
Access Control over Uncertain Data

Vibhor Rastogi
University of Washington

Dan Suciu
University of Washington

Evan Welbourne
University of Washington

ABSTRACT
Access control is the problem of regulating access to secret
information based on certain context information. In tra-
ditional applications, context information is known exactly,
permitting a simple allow/deny semantics. In this paper, we
look at access control when the context is itself uncertain.
Our motivating application is RFID data management, in
which the location of objects and people, and the associ-
ations between them is often uncertain to the system, yet
access to private data is strictly defined in terms of these
locations and associations.

We formalize a natural semantics for access control that
allows the release of partial information in the presence of
uncertainty and describe an algorithm that uses a provably
optimal perturbation function to enforce these semantics.
To specify access control policies in practice, we describe
UCAL, a new access control language for uncertain data. We
then describe an output perturbation algorithm to imple-
ment access control policies described by UCAL. We carry
out a set of experiments that demonstrate the feasibility of
our approach and confirm its superiority over other possible
approaches such as thresholding or sampling.

1. INTRODUCTION
Access control consists of restricting the set of actions that

a user can perform on a certain object. The basic model,
introduced by Lampson [12], consists of a matrix that asso-
ciates to each user and to each object a set of actions. For
read-only data, the matrix is boolean, M [u, t] = 1 means
that user u is allowed to read an object t (e.g. a tuple in
a database) and M [u, t] = 0 means that she is denied. Ad-
vanced techniques such as authorization views [13, 18] allow
the data owner to describe the access control policies using a
rich, declarative query language that conditions the access to
a piece of data on various context parameters, which at run
time are implemented as simple, binary decisions, whether
to grant or to deny access to the user. Recent applications,
however, often need to manage data that is uncertain, and

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

where the context that controls the access becomes uncer-
tain too. In this paper, we study the access control problem
when the data is uncertain: the entries in the matrix are
now continuous values between 0 and 1. Our main motiva-
tion comes from applications of RFID data.

2. MOTIVATING APPLICATION
The RFID Ecosystem project at the University of Wash-

ington [1] deploys several dozens RFID readers throughout
the CSE building, and attaches a few thousands RFID tags
to people and objects (laptops, books, mugs, etc). Location
data about users and objects is collected at the readers and
streamed into a trusted central database. Our goal is to re-
strict read access to the RFID data stored in the database
through a set of context-aware rule-based policies that pro-
vide individual users control over the release of their data,
allow authorized personnel (e.g. fire fighters) access to in-
formation about the people in the building, control to what
extent owners can track their own objects while in posses-
sion of other users, etc. The access control rules incorporate
high level context information about the querier and about
the subject of the query. The problem in implementing these
access control rules is that the collected RFID data is un-
certain: both the context that controls whether a piece of
information should be released or not, and the information
itself is uncertain and modeled as probabilistic data.

2.1 Data
In this paper, we use the RFID Ecosystem as a running

example. After it is collected from the antennas, the RFID
location data is stored in the LocatedAt table, an instance
of which is shown in Table 1. The RFID technology is in-
herently unreliable: readings are often missed, and occasion-
ally false readings are picked up by neighboring antennas.
Methods used to cope with the uncertainty in the data s.a.
Hidden Markov Models or Particle Filters [11, 16] clean the
data by making it probabilistic. Thus, our RFID database
is a probabilistic database. For example the tuple (Alice,

Coffee Room, 5.00, 0.7) in Table 1 means that the sys-
tem has only 0.7 confidence that Alice was in the Coffee
Room at 5PM. In addition to LocatedAt, the RFID database
contains other tables: some are auxiliary tables, s.a. owner-
ship and friendship tables and are deterministic, while others
are derived from LocatedAt and are therefore probabilistic,
like the Carries table in Table 2 (c). For every tuple t in
the RFID database we denote Prs(t) the probability that
the system assigns to t.

2.2 Privacy Policy

821

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

ID Location Timestamp Probability
Alice Coffee Room 5:00 PM 0.7
Alice Atrium 5:00 PM 0.3
Bob Kitchen 5:00 PM 0.4
Bob Atrium 5:00 PM 0.6
Alice Alice’s office 5:05 PM 1.0
Bob Bob’s office 5:05 PM 0.7
Bob Alice’s office 5:05 PM 0.3

Table 1: LocatedAt Table

User Object
Alice Bag
Alice Purse
Bob Keys
Bob Coffee cup

(a) Owns table:
User owns Object

User1 User2
Bob Alice
Bob Delta

Grant Epsilon
Grant Frank

(b) Advises table: User1 is the advisor
of User2

User Object Prob.
Alice Bag 0.2
Alice Purse 0.4
Bob Keys 0.6
Bob Cup 0.1

(c) Carries table:
User carries Object

User1 User2 Time
Alice Bob 11AM
Alice Charlie 11AM
Bob Charlie 11AM
Bob Charlie 3PM

(d) Met table: User1 met
with User2

Table 2: Some Auxiliary Tables and Inferred Views

We introduce a simple access control language called UCAL.
Each rule in UCAL has the form U: IF context GRANT
info meaning “if context is true then release info to user”.
Here U is a label for the rule, and context, info are con-
junctive queries over the RFID database. The context has
a distinguished variable, $u, which is bound to the current
user. We illustrate by showing in Fig 1(a) three rules in En-
glish, followed by their UCAL expression in Fig 1(b). These
access control rules are used by the system to determine
whether to grant or deny read requests by some user $u.
For example, the first rule (PAC) says that if a user $u is
located at l at time t, then he should be given access to the
tuple LocatedAt(v,l,t) for every possible value of v.

2.3 Access/Deny Semantics
Consider the semantics of UCAL over deterministic databases.

Suppose that the user u = Alice asks: was Bob in the
Hall at 5pm ?. Consider the PAC rule in Fig. 1: if the
rule’s context LocatedAt(Alice, Hall, 5pm) is true then
the system will answer the query for Alice: it will return
either true or false depending on whether the tuple t =
LocatedAt(Bob, Hall, 5pm) is in the database or not. On
the other hand, if the context is false, then the system will
deny Alice’s query. The access/deny semantics extends to
non-boolean queries as well: if Alice asks “find all persons
that were in the Hall between 4pm and 5pm” the system
answers it if Alice was in the Hall at all times between 4pm
and 5pm, otherwise it denies the query. Rizvi et al. [18] call
this semantics the non-Truman model.

2.4 Problem Statement
In RFID data, however, the data is uncertain, and it is

impossible to apply the access/deny semantics to uncertain
data. For example, Alice’s location is not known exactly:
should the system answer the request about Bob ? Alice’s
locations between 4pm and 5pm are known only with some
degree of confidence: should the system return the set of
people that she requested ? In this paper we define a new
semantics for access control rules on uncertain data, and
propose an algorithm for implementing this semantics. Our
threat model is that of a systematic leakage of data, e.g.
when an unauthorized user Alice obtains multiple location
information about another user Bob (e.g. traces Bob for
an entire day), or obtains location information about many
users at a given time (e.g. those who were present at yester-
day’s meeting). Occasional leakages, however, are tolerated.
This corresponds to real life settings where occasional sight-
ings (on a hallway, through a window) or occasional physical
encounters between people (at the coffee room, at the bath-
room) are considered acceptable risks to privacy, but sys-
tematic surveillance of people or locations is not tolerated.
Specifically, we make the following contributions:

• We describe a novel approach to access control over
uncertain data, based on perturbation, which we call
Conditional Perturbation (CP), in Sect. 3.2.

• We give formal definitions for the privacy and the util-
ity of a CP algorithm (CPA) in Sec. 3.3, and describe
a provably optimal CPA in Sec. 3.4.

• We describe a rule based access control language, UCAL,
in Sec. 4.

• We give the semantics for UCAL in Sec. 5.1, then de-
scribe a CPA for UCAL in Sec. 5.2.

• We validate experimentally the privacy, utility and ef-
ficiency of the proposed conditional perturbation ap-
proach in Sec. 7.

3. THE APPROACH
Consider the simplest access control scenario, with a single

user u and a single tuple t. Here t is a Boolean value: 1
indicates the tuple is in the database, 0 that it is not. There
is a single UCAL rule IF c GRANT t, where c is the context
and is also Boolean. Equivalently, we have an access control
matrix with a single entry, M [u, t] = c. In response to a read
request the system returns t when M [u, t] = 1 or returns a
special value deny when M [u, t] = 0.

Now assume that the value M [u, t] is a real number pc
in [0, 1], which represents the system’s confidence that the
context c is true. Thus, the context now becomes the real
number pc. When the user requests the tuple, the system
needs to return some answer rt. Our goal is to choose rt
s.t. (a) when pc = 1 then there is full disclosure, i.e. rt = t,
and (b) when pc = 0 then rt = deny. In addition we desire
a smooth transition between these two extremes when pc
ranges from 1 to 0. We consider two simple options below
and discuss their limitations, then we describe our approach.
Often the value t is also probabilistic, and replaced with
pt ∈ [0, 1]; when a user wants to read t, we mean that she
seeks the value pt.

