally over-
lapped node set or TONS. When we know that all table-level
element nodes in an input query are in a single temporally
overlapped node set, then we say that all joins are tempo-
ral joins. We derive the following theorem on temporally
overlapped node set, which is used in our testing algorithm.

THEOREM 1. If a node N belongs to a temporally over-
lapped node set S, and P is a parent node of N, then S'=SU
{P} is also a temporally overlapped node set.

ProOOF. For each node N’ in S, N has a non-empty over-
lap period Py ns with N'. Also, due to the V-Document’s
temporal covering constraint, parent P’s period contains
child N’s period. P’s period hence also contains Py nv,
and P is temporally overlapped with N’, for all N’ in S.
Therefore, S’ = S U {P} is a temporally overlapped node
set. [

Based on this theorem, we propose the following temporal-
overlap testing algorithm:

e Step 1: find the explicit temporal overlap constraints,
e1/Qts < ex/Q@Qte AND e2/@Qts < e1/@te Using this,
establish a TONS of two elements, S = {e1, e2}.

e Step 2: extend TONS with the element parents, based
on the Theorem 1. Go to Step 2 if S was extended.

e Step 3: using the maximally-extended TONS, deter-
mine and report the pairs of tables in the input query
that are temporally overlapped.

schema

time TDB1 ' SVTDB;
—— e e e e e e e -~
T ',r -——tT == |
1
2| o B, |
K |
Tz_ X)
v TDB,
T
I ' . data
time
" toB1 T TDB2 ¢

Figure 6: Transaction-time DB under V; and V-

4. QUERY REFORMULATION

In this section, we present how we produce correct and
also efficient rewritten queries for each query class.

4.1 Single Source Version Queries

In this subsection, we show how we reformulate all single
source version queries, namely the queries in Class-1,2,3 and
4. Given that the input query @ has only one source version,
we reformulate it into @’ that accesses the source version.
For such reformulation, we discuss i) the semantics of query
reformulation, with which we define the correctness of query
reformulation, ii) how we generate schema mappings from
the user-provided SMOs, and iii) how we reformulate queries
using such generated mappings. Note that the reformula-
tion mechanisms discussed in this section are exploited as
a building block for reformulation of all other query classes
with extensions.

4.1.1 Semantics

We have database history under multiple schema versions
where we let the user query the database history as if it
were under a single schema version that she queried, or
the target version. As in [29], we define the semantics of
query answering as following: given a target version Vi, we
migrate each database D; under V; (i < k) to V4 accord-
ing to the schema mappings and obtain D;_,; valid on V.
We, then, evaluate the input query on the union of Di_,
Dok, ..., D(x—1)—k, Dy, called single version transaction-
time database or SVTDB, which is the entire history of the
transaction-time database translated into Vj, to conform to
the target schema version using the SMOs between the two
versions. We name SVTDB under V, as SVT'DBy,. Fig-
ure 6 shows a case where k=2. When users pose a query @
on V;, they assume that it is executed on SVT DB;. Achiev-
ing this without materializing SVT'D B; is the goal of query
reformulation.

4.1.2 Transaction-time DB Schema Mapping

In our approach, DBAs describe schema evolution of the
snapshot DB, using SMOs. We then translate these SMOs
into XICs which we use for query reformulation

XML Integrity Constraint Within our transaction-
time database, which is modeled in XML, we employ XML
Integrity Constraints (XICs) [12] as our mapping language.
XIC is a language for expressing intra- or inter-schema in-
tegrity constraints in XML, using a relational representa-
tion. It is similar to first-order logic, except that it uses
XPath expressions in predicate atoms. The predicates can
be binary, of the form [p](x, y), which is satisfied whenever

889

y belongs to the set of nodes reachable from node x along
the path p. Alternatively, predicates can also be unary, of
form [p](y), which is satisfied if y can be reached from the
root by following p. Two XICs are given below as exam-
ples: (1) says that all rows of empacct have empno and (2)
represents a key constraint of empacct.empno.

Vp
Vp,q, T

[//empacct/row](p) — 3q [./empno](p, q) 1)
[/ /empacct/row](p) A [./empno](p, ¢) A
[//empacct/row](r) A [./empno|(r,q) = p =1

(2)

Using XIC, we generate transaction-time database schema
mapping using the following semantics: given an SMO, we
1) slice a tuple’s history into a set of snapshot data at each
time instance, 2) execute SMOs to translate each of these
snapshot data, and 3) coalesce the translated snapshot data
into historical data. Rather than directly executing this
semantics, which is prohibitively expensive in general, we
directly translate temporal data under one schema version
into those that conform to another schema version. For
example, if a table was renamed between two versions, we
take the transaction-time data under the old version with
an old table name, and map them to transaction-time data
under the new version with a new name, which is shown in
the following:

(RTy) [/vldb/R](x1),[./Qts](z1,s),[./Qte](x1,e), [./row](z1,z2)

