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ABSTRACT

Private data often comes in the form of associations between entities, such
as customers and products bought from a pharmacy, which are naturally
represented in the form of a large, sparse bipartite graph. As with tabular
data, it is desirable to be able to publish anonymized versions of such data,
to allow others to perform ad hoc analysis of aggregate graph properties.
However, existing tabular anonymization techniques do not give useful or
meaningful results when applied to graphs: small changes or masking of
the edge structure can radically change aggregate graph properties.

We introduce a new family of anonymizations, for bipartite graph data,
called (k, £)-groupings. These groupings preserve the underlying graph
structure perfectly, and instead anonymize the mapping from entities to
nodes of the graph. We identify a class of “safe” (k, £)-groupings that have
provable guarantees to resist a variety of attacks, and show how to find such
safe groupings. We perform experiments on real bipartite graph data to
study the utility of the anonymized version, and the impact of publishing
alternate groupings of the same graph data. Our experiments demonstrate
that (k, £)-groupings offer strong tradeoffs between privacy and utility.

1. INTRODUCTION

Private data often arises in the form of associations between en-
tities. An example is the products bought by customers at a phar-
macy. The set of products being sold and their properties is public
knowledge, and it may be no secret which customers visit a par-
ticular pharmacy. However, the association between a particular
individual and a particular medication is often considered sensi-
tive, since it is indicative of a disease or health issue that they have.
A large example of association data is the Netflix prize data set,
released in 2006, which was anonymized based on an unspecified
heuristic method [2]. Another example is that of authors and pa-
pers: for a conference such as SIGMOD, reviewers learn infor-
mation about submitted papers (title, area, abstract), and could (in
future) also see detailed information about authors who have sub-
mitted papers, in order to verify conflicts of interest. But, since
SIGMOD is a double-blind conference, the association between au-
thors and papers should not be revealed to reviewers.

The most natural way to model such data is as a graph structure:
nodes represent entities, and edges indicate an association between
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them; much analysis can then be performed on structural proper-
ties of this graph. In this work, we study data that can be modeled
as bipartite graphs—there are two types of entity, and associations
link together one entity of each type. In the pharmacy, customers
buy products, and in SIGMOD, authors write papers, building (cus-
tomer, product) and (author, paper) associations. Each entity can be
involved in few or many associations, but in most common situa-
tions, only a tiny fraction of all possible associations are present. In
other words, the induced graph is quite sparse, and we must ensure
that these associations are not easily revealed.

Although the data is private, it is still desirable to allow aggregate
analysis based on the structure of the graph. Pharmaceutical com-
panies wish to understand which pattern of products are bought by
people in particular age ranges; public health organizations want
to watch for disease outbreaks affecting particular demographics
based on certain types of medicine being purchased; SIGMOD may
encourage analysis of hot topics in databases, or better understand-
ing of coauthorship patterns. Publishing the raw data would allow
these questions to be answered directly, but would fail to meet the
privacy concerns outlined above. The model where the data owner
accepts queries and either adds noise to results or refuses to answer
some questions requires the data owner to be an active participant
and may limit what analysis is possible. Instead, we adopt the ap-
proach of publishing some anonymized version of the data, and en-
suring that the scope for inferring any given association from this
data is limited while the key properties, in particular the structure
of the underlying graph, is preserved. This approach allows a wide
variety of ad hoc analyses and novel valid uses of the data, while
ensuring our privacy goals are met.

The problem of publishing anonymized data has attracted signif-
icant interest in recent years [7, 8, 9, 12, 13, 15, 16]. However, the
focus has mostly been on tabular data, rather than the associations
we study here. As a consequence, applying existing anonymiza-
tion techniques tends to erase almost all structure, so that little use
can be made of the resulting data. Moreover, a tabular approach
ignores the inherent graph properties which hold a lot of the value
of the data: e.g. structure such as number of customers buying
the same product, pattern of other common products between cus-
tomers using the same product, and so on. These are all important
features of interest for aggregate analysis, but are radically altered
by simply treating the data as a table and masking or perturbing the
data. In Section 3, we work through several detailed examples to
show that existing approaches for tabular data are insufficient for
handling associations.

Some recent work has begun to address anonymizing graph data,
motivated by social network structure. Our work differs by mak-
ing different assumptions about the strength of the attacker and
the utility of the graph data: Prior work [1, 5] tends to assume a
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Figure 1: Example data set

lot of knowledge or power on behalf of the attacker (in particular,
knowledge of node degrees, or of particular subgraphs), and shows
that under such assumptions some associations can be inferred. In
contrast, we address a different but equally important range of the
privacy-utility tradeoff. We give a new approach for anonymizing
associations which can be represented as bipartite graphs and show
it to be resilient against certain attack models.

Our Contributions. Our methodology is based on the idea that
rather than masking or altering the graph structure, we should pre-
serve the graph structure exactly, and instead focus on masking the
mapping from entities to nodes of the graph. This approach ensures
that the complex and sensitive graph structure is not affected, and
so we can be sure that any analysis based principally on the graph
structure will be correct. Privacy is ensured by grouping the nodes
and entities: we partition the nodes in the graph, and the corre-
sponding entities, into groups so that, given a group of nodes, there
is a (secret) mapping from these nodes to the corresponding group
of entities. There is no information published that would allow an
attacker to work out, within a group, which node corresponds to
which entity. This gives a tradeoff between privacy and utility: in-
tuitively, larger groups give more privacy, but less certainty when
answering queries which select a subset of entities.

We give a simple condition for a grouping to be safe, which pre-
cisely limits the ability of an attacker to make any inference from
the published information alone. We provide an algorithm which
is successful at finding safe groupings in practice, and go on to de-
scribe how to answer a variety of query types efficiently given the
published anonymized data. We also give formal analysis of how
little can be deduced by an attacker who has additional background
knowledge in the form of known associations between particular
pairs of entities, and show that there is high security for entities
about whom no information is known by the attacker.

We demonstrate the efficacy of our approach with a careful ex-
perimental analysis of the ease of building safe groupings, and the
accuracy with which a variety of queries can be answered over such
anonymized data. We also study the effect of variations of our ap-
proach, and demonstrate that techniques based on publishing two
versions of the same data, while significantly increasing the utility
and accuracy of query answering, can also expose more associa-
tions to unintended revelation.

2. PRELIMINARIES
2.1 Graph Model

Throughout, we focus on problems of anonymizing bipartite graphs

G = (V, W, E) (bigraph for short). That is, the bigraph G consists
of m = |V| nodes of one type, n = |W| nodes of a second type,
and a set of |E| edges E C V' x W. Such graphs can encode a
large variety of data, in particular, the set of existing links between
two sets of objects. For example, we can encode which documents

were co-written by a set of authors; which websites were visited by
users; which courses were taken by students; and so on. Through-
out, we shall work with an illustrative example of a set of customers
C = V and a set of products P = W. An edge (c,p) indicates
customer ¢ € C bought product p € P. Observe that here, as in
many of the examples above, the graph is relatively sparse: each
customer typically buys only a small fraction of all products, and
each product is bought by only a few customers (with a few ex-
ceptions, e.g. many customers buy aspirin). As a consequence,
the number of edges e is small compared to the number of possi-
ble edges, which is n X m. More formally, we say that a graph is
a-sparse if e < anm; we will subsequently provide a necessary
bound on the a-sparseness for our method to succeed. In full gen-
erality, we can consider graphs with multiedges, with weights or
additional attributes. However, for clarity, we describe only the un-
weighted, undirected, single edge case: this has sufficient richness
to capture many challenging problems.

In a relational database, a bipartite graph G = (V, W, E) is natu-
rally and concisely represented by three tables, corresponding to V/,
W and E. In our example, we would have a table of customers V/,
including attributes such as gender and location (from a customer
loyalty scheme, say); a table of products W, including attributes
such as price, type, and whether it is available Over the Counter
(OTC) or by prescription only (Rx); and a customer-product table
E encoding who bought what. Thus entities in the tables 1 and W
correspond to nodes in the graph defined by F, in a 1:1 fashion.