3.1 Two Naive Approaches
Thresholding Choose a parameter 0 ≤ b ≤ 1. Define rt

as follows: If pc ≥ b, then rt = pt. If pc < b, then rt = deny.

822

PAC: If user v is colocated with another user $u at location
l and time t then the information “user v is located at l at
time t” can be released to $u
Lab: If user v is a graduate advisor of $u, o is an object
owned by v, and $u is on the Sixth Floor at time t then the
information “object o is in Lab at time t” can be released to
user $u.
Ownership: If user v carries an object o owned by another
user $u at time t then the information “user v is with object o
at time t” can be released to user $u

PAC: IF LocatedAt($u,l,t)
GRANT LocatedAt(v,l,t)

Lab: IF Advises(v,$u) ∧ Owns(v,o) ∧ LocatedAt($u,Floor6,t)
GRANT LocatedAt(o,Lab,t)

Ownership: IF Owns($u,o)∧ Carries(v,o,t)
GRANT isWith(v,o,t)
AS LocatedAt(v,l,t) ∧ LocatedAt(o,l,t)

(a) Plain text (b) UCAL

Figure 1: Access control rules translated from plain text to UCAL

This simple approach essentially transforms an uncertain
state into a certain one by choosing an arbitrary threshold.
The main problem with this approach is that there is a phase
transition at pc = b, from providing no information when
pc < b to providing total information when pc > b. This is
an important limitation, because it makes choosing the right
b critical. If b is too low, then there are systematic leakages,
and if it is too high the utility of the system decreases. In
practice one may have to calibrate b carefully by compar-
ing the system’s decisions with a ground truth, which is in
general very expensive to collect. Moreover, different b’s are
required for different kinds of contexts, because probabilities
have different semantics: e.g. in LocatedAt a probability of
0.8 may be considered very low, but in Carries (which is
a derived table) even a probability of 0.4 may be consid-
ered high. To make access control less sensitive we prefer a
method that does not have a phase transition.

Sampling The next simple approach is justified by the
possible worlds semantics given for probabilistic databases [6].
In this interpretation M [u, t] is in one of two possible states
(worlds), 0 or 1, but it is not known which one; we only
know their probabilities, which are 1 − pc and pc respec-
tively. In this approach we sample randomly one of the
possible worlds, then apply the access/deny policy on that
world. More precisely, set c randomly to 0 with probability
1− pc and to 1 with probability pc. Define rt as follows: If
c = 1, then rt = pt; if c = 0, then rt = deny. Thus, the sys-
tem sometimes grants the query, and other times it denies
it. Unlike thresholding, this method does not have a phase
transition. Note that the random bit c needs to be set once
per user, not per query, i.e. repeated queries by the same
user need to result in the same answer1. However, there
is always a probability that the exact pt is released even
when pc is small, and this leads to a systematic leakage.
Suppose Alice probes the database by choosing n arbitrary
tuples t1, . . . , tn and querying for each of them if it is in
the database. Further suppose that M [Alice, ti] = 0.1 for
i = 1, n. Alice is almost certainly not allowed to learn any of
these tuples. However, if Alice queries systematically each
tuple ti, then the system will grant her access to about 10%
of them: this is a systematic leakage.

3.2 Conditional Perturbation (CP) Approach
Our approach to access control in the presence of uncer-

tainty is based on randomly perturbing the answer with an

1Otherwise an attacker will learn the exact value of pt by
repeatedly issuing the query and waiting for any response
other than deny.

amount of random noise that depends on the context pc.
When the user asks for the value of t, the system responds,
for example, with rt = pt + n̂, where n̂ is a random noise.
The noise, n̂, is chosen as a function of pc: when pc = 1
then we set n̂ = 0 and therefore the real value pt is returned
unperturbed; when pc = 0 then we set the noise such that
the response rt becomes a random noise, independent of pt.

Before showing the technical details on how to generate
the noise, we illustrate the method from Alice’s perspective,
who queries the database for the presence of the tuple t.
First, assume that her context is pc = 0.9 (that is, Alice is
almost certainly allowed to see t). Suppose the response is
rt = pt + n̂ = 0.8. In addition to rt, the system also reveals
pc (context probability) to Alice. Thus, Alice knows that
the noise is low, and believes pt is close to rt: since rt = 0.8,
she has high confidence that t = 1 (i.e. t is in the database).
Similarly, if the response is rt = 0.2, then Alice believes
that t = 0 is much more likely than t = 1. Suppose now
that her context is pc = 0.1: Alice is almost certainly not
allowed to see t. Here the noise is high and if the response
is either rt = 0.8 or rt = 0.2, Alice knows that rt is drawn
from almost uniform noise, hence she learns almost nothing
about t. Note that the two extremes pc = 1 and pc = 0
correspond precisely to granting access and denying access
respectively: when pc = 1 then rt = pt and when pc = 0
then rt is random noise, independent of pt, which carries the
same information as returning rt = deny.

This approach also extends to non-boolean queries. Sup-
pose Alice asks for all persons who where in the Hall between
4pm and 5pm. The system will return a large number of tu-
ples t, some that are correct answers, some that are not: for
each tuple t in the answer the system will indicate rt (the
response) as well as pc (the degree to which Alice is enti-
tled to know the answer). Alice can then decide for herself
which tuples she believes are in the database, based on their
rt and pc values. In practice, the system computes2 pcrt for
each tuple and selects the top k tuples and returns them
ranked in decreasing order of pcrt. Unlike sampling, this
method does not lead to systematic leakage: continuing the
example above, if M [u, ti] = 0.1 forall i, then if Alice queries
systematically for the n tuples t1, . . . , tn then she receives n
answers, each of which is almost a random noise. None of
the tuples has leaked.

3.3 Definition of Privacy and Utility
2The basic intuition is that Alice wants to know the correct
answers (i.e. tuples for which t=1). More over, she is en-
titled to know about t = 1 only if context c = 1, and pcrt
reflects the probability of (t = 1) ∧ (c = 1).

823

We now define formally the privacy and the utility of a
Conditional Perturbation Algorithm (CPA). A CPA has two
parts: a randomized algorithm returning a response rt =
A(pt), and estimation function EST (rt) ∈ [0, 1] that, given
some value rt estimates the original value pt. A is given by
its probability density function (pdf), PDFA(A(pt) = rt),
thus Pr[rt ∈ [r1, r2]] =

∫ r2
r1
PDFA(A(pt) = rt)drt.

Privacy Our notion of privacy is based on γ-amplification [10]
and differential privacy [8]. The difference is that in our
setting the degree of privacy needs to be controlled by a
parameter: we call this parameter ρ.

Definition 3.1 (ρ-privacy). Algorithm A is ρ-private
for a given ρ ∈ [0, 1] if the following holds for all possible
probabilities pt, p

′
t of t:

∀pt, p′t, PDFA(A(pt) = rt) ≥ ρPDFA(A(p′t) = rt) (1)

Intuitively, ρ-privacy restricts how much the algorithm’s
answer may differ for pt and for p′t. When ρ = 1 then the
answer must be the same (since Eq (1) needs to hold for
pt, p

′
t, as well as p′t, pt). Hence, if ρ = 1, A(pt) is independent

of pt: no information about t is released. When ρ = 0 then ρ-
privacy holds for any algorithm: in particular we may simply
return the true value, A(pt) = pt. For 0 < ρ < 1, only
partial information about t can be released.

For access control, the privacy parameter ρ should depend
on pc. If pc = 0, then we would like A to be 1-private. If
pc = 1, we would like A to be 0-private. Intuitively, we
would like A to be ρ-private where ρ = 1− pc.

Utility Our utility requirement is that EST (rt) be a
“good” estimate of pt. More formally, we have the following
definition.

Definition 3.2 (Utility). The utility of an algorithm
A for a tuple t with value pt ∈ [0, 1] is the expected error
EA [|EST (rt)− pt|].

Lower the expected error, better is the utility. Thus, best
utility is attained if EST (rt) is exactly equal to pt.

Discussion of privacy An alternative definition of pri-
vacy in the literature uses an information theoretic notion (pro-
posed in [10]) that measures the change in the user’s knowl-
edge about t: the user may have some prior knowledge about
t, but once she sees the response of the algorithm A her
knowledge about t changes. A is private when the prior and
the posterior knowledge are nearly same. What changes in
our setting is that the allowed difference between the prior
and the posterior is controlled by the privacy parameter ρ.
These two views of privacy are related, as explained in Sec. 6.