— Jy1[/v2db/S](y1), [./Qts](y1, s), [./Qte](y1, €), [./row](y1, z2)
(RTy) [/v2db/S](y1),[./Qts](y1, s), [./Qte](y1, e), [./row](y1, y2)

— Jx1[/vldb/R](z1), [./Qts](z1, s), [./Qte](z1, e), [./row](z1, y2)

In forward direction (RTY), we map a table-level element
R in Vi to S in V5 such that they have identical table-level
timestamps (i.e. s and e) and identical rows (i.e. z2). To
obtain a backward direction XIC (RT}), we simply flip the
body and the head of the forward XIC, which implies that no
other source contribute to S in the new schema version. Note
that the forward and the backward XICs together establish
two-way inclusion dependencies, establishing an equivalence
between two tables. We generate XIC mappings for other
SMOs in a similar way, as shown in the Appendix.

4.1.3 Reformulation Algorithm

For query reformulation, we use a traditional relational
database technique called chase [2], with which an input
query is expanded to another equivalent query under the
given set of rules. For chase execution, rather than rein-
venting the wheel, we adopt an efficient chase engine called
MARS [12]. With chase at the core, we reformulate the in-
put query Q in three stages: chase preparation, chase, and
output XQuery reconstruction.

Chase Preparation We first translate SMOs into XICs
as discussed in the previous subsection. Given an input
query Q, we then translate the navigation part’ of Q into
XBind query, the relational query language that is essen-
tially a conjunctive query with an extension of special atom
for XML navigation, as in XIC. Lastly, we provide MARS
with the target version where query is posed and the source
versions to rewrite the query. Target version comes from the

"Note that XQuery is composed of navigation part and tag-
ging template [12]

user, while the source version is provided by MinSourceFind
algorithm.

Chase With the input of XBind query, XIC, and a source
version to rewrite to, we perform a chase, to rewrite an in-
put query on the target version to an equivalent query on
the source version. To be more specific, we use MARS to
chase the query into the universal plan, the largest equiva-
lent query, and then removes the atoms that are not in the
source version. After the removal, we make sure that the
reduced query can be chased back to the original query, en-
suring their equivalence. Note that this holds in all cases in
PRIMA as we design forward and backward XIC rules of
an SMO to ensure this.

Output XQuery Construction In this stage, we use
the rewritten XBind query obtained from the chase stage
and also the input XQuery. We simply replace the naviga-
tion part of the input XQuery, using the rewritten XBind
query while the tagging template remains the same.

We now have discussed how a single source version query
is rewritten based on MARS. Now we discuss how we extend
this for each query class.

4.2 Class-5 Queries

Class-5 queries have multiple source version and only one
table. For this query class, we need to rewrite the input
query @ into @; for each source version V; and return the
union of them as a rewritten query. If Q has n source ver-
sions, rather than repeating Class-1 reformulation n times,
we extend the reformulation algorithm such that we perform
a single reformulation producing multiple rewritten queries.

4.3 Class-6 Queries

For Class-6 queries, which have multiple source versions
and multiple tables only with temporal joins, we can use the
Class-5 reformulation to rewrite them. The results obtained
by this is correct rewriting, since we know that temporal
joins cannot be satisfied across the schema versions and we
do not need to evaluate inter-schema-version temporal-joins:
only intra-schema-version can satisfy temporal-joins. We
therefore evaluate the input query on each source version
and union them, which is essentially Class-5 reformulation.

4.4 Class-7 Queries

Class-7 queries are multiple source version and multiple
table queries with non-temporal joins only. Because non-
temporal joins may find its answers from inter-schema-version
table joins, we must join the whole history of a table with the
whole history of another table, which is more expensive than
a union of intra-schema-version joins. The reformulatino al-
gorithm is sketched as the following: for each accessed table
T; in @, we create a subquery Qr,, that retrieves all at-
tributes from the table T;. Then, we rewrite @7, into Qr,’
using the Class-5 reformulation, and then return the join of
all Qr,”.

4.5 Class-8 Queries

Class-8 queries are mixture of both Class-6 and Class-7 as
these queries contain both temporal join and non-temporal
join. Executing Class-7 reformulation will still find the cor-
rect rewriting, but not the most efficient one. To obtain a
more efficient query, we exploit temporal joins in the query
and use a hybrid of Class-6 and Class-7 reformulation, as
follows:

890

Given a Class-8 query @, we group the tables that are
temporally joined and label them as G;. We then make each
G into a subquery Qg; and apply Class-6 reformulation to
Qa;, obtaining Q,’. For each table in @ that is not involved
with any temporal join, we call it T; and, for each T;, we
create QQr,” using Class-7 reformulation. Then, we finally
return the (non-temporal) join of all rewritten subqueries,
Q. and Q"

5. OPTIMIZATION

We now present two optimization techniques that pro-
vide the efficiency and scalability of PRZMA reformula-
tion, given the hundreds of schema versions to work with.