Example 1. Figure 1 shows a sample instantiation of this schema
with Figure 1(d) showing the graph representation of the customer-
product relation in Figure 1(c). Customers have an additional at-
tribute, state, indicating whether they are based in New Jersey (NJ),
North Carolina (NC) or California (CA). The availability of a prod-
uct indicates whether it is Over the Counter or Prescription Only.
Since the graph accurately represents the relational data, we use
both graph and relational terminology. [

2.2 Privacy Goals

Our objective is to publish an anonymized version of the graph
G, which still allows a broad class of queries to be answered ac-
curately, but which maintains privacy of the associations. To make
this goal precise, we describe our privacy goals, and outline classes
of queries which we aim to answer.

Our privacy objective is based on the idea that in many cases it
is the association between two nodes which is private and must be
disguised. As noted, the set of customers of a pharmacy may not
be considered particularly sensitive, and the set of products which
it sells may be considered public knowledge. However, the set of
products bought by a particular customer is considered private, and
should not be revealed. We focus solely on preserving the privacy
of associations, and assume that properties solely of entities (e.g.
state of a customer) are public. Clearly, there are situations with
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differing privacy requirements, commented on in Section 7.

Since it is desirable to allow answering of ad hoc aggregate queries
over the data (e.g. how many customers from a particular zip code
buy cold remedies), we wish to release some anonymized version
of this data which gives accurate answers to such queries but pro-
tects the individual associations. More strongly, we want the graph
properties of the data to be preserved. This corresponds to simple
features, such as the degree distribution of the nodes, but also more
long-distance properties, such as the distribution of nodes reachable
within two steps, three steps, etc.

Here, as in all work on anonymization, there is an inherent trade-
off between privacy and utility, although this can be hard to quan-
tify precisely. Various extreme approaches maximize one over an-
other: publishing the original data unchanged clearly maximizes
utility, but offers no privacy; removing all identifying information
and publishing only an unlabeled (“fully censored”) graph gives
high privacy, but limited utility for aggregate queries over nodes
satisfying certain predicates.

Prior work has considered strong dynamic attack models (where
nodes and edges can be inserted into the graph), which can result
in some small number of associations being revealed [1]. For many
situations we consider, this represents a very powerful attacker,
and weaker attack models may suffice. It assumes that an attacker
knows what data will be covered by the release and can easily mod-
ify it in advance. But, in the pharmacy example, adding edges
means particular individuals must buy certain products in certain
stores at certain times, which requires a very coordinated attacker.
Adding nodes could involve creating new products for sale in the
stores, which may not be plausible. Similarly, passive attacks re-
quire the attacker to collect complete and accurate information for a
set of individuals. Even then, such attacks [1] only reveal informa-
tion about entities for which some information is already known.
Entities not involved in the attack remain secure. Clearly, there are
cases where such attacks are possible and the results of [1] give a
strong caveat; it is the responsibility of the data owner to determine
against which attacks they should be secure.

In extreme cases, the unlabeled graph structure leaks informa-
tion about individual edges: for example, if the underlying graph is
complete then we know there is an edge between any pair from the
censored graph structure alone. Or, if there are a few nodes with
unique degrees and these degrees are known to the attacker, these
nodes can be reidentified. But in typical cases such as the examples
we consider, virtually nothing can be deduced from the graph struc-
ture alone. Again, the data owner must determine whether this level
of disclosure is acceptable to them. Here we aim for privacy guar-
antees relative to the baseline of the unlabeled graph. In particular,
we study what guarantees can be made in the following scenarios:

Definition 1. In the static attack case, the attacker analyzes solely
the information which is published by the scheme, and tries to de-
duce explicit associations from this information. Ideally, the num-
ber of associations which can be correctly inferred (beyond what is
implicit in the censored graph) should be minimal if not zero.

In the learned link attack case, the attacker may already know a
few associations — for example, that customer c1 bought p2. The
additional associations that can be inferred should be minimal if
not zero when the number of link revelations is small.

We are principally concerned with an attacker being able to make
positive inferences, e.g. being able to deduce that c6 bought p6. We
are less concerned about negative inferences, e.g. deducing that c1
did not buy pl. Since the graphs we analyze are sparse, and the
maximum degree at most a constant fraction of the total number
of nodes, we consider such discovery to be entirely acceptable (the
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same assumption is implicitly present in much of the prior work on
anonymizing tabular data, such as k-anonymity and permutation
based methods). We are still concerned when some negative infer-
ences eliminate enough possibilities to leave a positive inference:
learning c4 bought at least one item but did not buy p1, p2, p3, p4,
or p6 allows us to infer that c4 did buy p5. This form of positive
inference is specifically captured and limited by our analysis.

2.3 Query Types and Utility

As in prior work, given the difficulty of giving a precise pri-
vacy/utility tradeoff, we consider approaches which first fix a given
level of privacy and then try to optimize and measure the utility. In
order to more precisely analyze utility, we describe a set of sample
aggregate query types which we wish to support. We will mea-
sure the utility of our results by studying the accuracy with which
these queries can be answered using the anonymized data. The
queries can be based on predicates over solely graph properties of
nodes (such as degree), which we denote P,,, and predicates over
attributes of the entities, P,. In our customer-product example, P,
could select out customers from NJ, or prescription products, while
a typical P, might be that a customer buys a single product. We
separate these two types of predicates, since when we publish a
censored graph, we can still evaluate P,, predicates exactly, while
we have maximum uncertainty in applying P, predicates.

We list a set of types of queries of increasing complexity, based
on standard SQL aggregates (sum, count, avg, min, max):

e Type 0—Graph structure only: Compute an aggregate over
all neighbors of nodes in V' that satistying some P,.

E.g.: Find the average number of products per customer; Com-
pute the average number of customers buying only that product,

per product.

e Type 1—Attribute predicate on one side only: Compute an
aggregate for nodes in V satisfying P,; Compute an aggregate on
edges to nodes in V' satisfying P,, from nodes in W satisfying P,.
E.g.: Find the average number of products for NJ customers;

Find total number of CA customers buying only a single product.

e Type 2—Attribute predicate on both sides: Compute an ag-
gregate for nodes in V satisfying P, to nodes in W satisfying P,.
E.g.: Count total number of OTC products bought by NJ customers;

Total sales of Rx products to CA customers who buy nothing else.

Naturally, one can define yet higher orders of queries that are
more complex, either through more constraints or more steps through
the graph. Join-style queries would compute an aggregate of nodes
from V at distance 2 from other nodes in V' satisfying P, con-
nected via nodes in W satisfying P., and so on. One can also
bring in other graph properties (such as measuring the diameter
of an induced subgraph). For this work, we constrain our interest
principally to the classes of queries defined above, since these are
sufficiently rich to be challenging to answer accurately, while being
sufficiently concise to specify compactly and work with over real-
istic data sets. In particular, note that while queries of type O can
easily be answered on the fully censored graph exactly, answer-
ing queries of other types requires some more information about
attributes of the entities in order to give any reasonable accuracy.

Datasets and Experimental Environment. All experiments for
this paper were implemented in JDBC and SQL Server 2000. The
primary dataset used is derived from DBLP and corresponds to all

conference data. It was retrieved fromhttp://dblp.uni-trier.

de/xml/ on 06/21/2007, and is available on request from the
authors. The data set contains |V/| = 402023 distinct authors,
|W| = 543065 distinct papers, and |E| = 1401349 (author, pa-
per) edges. It represents the kind of association we are interested in,
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Figure 2: Attempting to apply existing anonymization to graph data

with typical features (sparse graph, power-law degree distribution,
non-random structure of links). We also carried out experiments
on association data from other sources such as the IMDB (actors,
movies), but in the interest of brevity, we only present results from
DBLP, since other data gave similar conclusions.