An important point is that user’s knowledge about sys-
tem’s knowledge (i.e. user’s knowledge of how well system
knows t) also plays a part, as shown in the example below:

Example 3.3 Consider an algorithm A that returns the re-
sponse rt = min(pc, pt). Suppose that rt = 0.1. Assume
that the user has no prior knowledge about t. Then the
user learns that pt ≥ 0.1. This leads to only a small change
in her knowledge about t. Now suppose that the user also
knows that the system knows t exactly, i.e. pt ∈ {0, 1}. Af-
ter seeing rt, the user concludes that pt = 1, and thus learns
the exact value of t resulting in a complete leakage. Note
that A is not ρ-private, for any ρ > 0, because it is deter-
ministic, hence its PDF is ∞ for one value of the response

rt. In contrast, for ρ-private algorithms, we show that the
change in user’s knowledge is bounded as a function of ρ, for
a user with arbitrary knowledge about the system’s knowl-
edge. This is the main intuition of why we use ρ-privacy.

Motivation for utility Ideally we would like EST (rt) to
be an unbiased estimator of pt, i.e. EA [EST (rt)] = pt. Here
EA[.] denotes the expected value taken over algorithm’s ran-
dom choices. The following proposition shows the difficulty
in achieving this goal.

Proposition 3.4. There is no unbiased estimator for a
ρ-private algorithm if ρ > 0.

Hence we cannot hope to have a ρ-private algorithm with
an unbiased estimator. Instead we seek for a ρ-private algo-
rithm that minimizes the expected error EA [|EST (rt)− pt|].
This is what we used for our definition of utility.

3.4 An Optimal CPA
Given the requirement of ρ-privacy, we describe here an

algorithm which is in a certain sense optimal. First we need
a definition:

Definition 3.5. Consider a random variable v̂ over the
reals. Its truncation is the random variable trunc(v̂) condi-
tioned by v̂ ∈ [0, 1]. More precisely, if f is the probability
density function (pdf) for v̂ then the pdf for trunc(v̂) is the
function g:

g(x) =

{
f(x)/

∫ 1

0
f(t)dt when x ∈ [0, 1]

0 otherwise

The Algorithm The optimal CPA, Aopt(ρ, pt), is given
in Algorithm 1; the estimator is the identity, EST (rt) =

rt. Denote l =
√
ρ

2(1+
√
ρ)

. The algorithm starts by mapping

pt ∈ [0, 1] to p̄t ∈ [l, 1− l], then adds a random noise n̂, and
truncates the result to [0, 1]. Notice that the algorithm does
not distinguish between values at the lower end [0, l], nor
between values at the upper end [1− l, 1].

Algorithm 1 Conditional Perturbation Algorithm Aopt(ρ, pt)
Inputs: ρ ∈ [0, 1], value pt ∈ [0, 1]
Output A response rt that is ρ-private.

1: Let l =
√
ρ

2(1+
√
ρ)

.

2: Let p̄t = min(max(pt, l), 1− l); thus p̄t ∈ [l, 1− l].
3: Return rt = trunc(p̄t + n̂).

The noise: n̂ depends on ρ. Denoting l =
√
ρ

2(1+
√
ρ)

, the

noise n̂ is given by the following pdf:

f(x) =

{
2l/ρ, 0 ≤ |x| ≤ l
2l, l < |x| ≤ 1

The PDF for noise n̂ is illustrated in Figure 2. It is sym-
metric around 0, hence E(n̂) = 0, and it consists of two
steps: a higher one close to 0 and a lower one farther away.
The width of the central step is 2l. When ρ = 1 then the
heights of the two steps become equal (2l/ρ = 2l), and n̂
degenerates into uniform noise, shown in Fig. 2 (b). When
ρ = 0 then the central step has width 0 and height ∞: this
corresponds to no noise at all, n̂ = 0.

Optimality We prove that Aopt is both ρ-private, and in
some sense optimal among ρ-private, monotone CPAs. A
CPA is monotone if the probability of introducing an error
decreases as the error magnitude increases:

824

(a) ρ = 0.5 (b) ρ = 1

Figure 2: PDF for n̂(ρ)

Definition 3.6 (Monotonicity). An algorithm A is
monotone if for all pt and all possible responses r1, r2 such
that |r1−pt| ≤ |r2−pt|, PDFA(A(pt) = r1) ≥ PDFA(A(pt) =
r2).

Theorem 3.7. Aopt is monotone and ρ-private. For ev-
ery pt ∈ [0, 1] its expected error is EAopt |rt − pt| ∈ [l, 2l]:
moreover, the expected error is 2l when pt = 0 or pt = 1,
and is l when pt = 0.5.

The proof is by direct calculation. Note that for ρ = 0,
l = 0 and the algorithm produces no error, while for ρ = 1,
l = 1/4 and the algorithm returns a uniformly distributed
random variable, whose expected error is 1/2 at pt = 0 or
pt = 1, and is 1/4 at pt = 0.5. The following theorem proves
that Aopt is optimal.

Theorem 3.8. Let A be any monotone, ρ-private algo-
rithm. Then forall pt ∈ [0, 1] the expected error of A at pt
is at least l. Moreover, there exists p′t ∈ [0, 1] such that the
expected error of A at p′t is at least 2l.

Proof Sketch We think of ρ-privacy as a constraint for the
perturbation function. The utility criteria corresponds to
minimizing the error over all monotonic functions that sat-
isfy ρ-privacy. Thus, to get the right perturbation function,
we need to solve an optimization problem over functions. To
simplify it, we disceretize the domain of the candidate func-
tions from the continuous domain of [0, 1] to a discrete do-
main of n equispaced points in the interval [0, 1]. As n→∞,
the two domains become equivalent. In the discrete domain,
we can express the constraint of ρ-privacy and monotonic-
ity as a set of linear constraints. Additionally, minimizing
expected error can also be represented as a linear objective
function. Thus, in the discrete domain, we can recast the
optimization problem as a LP minimization problem. We
show that the discretized version of the perturbation func-
tion Aopt is the optimal solution of this LP problem. This
is shown by proving that discretized version of Aopt corre-
sponds to a dual feasible solution.

3.5 Discussion
Relating ρ and pc For access control, the privacy param-

eter ρ depends on pc, the probability of context. In sec. 3.3,
we used the intuitive function ρ = 1 − pc. In general, any
non-increasing monotonic function ρ : [0, 1] → [0, 1] can be
used. An interesting question is how to choose the ρ func-
tion in practice. We want this function to be smooth. For
example, if we defined ρ to be a step function:

ρ(pc) =

{
1, 0 ≤ pc ≤ b
0, b < pc ≤ 1

then a CPA becomes equivalent to the threshold approach
in Sec. 3.1, which we saw has problems. In practice one
may still need to calibrate the ρ function; however, as long
as we have a smooth ρ function, with ρ(pc) > 0 for values
pc < 1 (unlike the threshold function above) then we have
no massive leakage. The advantage of a smooth ρ function
is that it is more robust to the (possibly incorrect) choices of
the parameters involved. On the other hand, thresholding,
due to its discontinuous ρ function, may switch from no
disclosure to complete disclosure even for small changes in
the threshold parameter b. As discussed earlier, this makes a
system using thresholding highly vulnerable to the (possibly
incorrect) choices of b. In our application we have found
the following two classes of functions to work reasonably

well: ρ(pc) = 1−pc
1+εpc

and ρ(pc) = e
−εpc
1−pc where ε ≥ 0 is a

parameter. For simplicity, we will use in the rest of the
paper the function: ρ(pc) = 1− pc.

Non-monotone algorithms Theorem 3.8 only applies
to monotone algorithms. To see a counterexample, consider
the following naive algorithm A(pt) = 0.5, which returns
the constant value 0.5 regardless of pt. A is ρ-private for
any ρ, because it ignores the input. A is not monotone: for
example when pt = 1, A returns the response rt = 1 with a
probability strictly lower than the probability of returning
response rt = 0.5. At pt = 0.5 its expected error is 0.
Thus, A shows that Theorem 3.8 does not hold for non-
monotone algorithms. However, A is not better than Aopt
in any practical sense: its expected error at pt = 0 or at
pt = 1 is 1/2, while the expected error of Aopt is ≤ 2l, and
l can be arbitrarily small.

4. UCAL
We have discussed the basic principle of access control in

the presence of uncertainty in a very simple setting: when
the protected data is a single bit, and when the context
controlling the access to the data is also one bit. In the
following sections we will extend conditional perturbation
to a powerful access control language, UCAL.

Syntax A UCAL program consists of a set of rules, each
of the form:

U: IF C GRANT V

Both the context C and the view V are queries. In this
paper we restrict both queries to be unions of conjunctive
queries3. An example is illustrated in Figure 1, where all
the contexts and all the views are conjunctive queries. We
often specify just the body of the conjunctive query, and in
this case the head variables are implicitly the variables that
appear both in the context and in the view. Alternatively
we may name the query and list the head variables explicitly,
followed by AS, followed by the body. For example the
Ownership rule in Fig. 1 defines the view:

isWith(v, o, t) AS LocatedAt(v, l, t), LocatedAt(o, l, t)

where the head variables are v, o, t, and the non-head vari-
able is l.