5.1 SMO Pruning

In the previous section, it has been shown that SMOs are
translated into a set of XICs, which MARS uses to chase
the input query. Even though MARS is a highly optimized
chase engine, it does not scale with a very large number of
schema versions because chase is inherently a very expensive
computational task. Based on the observation that an input
query, in general, does not access all tables or columns in
schema history, we prune out SMOs that do not affect the
tables or columns that the query accesses. This simple anal-
ysis allows us to prune many SMOs in general, which leads
to a strong reduction in the number of XICs to be chased.

5.2 SMO Compression

SMOs have been designed with a philosophy that each
SMO performs a minimal task so that users specify schema
changes in a concise and modular way. In order to further
reduce the chase task size, however, we compress several
SMOs into a more expressive one, but still produces a single
XIC. For example, RENAME COLUMN of three columns in a
table will generate three XICs, if managed independently,
several constraints to be chased by MARS. We compress
them into one RENAME COLUMN MULTI, an SMO for internal-
use only. Likewise, we compress multiple ADD COLUMN’s and
DROP COLUMN’S into ADD COLUMN MULTI and DROP COLUMN
MULTI, respectively.

6. EXPERIMENTAL STUDY

In this section, we evaluate the effectiveness of PRZMA
approach, in terms of usability improvement, quality of rewrit-
ten queries, and rewriting cost. For experiment, we use
synthetic data (the employee database given in Table 1)
and also the real-world data from MediaWiki schema evo-
lution history®. All experiments were performed on a Linux
machine (Ubuntu 6.06) with two QuadCore Xeon 1.6GHz
processors and 4GB memory. We used Sun Java 1.6.0 for
PRIMA implementation and MonetDB/XQuery v0.22 for
query execution.

6.1 Employee Database Schema Evolution

We have generated a data set for the employee database
schema evolution given in Section 1.1. During the period
between 2001-01-01 and 2005-12-31, we have five schema
versions, each of which remains valid for one year (Jan. 1st

8All data sets and queries used in the experiment
are available at http://yellowstone.cs.ucla.edu/
schema-evolution/index.php/Prima

100
80
60
40
20

Percentage (%)

Q1 Q2 Q3 Q4 Q5 Q6

Figure 7: User Effort Saved for Query Writing

through Dec. 31st of each year). During each year, we up-
date the data twice, and at each update point, we i) delete
1% of all employees, ii) update salary (for 25% of all em-
ployees), title (20%), and department (10%) and managers
of chosen departments (50% of all departments), and iii) in-
sert 10% of all employees newly. Over the history, we have
records for 1,000 employees, 10 departments, and 4 titles in
history, which makes 642 KB of MV-document.

In order to study the effectiveness of our taxonomy ap-
proach, we have designed twelve temporal queries: two queries
for each of Class-1 (Q1, Q2), Class-2 (Q3, Q4), Class-3 (Q5,
Q6), Class-5 (Q7, Q8), Class-6 (Q9, Q10), and Class-7 (Q11,
Q12).

Using each of the twelve queries, we first verified the
rewriting correctness by ensuring that i) results of the rewrit-
ten queries executed on the MV-document, and ii) results of
the original queries executed on the migrated data into Vs,
are equal.

We then measure the usability improvement by PRZMA.
Without PRZIMA, users need to find and access all histor-
ical schema versions, which contain the historical data that
they want to query. Using PRZMA, however, the process
is much simplified as they can write queries using only one
schema version of their choice and the system takes care of
query rewriting. In order to objectively measure how much
user effort each approach takes, we count each of the fol-
lowing as a unit cost: i) one (relational schema) table used
in the query, ii) one (relational schema) column used in the
query, iii) one SMOs affecting the tables and columns in the
query, and iv) one period of schema versions®. Note that
this is a similar metric to the one that was used in [28]. Fig-
ure 7 shows how PRZMA saves 75% or more of user effort
in all six queries. The next six queries have the exactly same
usability improvements and are omitted in the figure.

We now evaluate the benefit of our taxonomy-based ap-
proach, by measuring the performance of rewritten queries.
We compare the execution times of rewritten queries pro-
duced by the following four methods.

e Baseline: Queries are reformulated without any query
analysis results. Since it does not assume any informa-
tion about the input queries, queries are rewritten us-
ing either i) Class-5 reformulation, if the queries have
only one table, or ii) Class-7 reformulation, in case
there are two or more tables accessed.

MSF: Queries are rewritten with the query analysis
results of MinSourceFind algorithm. An input query
is reformulated using the Class-1 or Class-3 reformu-
lation methods, in case the query has only one source

9Users need to know the period of each schema version to
decide whether they need to access that version.

891

[OBaseline B MSF O TJF B Both]

20
18
16
14—
12

oON b~ O

T

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Qi12

Figure 8: Execution Time of Rewritten Queries
(All bars touching the highest grid represent out-
of-memory error)

12 _
10
o 8 —
S 6
Qf4 — [|
g \EI\ \D\ \D\ \D\ \U\ \D\
5883588588333
(oo aNed

Figure 9: Ratio of Rewritten Query Performance to
Original Query Performance on the Migrated Data

version. If it has two or more source versions, the refor-
mulation will be done for the minimal source versions
computed by MinSourceFind.