3. APPLYING EXISTING TECHNIQUES

A natural first approach to addressing these privacy questions is
to apply prior work on table anonymization, since tables can rep-
resent graph data. However, such prior anonymization techniques
only try to preserve the accuracy of table-based queries, and do not
consider any graph semantics. As a result, we show that fundamen-
tal graph properties are quickly lost under such transformations,
and we will see that even many of our type O queries are answered
with intolerably high error. It is difficult to exhaustively try all ex-
isting methods, so we show that for three popular representative
anonymizations that the results are not usable over graph data.

3.1 Representing as a relation

Representing the customer-product example in Figure 1 using
tables, gives a customer relation (Figure 1(a)), a product relation
(Figure 1(b)), and a customer-product relation (Figure 1(c)). We

can join these to make a single table (Figure 2(a)), and try to anonymize

it. In our example, each row lists a customer, a product, the cus-
tomer’s state, and the product availability. How can we meet our
goal of not revealing any (customer, product) association by apply-
ing a k-anonymization algorithm? Removing all customer IDs de-
stroys all association structure from customers to products. Setting
customer as a quasi-identifier and product as sensitive attribute fails
because k-anonymization allows k products bought by the same
customer to be grouped together (they share a quasi-identifier). Set-
ting (customer, product) as the sensitive attribute fails, because k-
anonymization does not alter or mask sensitive attributes. Instead,
we could add a dummy sensitive attribute of “true” to each row to
indicate that the association is sensitive. The k-anonymized ver-
sion of this table must use generalization and suppression to ensure
each row is indistinguishable from & — 1 others [11, 12]. Options
for concealing customer and product identifiers are limited: since
they are arbitrary identifiers, there is no natural hierarchy for gener-
alization so they can only be withheld. A 3-anonymized version of
our example data set shown in Figure 2(b) provides very low utility.

This attempt at anonymization loses the notion of individual cus-
tomers and products, and so is unable to give useful answers to the
query types outlined above. Augmenting the anonymized data with
some additional information risks breaching privacy and does not
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guarantee to anticipate all reasonable queries which could be for-
mulated: recall that the purpose of publishing anonymized data is
to allow a broad variety of ad hoc queries to be posed.

3.2 Representing as a matrix

A fundamental problem with the above approach is that k-anonymity

is formally defined so that there should be at least k individuals
whose representation is identical; in this representation, each indi-
vidual is present in multiple places, so for example in Figure 2(b),
two rows in the anonymized table refer to the same customer, giv-
ing them weaker privacy. This leads us to represent the graph data
instead as a binary matrix: rows correspond to nodes in V', columns
to nodes in W, and an entry (¢, 7) is set to 1 if there is an edge be-
tween v; € V and w; € W, and 0 otherwise. We can now take
such a matrix, and try to apply existing anonymization techniques
on it. Similar to above, the only meaningful anonymization of a 0
or 1 value is to generalize to “*”.

Applying k-anonymization is similar to having customer as a
quasi-identifier and product as a sensitive attribute [11, 12]: now
products with more than k buyers may be revealed, while unpop-
ular products may be fully masked. This also virtually wipes out
the utility of the data. For example, Figure 2(c) shows the ma-
trix representation of the sample data from Figure 1, and the result
of 3-anonymizing it: all that is left is a few negative associations.
The fundamental problem here is that these approaches have two
equally unpalatable options: either an association is fully revealed,
or else it is withheld.

3.3 Anonymization Through Permutation

A third approach to anonymizing tabular data is based on the idea
of “permutation”: breaking the links between quasi-identifiable at-
tributes and sensitive attributes [15, 16]. This seems more suited to
the graph setting: we have an association between nodes in a graph
that we wish to anonymize. This leads to the following algorithm:
form edges into groups, and within each group, publish the pair of
node (multi)sets that form edges. Grouping the edges from Figure 1
into sets of size 3 and 4 based on customer pairs gives:

({c1,c1,c2,c2}, {p2,p3,p4,p6}),
({c3,¢3,cd}, {p2,p4,p5}),
({c5,¢5,¢6,¢6}, {pl,p3,p5,p6})

Equivalently, for a group containing edges e1 = (v1,w1),€2...¢es
we generate ¢ permuted edges by picking a random permutation 7
and publishing €7 = (v1, Wr(1)) ... € = (Vi, Wr(s)) - - . €. Con-
ceptually, imagine taking every edge in the group and “breaking it
in the middle”, then forming new edges by joining half-edges from
V to half-edges from W. This method initially seems more promis-
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Figure 3: (3,3)-anonymization of example relation

ing than the above, since it guarantees to preserve node degrees (i.e.
the number of products linked to a customer is the same before and
after the permutation, and vice-versa), and the true mapping from
customers to products seems well-masked. However, when we try
to evaluate simple graph queries (type 0) over this data, we find that
the results are highly inaccurate.

To show this, we created a global permutation of the DBLP data
where all edges are placed into a single group and permuted. We
also created a small group permutation based on sorting papers pri-
marily by conference and year and then by author count. Groups
were defined by all edges relating to each consecutive pair of pa-
pers under this ordering. Figure 7(a) shows the result of plotting
the distribution of the frequency of co-authorship for each pair of
co-authors. The results clearly demonstrate that this permutation
approach does not accurately maintain the coauthor relationship.
In the source data 1.6M pairs of coauthors have written at least
one paper together, and one pair has co-written 210 papers. In the
global permutation, the maximum number of papers coauthored to-
gether is only three. The permutation of small groups is closer
to the source distribution, but the error is still significant. This is
unsurprising since coauthors often collaborate over long periods,
writing multiple papers together. Permutation of papers breaks this
correlation and links unrelated authors. All other grouping methods
that we tried similarly failed to preserve these basic graph prop-
erties. Therefore we conclude that this approach gives very poor
answers to simple type-0 queries, and so is not suitable for further
consideration, since we next propose a method which guarantees
perfect answers to type-0 queries.

4. PRIVACY THROUGH GROUPING

All the above attempts to use existing techniques render the data
virtually unusable for the simple reason that they change or mask
the graph structure in ways that fundamentally alter its properties.
In contrast to the table case, where modifying a row has relatively
minor impact on table properties, adding or deleting an edge can
have significant impact on properties of a graph (for example, it
can change a graph from being connected to disconnected). So
we seek to avoid techniques which involve perturbing the graph
structure. Instead, we focus on techniques which retain the entire
graph structure but perturb the mapping from entities to nodes. That
is, methods that publish a set of edges E’ that are isomorphic to the
original edges F, but where the mapping from E to E’ is partially
or fully masked. This technique is applicable in situations where it
is considered safe to publish the unlabeled graph.

QOutline. We define our grouping method in Section 4.1, and give
a ‘safety’ condition in Section 4.2 which ensures that privacy goals
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are met (proved in Section 4.3). We give a greedy algorithm to
find a ‘safe grouping’ (Section 4.4) and then show how to answer
queries given the published anonymized grouping (Section 4.5).
Lastly, we consider a special case where some groups are revealed
exactly (Section 4.6), and provide experimental results (Section 4.7).

4.1 Definition of Grouping

In this paper, we focus on masking the mapping via grouping the
nodes of the graph. This technique preserves the underlying graph
structure perfectly, but masks the exact mapping from entities to
nodes, so for each node we know a ser of possible entities that it
corresponds to. The group size k is a parameter: larger k gives
more privacy, but reduces the utility. We first provide formal defi-
nitions of groupings, illustrated by an example, and then show how
these groupings enable the masking.

Definition 2. Given a set V, a k-grouping is a function H map-
ping nodes to “group identifiers” (integers) so for any v € V, the
subset V,, = {v; € V : H(v;) = H(v)} has |V,| > k. Formally,

VoeV :3V, CV V| >kANu €V, H(v;) = Hv))
That is, H partitions of V' into subsets of size at least k. The k-
grouping is strict if every group V,, has size exactly k or k + 1.