Intuitively, the meaning of a UCAL rule is that if the
context is true for certain values of the head variables, then
the user has access to the data returned by the view, for the
same values of the head variables.

Rizvi et al. propose in [18] authorization views as a mech-
anism for fine grained access control to a relational database.

3Equivalently: non-recursive datalog programs.

825

The semantics is the following: a query q is granted to the
user if q can be answered fully from the authorization views,
otherwise it is denied. This semantics is called the non-
Truman model, because reality is never distorted, only de-
nied. By contrast, in a Truman model a query is always
answered but returns only those tuples that are certain an-
swers given the authorization view.

UCAL rules generalize authorization views: an authoriza-
tion view is precisely a UCAL rule consisting only of the view
V , i.e. the context is identically true.

In the sequel we will give a formal semantics to UCAL
rules that (a) extends Rizvi’s semantics for authorization
views, and (b) extends the principle of conditional access
control in Sec. 3 to arbitrary sets of UCAL rules. We do
this by first rewriting UCAL rules into Boolean UCAL rules,
then giving semantics to the latter.

5. BOOLEAN UCAL RULES
Consider a query q that is a union of conjunctive queries;

we call q a boolean query if it has no variables either in the
head or in the body4. A UCAL rule is a boolean rule if both
the context and the view are boolean queries. We rewrite
every UCAL rule into a set of boolean rules obtained by
grounding the context and view queries. A grounding of
a conjunctive query q is obtained like this: first substitute
each head variable with a constant (different choices of these
constants result in different groundings); then take the dis-
junction of all possible substitutions of the other variables
with constants. A grounding of a UCAL rule consists of
a grounding of its context and of its view, using the same
constants for the head variables.

For illustration, consider the query isWith(v, o, t) in Sec. 4.
One grounding substitutes the head variables as v = Joe,
o = Book73 and t = 5PM to get:

φ =
LocatedAt(Joe, Rm77, 5PM), LocatedAt(Book73, Rm77, 5PM)∨
LocatedAt(Joe, Rm78, 5PM), LocatedAt(Book73, Rm78, 5PM)∨
. . .

(there is one conjunct for each room in the domain). To
obtain a grounding of the Ownership rule one has to ground
the context with the same constants:

IF Owns($u, Book73), Carries(Joe, Book73, 5PM) GRANT φ

The size and number of groundings of a UCAL rule de-
pends on the size of the domain, and this is not intended
to be used in practice; we use groundings only to define the
semantics. We describe a practical algorithm in Sec. 6.2

Example 5.1 We will use throughout this section the fol-
lowing set of boolean UCAL rules as our running example:
U1: IF t1 GRANT t2t3 ∨ t3t4
U2: IF t5 GRANT t6t7
U3: IF t8 GRANT t7

5.1 Semantics of Boolean UCAL Rules
5.1.1 Access/Deny Semantics

We first give the semantics of UCAL over a determinis-
tic database instance I. Denoting Tup the (finite) set of
all tuples over a finite domain, we view each tuple as a

4We use this definition in this paper although it differs some-
what from common practice where a boolean query means
a query without variables in the head.

boolean variable. An instance I ⊆ Tup is a truth assign-
ment to boolean variables, and a boolean query q is a posi-
tive boolean formula over variables in Tup. For example, if
I = {t2, t3} and φ1 = t2t3 ∨ t3t4, φ2 = t3t8 then φ1(I) = 1
and φ2(I) = 0. Given a set S of boolean formulas we say
that two instances I, I ′ agree on S if ∀φ ∈ S, φ(I) = φ(I ′).

Definition 5.2 (Certain Answer). Let S be a set of
boolean formulas, and I an instance. Let φ be any given
boolean formula. We say that φ has a certain answer given
S and I if for any instance I ′ s.t. I, I ′ agree on S, φ(I) =
φ(I ′).

If φ is certain given S and I then we can compute the
value φ(I) by inspecting only the values of φ1(I), . . . , φk(I),
without looking at the rest of the instance I. For example,
referring to φ1, φ2 above, if we know φ1(I) = 1 and φ2(I) =
0, then we are certain that ψ(I) = 0, where ψ = t2t8.

Semantics Consider k boolean UCAL rules IF ci GRANT

φi, for i = 1, . . . , k, and let I be an instance. Define:

C = {ci | i = 1, . . . , k}
Sok = {φi | ci(I) = 1, i = 1, . . . , k}

Let A be an algorithm that takes as input a query ψ and
returns a response r = A(ψ, I). We define below when A
is d-sound (short for deterministic data-sound), i.e. it cor-
rectly implements the UCAL rules.

Definition 5.3 (d-Soundness). An algorithm A is d-
sound with respect to a set of UCAL rules S if for every two
instances I, I ′ that agree on C ∪ Sok, and for any boolean
formula ψ, A(ψ, I) = A(ψ, I ′).

Note that the set Sok depends on I, hence it may differ
on I and I ′. But when I and I ′ agree on C then Sok is the
same for both, hence the notation Sok is well defined.

Consider the following canonical algorithm Acertain:

Acertain(ψ, I) =

{
ψ(I) if ψ is certain given C ∪ Sok and I
deny otherwise

One can check that Acertain is d-sound. But there exists
other d-sound algorithms. For example consider the algo-
rithm that always returns deny for every input ψ. This is is
also d-sound, but arguably not useful at all. Acertain turns
out to be the most “useful” d-sound algorithm:

Proposition 5.4. (1) Acertain is d-sound. (2) For any
d-sound algorithm A, if Acertain(ψ, I) = Acertain(ψ, I

′), then
A(ψ, I) = A(ψ, I ′).

Example 5.5 We examine the effect of the canonical al-
gorithm Acertain on the three UCAL rules given in Exam-
ple 5.1. If the user queries any of the three contexts, t1, t5, t8,
then Acertain answers the query. Thus, we may safely assume
that the user knows the three contexts. If the user asks a dif-
ferent query ψ, then the Acertain’s response will differ based
on the values of these contexts. Suppose t1, t5, and t8 are
all true. Suppose Alice asks the query t7: we grant her ac-
cess, because she is allowed to see t7 due to the third rule
U3. Suppose that t7 is true and Alice asks the query t6: we
again grant her access, because she is allowed to see t6t7 and
she is entitled to know t7, which is true. Consider now the
query t3. Here, if the value of the expression φ = t2t3 ∨ t3t4
is true, then we return t3 to Alice (t3 is certain answer given
φ); if the expression is false, then we deny the access.

826

D-soundness extends authorization views in a very strong
sense. On one hand, if all the contexts are identically true,
then the algorithm Acertain implements precisely authoriza-
tion views. On the other hand, given any set of UCAL rules
IF ci GRANT φi, for i ∈ [k], we can associate a set of 2k
authorization views as follows. The first k views are ci, for
i ∈ [k]; the remaining k views are ci ∧ φi, for i ∈ [k]. The
view ci allows the context to be totally revealed, which cor-
responds to the semantics of UCAL. Moreover, if ci is true,
then the view ci ∧ φi becomes logically equivalent to φi al-
lowing its value to be released. Here too, the semantics of
the UCAL rules coincides with that of authorization views
in [18].

5.1.2 Probabilistic Semantics
Next, we extend the semantics for UCAL rules when the

database instance is probabilistic. A probabilistic database
PDB is a function Prs : 2Tup → [0, 1] s.t.,

∑
I Prs(I) = 1.

For any boolean expression φ, its marginal probability is
Prs[φ] =

∑
I:I|=φ Prs(I). We also call this the value of φ

on the probabilistic database PDB, and use interchange-
ably the notation φ(PDB) and Prs[φ]. The probability is
the system’s confidence in the uncertain data, hence the s
subscript: the system needs to make grant/deny decisions
taking into account these probabilities.

The definition of privacy that we will give below depends
on the class C of probabilistic databases considered. Most of
our discussion below applies to any class C, but we will illus-
trate three classes in particular: unrestricted probabilistic
databases (denoted as ALL), where arbitrary correlations
between tuples are allowed, tuple-independent probabilistic
databases (denoted as IND), where tuples are independent
probabilistic events, and deterministic databases5 (denoted
as DET).

Let U = IF c GRANT φ be a UCAL rule and PDB a prob-
abilistic database. To enforce the rule, the system needs to
compute the probability of the context formula, c(PDB).
We define the privacy requirement of U on φ to be ρ(φ) =
1− c(PDB): this is the amount of privacy that the system
needs to ensure for φ. When ρ(φ) = 0 then φ can be revealed
exactly, when ρ(φ) = 1 it needs to be completely private.