TJF: Queries are rewritten with the query analysis re-
sults of T-JoinFind algorithm. If a query has multiple
source versions and also two or more tables, the query
is further examined to see if it has temporal-joins only.
If so, we may rewrite it using Class-6 reformulation.

Both: Queries are rewritten with the query analysis
results of both MinSourceFind and T-JoinFind algo-
rithms. When both MSF and TJF are used, we fully
characterize input queries into one of the eight query
classes and the detailed query characteristics are ex-
ploited toward producing best rewritten queries possi-
ble.

The result is shown in Figure 8. In most queries, base-
line fails to finish, as it tries to answer the query in all
five version, with expensive inter-schema-joins, which is pro-
hibitively expensive for an XML DB that uses no index.
MSF avoids this by detecting the minimal source versions
and the produced rewritten queries finish in around 10 sec-
onds in all cases. Q9 and Q10 shows the effectiveness of TJF,
where the rewritten query performance is further improved
in Both, compared to MSF. In these queries, MSF can tell
that the minimal source versions are V3, V4, and Vs, but it
can not guarantee whether the tables are temporally joined,
so it has to perform Class-7 reformulation. TJF, however
additionally detects that Q9 and Q10 have only temporal
joins only and produce Class-6 reformulation.

We also examine the lower bound for the rewritten query
performance as follows. As explained above, we perform
data migration from all versions into the target version Vs,

and execute the original query on it. Rewritten queries are
expected to be slower, as they have to perform extra com-
putation on the source versions, such as join and union in-
troduced by COPY COLUMN and MERGE TABLE, respectively.
On average, rewritten queries run 4.5 times slower than the
migrated-data-queries, which is reasonable considering that
the employee database schema evolution was designed to
contain many COPY COLUMN in a small schema for illustra-
tion purpose. We observe that most of the extra processing
is used toward computing the join of source version tables
into the equivalent tables on the target version.

6.2 Wikipedia Schema Evolution

To demonstrate the practical completeness and scalabil-
ity of our approach, we also test it against the challeng-
ing schema evolution history of MediaWiki'?. MediaWiki is
the open-source wiki software, originally developed to sup-
port the Wikipedia website'!, one of the ten most popular
websites on the World Wide Web!? and lately adopted by
over 29,000 wiki-based websites (for a grand total of over
100 million pages)13. The MediaWiki web-portal software
is developed in PHP and exploits a relational DB backend
(MySQL by default) to store the website content and meta-
data. The underlying relational DB schema, during 4.5 years
of development, has seen 171 schema revisions'* and pro-
vides a rich and challenging dataset to test our system. The
goal of this testing scenario is twofold: proving the practical
completeness of the set of SMOs we defined w.r.t. real-life
schema evolution and measure the rewriting time of our sys-
tem against a long schema evolution history.

The MediaWiki schema evolution has been expressed in
terms of SMOs, as shown in [9]. For queries, we derived
real-world query workload to the Wikipedia site from the
Wikipedia on-line profiler!® and use the 20 most common
queries in the Wikipedia. Since they are in SQL, we trans-
lated them into the temporal XQuery format. The PRZM.A
system were run to reformulate those queries, posed against
the most recent schema version, into equivalent ones insist-
ing on every schema version.

Figure 10 shows the rewriting time, as a function of the
distance, in number of versions, between the target schema
and the source schema. With reference to the optimization
discussed in Section 5 we show the rewriting time for the
unoptimized version of the system (baseline) and for two
levels of optimization (SMO prune and SMO prune + SMO
compress). In this scenario, due to the size of the schema
(34 tables and 242 attributes in the last version), and the
significantly high number of SMOs, the optimizations prove
to be extremely effective, to such extent that the results are
presented in logarithmic scale. The experiments conducted
with the unoptimized PRZM.A have been limited to a small
number of cases (sampling and limiting the number of evo-
lution steps) due to the extremely large execution time.

Figure 11 explains the improvement of reformulation time
in Figure 10, where we show the number of SMOs used for
query reformulation. While the number of SMOs considered

Ohttp://www.mediawiki.org
Uhttp://en.wikipedia.org

12Source: http://www.alexa.com.

13Source: http://s23.org/wikistats/.
“http://svn.wikimedia.org/viewvc/mediawiki/trunk/
phase3/maintenance/tables.sql.
Bhttp://noc.wikimedia.org/cgi-bin/report.py

892

100000

10000

prune

1000

SMo phHune|+
SmMo compress

rewriting time (ms)

100

o o o o o o o o o o o o
¢ & & S 5 3 R 8 s 8 7 &

target-to-source distance (# of versionsf

o o o o o
e 3 3 3 R

Figure 10: Query Reformulation Time in Wikipedia

70,

60| n—

n A\ t2ae

g 50 wassr smd prune

o 4 7 —

g 7

o ’

E

& Vi

v 20

w“

i 0 smo prune [+

P | smo campriess
(||
T
target-to-source distance (# of versions)

Figure 11: Number of SMOs Used for Query Refor-
mulation in Wikipedia

by the unoptimized version of PRZM.A grows rapidly with
the distance between target and source schema, the number
of SMOs used by the optimized versions is greatly reduced,
thus delivering a significant performance improvement.