In other words, a k-grouping partitions V' into non-intersecting
subsets of size at least k. The k-grouping ensures that each group is
at least size k, to meet privacy goals; strictness ensures no group is
much larger than k, for accuracy. We use the definition of grouping
to publish a modified version of the graph:

Definition 3. Let Fy be arelabeling function to relabel elements
of V injectively onto a new set Fy (V'); and let Fy be a relabeling
function to relabel elements of W injectively onto a (disjoint) set
Fyw (W). Given a k-grouping on V, Hy, and an ¢-grouping on W,
Hyw, of a graph G = (V, W, E), define the (k, £)-grouped graph
G'as G' = (V,W,Hy,Hw,E', Ry, Rw) where:

(a) V and W are the original sets of entities V' and W, and Hy and
Hyw are the grouping functions defined above.
(b) E’ is the relabeled edge set given by
E' = {(Fv(v), Fw (w))|(v,w) € E}.
(c) Rv, Rw are remappings defined by
Rv(Fv(’U S V)) = Hv(’l)) and Rw(Fw(’w c W)) = Hw (w)
When both Hy and Hyw are strict, this is a strict (k, £)-grouping.

Example 2. For the example in Figure 1, set groups CG1, CG2
(customer group 1 and 2) and PG1, PG2 (product group 1 and 2) as
H;'(CG1) = {cl,e2,c4} H;'(CG2) = {c3,c5,c6}
Hp' (PG1) = {p2,p3,p5} Hp'(PG2) = {pl,p4, p6}



This is a strict (3, 3)-grouping since every customer group and
every product group has (exactly) three members. The resulting
grouped graph is shown in Figure 3(a), with the arbitrary relabel-
ing of nodes on x¢’s and yi’s. The published information can be
derived from this: Figure 3(b) shows the five published tables (in
addition to the original customer and product tables, Figure 1(a)
and 1(b)). The result is compactly represented as a graph in Fig-
ure 3(c): it shows the edge structure, and which sets of nodes map
to which sets of entities, but hides the exact mapping. [J

The grouping functions Hy and Hw contain most of the nec-
essary information to specify the modified graph as a function of
original graph GG. This definition is well-suited to storage within a
relational database. In the above example, we publish customer and
product relations as before (corresponding to V' and W); customer-
group and product-group tables which encode the mapping of each
customer and product to groups (corresponding to Hy and Hw);
a masked-customer-product relation, in which each customer and

product is mapped to a new node id (E"); and lastly masked-customer-

group and masked-product-group tables which map from the masked
identifiers to groups (Ry and Rw ). Note that the base relations
corresponding to V' and W should not contain any information re-
lating to the graph, such as the degree of the node. Otherwise, an
attacker could potentially use this to relink between rows of V' or
W and nodes in E’. Two further examples of groupings illustrate
extremes of the privacy-utility tradeoff:

Example 3. Smallest groups. Setting Hy (v) = vand Hw (w) =

w, (the identity functions) gives a (1, 1)-grouped graph G’. Here,
E’ = E, and hence G’ encodes the original graph G exactly. Every
query on G’ can be answered with the same accuracy as on G. So
there is perfect utility, but no more privacy than we began with. []

Example 4. Largest groups. Setting Hy to map all m = |V/|
members of V' to the same group, say 0, and Hw to map all n =
|W| members of W to, say, group 1 gives the (m,n)-grouped
graph G’. G’ has no useful information mapping between entities
in V, W and the nodeset of E’. That is, we publish entity tables and
the fully censored graph. Recall that we are assuming it is accept-
able to publish a censored graph, and so we say that this grouping
guarantees the same level of privacy. This retains the graph struc-
ture, as required, but completely removes the mapping from enti-
ties (e.g. customers and products) to nodes in the graph. We cannot
have any more privacy in our setting, when we insist on publishing
at least this much information. This offers very limited utility in an-
swering query types 1 and 2 listed in Section 2.3, since we cannot
apply any selective attribute predicate with any certainty. [

Privacy-Utility Tradeoffs. Between these two extremes lie many
possibilities that trade off utility and privacy. Given a (k, £)-grouped
graph, where both k and ¢ are fairly small, aggregate queries such
as those described in Section 2.3 can be answered approximately.
Bounds can be placed on the answers within which the true answer
must fall (Section 4.5). When k and ¢ are small, these bounds are
narrow; as k and ¢ grow large, the bounds will widen accordingly.
Clearly, a (k, £)-grouping offers more utility (and less privacy) than
a (k',¢)-grouping if k < k'; the same holds true between (k, ¢)-
and (k, ') groupings for £ < £’. But we cannot easily compare
(k,¢)- and (K',¢")-groupings unless k < k" and ¢ < ¢'. Thus,
choices of k and ¢ define a lattice over possible groupings, bounded
by (1,1) and (m,n). We explore several points in this space in
more detail; Figure 4 shows the lattice structure, including points
of note that are defined and discussed in subsequent sections.
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Figure 4: Lattice over groupings and privacy/utility tradeoff

4.2 Safe Groupings

There are many ways to form a k-grouping, but not all of these
offer the same level of privacy, due to the local graph structure.
We introduce the condition of ‘safety’ which ensures privacy holds
even under revelation of certain information.

Example 5. Consider a large graph GG, which happens to contain
the complete subgraph between nodes {v1, v2, vs } and {w1, w2, ws}.
Suppose {v1,v2,vs3} forms the entirety of one group in Hy, and
{w1, w2, w3} forms the entirety of a group in Hy . From the pub-
lished G’, it is possible to infer immediately all the connections
between these six nodes (a static attack). Such inference is not pos-
sible on the fully censored version of G’, but the unfortunate choice
of grouping allows information to leak. [

Some natural attempts to fix this, such as insisting that the den-
sity of edges between any pair of groups is low, are not guaranteed
to still hold as edges are learned by an adversary. We define a
stronger notion of ‘safe grouping’, which we subsequently prove is
robust against static and learned link attacks.

Definition 4. Hy is a safe grouping of V in the context of a
graph G = (V, W, E), if the following condition holds:
Vv, #v; € Ve Hy(v;) = Hy(vj) =
Aw e W : (vi,w) € EN (vj,w) € E
By extension, a (k, £)-grouping of a graph G is safe if Hy and Hw
are both safe groupings.

That is, a safe grouping ensures that any two nodes in the same
group of V' have no common neighbors in W (the definition for
a safe grouping of W is symmetric, interchanging the roles of V'
and W). This ensures a level of sparsity between groups, but goes
further in restricting the pattern of allowed links. In the customer-
products example, it means that no two customers in the same
group have bought the same product if the grouping is safe. Hence,
the groupings in Figure 3 are safe. Given G and k& > 1, there is no
guarantee that there exists a safe k-grouping (all 1-groupings are
trivially safe), but in practice they are easy to find (Section 4.4).

A necessary condition for the existence of a safe (k, £)-grouping
arises from the sparsity of the graph. A group of size kin V and a
group of size ¢ together induce a subgraph of G which could have
at most k¢ edges. However, if the grouping is safe then (within the
induced subgraph) any node can have degree at most 1; otherwise,
there are two nodes with a common neighbor. Figure 5(a) shows
a typical structure between two groups of size k = 5 and ¢ =
6. So there can be at most min(k, £) edges between these two
groups. This is true for every possible pair of groups. Since every



edge touches exactly two groups, the a-sparsity of the subgraph,
defined by a = |E|/|V||W]|, can be at most min(k, ¢)/(kl) =
1/ max(k, £). Finding a k-grouping when all groups are forced to
be size k can be hard even for small values of k:

THEOREM 1. Finding a safe, strict 3-grouping is NP-hard.

