
Graceful Database Schema Evolution:
the PRISM Workbench

Carlo A. Curino
Politecnico di Milano
carlo.curino@polimi.it

Hyun J. Moon
UCLA

hjmoon@cs.ucla.edu

Carlo Zaniolo
UCLA

zaniolo@cs.ucla.edu

ABSTRACT
Supporting graceful schema evolution represents an unsolved
problem for traditional information systems that is further
exacerbated in web information systems, such as Wikipedia
and public scientific databases: in these projects based on
multiparty cooperation the frequency of database schema
changes has increased while tolerance for downtimes has
nearly disappeared. As of today, schema evolution remains
an error-prone and time-consuming undertaking, because
the DB Administrator (DBA) lacks the methods and tools
needed to manage and automate this endeavor by (i) pre-
dicting and evaluating the effects of the proposed schema
changes, (ii) rewriting queries and applications to operate
on the new schema, and (iii) migrating the database.

Our PRISM system takes a big first step toward ad-
dressing this pressing need by providing: (i) a language of
Schema Modification Operators to express concisely com-
plex schema changes, (ii) tools that allow the DBA to eval-
uate the effects of such changes, (iii) optimized translation
of old queries to work on the new schema version, (iv) au-
tomatic data migration, and (v) full documentation of in-
tervened changes as needed to support data provenance,
database flash back, and historical queries. PRISM solves
these problems by integrating recent theoretical advances on
mapping composition and invertibility, into a design that
also achieves usability and scalability. Wikipedia and its
170+ schema versions provided an invaluable testbed for val-
idating PRISM tools and their ability to support legacy
queries.

1. INTRODUCTION
The incessant pressure of schema evolution is impacting

every database, from the world’s largest1 “World Data Cen-
tre for Climate” featuring over 6 petabytes of data, to the
smallest single-website DB. DBMSs have long addressed,

1Source: http://www.businessintelligencelowdown.
com/2007/02/top 10 largest .html

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

and largely solved, the physical data independence prob-
lem, but their progress toward logical data independence
and graceful schema evolution has been painfully slow. Both
practitioners and researchers are well aware that schema
modifications can: (i) dramatically impact both data and
queries [8], endangering the data integrity, (ii) require ex-
pensive application maintenance for queries, and (iii) cause
unacceptable system downtimes. The problem is particu-
larly serious in Web Information Systems, such as Wikipedia
[33], where significant downtimes are not acceptable while a
mounting pressure for schema evolution follows from the di-
verse and complex requirements of its open-source, collabo-
rative software-development environment [8]. The following
comment2 by a senior MediaWiki [32] DB designer, reveals
the schema evolution dilemma faced today by DataBase Ad-
ministrators (DBAs): “This will require downtime on up-
grade, so we’re not going to do it until we have a better idea
of the cost and can make all necessary changes at once to
minimize it.”

Clearly, what our DBA needs is the ability to (i) predict
and evaluate the impact of schema changes upon queries and
applications using those queries, and (ii) minimize the down-
time by replacing, as much as possible, the current manual
process with tools and methods to automate the process of
database migration and query rewriting. The DBA would
also like (iii) all these changes documented automatically for:
data provenance, flash-backs to previous schemas, historical
queries, and case studies to assist on future problems.

There has been much recent work and progress on theoret-
ical issues relating to schema modifications including map-
ping composition, mapping invertibility, and query rewriting
[21, 14, 25, 4, 13, 12].

These techniques have often been used for heterogenous
database integration; in PRISM3 we exploit them to auto-
mate the transition to a new schema on behalf of a DBA. In
this setting, the semantic relationship between source and
target schema, deriving from the schema evolution, is more
crisp and better understood by the DBA than in typical
database integration scenarios. Assisting the DBA during
the design of schema evolution, PRISM can thus achieve
objectives (i-iii) above by exploiting those theoretical ad-

2From the SVN commit 5552 accessible at:
http://svn.wikimedia.org/viewvc/mediawiki?view=
rev&revision=5552.
3PRISM is an acronym for Panta Rhei Information &
Schema Manager—‘Panta Rhei’ (Everything is in flux),
is often credited to Heraclitus. The project homepage
is: http://yellowstone.cs.ucla.edu/schema-evolution/
index.php/Prism.

761

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

vances, and prompting further DBA input in those rare sit-
uations in which ambiguity remains.