7. RELATED WORK

Due to the practical importance of the problem, schema
evolution has seen extensive research effort in the areas of
(i) temporal database management and (ii) model manage-
ment. During the late 80s and 90s, temporal database re-
searchers have sought to support schema evolution. Their
approaches are summarized as follows: i) preserving schema
versions by means of timestamps, ii) letting users specify the
schema version for query writing using SQL extension, and
iii) supporting the query by migrating data to the queried
version [16, 4, 7, 25]. Comprehensive survey appears in [22,
20]. These are valid solutions, as long as the data that need
to be migrated remain relatively small in size. We provide a
more practical solution for the problem by means of query
reformulation, instead of data migration, into the source ver-
sions that are minimized by careful analysis of input queries.

More recently, schema evolution has also been studied in
the framework of model management [5, 17], where model
refers to metadata of various types, including relational and
XML schemas, SQL view definitions, and mediator specifi-
cations. In [17], Melnik et al. present a prototype system
called Rondo for a generic model management. The authors
show that, using Rondo, model management is often feasi-
ble by using a small body of high-level code; however, the
problem of evolving schema versions is not discussed in [17].

Lastly, we mention Panta Rhei framework [11] that seeks
to provide an integrated support for schema evolution. In
this framework, PRISM [10] supports the DBAs in the schema

evolution process by managing and preserving user-provided
SMOs to automate the tasks of data migration, legacy ap-
plication query rewriting, and schema history recording.

8. CONCLUSIONS AND FUTURE WORK

Schema versioning for transaction-time databases had long
been viewed as a solution to the schema-evolution problem
that, although ideal in theory, in practice could not be ef-
fectively realized for real-life databases [22]. Our PRIZMA
prototype is changing the situation dramatically by building
on two recent advances on database technology, whereby:

e XML and XQuery are i) well-supported in DBMS and
ii) very conducive to temporal information manage-
ment [13, 18, 21, 27].

e Powerful mapping techniques are now emerging [12,
26, 29, 30, 6] which have made it possible to map
a query expressed against one schema into equivalent
ones expressed on other schemas.

By exploiting these recent advances of database technol-
ogy PRIMA aims at combining two design objectives that
are not easily reconciled: one is the archivists’ objective of
achieving a faithful preservation by preserving the schema
under which the records were first created; the second is
the ease-of-use objective whereby users and applications can
query the history of the database through the current schema,
or any other schema version.

Currently, performance and scalability of PRZMA is lim-
ited by those of XQuery engine, and it can be improved by
employing RDBMS-backed storage and query execution, as
in [27]. We plan to explore this direction, to build a highly
efficient and scalable transaction-time DBMS that provides
a native support for schema evolution.

Acknowledgement

We thank Letizia Tanca and Vassilis Tsotras for many in-
spiring discussions, and Alex Chang, Uichin Lee, Barzan
Mozafari, Ka Cheung Sia, and Hetal Thakkar for their com-
ments on this and a previous version of this paper. We also
thank the anonymous reviewers for their careful reading of
the manuscript and useful comments and suggestions that
resulted in an improved paper. This work was supported
in part by NSF-IIS award 0705345: “III-COR: Collabora-
tive Research: Graceful Evolution and Historical Queries in
Information Systems — A Unified Approach”.

9. REFERENCES

[1] Oracle Documentation. http://otn.oracle.com.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley Publishing Company,
1995.

R. B. Almeida, B. Mozafari, and J. Cho. On the
evolution of wikipedia. In ICWSM, 2007.

G. Ariav. Temporally oriented data definitions -
managing schema evolution in temporally oriented
databases. DKE, 6(1):451-467, 1991.

P. A. Bernstein. Applying model management to
classical meta data problems. In CIDR, 2003.

P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing mapping composition. In VLDB, 2006.
C. D. Castro, F. Grandi, and M. R. Scalas. Schema
versioning for multitemporal relational databases.
Information Systems, 22(5):249-290, 1997.

893

[8] J. Clifford, A. Croker, F. Grandi, and A. Tuzhilin. On
temporal grouping. In Recent Advances in Temporal
Databases, pages 194-213. Springer Verlag, 1995.

C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo.
Schema evolution in wikipedia: toward a web
information system benchmark. In ICFEIS, 2008.

C. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: the prism workbench. In
VLDB, 2008.

C. Curino, H. J. Moon, and C. Zaniolo. Managing the
history of metadata in support for db archiving and
schema evolution. In ECDM, 2008.