PROOF. Define GZ(V) = (V, E?) as the graph on V so that
(vi,v;) € E? <= Bwc W : (v;,w) € EA (vj,w) € E.
The requirement on Hy to be safe is equivalent to requiring every
pair of nodes in the same group form an edge in E2. That is, the
group of nodes in the grouping forms a clique in (non-bipartite)
G?(V'). Therefore, a strict 3-grouping of V' corresponds to a parti-
tion of G* (V) into triangles (forcing each group to be size 3). For
any desired graph G1 = (V1, E1), define abigraph G = (V, W, E)
such that G*(V) = Gy: create V. = Vi and W C V x V, and
for each (v;,v;) € Ey, insert (v;, (vi,v;)) and (vj, (vi, v;)) into
E. Since partitioning a graph into triangles is NP-hard (problem
[GT11] in [3]), and we can encode this problem as an instance of
finding a safe, strict 3-grouping, we conclude that this problem is

NP-hard also. [

However, safe groupings can be found easily when the graph is
sparse enough. For a bigraph G = (V, W, E) where every node
has degree 1 (i.e. E gives a matching between V' and W), every
possible grouping is safe, trivially. More generally, when the graph
is sparse and does not have nodes which have (almost) all possible
neighbors, safe k-groupings can be found for practical values of k
(10° — 102, say). Intuitively, the constraints posed by the edges of
the graph are easy to satisfy when not too many edges are present.

Most of the graph types discussed already are quite sparse and
have few nodes of high degree: most shoppers purchase only a
small number of the items on sale in a store, and most items are
purchased by a fraction of all shoppers; most authors write only
a small number of papers relative to the total number of papers
written, and most papers have a small number of authors. Studying
the data from DBLP, we observe that the most prolific author has
written around 400 papers (out of 500K), and the most authors on
a single paper is about 100 (out of 400K). In total, there are only
1.4M edges in the author-paper graph, out of a possible 400K x
500K = 200,000M, demonstrating that typical association data
is very sparse (o = 7 x 10~ "-sparse).

4.3 Security of (k,¢)-Groupings

We analyze what can be deduced by an attacker presented with a
safe (k, £)-grouping of graph data, where at least one of k and ¢ are
greater than 1. We first argue that safe groupings are secure against
the static attacks defined in Definition 1.

LEMMA 1. In a safe grouping, given nodes v € V and w €
W in groups of size k and £ respectively, there are k{ possible
identifications of entities with nodes and the edge (v, w) is in at
most a 1/ max(k, £) fraction of such possible identifications.

PROOF. Consider a group VG of V containing k nodes, and a
group WG of W containing ¢ nodes. In the subgraph of G induced
by VG and WG, there are e < min(k, £) edges, following from
the definition of safe grouping. There is no information available
in what is published to break the symmetry between the nodes of
V' @G, or between the nodes of W . Recall, we insist that tables V'
and W contain no data related to the graph itself, such as degree or
neighborhood, that could break this symmetry.

For any entities v € VG and w € WG, it is feasible that
(v, w) is an edge, and also feasible that (v, w) is not an edge. More
strongly, consider the number of ways of identifying entities v and
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w with the anonymized nodes {z1...xk} and {yl...yl}. Since
all k¢ possibilities are feasible, then there is an edge between v
and w in exactly an e/k/ fraction of feasible configurations, i.e. at
most min(k, ¢)/k¢ = 1/ max(k,£), the bound on the density of
the whole graph derived in Section 4.2. Since this analysis holds
for every pair of groups, then the (static) attacker cannot infer any
associations with certainty. [

Under this measure, a (k, 1)-grouping offers the same static guar-
antee as a (k, k)-grouping. However, as we discuss in more detail
in Section 4.6, there are other factors to consider. We remark on a
connection to the concept of /-diversity [8]: here, the requirement
is that between two groups the fraction of sensitive information (as-
sociations that are present) is bounded by 1/ max(k, £), which is
similar to the /-diversity requirement. If there are small groups, the
attacker’s confidence in a particular association can be higher. In
particular, two groups of size 1 with an edge between them corre-
sponds to a known association between entities. Although a safe
(k, £)-grouping has no groups of size 1, in the active (learned link)
attack model, when an attacker learns the existence of an edge
(v,w), he may be able to refine the grouping in order to create
groups of size 1. We will show that this refinement has bounded
impact on the security of entities not directly impacted by the edge
revelation, after presenting an example where an attacker may learn
an association.

Example 6. Consider the four groups shown in Figure 5(c), and
the three edges that connect them. Other nodes in the same groups
have edges to other groups (dashed lines) which do not affect this
example. In the static case, as proved above, the attacker cannot
make any strong inferences. However, in the link learning case, if
the attacker learns (¢, v) is an edge, he can use the fact that there is
only one edge between the group of ¢ and the group of v to identify
t and v with nodes in the anonymized graph. Likewise, learning
(u, w) allows u and w to be identified with the nodes that represent
them. As a consequence, the attacker can infer that (u,v) is an
edge, no matter how many other nodes are in the groups. [

The example shows revealing an edge can maybe allow an at-
tacker to learn more about the nodes that it connects, and so infer
more about the connections between such nodes. But the amount
revealed about entities for which the attacker does not have infor-
mation is minimal. A relaxed grouping definition allowing a few
groups of size one enables this intuition to be formalized.

Definition 5. Define a (k, £)* ) -grouping as a grouping in which
removing at most p nodes from V' leaves a k-grouping of the re-
maining nodes of V/, and removing at most ¢ nodes from W leaves
an {-grouping of the remaining nodes of W.

Observe that a (k, £)-grouping is also a (k, £)*®%_grouping.
Also, by applying Lemma 1, we note that a safe (k, Z)*(”’Q) -grouping
still gives a lot of privacy for nodes in the grouping: between a
group of size k and one of size ¢, each possible edge is present in at
most a 1/ max(k, ¢) fraction of possible configurations, as before.
But also, between a group of size 1 and one of size ¢, there can be
at most one edge in a safe grouping, and (also by Lemma 1) the
edge is present in at most a 1 /¢ fraction of possible configurations.
Symmetrically, between a group of size k and one of size 1, the
(at most one) edge is present in at most a 1/k fraction of possible
configurations. Only between two groups of size one can we infer
the existence (or absence) of an edge with certainty.

THEOREM 2. Inthe learned link case, given a safe (k, £)-grouped
graph and r < min(k, £) true edges, the most an attacker can infer
corresponds to a (k — r, € — r)*“’r)-grouped graph.



Algorithm 4.1: GrRour(V, W, E, k, j < 0)

(a) Structure of safe groups

(b) Pseudocode to find safe k-grouping

- - repeat R .
_ . foru e V ° ° cl p2
i+ 1;
- - while (Jv € VG;,w € W : (v,w)€EE o | e c4 p3
® ° do{ Aw,w)€EE)V|VG|>k+j
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[ else V — VUVG;;_1); -
until |[V| =0 ® e S p6

(©) (t,v) and (u,w) imply (u,v) (d) Safe (1, 3)-grouped graph

Figure 5: Safe Grouping Algorithm and Examples

PROOF. This is shown by induction over the revelation of r
edges. The base case r = 0 yields the (k, 4)*(0’0)-grouped graph.
In the inductive case, there is a (k — r, £ — )*("™) -grouped graph,
and an additional edge (v, w) is learnt. As shown in the example
above, in the worst case, this is enough to identify which node in
the anonymized graph is v and which is w. This corresponds to
refining of the groups: if v was in a group of size at least k —r, it is
effectively split into a group of size 1 (containing v alone), and the
remaining nodes now form a group of size at least k —r — 1. Like-
wise, the group containing w is split into one of size 1 containing
w alone, and one of size at least £ — r — 1. The resulting grouping
is therefore at least a (k — r — 1,£ — r — 1)*" 5"+ _grouping.

Observe however, that the identification of v and w reveals noth-
ing about any other nodes, even those connected to v and w. More
precisely, the resulting grouping is still safe by Definition 4. The
crucial observation is that any refinement of a safe grouping by par-
titioning groups into smaller pieces remains safe. By appealing to
Lemma 1, the attacker cannot infer any associations beyond those
that are revealed by the grouping directly (i.e. only those links
between groups of size one). This is sufficient to bound the new
knowledge by the (k — r, £ — r)*("")_grouping. [

This is directly comparable to results on tabular data k-anonymization

where the aim is to ensure that individuals are secure up to the reve-
lation of k& — 1 pieces of information about other individuals. Here,
individuals and their associations are secure up to the revelation of
k — 1 pieces of information (edges) about others.