Therefore, PRISM provides an intuitive, operational in-
terface, used by the DBA to evaluate the effect of a possi-
ble evolution steps w.r.t. redundancy, information preserva-
tion, and impact on queries. Moreover, PRISM automates
error-prone and time-consuming tasks such as query transla-
tion, computation of inverses, and data migration. As a by-
product of its use PRISM creates a complete, unambigu-
ous documentation of the schema evolution history, which is
invaluable to support data provenance, database flash backs,
historical queries, and user education about standard prac-
tices, methods and tools.
PRISM exploits the concept of Schema Modification

Operators (SMO) [4], representing atomic schema changes,
which we then modify and enhance by (i) introducing the
use of functions for data type and semantic conversions, (ii)
providing a mapping to Disjunctive Embedded Dependen-
cies (DEDs), (iii) obtain invertibility results compatible to
[13], and (iv) define the translation into efficient SQL prim-
itives to perform the data migration. PRISM has been
designed and refined against several real-life Web Informa-
tion Systems including MediaWiki [32], Joomla4, Zen Cart5,
and TikiWiki6. The system has been tested and validated
against the benchmark for schema evolution defined in [8],
which is built over the actual database schema evolution his-
tory of Wikipedia (170+ schema versions in 4.5 years). Its
ability to handle the very complex evolution of one of the ten
most popular website of the World Wide Web7 offers an im-
portant validation of practical soundness and completeness
of our approach.

While Web Information Systems represent an extreme
case, where the need for evolution is exacerbated [8] by
the fast evolving environment in which they operates, every
DBMS would benefit from graceful schema evolution. In par-
ticular every DB accessed by applications inherently “hard
to modify” like: public Scientific Databases accessed by ap-
plications developed within several independent institutions,
DB supporting legacy applications (impossible to modify),
and system involving closed-source applications foreseeing
high adaptation costs. Transaction time databases with
evolving schema represent an interesting scenario were sim-
ilar techniques can be applied [23].
Contributions. The PRISM system, harness recent the-
oretical advances [12, 15] into practical solutions, through an
intuitive interface, which masks the complexity of underling
tasks, such as logic-based mappings between schema ver-
sions, mapping composition, and mapping invertibility. By
providing a simple operational interface and speaking com-
mercial DBMS jargon, PRISM provides a user-friendly,
robust bridge to the practitioners’ world. System scalability
and usability have been addressed and tested against one of
the most intense histories of schema evolution available to
date: the schema evolution of Wikipedia, featuring in 4.5
years over 170+ documented schema versions and over 700
gygabytes of data [1].

4An open-source content management system available at:
http://www.joomla.org.
5A free open-source shopping cart software available at:
http://www.zen-cart.com/.
6An open-source wiki front-end, see: http://info.
tikiwiki.org/tiki-index.php.
7Source: http://www.alexa.com.

Paper Organization. The rest of this paper is organized
as follows: Section 2 discusses related works, Section 3 in-
troduces a running example and provides a general overview
of our approach, Section 4 discusses in details design and in-
vertibility issues of the SMO language we defined, Section 5
presents the data migration and query support features of
PRISM. We discuss engineering optimization issues in
Section 6, and devote Section 7 to a brief description of the
system architecture. Section 8 is dedicated to experimental
results. Finally Section 9 and 10 discuss future develop-
ments and draw our conclusions.

2. RELATED WORKS
Some of the most relevant approaches to the general prob-

lem of schema evolution are the impact-minimizing method-
ology of [27], the unified approach to application and database
evolution of [18], the application-code generation of [7] and
the framework for metadata model management of [22] and
the further contributions [3, 5, 31, 34]. While these and
other interesting attempts provide solid theoretical founda-
tions and interesting methodological approaches, the lack of
operational tools for graceful schema evolution observed by
Roddick in [29] remains largely unsolved twelve years later.
PRISM represents, at the best of our knowledge, the most
advanced attempt in this direction available to date.

The operational answer to the issue of schema evolution
used by PRISM exploits some of the most recent results
on mapping composition [25], mapping invertibility [13], and
query rewriting [12]. The SMO language used here cap-
tures the essence of existing works [4], but extends them
with functions, for expressing data type and semantic con-
versions. The translation between SMOs and Disjunctive
Embedded Dependencies (DED) exploited here is similar to
the incremental adaptation approach of [31], but achieves
different goals. The query rewriting portion of PRISM
exploits theories and tools developed in the context of the
MARS project [11, 12]. The theories of mapping composi-
tion studied in [21, 14, 25, 4], and the concept of invertibility
recently investigated by Fagin et al. in [13, 15] support the
notion of SMO composition and inversion.

The big players in the world of commercial DBMSs have
been mainly focusing on reducing the downtime when the
schema is updated [26] and on assistive design tools [10],
and lack the automatic query rewriting features provided in
PRISM. Other tools of interest are [20] and LiquiBase8.

Further related works include the results on mapping in-
formation preservation by Barbosa et al. [2], the ontology-
based repository of [6], the schema versioning approaches
of [19]. XML schema evolution has been addressed in [24]
by means of a guideline-driven approach. Object-oriented
schema evolution has been investigated in [16]. In the con-
text of data warehouse X-TIME represents an interesting
step toward schema versioning by means of the notion of
augmenting schema [17, 28]. PRISM differs form all the
above in terms of both goals and techniques.