A. Deutsch and V. Tannen. Mars: A system for
publishing XML from mixed and redundant storage.
In VLDB, 2003.

D. Gao and R. T. Snodgrass. Temporal slicing in the
evaluation of xml queries. In VLDB, 2003.

S. Kepser. A proof of the turing-completeness of xslt
and xquery. In Technical report SFB 441, Eberhard
Karls Universitat Tubingen, 2002.

S. Marche. Measuring the stability of data models.
European Journal of Information Systems, 2(1):37-47,
1993.

L. E. McKenzie and R. T. Snodgrass. Schema
evolution and the relational algebra. Information
Systems, 15(2):207-232, 1990.

S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A
programming platform for generic model management.
In SIGMOD, 2003.

A. O. Mendelzon, F. Rizzolo, and A. Vaisman.
Indexing temporal XML documents. In VLDB, 2004.
G. Ozsoyoglu and R. Snodgrass. Temporal and
real-time databases: A survey. tkde, 7(4):513-532,
1995.

S. Ram and G. Shankaranarayanan. Research issues in
database schema evolution: the road not taken. In
Boston University School of Management, Department
of Information Systems, Working Paper, 2003.

F. Rizzolo and A. Vaisman. Temporal xml: Modeling,
indexing and query processing. To appear in VLDB
Journal.

J. Roddick. A Survey of Schema Versioning Issues for
Database Systems. Information and Software
Technology, 37(7):383-393, 1995.

B. Shneiderman and G. Thomas. An architecture for
automatic relational database system conversion.
ACM TODS, 7(2):235-257, 1982.

D. I. Sjoberg. Quantifying schema evolution.
Information and Software Technology, 35(1):35—-44,
1993.

R. T. Snodgrass. The TSQL2 Temporal Query
Language. Kluwer, 1995.

Y. Velegrakis, R. J. Miller, and L. Popa. Mapping
adaptation under evolving schemas. In VLDB, 2003.
F. Wang, C. Zaniolo, and X. Zhou. Archis: An
xml-based approach to transaction-time temporal
database systems. To appear in VLDB Journal.

C. Yu and H. V. Jagadish. Querying complex
structured databases. In VLDB, 2007.

C. Yu and L. Popa. Constraint-based XML query
rewriting for data integration. In SIGMOD, 2004.

C. Yu and L. Popa. Semantic adaptation of schema
mappings when schemas evolve. In VLDB, 2005.

[9]

APPENDIX

A. TRANSLATION OF SMOS INTO XICS (7o)
In the following, we present the translation of user-provided [/v2db/S)(y1), [./Qts](y1, s), [./Qte](y1, €), [./row](y1, y2)
SMOs into XICs, the schema mapping between two schema — Jxq[/vldb/R](x1), [./Qts](z1, s), [./Qte](x1, €), [./row](x1, y2), cond2

versions (See Section 4.1.2).
(DTy2)

[/v2db/T)(y1), [/ @ts](y1, s), [./Qtel(y1, €), [./row](y1,y2)
— Jx1[/vldb/R)(z1), [./Qts]|(z1, s), [./Qte](z1, €), [./row](x1, y2), cond3

1. CREATE TABLE R: In forward direction, there is no
source table, no mapping is necessary. Target table
is created as empty. For backward direction, the XIC
is as follows. false indicates that the query accessing
R in a new schema version cannot be satisfied in the

old schema version, where the table did not exist. 6. MERGE TABLE S, T INTO R: In forward direction, two

(CTy) [/v2db/S](y) — false tables are merged into one table. For the backward
direction XIC, we flip the two forward XICs and obtain

2. DROP TABLE R: After the table R is dropped, no quer
PP dnety two XICs with the same head. We then merge the two

can access R, so no rewriting is needed for DROP TABLE

and 1o XIC is generated for this SMO. bodies into a disjunctive, obtaining MT; below.
3. RENAME TABLE R INTO S: In forward direction (RTYy),
we map a table-level element R in the old schema ver- (MTy1)
sion Fo S .in the new schfema version. such that they [/vldb/S)(z1), [./@ts](z1, s), [./Qte](z1, e), [./row](z1, T2)
have identical table-level timestamps (i.e. s and e) and — 3y [/v2db/R](v1), [./Qts](y1,), [./Qte] (y1,), [./row] (y1, 2)

identical rows (i.e. z2). To obtain a backward direc-
tion XIC (RT}), we simply flip the body and the head
of the forward XIC, which implies that no other source
contribute to S in the new schema version. Note that
the forward and the backward XICs together establish
two-way inclusion dependencies, establishing an equiv-
alence between two tables.