Semantics Consider as before k boolean UCAL rules
ui = IF ci GRANT φi, for i = 1, . . . , k. Recall that C = {ci |
i = 1, . . . , k}. A perturbation algorithm A receives a user
query φ and returns a perturbed answer A(PDB, φ), which
we substitute for the true answer φ(PDB). We will define
below when A is u-sound (short for uncertain data-sound),
i.e. it implements correctly the privacy requirements of the
UCAL rules. Since we allow A to be randomized we need
to examine its responses for a sequence of queries: if ~ψ =

ψ1, ψ2, . . . , ψl is a sequence6 of queries then A(PDB, ~ψ) de-
notes the sequence of answersA(PDB,ψ1), . . . , A(PDB,ψl).

Let PDB,PDB′ be two probabilistic databases that agree
on C (i.e. ∀c ∈ C, c(PDB) = c(PDB′)). Let Snot-ok = {φi |
φi(PDB) 6= φi(PDB

′)}.

Definition 5.6. The privacy distance between PDB and
PDB′ is:

∆(PDB,PDB′) =

{
min{ρ(φi) | φi ∈ Snot-ok} if Snot-ok 6= ∅
1 otherwise

5Forall I, Prs[I] is either 0 or 1, which further implies
∃!I.Prs[I] = 1.
6In general, ~ψ may contain duplicate queries.

Intuitively, privacy distance ∆(PDB,PDB′) gives how
much the algorithm’s responses can differ for PDB and
PDB′. This is formalized in the definition of u-soundness:

Definition 5.7 (u-soundness). An algorithm A is u-
sound with respect to a set of UCAL rules if for all proba-
bilistic databases PDB and PDB′ that agree on all contexts

C, denoting ρ = ∆(PDB,PDB′), for all query sequences ~ψ
and all responses ~r the following holds:

PDFA(A(PDB, ~ψ) = ~r) ≥ ρ
(
PDFA(A(PDB′, ~ψ) = ~r)

)
Intuitively, in the inequality above, if ρ = 0 then the al-

gorithm is allowed to answer ~ψ in any way on PDB and
PDB′, while if ρ = 1 then PDB and PDB′ must be indis-
tinguishable from the responses.

We explain now the definition by examining how it achieves
our stated goal: to generalize both the semantics of autho-
rization views, and the single-tuple case (given in Sec. 3.3).
Consider the case when both PDB and PDB′ are determin-
istic databases. In this case one can check that ∆(PDB,PDB′) =
1 if PDB,PDB′ agree on Sok, and ∆(PDB,PDB′) = 0
otherwise. Thus, u-soundness becomes in this case d-soundness,
and therefore it generalizes authorization views. Next, let’s
turn to the case of a single UCAL rule IF c GRANT t where
both c and t are tuples. Here when two databases PDB,
PDB′ agree on the context, their distance is ∆(PDB,PDB′) =
1−c(PDB) if t(PDB) 6= t(PDB′) and ∆(PDB,PDB′) = 1
if t(PDB) = t(PDB′). Hence an algorithm is u-sound iff it
is ρ-private for ρ = 1− c(PDB), and therefore u-soundness
generalizes ρ-privacy.

To better understand the power of the u-soundness def-
inition it helps to examine an apparently counterintuitive
aspect: the definition seems to ignore the actual query ψ
when deciding whether an algorithm is private or not, while
we definitely expect in practice to grant different amount of
access to different queries ψ. This is indeed the case, as we
show below:

Example 5.8 Consider our running example 5.1. Suppose
the user asks the query ψ = t2t3 ∨ t3t4, which happens
to be the view in the first UCAL rule. We will examine
how an algorithm needs to behave in order to comply with
the u-soundness definition. Given a probabilistic database
PDB, the algorithm must return an answer A(PDB,ψ).
How much information can A reveal about ψ(PDB) ? In-
tuitively we expect this amount to depend on the context in
the first rule. To enforce u-soundness the algorithm needs to
worry about other databases PDB′ that agree with PDB
on the three contexts, so consider some other such database
PDB′. If ψ(PDB) = ψ(PDB′) then the algorithm will
return the same answer to ψ in PDB and PDB′ (assum-
ing it computes the answer by perturbing the true value of
ψ), so let’s assume ψ(PDB) 6= ψ(PDB′). Then, the set
Snot-ok corresponding to the pair PDB,PDB′ includes ψ,
hence the algorithm must answer ψ with a privacy at least
ρ = ∆(PDB,PDB′) ≤ 1 − t1(PDB). On the other hand
it is possible to choose a PDB′ s.t. Snot-ok contains ex-
actly ψ, and none of the other formulas (e.g. by setting
t7(PDB) = t7(PDB′) and t6t7(PDB) = t6t7(PDB′)), and
therefore the amount of privacy the algorithm needs to en-
sure for ψ is exactly ρ = 1− t1(PDB). Thus, although the
definition of u-soundness does not say this explicitly, the
amount of information it allows to be revealed does depend
on the query being asked.

827

5.2 CPA for Boolean UCAL Rules
In the previous section we have given a definition of what

it means for an algorithm A to be u-sound for a set of UCAL
rules. The definition is not constructive: in order to answer
a query ψ on a probabilistic database PDB, A(PDB,ψ),
a direct application of the definition requires us to quantify
over all other probabilistic databases PDB′, which is im-
practical. In this section we describe a practical algorithm
that is u-sound, based on perturbation.

Given a probabilistic database PDB and boolean formula
ψ, the algorithm needs to compute an answer A(PDB,ψ).
The first step of the algorithm is to compute a privacy pa-
rameter, ρ(ψ), for the formula ψ. Intuitively, if ψ is the one
of the views φi in the UCAL rules, then ρ(ψ) = 1−ci(PDB):
we have justified this in Example 5.8. In general, we need to
check if ψ is a certain answer given the views in the UCAL
rules and PDB:

Definition 5.9 (certain answer). Let C be a class of
probabilistic databases. Given a set S of boolean formulas,
a probabilistic PDB (in C), we say that some boolean for-
mula φ has a certain answer given S and PDB over C if for
any other probabilistic database PDB′ ∈ C s.t. φi(PDB) =
φi(PDB

′) for i ∈ [k] we have φ(PDB) = φ(PDB′).

For an illustration, let PDB be s.t. Prs[t1] = 0.3 and
Prs[t2] = 0.4. Then the formula φ = t1t2 has a certain an-
swer given t1, t2 and PDB over all tuple-independent prob-
abilistic database: this is because Prs[t1t2] is uniquely de-
fined as 0.3 ∗ 0.4 = 0.12. On the other hand, φ is not cer-
tain given t1, t2 and PDB over unrestricted probabilistic
databases, because here Prs[t1t2] can range anywhere from
0 to 0.3. For another example, let PDB be s.t. Prs[t1] = 0.3,
Prs[t2t3] = 0.4 and Prs[t1t2] = 0. (Note that PDB cannot
be tuple-independent.) Then the formula φ = t1 ∨ t2t3 has
a certain answer given t1, t2t3, t1t2 and PDB over all un-
restricted probabilistic databases, because Prs[t1 ∨ t2t3] =
Prs[t1] + Prs[t2t3]− Prs[t1t2t3] = 0.3 + 0.4− 0 = 0.7.

We can now define the privacy parameter ρ(ψ) for any
boolean query ψ. We fix a set of UCAL rules and a prob-
abilistic database PDB. For a subset S of UCAL rules
we denote contexts(S) and views(S) the set of contexts
and the set of views in S. Define ρ(S) = max{ρ(φi) |
φi ∈ views(S)}.

Definition 5.10. Let S be a subset of the UCAL rules.
We say that ψ is certain given S, PDB, if ψ is certain given
all the views in S and PDB. Then:

ρ(ψ) = min{ρ(S) | S ⊆ UCAL, ψ is certain given S, PDB}
Example 5.11 Consider the set of UCAL rules defined in
Example 5.1. Suppose, we have a tuple-independent PDB
specified as: ti(PDB) = 0.3, for i ∈ {1, 2, 3, 4, 5}; tj(PDB) =
0.9, for j ∈ {6, 7, 8}. Then:

- ρ(t7) = 0.1: This follows from rule U3. t7 is the view of
U3 and t8 is the context. Thus, ρ(t7) = 1− t8(PDB) = 0.1.

- ρ(t6t7) = 0.7: This follows from rule U2. t6t7 is view for
U3 and t5 the context. Thus, ρ(t6t7) = 1− t5(PDB) = 0.7.

- ρ(t6) = 0.7: This follows from the set of rules {U2, U3}.
t6 has a certain answer given t6t7 and t7. Thus, ρ(t6) =
max (ρ(t6, t7), ρ(t7)). Thus, ρ(t6) = 0.7.