4.4 Finding a safe grouping

We describe a greedy algorithm to find a safe k-grouping of V.
Precomputing the self-join of the edge table £ on W allows quickly
testing whether it is safe to put two nodes in the same group. For
each node v in turn, the algorithm attempts to place w in the first
group of the partial grouping with fewer than k nodes. If this would
make the grouping unsafe, it tries the next group, and so on. If
there is no group that meets these requirements, then a new group
is started, containing u alone. After processing all nodes, there
may be some (few) groups with fewer than £ nodes in them. The
algorithm collects these nodes together, and reruns the above loop
allowing for groups of size k + 1 instead of k. If the graph is
sufficiently sparse, then a safe grouping in which every group has
either k or k+ 1 nodes in is produced, and so the grouping is strict.
Else, the algorithm continues but now allows groups up to size k +
2, and so on. Eventually, either a safe grouping is found, or the
algorithm terminates once some large group size is reached. In this
case, the method fails, but can be run again by choosing a different

ordering of the nodes, or by picking a smaller value of k. Pseudo-
code of this heuristic is shown in Figure 5(b).

In our experiments it was easy to find strict safe k-groupings for
small values of k. There is the opportunity to optimize by choos-
ing an initial ordering for the nodes, with the aim of giving bet-
ter accuracy on queries. When a selective predicate is evaluated
over a group, tighter query bounds are given when either (almost)
all nodes in the group are selected, or none are selected. When a
handful of nodes are selected from a group, there will be more un-
certainty in answering the query. Putting similar nodes in a group
together will therefore give higher accuracy. It is tempting to do
this based on attributes of the entities. However, this can lead to at-
tacks in the style of the minimality attack defined in [14]: knowing
that groups were formed in a particular way allows an attacker to
deduce the identity of nodes, and hence infer associations.

Instead, if groups are chosen solely on graph properties, then we
can publish the grouping algorithm, and anyone will find the same
groups of nodes given the same unlabeled graph, so no information
relating to the mapping of nodes to entities derives from the choice
of which nodes to group together. This still gives many possibili-
ties. For example, to improve accuracy on queries involving graph
properties such as node degree (e.g. selecting customers buying a
single product), sorting by node degree will greatly improve query
answering. The sorted list of degrees of neighbors can break ties.
Other arrangements are possible; in our experimental evaluation
we will compare the groupings found by an arbitrary ordering of
the nodes to one based on first sorting in the manner outlined.

4.5 Query answering on (k,¢)-grouped graph

We show that aggregate queries of the type considered in Sec-
tion 2.3 can be answered accurately and efficiently from a pub-
lished (k, £)-grouped graph. First, since E’ is isomorphic to F and
queries of type 0 are solely on the underlying graph structure, they
can be answered exactly. Queries of type 1 and 2 cannot guarantee
perfect accuracy, since it is not possible to determine exactly which
nodes their predicates select. However, they can be answered ap-
proximately, by providing bounds and expected values on the ag-
gregate query. It is beyond the scope of this paper to cover all
possible such queries, so we instead analyze various typical cases.

A typical type 2 query is of the form “count the total number of
OTC products bought in NJ”. Since the products within each group
is known, the number of nodes selected by the product predicate in
a group is easily found. The same is true for any customer group.
The tightest bounds follow from evaluating the query over all pos-
sible assignments of entities to nodes, but this would be very costly,
as the following theorem argues:



THEOREM 3. Finding the best upper and lower bounds for an-
swering an aggregate query of type 2 is NP-Hard.

PROOF. The hardness of the tight upper bound problem is shown
by a reduction from the set covering problem [3]. Given subsets
S1,...,S¢ whose union is U = {a1,...,ay}, construct a bipar-
tite graph (V, W, E). For each subset .S;, create a node v; in V.
All nodes in V' are placed into a single group of size ¢. For each
a; € Sj, create a node w;; in W, and an edge (vj,w;;). W is
partitioned into groups corresponding to the same a;, i.e., group
G; = Uj{w;,;}. The grouping of the graph is safe, by construc-
tion. To decide whether there exists k subsets that cover U, we set
our problem as follows: the query selects k£ nodes in V', and exactly
one node from each group of W. There is a set cover of size k if
and only if the answer to the tight upper bound problem is |U|.

The hardness of the tight lower bound problem is shown by a
reduction from the maximum independent set problem [3]. Given
an undirected graph G1 = (Vi, E1), construct a bipartite graph
G’ = (V,W, E’) similarly to the proof of Theorem 1: for each
edge (v, v;) € E, insert (v, (vi,v;)) and (vj, (vj,v;)) into E,
and create a group of size 2 containing the two nodes (v;, v;) and
(vi,v;). All nodes in V are put in a single group. Again, the
grouping of G is safe by construction. To decide if there exists an
independent set of size k in G, set the query to select k£ nodes in V/,
and only one node in each group of W. There is an independent set
of size k if and only if the tight lower bound for this query is 0. [

Instead, slightly weaker bounds are obtained by considering each
pair of groups in turn to find bounds on the query answer:

Example 7. Consider answering the query “Count the total num-
ber of OTC products bought in NJ”. Given a safe group C'G; of k;
customers, of whom a; are NJ customers; a safe group PG of ¢;
products, of which b; are OTC products; and c¢;; edges between
the two groups: (i) There can be a contribution of at most U; ; =
min(as, b, ¢i;) to the query (Upper Bound). The total contribution
over all customer groups C'G; is at most U; = min(}", Ui j, b;),
and the final bound over all product groups is U = > ;Ui (i)
There is a contribution of at least L; ; = max(0, a; + bj + ¢ij —
ki — £;) to the query (Lower Bound), and the bound over all cus-
tomer groups is L; = max; L; ;. We can sum this to get the overall
lower bound, L = 3. L;. (iii) Treating all assignments of nodes to
entities as equally likely, the expected selectivity between C'G; and

. a;bjcis
PGiISEij = L

k02
mated expected bound is E; =¢;(1-T[,(1— E;;)), assuming in-
dependence and using inclusion-exclusion principle. The expected
bound for the query is then £ = ; ;. These can be verified by
simple case analysis over the structure in Figure 5(a). [

(Expected Bound). Over all groups, the esti-

Such queries can be answered in time O(| E|), since each edge in
the original graph connects a single pair of groups, and for groups
with no edges between them (c;; = 0), Us,; = Li; = Es ; = 0.

Example 8. The query “Find the maximum number of CA cus-
tomers buying a single Rx product” can be answered by consider-
ing in turn each node that could possibly be a CA customer (is in a
group which contains at least a; > 1 CA customers), and finding
exactly the products bought alone associated with that node. Upper
and lower bounds increase by one if there are b; > 1 Rx prod-
ucts or fewer than ¢; Rx products in the product’s group of size ¢;,
respectively. These imply upper and lower bounds on the global
maximum. Similarly, expected bounds follow by assuming a cus-
tomer has probability of being in CA with probability a;/k; in a
group of k; customers; and that a product in a group of ¢; product
has probability b; /¢; of being prescription only. [
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As above, since we have to do a constant amount of work for
each edge in the original bigraph, the computational costis O(|E]).

4.6 (k,1)- and (1,¢)-Groupings

A significant class of groupings arise when all groups of one set
of nodes are of size 1. These are (k, 1)- (or symmetrically, (1, ¢)-)
groupings. Here, more is revealed about associations between enti-
ties of the same type (our focus up to now has been on associations
between entities of differing types), since the true mapping from
one set of nodes to entities is revealed. In the customer-products
example, a (1, ¢)-grouping reveals exactly how many products a
particular customer has bought, who has bought the same product,
etc., while still protecting the exact associations.