(MTy2)
[/v1db/T)(z1), [./Qts](z1, s), [./Qte](z1,e), [./row](z1, x2)
— Jy1[/v2db/R](y1), [./Q@ts](y1, s), [./Qte](y1, €), [./row](y1, z2)

(MTy)

[/v2db/R](y1), [./Qts](y1, s), [./Qte](y1, €), [./row](y1, y2)

— Jx1[/v1db/S](z1), [./Qts](z1, s), [./Qte](z1, e), [./row](z1,y2) V
(RTy) [/vldb/T|(z1), [./Qts](z1, s), [./Qte](x1, e), [./row](z1,y2)
[/vldb/R)(x1),[./Qts](x1, s), [./Qte](x1, e), [./row](z1, z2)

— Jy1[/v2db/S](y1), [/ @ts](y1, s), [./Qte](yu, €), [./row](y1, z2)

(RTy) 7. ADD COLUMN A AS const INTO R: Assuming that R
[/v2db/S](y1), [./Qts)(y1, 5), [./Qte](y1, e), [./row](y1, y2) had columns Cj, Ca, ..., and Cy before the schema
— 321 [/vldb/R](z1), [./Qts] (21, 5), [./Qte](z1, €), [./row] (x1, y2) change: Also assume that Ts and 7. are start time and

end time of the source schema version.

4. COPY TABLE R INTO S: In forward direction, the table

R is mapped to the table R and table S in the new (ACy)
schema version. In backward direction, both R and S [/vidb/R](z1), [/ @ts](z1, 51), [./Qte](z1, e1),
are mapped to R in the old schema version. Hence, it [-/row](z1,x2), [./Qts](z2, s2), [./Qte] (w2, e2),
generates the following two XICs, in addition to (RTY) [./Cil(=2, 21),[./Ca] (w2, 22), .., [./CN] (22, 2N)
and (RTy) above. — Jy1, Y2, ys[/v2db/S](y1), [./Qts](y1, s1), [./Qte)(y1, e1),
(OTy) [/vldb/R](z) — [/v2db/R](z) [./row](y1,y2), [./Q@ts](y2, s2), [./Qte](y2, e2),
(OTy) [/v2db/R](y) — [/vldb/R](y) [./Al(y2,y3),[./Qts](y3, Ts), [./Qte](ys, Te), [./text()](y3, const),
[./C1l(yz2, z1), [/ C2l(y2, 22), ..., [/ Cn1(y2,)
5. DISTRIBUTE TABLE R INTO S WITH cond2, INTO T WITH
cond3: DTy, and DTy are the XICs for the table S (ACy)
;I;ki;l};e;‘lew schema version, and DTy, and DT, for the [/v2db/S](y1), ./ @ts)(y1, 51), [./@te] (41, e1),
’ [./row](y1,y2),[./@ts](yz2, s2), [./Qte] (y2, e2),
[./Al(y2,ys), [./Qts)(ys, Ts), [./ @tel(ys, Te), [./tewt()](y3, const),
(DTy1) [./C1l(y2, z1), [./C2](y2, 22)s ..., [./CNI(y2, 2N)
[/vldb/R]|(z1), [./Qts|(z1, s), [./Qte](z1, €), [./row](z1, z2), cond2 — Jz1, x2[/vldb/R](z1), [./Qts](x1, s1), [./Qte](x1, e1),
— Jy1[/v2db/S|(y1), [./Qts](y1,), [./Qte](y1, €), [./row](y1, x2) [./row](z1, w2), [./Qts] (w2, s2), [./Qte](w2, €2),
[./C1l(z2, 21),[./Ca2l(z2, 22), .., [./ON (22, 2N)
(DTy2)

[/vldb/R]|(z1), [./Qts|(z1, s), [./Qte](x1, €), [./row](x1, x2), cond3

— Jy1[/v2db/T)(y1), [./Qts](y1, s), [./Qte](y1, €), [./row](y1, z2)
il Jo-1 S0 S o1 o, z2 8. DROP COLUMN A FROM R: Assuming that R had columns

A, Cq, Cg, ..., and Cy before the schema change:

894

(DCy)

[/vldb/R]|(z1),[./Qts](z1, s1), [./Qte](z1,e1),

[./row](z1, z2), [./Qts](za, s2), [./Qte](z2, e2),

[./Al(@2, 3), [./Qts](x3, s3), [./Qte] (w3, e3),

[./C1](z2, 21), [./C2](z2, 22), ..., [./ON](22, 2N)

— Jy1, y2[/v2db/S](y1), [./Qts](y1, s1), [./Qte](y1, e1),
[./row](y1,y2), [./Qts](y2, s2), [./Qte](y2, e2),
[./C1l(y2, 21), [./C2](y2, 22), ... [./CN](y2, 2N)

(DCy)

[/v2db/S](y1), [./Q@ts](y1, s1), [./Qte](y1, e1),

[./row](y1, y2), [./Qts](y2, s2), [./Qte](y2, e2),

[./Cil(y2, z1), [./C2l(y2, 22), -, [./Cn](y2, 2n)

— Jx1, z2[/vldb/R|(z1), [./Qts](z1, s1), [./Qte](z1, e1),
[./row](z1, x2), [./Qts](z2, s2), [./Qte](x2, e2),
[./Al(z2, 23), [./Qts](zs, s3), [./Qte](ws, e3),
[./C1)(z2, 21), [./Ca)(z2, 22), ..., [./CN](22, 2N)

9. RENAME COLUMN A IN R TO B: Assuming that R has
columns A, Cy, Ca, ..., and Cy

(RCy)