Computing ρ efficiently As described above, comput-
ing ρ(φ) if φ is the view for one of the UCAL rules is simple
and efficient. Computing ρ(ψ) for other queries requires de-
termining whether ψ is certain answer. This is decidable,
but not necessarily efficient in general:

Theorem 5.12. Let C be a class of probabilistic databases.
Denote CERTAINC the decision problem of checking whether
a boolean formula φ is a certain answer given a set of for-
mulas S and PDB over C. Then CERTAINDET is coNP-
complete [3], CERTAININD is coNP-hard and CERTAINALL
is in EXPTIME.

In Sec 6, we discuss some simple cases when certain answers
can be checked efficiently. One example occurs frequently
in RFID Ecosystem: the issued query φ is directly written
in terms of views for some UCAL rules. For such queries,
ρ can be computed efficiently. In the remaining part of the
section, we describe a CPA, which assumes that the ρ(φ) for
each query φ has been computed already. It then returns a
perturbed response for φ based on the privacy requirement
ρ(φ).

CPA The CPA is described in two parts. The first part,
Algorithm 2 answers the first k queries. k is a small constant
that is given as a parameter to the algorithm. If additional
queries are asked, the second part (Algorithm 3) checks in-
dividually for each new query whether it can be answered
while ensuring u-soundness.

Algorithm 2 Output CPA: Part 1

Inputs: PDB, a query ψi from the sequence ~ψ = ψ1, . . . , ψk
Output: Response ri to the query ψi

1: Let pi = ψi(PDB) be the probability of ψi.
2: Let ρi = ρ(ψi) be the privacy parameter for ψi

3: Compute response ri as Aopt(ρ
1/k
i , pi)

Recall that Aopt (Sec. 3.4) is a perturbation function that
takes in a privacy parameter ρi and a correct response pi.
Then it perturbs pi by adding noise n̂(ρi). Its role in Algo-
rithm 2 is similar. However, instead of using the parameter

ρi, it uses the parameter ρ
1/k
i to allow answering k queries.

Like the algorithm described in [9], Algorithm 2 is an
output perturbation algorithm. This means that perturbed
probabilities are never stored. Instead the correct response
is computed and perturbed only at the end. Algorithm 2
has similar properties as the algorithm in [9]: it can handle
arbitrary correlations among the tuples and can only answer
a limited number of queries. There are two main differences.
Firstly, the privacy requirement here is for boolean formulas
φ, while in [9] only tuples were considered private. Secondly,
the privacy requirement for each formula φ is different, and
is specified by the parameter ρ(φ). Thus, it may be possi-
ble that revealing the response to a query φ, inadvertently
compromises privacy of a more private query ψ (ψ is more
private than φ, if ρ(ψ) > ρ(φ)). Nevertheless, we can show
the u-soundness of Algorithm 2 as proved in the following
theorem.

Theorem 5.13. Algorithm 2 is u-sound.

Proof Let ~ψ = ψ1,ψ2,. . . ,ψk be any sequence of k queries.
Let ~r = r1, . . . , rk be the responses returned by the Al-
gorithm 2. Consider any pair of probabilistic databases
PDB,PDB′. Let ρ = ∆(PDB,PDB′). For each ψi of

the given query sequence ~ψ, denote ρi = ρ(ψi). There are
two possible cases:

Case 1: ρi < ρ. In this case, we can show that ψi(PDB) =
ψi(PDB

′). This is because if ψi(PDB) 6= ψi(PDB
′), then

it is easy to see that ∆(PDB,PDB′) ≤ ρi < ρ. This is a

828

contradiction as ρ = ∆(PDB,PDB′). Thus, ψi(PDB) =
ψi(PDB

′). Next, denoting Algorithm 2 as A, we can show
that PDFA(A(ψi, PDB) = ri) = PDFA(A(ψi, PDB

′) =
ri) for all possible responses ri. In other words, the distri-
bution over A’s responses for the query ψi is identical for
the databases PDB,PDB′. This is because Algorithm 2
generates ri purely based on the probability of ψi, which as
shown above is identical for both PDB and PDB′.

Case 2: ρi ≥ ρ. In this case, it may be possible that
ψi(PDB) 6= ψi(PDB

′). However, as ri is generated using

Aopt with parameter ρ
1/k
i , the following is true:

ρ
1/k
i ≤ PDFA(A(ψi, PDB) = ri)

PDFA(A(ψi, PDB′) = ri)
≤ 1

ρ
1/k
i

(2)

Since, ρi ≥ ρ, we have eq(2) implies the following:

ρ1/k ≤ PDFA(A(ψi, PDB) = ri)

PDFA(A(ψi, PDB′) = ri)
≤ 1

ρ1/k

Thus, in both case 1 and case 2, the ratio of PDFA for PDB
and PDFA for PDB′ are bounded. Thus,

ρ(1/k)∗k ≤ PDFA(A(~ψ, PDB) = ~r)

PDFA(A(~ψ, PDB′) = ~r)
≤ 1

ρ(1/k)∗k

This proves the u-soundness requirement.
As Algorithm 2 is u-sound, we know it is d-sound as

well. This can be seen from the boundary cases: For all
k, 11/k = 1 and 01/k = 0. Thus, recalling the properties
of Aopt (see Sec. 3.4), we see that if ρ(ψi) = 1, then its re-
sponse Aopt(1, pi) is completely random noise (correspond-
ing to deny case). On the other hand, if ρ(ψi) = 0, then
its response Aopt(0, pi) has no noise at all (corresponding to
allow case).

Algorithm 3 Output CPA: Part 2

Inputs: PDB, a query φ and a sequence of past queries ~ψ
Output: Response r to query φ

1: Let pφ = φ(PDB) be the probability of φ
2: Let ρ = ρ(φ) be the privacy requirement for φ

3: Compute ρcheck = ρ1/k∏
i:ρ(ψi)≥ρ(φ) ρ(ψi)

1/k

4: if ρcheck ≥ ρ then
5: Privacy for φ is protected.
6: end if
7: Check similarly the privacy of all other queries in ~ψ
8: if privacy protected for all queries then
9: Return r = Aopt(ρ

1/k, pφ)
10: else
11: Return r = Aopt(1, pφ)
12: end if

Additional queries Now we describe Algorithm 3. Its
goal is to check whether giving response to a new query φ
still maintains u-soundness given that a sequence of queries
~ψ have been answered in the past. The basic intuition for
Algorithm 3 is that the response given by Algorithm 2 to a
given query can never compromise privacy for a more pri-
vate query. This follows from the case 1 in the proof of
theorem 5.13. Thus, to check whether the privacy for a new
query φ is protected, we just need to consider responses to
φ and the responses to more private queries. This is done in
steps 3 to 6 of Algorithm 3. In addition, we need to check

whether the privacy of other queries in ~ψ is preserved after

answering φ. This requires checking privacy of only those

queries ψi ∈ ~ψ that are less private than φ. An important
consequence is that, if ρ(φ) = 0, then φ will be answered

exactly, independent of the sequence of past queries ~ψ.

6. EXTENSIONS

6.1 Extensions for the Boolean Case
CPA for Restricted Correlations To handle arbitrary

correlations, Algorithm 2 allows only a total of k boolean
queries to be answered. In practice, we can answer more
queries by relaxing the correlations considered. Specifically,
we assume that the tuples in the probabilistic database can
be partitioned into sets P1, P2 . . . , Pl. Within any partition
Pi, there may be arbitrary correlations among the tuples.
However, across partitions the tuples are assumed to be in-
dependent. We call such databases as partitioned probabilis-
tic databases. This is a common property of many proba-
bility distributions [20], and one of the important intuition
behind the use of Graphical Models. For such databases,
Algorithm 2 can answer k queries about each partition.

One motivation for partitioning comes from RFID data.
If we consider the LocatedAt table, locations of a single
user within a small time interval are obviously correlated.
Moreover, a user may be carrying multiple objects. Thus,
locations of each of these objects will be correlated. Both
these correlations arise in tuples that are read within a nar-
row time window. If we consider two tuples corresponding
to timestamps sufficiently far away, we would expect them
to be independent of each other. For example, if the loca-
tions of a single user are assumed to satisfy the Markovian
assumption, then the locations of two time steps that are
sufficiently far away can be assumed to be independent [16].

Thus, in the RFID Ecosystem, each partition corresponds
to one correlating event such as a meeting or a coffee break.
We assume that each partition corresponds to a time window
of at most length L (In practice, L needs to be computed
from the data using event detection techniques like those
used in [16]). For such partitioned databases, Algorithm 2
can answer k boolean queries for each time window. At
the same time, it allows us to handle arbitrary correlations
within each time window.