Example 9. Figure 5(d) shows a safe (1, 3)-grouping of our ex-
ample data. The corresponding published tables are Hy and Rw
as shown in Figure 3(b); Hy and Ry are not needed, since V' maps
directly onto the nodes of E’. Despite this information being re-
vealed, the private associations between customers and products are
still hidden: although Figure 5(d) shows that customers c1 and c3
bought the same product, it could be any one of {p2, p3, p5}. [

This again resembles ¢-diversity: any customer is known to have
bought one product out of . From Lemma 1 and Theorem 2, given
a safe (k, 1)-grouping, any edge still is between one of k equally
likely nodes of V/, and given r edge revelations, an attacker is still
faced with a (k — r,1)*(™_grouped graph. While information is
revealed about interactions between one set of nodes (customers,
in the example above), in many cases, this information release may
be permissible. If so, higher accuracy on queries is possible.
Query answering on (1, ¢) and (k, 1)-grouped data. Queries are
answered in much the same way as in the more general (k, £) case.
However, many queries are answered more accurately, since the
amount of uncertainty is reduced: in Examples 7 and 8, a; = k; =
1orb; = ¢; = 1, simplifying the bounds. In particular, some
queries of type 1 can be answered exactly: if the predicate is on the
1-grouping, the correct set of entities can be found exactly, which
allows the exact answer to the aggregate query to be found. Type-2
queries can be answered with tighter bounds:

Example 10. For the query of Example 7 over a (k, 1)-grouped
graph, the set of OTC products is known precisely. For each OTC
product, we add 1 to the upper bound if they have a buyer in a group
which contains an NJ customer; and add 1 to the lower bound if
they have a buyer in a group in which everyone is in NJ. For the
expected bound, the expectation that a customer in a group of size
k; with a; NJ customers is E; ; = a;/k;, so the probability of any
buyer of the product being from NJ is 1 — J],(1 — E;,;). Simi-
larly, for Example 8, we can consider all single products bought by
NJ customers exactly, and find the corresponding bounds (upper,
lower, and expected) on which are prescription only. []

4.7 Experimental Analysis of Utility

In this section, we evaluate the utility of the anonymized data
through experiments on the DBLP data. Specifically, we study the
accuracy of three queries with different properties. For each query,
we compute the lower bound estimation L, the upper bound esti-
mation U, and the expected value p. If the correct answer to the
query is (), we compute two error measurements: the error bounds
Uz—zf (the worst case error from using (U + L) /2 as an estimate for

Q), and the expected error =@l T, clearly show the trends, we
repeat each experiment over ten random choices of predicates and
show the mean error bounds. The three queries are:
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Figure 6: Impact of query selectivity and group size on three queries

e Query A: Find the average number of authors of any paper
satisfying predicate P,. This is a type-1 query with an attribute
predicate only. We vary the selectivity of P, from 10% to 90%.

o Query B: Find the total number of single author papers satis-
fying P,. This is also a type-1 query with both attribute predicates
and structural predicates. The selectivity of P, is varied as above,
while the single author predicate is held constant.

e Query C: Find the total number of papers satisfying P, hav-
ing authors who satisfy P,. This is a type-2 query. We vary the
selectivity of both P, and P,.

These fit exactly the form of the queries we have studied in Ex-
ample 7 and Example 8 (note that type-1 queries can be thought
of as type-2 queries where one of the attribute predicates is always
true). We do not consider any type-0 queries, since our earlier anal-
ysis shows that they can be answered exactly from the graph struc-
ture alone. We computed groupings over the papers and authors in
the DBLP data described in Section 2 using the method detailed in
Section 4.4. We built 20-groupings, 10-groupings, and 5-groupings
over the data. The first iteration of the algorithm was able to find
safe k-groupings covering almost every node: the 20-grouping of
papers had 43 papers (out of 540K) not in groups of size 20, while
there were just 3 authors not in groups of size 20. The next iteration
easily found a safe, strict 20-grouping.

The following parameters can impact query accuracy:

e Group size: We compare approaches from (k,1)-, (1,¢)-
and (k, £)-groupings. We expect smaller group sizes to offer better

accuracy for query answering.

e Selectivity of predicates: More highly selective queries are
more likely to touch just a few nodes within a single group, and so

lead to wider worst case bounds.

e Grouping formation: We will study the impact of building
the groupings based on an arbitrary initial ordering of the nodes,
and based on sorting based on degree and neighborhood degree, as
discussed in Section 4.4. We expect sorted groupings to give better

answers when queries have structural predicates based on degree.

Worst Case Error Bounds. Figure 6 shows the worst case error
bounds for query answering with (k, k)-groupings over the queries
A, B, and C. As expected, smaller groupings achieve smaller uncer-
tainty. There is also a clear trend for Queries A and B (Figure 6(a)
and 6(b)) that as the selectivity of P, increases, the accuracy im-
proves. When only a single node in a group is touched by a query,
as happens when selectivity is low, it could be any node, and so
we have high uncertainty for the aggregate value in the group. But
when many nodes are selected in a group, there is less relative un-
certainty for an aggregate like sum or average.
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For Query C (Figure 6(c)), there is little variation as P,’s se-
lectivity varies (in this plot, selectivity of P,/ is set to 0.8; similar
experiments for other values of P,/ are omitted for space reasons).
Note that when we have a paper group of size 1, as in the (10, 1)-
grouping, we can directly select out exactly those papers that meet
the predicate, and so have better accuracy compared to other group-
ings. There is little difference between the (10, 10)-grouping and
the (1, 10)-grouping. This is because P, selects most authors, so
there is not much benefit from the (1,10)-grouping’s ability to
eliminate some candidates. When P, selects fewer authors, there
is a clearer advantage of (1, 10) over (10, 10) grouping.

Expected Case Error Bounds. Although the above worst case
bounds show that there can be a wide range between the upper and
lower bounds on a query, we show next that the expected bound
can give a quite accurate answer. Figures 7(b) and 7(c) show the
expected error on queries B and C (the expected error on query A
was too close to zero to plot). The general trend is again that higher
values of selectivity give better accuracy. However, observe that the
expected errors are much smaller than the worst case bounds, and
do not vary much based on group size—in several cases a larger
grouping achieves better expected error than a smaller one. On
query C, as in the worst case, the expected error is much smaller on
(10, 1) than (1, 10) or (10, 10), which are about the same for this
(more selective) P.; similar results occur for other values of P,.

Impact of ordering on grouping. Query 2 involves a structural
predicate (single author papers), so we compare ordering the group-
ing by degree and second-order degree to an arbitrary grouping in
Figure 7(d). We see that there is a very dramatic benefit to hav-
ing a grouping based on this ordering: two orders of magnitude
improvement in the accuracy. This is because most groups now
contain papers with the same number of authors, meaning the con-
tribution to the aggregate can be found exactly for those groups,
and the few that remain contribute to the uncertainty.

We further investigate the impact of the correlation of the pred-
icate with the grouping. For query B, we construct an artificial
predicate P, which selects the same number of total papers, but
touches a variable number of papers in each paper group within a
(5,5) grouping. Figure 7(e) shows that as the number of papers
touched in each group increases, both the expected and worst case
bounds improve up to the point when all papers are selected in a
group, the aggregate query is answered with perfect accuracy. This
shows that if we can anticipate the kinds of structural predicates
that end users will want, then we can improve the utility of the
published data without compromising the privacy.

S. UNIONS OF GROUPINGS
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Figure 7: Experiments on Grouping and Clustering

In this section, we consider the impact of publishing multiple
groupings of the same graph. This allows a broader class of queries
to be answered with perfect accuracy, but is open to stronger classes
of attack based on the graph structure. Recall that publishing the
fully-censored (m,n)-grouped graph allows type-0 queries to be
answered exactly, but gives us no handle to answer other query
types with certainty. As observed in Section 4.6, publishing (1, £)
or (k, 1) grouped graphs offers greater utility for a variety of queries
while preserving the privacy of associations.