[/vldb/R)(z1), [./Qts]|(z1, s1), [./Qte](z1, e1),

[./row](z1, z2), [./Qts](z2, s2), [./Qte](z2, e2),

[./Al(z2, x3), [./Qts](x3, s3), [./Qte](x3, e3), [./text()] (w3, tx3)

[./C1](z2,21),[./Ca)(z2, 22), ..., [./CN](22, 2N)

— Jy1, Y2, y3[/v2db/S|(y1), [./Qts](y1, s1), [./Qte](y1, e1),
[./row](y1,y2), [./@ts](y2, s2), [./Qte](y2, e2),
[./Bl(y2,y3), [./Qts](ys, s3), [./Qte](ys, e3), [./text()](ys, txs)
[./C1](y2, z1), [./C2](y2, 22), ..., [./CN](y2,)

(RC»)

[/v2db/S|(y1), [./@ts](y1, s1), [./Qte](y1, e1),

[./row](y1,y2), [./Qts](y2, s2), [./Qte](y2, e2),

[./B](y2,y3),[./Qts](ys, s3), [./Qte](ys, e3), [./text()](ys, tzs)

[./C1l(y2, z1), [./C2l(y2, 22), ... [./CN](y2,)

— Jx1, x2, z3[/vldb/R](x1), [./Qts](z1, s1), [./Qte](z1, e1),
[./row](z1, x2), [./Qts](z2, s2), [./Qte](z2, e2),
[./Al(z2, 3), [./Qts](z3, s3), [./Qte] (3, e3), [./text()] (=3, tx3)
[./Cil(z2, 21),[./C2](22, 22), .., [./ON (22, 2N)

10. copy coLuMN C FROM R INTO S WHERE R.A =
S.A: The following two XICs, as well as the identity
mapping for R as it is not modified by this SMO.

895

(CCy)

/vldb/R](z1),[./Qts](z1,xs1), [./Qte](x1, zer),

Jrow|(z1, x2), [./Qts](z2, xs2), [./Qte](z2, xea),

JAl(z2, x3), [./Qts](x3, zs3), [./Qte](zs, ze3), [./text()](zs, zt3),

JCl(x2, x4), [./Qts] (x4, xs4), [./Qte] (x4, zes), [./text()](xa, xts),

/v1db/S](y1), [./@ts](y1, ys1), [./Qte](y1, yer),

Jrow](y1, y2), [./@ts](y2, ys2), [./ Qtel(y2, ye2),

/Al(y2,y3), [./Qts](ys, yss), [./Qte](ys, yes), [./text()](ys, yts),

-/C1](y2, ye1), [./C2)(y2, ye2), ., [./Cn1(y2, yen),

xts = yts3

— 321, 22, 23, 24[/v2db/S|(z1), [./Qts](z1, ys1), [./Qte](z1, ye1),
[./row](z1, 22), [./Qts](22, ys2), [./Qte] (22, ye2),
/Al (22, 20), [./@ts] (23, yss), [./Gtel (23, yes), [./tewt](zs, yts)
[./C](z2, z4), [./Qts](z4, xs4), [./Qte](z4, xes), [./text()](z4, xta)
[./C1](z2, zc1), [./C2](22, zc2), ..., [./Cn](z2, zcN)

(CCh)
[/v2db/S](21), [./Qts](z1, ys1), [./@te] (21, yer),
[./row](21, 22), [/ Qts](22, ys2), [./Qte] (22, yez2),
[./Al(22,23),[./Qts] (23, ys3), [./Qte](z3, yes), [./text()] (23, yt3)
[./Cl(22, za), [./Qts]|(z4, Ts4), [./Qte] (24, zea), [./text()] (24, zta)
[./Ci](z2, zc1), [./C2](2z2, zc2), ..., [./CN](z2, zcN)
— Jz1, 22,23, T4, Y1, Y2, Y3, TS1, T€1, TS2, T2, TS3, TE3, Tt3,
ycr1,ycz, .., YCN
[/vldb/R]|(z1), [./Qts|(z1, xs1), [./Qte](x1, zer),
[./row](z1,x2), [./Qts](z2, xs2), [./Qte](x2, ze2),
[/A)(22, 23), [./@ts)(z3, ws3), [./@te] (zs, wea), . tewt()](ws, ts),
[./Cl(x2,x4),[./Qts| (x4, xs4), [./Qte](xa, zeq), [./text()](za, xts),
[/v1db/S|(y1), [./Qts](y1, ys1), [./Qte](y1, yer),
[./row](y1, y2), [./Qts](y2, ys2), [./Qte](y2, yez),
[/Al(y2, 4s), [./8ts](y3, ysa), [./Gtel(ys, yea), [/tewt())(us, yts),
[./C1](y2, ye1), [/ C2(y2, ye2),s .o, [./CONI(y2, yen),
Ttz = yt3

11. MOVE coLUMN A FROM R INTO S WHERE R.A =

S.A: same as COPY COLUMN rules, without the identity
rules.