Tuple-independent databases Such databases can be
thought of as a limiting case of partitioned probabilistic
databases: each partition contains a single tuple. Thus,
Algorithm 2 can be used to answer k boolean queries about
each tuple of a tuple-independent databases.

Input perturbation In data privacy, there are two main
perturbation techniques. There is input perturbation in
which data is first perturbed and stored. The response for
each query is computed using the perturbed data. On the
other hand, there are output perturbation methods that first
compute the answer for each query correctly, and then ob-
tain a response by perturbing the correct answer. So far
we have discussed just the output perturbation methods,
which place restrictions on the number of queries we can an-
swer. We also propose an input perturbation method called
sequential CPA. It allows us to answer unlimited number
of queries. However, it works only for tuple-independent
databases. For details, we refer the full version [15].

Change in users’ knowledge We show here the con-
nection between ρ-privacy and the change in user’s knowl-

829

edge. In database privacy [10], user’s prior knowledge about
a tuple t is represented using a probability Prior(t). It rep-
resents user’s confidence on t before any information is re-
vealed. After the response rt is given by the algorithm, the
user’s knowledge about t is represented by the probability
Posterior(t). The following theorem shows the connection
between ρ-privacy and change in user’s knowledge.

Theorem 6.1. Let tuple t be ρ-private according to an
algorithm A. Let Prior(t) and Posterior(t) be the user’s
prior and posterior probability distributions respectively. If
Prior(t) is tuple independent then:

ρ ≤ Posterior(t)

Prior(t)
≤ 1

ρ

We use Posterior(t)
Prior(t)

as the privacy metric in our experiments.

6.2 Non-Boolean Case
So far we have considered only the case of boolean UCAL

rules and boolean queries. In this section, we briefly explain
how to generalize to the non-boolean case. Assume that
there are k UCAL rules of the form of: If Ci GRANT Vi,
where Ci and Vi are conjunctive queries. Denote the set of
rules as S, and the set of views in S as views(S). We need
to answer a conjunctive query Q based on the rules in S.

Computing certain answers As discussed in Sec. 5.2,
we first need to compute the tuples in Q that are certain
answers given the views(S). This problem is hard even for
the deterministic case. Methods have been proposed to solve
this problem approximately in the deterministic setting [7].
The basic idea is the following: rewrite Q into another query
Qv s.t., (1) Qv ⊆ Q, and (2) Qv is a conjunctive query de-
fined only using views in views(S). All tuples in Qv are
then ensured to be certain answers given views(S). Note
that this is just a sufficient condition: there may be tuples
in Q that are certain answers but do not lie in Qv. How-
ever, for the probabilistic case, even tuples in Qv may not be
certain answers given the views(S). We need to verify cer-
tain additional conditions to determine the certain answers.
For this purpose, we use efficient PTIME tests developed
in [17]. They provide a sufficient condition for tuples in
Qv to be certain answers for the class of tuple-independent
databases.

Answering non-boolean queries As described above,
given a conjunctive query Q, it is first rewritten as Qv, a
conjunctive query in terms of views(S). We describe here
how to answer Qv using our perturbation method. We de-
scribe the method for the simplest query Qv(x̄) = Vi(x̄),
where Vi is in views(S) and x̄ is the list of head variables
of Vi. The method extends similarly for other conjunctive
queries defined over views(S).

We start by computing the query Vi over the probabilistic
database (see query evaluation methods in [6]). The result
is a set of tuples, with each tuple t in the set having a prob-
ability pt associated with it. As described in Sec. 4, each
tuple corresponds to a grounding of head variables x̄ of Vi.
Moreover, for each tuple t of Vi, there is a grounding of head
variables in Ci that results in a context tuple c. The prob-
ability pc of the context tuple controls the privacy require-
ment of t. Thus, we perturb the probability of each tuple t
depending on pc to get the perturbed response rt. During
perturbation, we also introduce noisy tuples, which were not
initially in the query result. This corresponds to perturb-

ing a tuple that has original probability pt = 0. A naive
way is to compute the query Vi over the entire domain, and
perturb each tuple in the result individually. This is clearly
not efficient. However, we note that we need to perturb a
tuple t, only if its corresponding context tuple has pc > 0.
This greatly reduces the number of noisy tuples that need
to be considered. In fact, we can compute efficiently the left
outer join of Ci with Vi. The resulting query when evalu-
ated contains all the interesting tuples including the noisy
tuples. Then we can efficiently perturb their probabilities
using Aopt.

7. EXPERIMENTS
We conducted a series of experiments to test the effective-

ness of our approach in a real scenario, and to compare it
with the simpler methods consisting of sampling and thresh-
olding. We used two kinds of data, which we call synthetic
data and real data. The real data was to test our method in a
RFID scenario: here the data was collected by actual RFID
readers in real life scenarios. The synthetic data allows a
very fine control over each tuple. It is generated as follows:
first we create a deterministic table, then we generate prob-
abilities for each tuple by using random values drawn from
a gaussian distribution. This allows us to generate both
probabilities and have a deterministic ground truth.

Real Data We used the infrastructure of the RFID Ecosys-
tem project at the University of Washington [1]. We col-
lected real data (as part of a larger project) by design-
ing several scenarios involving about a dozen graduate stu-
dents (called actors in these experiments). The scenarios in-
cluded real life events like meeting, coffee breaks, etc. Actors
enacted the scenarios as per predefined instructions while
wearing RFID tags. Two sets of data were collected during
the experiment. One set was the application data, consisting
of location data first collected by RFID readers then pro-
cessed (cleaned) using a particle filter algorithm that is part
of the RFID Ecosystem: this resulted in the probabilistic ta-
ble LocatedAt, which consists of 65,434 tuples. We assumed
that this data is tuple-independent: in reality some tempo-
ral correlations exist between tuples with close timestamps
(see Sec. 6.1 for a discussion), but we ignored them in our
experiments. The second set of data is ground truth data.
This was collected by having the actors mark their exact
location with a hand-held tablet PC which ran a map-based
self-tracking tool. The actors continuously marked their lo-
cation with the tool during each scenario, generating the
deterministic ground truth. This location data was stored
in the deterministic LocatedAtDet table, which has 12,787
tuples.

Together the application data LocatedAt (probabilistic)
and the ground truth data LocatedAtDet (deterministic) al-
lowed us to conduct a realistic evaluation of the Access Con-
trol method proposed in this paper. We performed our tests
using the PAC rule in Fig. 1: the rule says that a user Alice
is allowed to query the location of a user Bob at some time
t only if Alice and Bob were colocated at a time t. Since
our scenarios incorporated meetings between actors, we had
sufficient data to test this rule.

Boolean First, we evaluate the perturbation method for
boolean queries, e.g. φ = LocatedAt(Bob,Room57,5PM).
PAC rule requires that response to the query depends on
Alice’s location, e.g. φ should be answered if the context
c = LocatedAtDet(Alice,Room57,5PM) is true. The system

830

Fig. 7(a) Real Data: Privacy vs. Utility Fig. 7(b) Recall for Top k queries Fig. 7(c) Synthetic data: Privacy vs. Utility

does not have the LocatedAtDet data. To answer φ, the
system first computes pφ using the probabilistic LocatedAt

table. The system then computes the perturbed response
based on pc, the probability of the context c. The privacy
parameter ρ was computed using the function ρ(pc) = 1−pc

1+εpc
,

where pc is the probability of the context.
We ran multiple such queries, and computed a privacy

metric P and a utility metric U, by examining the answer
returned to the user with the ground truth in LocatedAtDet.
We explain now how we computed the privacy and utility.
For each UCAL rule of the form IF ci GRANT ti, we note
that a privacy breach occurs at tuple ti when ci = 0 but
information about ti is revealed. As we saw in Sec. 6, the
information leaked about ti for a user can be quantified as
Posterior(ti)
Prior(ti)

. The privacy metric P measures the amount of

systematic leakage: it is the mean leakage for all tuples ti
for which the context ci is 0.

P =

∑
i:ci=0

Posterior(ti)
Prior(ti)∑

i(1− ci)

We fixed Prior(ti) = 1/200, i.e. we assumed that a user
Alice typically believes tuples like ti =LocatedAt(Bob,Hall,5)

to have a priori probability 1/200, that is the user thinks Bob
is equally likely to be near any one of the 200 RFID readers
in the building. Lower the value of P, higher the privacy.
P is 1 when no information about ti is revealed for all i.
It is 1

Prior(ti)
= 200 when complete information about ti is

released for all i.
Loss in utility occurs when ci = 1 but the algorithm does

not reveal complete information about ti. Suppose the algo-
rithm returns the response ri instead of Prs(ti). The utility
loss is then quantified as |ri − Prs(ti)|. The utility metric
measures the amount of systematic error: it is the mean
error for all tuples ti for which the context ci is 1.