So it seems that publishing both, as a (1,¢) U (k, 1) grouping
of a graph, is desirable, since any query of type 1 could be an-
swered exactly. But while either version of the graph in isolation is
resilient against attack, publishing both allows an attacker to com-
bine the information in the static attack model (Definition 1), as
they now have information not previously available to them. If
a customer has bought more products than any other, she can be
identified statically from the (1, ¢) graph, i.e. with no background
knowledge about degrees or other data. From its unique degree, the
same node can be located in the (k, 1)-grouped graph, revealing all
the products bought by that customer. This attack applies even over
(m, 1)U (1, n)-grouping, which give the most privacy in this class.

More strongly, if certain types of mappings between the isomor-
phic (m, 1)U (1, n)-grouped graphs can be found, the original data
can be recovered. This problem is related to, but distinct from,
the (well-studied) graph isomorphism problem. Some information
will remain private: associations for customers who have only ever
bought a single bespoke product unique to them cannot be recov-
ered from (k, 1) U (1, £)-grouped graphs, even though finding a
valid isomorphism over these nodes is easy. But if the attacker can
find node or edge pairs that must be uniquely mapped to each other
in every isomorphism, their privacy is compromised. Clearly, the
amount of privacy that remains is input dependent: data consist-
ing solely of nodes with degree 1 is secure; but if each node has
a unique degree then total re-identification is trivial. On realistic

data, the truth lies somewhere in between.

Experimental Analysis of Privacy. We attack (m, 1) U (1,n)-
grouped graphs, based on finding matching pairs of nodes between
the two graphs. Each node in the fully censored graph is given a
compact signature. Initially, the signature of every node is a de-
fault value, say O, since there is no a priori way of telling them
apart. Given a node, its next-step signature is formed by concate-
nating its current signature with the signatures of all its neighbors
in the graph, and sorting this set lexicographically. Once next-step
signatures are found for all nodes in the graph, they can be com-
pactly relabeled (since there can be at most n different signatures
for n nodes). By this construction: (a) If two nodes have difterent
signatures then they cannot be matched in any isomorphism—since
the signature canonically encodes features of the neighborhood of
a node, different signatures entail non-isomorphic neighborhoods.
(b) Since the process is entirely deterministic, each node will ob-
tain the same signature every time the procedure is run on the graph.
As aresult, if a node receives a signature that is not shared by any
other node, then this node must be uniquely matched in any iso-
morphism. Moreover, it can be matched to the unique node with
the same signature in an isomorphic copy. Note that the implica-
tion is only one way: the guarantee is that if signatures are unique
then nodes can be uniquely matched, and not vice-versa.

We apply this signature scheme on the (m, 1) U (1, n)-grouped
graphs, and measure how many nodes are uniquely identified, and
how many fall into equivalence classes of size 2, 3, 4 etc. The
cumulative distribution over such classes of authors in the DBLP
dataset are shown in Figure 7(f). Multiple steps of signature com-
putation were performed, but on this data (and on similar datasets
such as IMDB), no improvement was seen after the fourth iteration,
and there is only limited difference from the third to fourth step. A
4-step signature is sufficient to identify half of authors uniquely,
and only 20% are in equivalence classes of 10 or larger. Such pri-
vacy levels are weak for many typical applications, so we conclude



that (1, £) U (k, 1)-groupings should be avoided. The single group-
ings discussed in the previous section offer much stronger privacy
guarantees while allowing queries to be answered accurately.

6. RELATED WORK

The problem of how to anonymize and publish data for oth-
ers to analyze and study has attracted much study in recent years.
Starting with the pioneering work of Sweeney and Samarati on k-
anonymization [12, 11], the core problem of anonymizing data ta-
bles has led to new techniques and definitions such as ¢-diversity [8],

(c, k)-anonymity [13], ¢t-closeness [7], (c, k)-safety [9], and anonymiza-

tion via permutation [16, 15]. Our attempts to apply some of these
methods to our problem in Section 3 either failed to give the re-
quired privacy or yielded results with very low utility.

There has been considerable recent interest in anonymizing data
which can be represented as a graph, motivated by wanting to pub-
lish social network data. Backstrom et al. [1] consider attacks on
publishing such data with identifiers removed (the “fully censored”
case). They study both active attacks, in which the attacker is al-
lowed to insert a number of nodes and edges into the graph before
it is published, and passive, where the attacker learns all the edges
incident on a set of linked nodes. In both cases, a large enough
known subgraph can be located in the overall graph with high prob-
ability, and hence information can be learnt about connections be-
tween nodes. However, as here, nothing is learnt about connections
between nodes that are not incident on edges known to the attacker.

Hay et al.[5] analyze what privacy is present inherently within
the structure of typical social networks, by measuring how many
nodes have similar or identical neighborhoods (based, e.g. on de-
grees of nearby nodes). This is similar to the attack we studied in
Section 5. They analyze what additional privacy is gained by delet-
ing and then randomly inserting up to 10% of edges, but observe
that such modification can significantly alter graph properties. Sim-
ilarly, Zhou and Pei [18] define privacy so that each node must have
k others with the same (one-step) neighborhood characteristics, and
measure the cost as the number of edges added, and number of node
label generalizations. Korolova et al. [6] analyze attacks in a differ-
ent model, where the attacker can only “buy” information about the
neighborhood of certain nodes. Zheleva and Getoor [17] study the
effectiveness of machine learning techniques to infer sensitive links
which have been erased, given a graph in which non-sensitive links
have been anonymized. They consider anonymizations based on
grouping nodes: randomly deleting some non-sensitive edges; re-
porting only the number of edges between groups (similar to Sec-
tion 3.3); and just reporting whether two groups have any edges.
They do not consider our approach of retaining the graph structure
but hiding the mapping from entities to nodes. Our work differs
from prior work essentially because we focus on a different region
of the privacy-utility tradeoff: we consider settings where releasing
the unlabeled graph is permitted, but lacks utility, whereas prior
work does not allow such release.

Also relevant is work which considers relations with many sen-
sitive attributes, since such data is often effectively represented in
graph form. Nergiz et al.[10] mention the shortcomings of repre-
senting and anonymizing bitmap representations of relational data,
which we argue is also insufficient for graph data in Section 3.2.
Closest to our work in setting is recent work by Ghinita e al. [4] on
anonymizing sparse high-dimensional data (since a bipartite graph
can be seen as defining such a sparse relation). Their approach is
to extend known permutation based methods [16, 15] to improve
utility. In their data, sensitive attributes are rare, so they can en-
sure at most one sensitive attribute in each group of £ individuals;
in contrast, in our setting, every attribute (association) is sensitive

and so we cannot apply their method. Moreover, [4] does not con-
sider graph properties of the data, which we take care to preserve.
Work on ¢-diversity briefly considers the issue of multiple sensitive
attributes, and concludes that much larger groups would be needed
to guarantee privacy [8]. The crucial difference that allows our
techniques to succeed is that although we have a large number of
sensitive attributes (e.g. all customers) in graph data, the graph is
sparse, so these can be hidden amongst many possible associations.

7. CONCLUDING REMARKS

We have considered the problem of anonymizing data in the form
of bipartite graphs, and shown that methods based on finding safe
(k, £)-groupings are effective at securing published data against a
variety of attacks. We have shown how to answer queries for var-
ious natural classes of aggregates, but it remains to automatically
rewrite arbitrary queries to give upper, lower and expected bounds
on safely grouped graphs. It is also of interest to study advanced
query types, such as join-style queries over longer edge paths.

We have assumed that full information can be revealed about
entities, but the mapping from entities to nodes in a graph must be
masked. Other models may be needed if we wish to anonymize
both entities and the associations between them. Our focus has
been on data that can be represented as a bipartite graph linking
two types of entity. It is natural to also study arbitrary graphs over
a single type of entity, i.e. social network graphs [1, 5, 6].
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