U =

∑
i:ci=1 |ri − Prs(ti)|∑

i ci

Lower the value of U, higher the utility. An algorithm
that has ri = Prs(ti) for all i has perfect utility U = 0.
An algorithm that returns a uniformly chosen random ri in
[0, 1] has utility U = 0.5.

Motivation behind U & P Our utility metric U is
the empirical expected error (corresponding to Def. 3.2).
For P, we would ideally like to use the notion of ρ-privacy.
However, we cannot use ρ-privacy as it does not apply to
the threshold method (it only applies to randomized algo-
rithms). Thus we use the privacy metric P of comparing the
posterior probability to the prior probability, which is also

a standard privacy definition for perturbation algorithms.
Additionally, the notions of ρ-privacy and P are connected,
and Theorem 6.1 formalizes the relationship between them.

Figure 7(a) shows the values for P and U values over
all possible boolean queries about Bob’s location, for the
thresholding and the perturbation methods. The plot U
vs. P for each method was obtained by varying the values
of the parameters involved. For thresholding, we vary the
threshold. For perturbation, we vary the parameter ε used
in the function ρ(pc) = 1−pc

1+εpc
. Note that the ideal region

is the lower left corner, i.e. P ≈ 1, U ≈ 0. Clearly, the
perturbation algorithm is closer to this region than thresh-
olding. This implies that if the parameters for thresholding
and perturbation are chosen to have the same privacy, the
utility for the perturbation method would be much better.

Non-boolean queries We also evaluate the perturba-
tion method for non-boolean queries. Assume Alice issues
the conjunctive query Q(l, t) = LocatedAt(Bob, l, t). The
query asks the locations of Bob at all times during the sce-
narios. The answer to the query is a list of tuples indicating
the location of Bob at different times. Since the data is
probabilistic, each tuple is associated a probability value. If
Alice issues the query, she would like to view these tuples in
decreasing order of their probabilities. That is Alice would
like to see the more likely tuples first. Let L be the set of the
top-k tuples for Q if there were no access control restrictions.
Now we enforce access control using thresholding and using
perturbation. The parameters for the methods were chosen
so that both thresholding and perturbation have the same
privacy metric P in the boolean experiment described above.
Let L1 be the set of top k answers returned by thresholding.
Let L2 be the set of top k answers returned by perturbation.
Since privacy for both methods is fixed to the same value,
we compared their utilities. Utility is defined as the recall

ratio, i.e. it is the fraction |L∩Li|
|L| . Figure 7(b) shows that

perturbation has a higher recall then thresholding. Thus,
the fraction of relevant tuples in the top-k result for pertur-
bation is more than that of thresholding.

Performance Here we comment on the space and time
requirements of conditional petrubation as compared to the
sampling and thresholding methods. Since, we use output
perturbation, no perturbed probability is stored. Thus there
are no additional space requirements. For time, we note
that the requirement comes from three steps: a query eval-
uation on a probabilistic database, an outer join with the
contexts (see sec. 6.2), and finally the output perturbation.
The first two are common among sampling, thresholding and
perturbation. These two steps are also the most expensive
ones. The only step that differs is the output perturbation,

831

which requires a simple linear pass over the answers to the
query. Thus, compared to other methods, the conditional
perturbation algorithm does not introduce new performance
bottlenecks.

Synthetic data We wanted to reproduce our experiments
in a more controlled environment, where we could fine tune
the characteristics of the data. We considered a database
with n contexts ci, and n tuples ti, each guarded by a UCAL
rule IF ci GRANT ti, for i = 1, n. We set n = 100, 000. The
tuples ti’s are deterministic (their value Prs(ti) is 1). For
the contexts we proceeded as follows. We first randomly
chose a ground truth for ci, either true or false: this ground
truth was not known to the system. Then we generated
a probability pi, which is the system’s belief about ci. If
ci = 1, then we set pi = N̂(µ1, σ). Here N̂(µ1, σ) repre-
sents the gaussian distribution with mean µ1 and variance
σ2 truncated to the interval [0, 1]. If ci is 0, pi is obtained

as N̂(µ0, σ). Finally, we evaluated each query ti, for each
i = 1, n, and computed the responses returned by each of the
three methods: perturbation, thresholding and sampling.

Fig. 7(c) compares the privacy utility tradeoff for the dif-
ferent methods. The graph is obtained as following: we fix
the gaussian distribution that is added to simulate uncer-
tainty. We use µ0 = 0.1, µ1 = 0.9 and σ = 0.5. We then
plot U vs. P for each method by varying the values of the
parameters involved. Again we see a very similar privacy
utility curves for the methods. Perturbation clearly out-
performs both sampling and thresholding. The two naive
algorithms offer an almost linear tradeoff between privacy
and utility, while perturbation has the lower curve.

8. RELATED WORK
The basic principle of access control was originally intro-

duced by Lampson [12]; a good overview of the connection
between access control languages and logic can be found
in [2]. Recently the database community has studied fine-
grained access control and has proposed to use views to de-
fine access to the items in a database [19, 18]. In [18], the ac-
cess is defined by a collection of authorization views, and the
access/deny semantics is defined in terms of certain answers:
users are allowed access to answers that are certain given the
views, and are denied access to all other answers. A basic
principle underlying this approach is that of soundness [21],
which ensures that the information released to the user is
never incorrect. Soundness makes the access/deny seman-
tics necessary. For example, in [18], truman and non-truman

models for query answering are proposed and the latter is
preferred over the former as it ensures soundness.

Most prior work on access control has been in the con-
text of certain data. Recent work [4] has considered access
control when the surveillance is uncertain and has stud-
ied the risks that an illegal action will remain unpunished.
We do not consider punishments in this paper, but instead
consider the case when the data is uncertain, and change
the access/deny semantics. This means that we relax the
soundness requirement: if the system is uncertain, it is un-
avoidable to occasionally return incorrect answers.

A related problem where the soundness principle is re-
laxed is that of privacy in database; for this problem various

data perturbation methods have been proposed recently [10,
8, 14], and arguably any perturbed data violates the sound-
ness principle. In privacy, a clear distinction is made be-
tween public and private information. For example, in a
medical database, the individual’s disease is considered private,
whereas statistical facts such as number of individuals hav-
ing cancer are considered public. Here the setting is differ-
ent: a single piece of information is either private or public
based on the values of some uncertain context.

The idea of adding noise for location privacy protection
has also been studied before [5]. However, there the context
is deterministic, and the protected data is spatial. In our
setting, the context is uncertain, and the protected data is
tabular.

9. CONCLUSION
In this paper we studied access control when the data con-

trolling the access is uncertain. We have given a formal defi-
nition of privacy in this setting, and proposed a perturbation
based access control algorithm that is provably private. We
evaluated our approach on real data with uncertainties, from
an application of RFID data.

10. REFERENCES
[1] http://rfid.cs.washington.edu/.

[2] M. Abadi. Logic in access control. In LICS, 2003.

[3] S. Abiteboul and O. Duschka. Complexity of answering queries
using materialized views. In PODS, 1998.

[4] P. Balbiani. Acces control with uncertain surveillance. In
International Conference on Web Intelligence, 2005.

[5] A. R. Beresford and F. Stajano. Location privacy in pervasive
computing. In IEEE Pervasive Computing, 2003.

[6] N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDB J, 2007.

[7] O. M. Duschka and M. R. Genesereth. Answering recursive
queries using views. In PODS, 1997.

[8] C. Dwork. Differential privacy. In ICALP, 2006.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of
Theory of Cryptography. Springer, 2006.

[10] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. In PODS, 2003.

[11] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin. Adaptive
cleaning for RFID data streams. In VLDB, 2006.

[12] B. Lampson. Protection. In Proceedings of the 5th Annual
Princeton Conference on Information Sciences and Systems.

[13] A. Motro. An access authorization model for relational
databases based on algebraic manipulation of view definitions.
In IEEE Data Engineering, 1989.

[14] V. Rastogi, S. Hong, and D. Suciu. The boundary between
privacy and utility in data publishing. In VLDB, 2007. ACM.

[15] V. Rastogi, D. Suciu, and E. Welbourne. Access control over
uncertain data. In Technical Report, 2008.

[16] C. Re, J. Letchner, M. Balazinska, and D. Suciu. Event queries
on corrleated probabilistic streams. In SIGMOD, 2008.

[17] C. Re and D. Suciu. Materialized views in probabilistic
databases: for information exchange and query optimization. In
VLDB, 2007.

[18] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained access
control. In SIGMOD. ACM, 2004.

[19] A. Rosenthal and E. Sciore. Abstracting and refining
authorization in sql. In Secure Data Management, 2004.

[20] P. Sen and A. Deshpande. Representing and querying correlated
tuples in probabilistic databases. In ICDE. IEEE, 2007.

[21] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and
J.-W. Byun. On the correctness criteria of fine-grained access
control in relational databases. In VLDB, 2007.

832