3. GRACEFUL SCHEMA EVOLUTION
This section is devoted to the problem of schema evolu-

tion and to a general overview of our approach. We briefly
contrast the current process of schema evolution versus the

8Available on-line: http://www.liquibase.org/

762

ideal one and show, by means of a running example, how
PRISM significantly narrows this gap.

Table 1: Schema Evolution: tool support desiderata

Interface
D1.1 intuitive operational way to express schema changes:

well-defined atomic operators;
D1.2 incremental definition of the schema evolution,

testing and inspection support for intermediate steps (see D2.1);
D1.3 the schema evolution history is recorded for

documentation (querying and visualization);
D1.4 every automatic behavior can be overridden by the user;

Predictability and Guarantees
D2.1 the system checks for information preservation, and highlights

lossy steps, suggesting possible solutions;
D2.2 automatic monitoring of the redundancy generated by each

evolution step;
D2.3 impact on queries is precisely evaluated, avoiding confusion

over syntactically tricky cases;
D2.4 testing of queries posed against the new schema version

on top of the existing data, before materialization;
D2.5 performance assessment of the new and old queries,

on a (reversible) materialization of the new DB;

Complex Assistive Tasks
D3.1 given the sequence of forward changes, the system derives an

inverse sequence;
D3.2 the system automatically suggests an optimized porting of the

queries to the new schema;
D3.3 queries posed against the previous versions of the schema are

automatically supported;
D3.4 automatic generation of data migration SQL scripts (both

forward and backward);
D3.5 generation and optimization of forward and backward SQL

views corresponding to the mapping between versions;
D3.6 the system allows to automatically revert (as far as possible)

the evolution step being performed;
D3.7 the system provides a formal logical characterization of

the mapping between schema versions;

3.1 Real World
By the current state of the art, the DBA is basically left

alone in the process of evolving a DB schema. Based only on
his/her expertise, the DBA must figure out how to express
the schema changes and the corresponding data migration
in SQL—not a trivial matter even for simple evolution steps.
Given the available tools, the process is not incremental and
there is no system support to check and guarantee informa-
tion preservation, nor is support provided to predict or test
the efficiency of the new layout. Questions, such as “Is the
planned data migration information preserving?” and “Will
queries run fast enough?”, remain unanswered.

Moreover, manual porting of (potentially many) queries
is required. Even the simple testing of queries against the
new schema can be troublesome: some queries might appear
syntactically correct while producing incorrect answers. For
instance, all “SELECT *” queries might return a different set
of columns than what is expected by the application, and
evolution sequences inducing double renaming on attributes
or tables can lead to queries syntactically compatible with
the new schema but semantically incorrect. Schema evo-
lution is thus a critical, time-consuming, and error-prone
activity.

3.2 Ideal World
Let us now consider what would happen in an ideal world.

Table 1 lists schema evolution desiderata as characteristics

of an ideal support tool. We group these features in three
classes: (i) intuitive and supportive interface which guides
the DBA through an assisted, incremental design process;
(ii) predictability and guarantees: by inspecting evolution
steps, schema, queries, and integrity constraints, the system
predicts the outcome of the evolution being designed and
offers formal guarantees on information preservation, redun-
dancy, and invertibility; (iii) automatic support for complex
tasks: the system automatically accomplishes tasks such as
inverting the evolution steps, generating migration scripts,
supporting legacy queries, etc.

The gap between the ideal and the real world is quite
wide and the progress toward bridging it has been slow. The
contribution of PRISM is to fill this gap by appropriately
combining existing and innovative pieces of technology and
solving theoretical and engineering issues. We now introduce
a running example that will be used to present our approach
to graceful schema evolution.

3.3 Running (real-life) example
This running example is taken from the actual DB schema

evolution of MediaWiki [32], a PHP-based software behind
over 30,000 wiki-based websites including Wikipedia—the
popular collaborative encyclopedia. In particular, we are
presenting a simplified version of the evolution step between
schema version 41 and 42—SVN9 commit 6696 and 6710.

-- SCHEMA v41 --

old(oid, title, user, minor_edit, text, timestamp)

cur(cid, title, user, minor_edit, text, timestamp,

is_new, is_redirect)

-- SCHEMA v42 --

page(pid, title, is_new, is_redirect, latest)

revision(rid, pageid, user, minor_edit, timestamp)

text(tid, text)

The fragment of schema shown above represents the tables
storing articles and article revisions in Wikipedia. In schema
version 41, current and previous revisions of an article have
been stored in the separate tables cur and old respectively.
Both tables feature a numeric id, the article title and the
actual text content of the page, the user responsible for
that contribution, the boolean flag minor_edit indicating
whether the edit performed is of minor entity or not, and
the timestamp of the last modification.

For the current version of a page additional metadata is
maintained: for instance, is_redirect records whether the
page is a normal page or an alias for another, and is_new

shows whether the page has been newly introduced or not.
From schema version 42 on, the layout has been signif-

icantly changed: table page stores article metadata, table
revision stores metadata of each article revision, and table
text stores the actual textual content of each revision. To
distinguish the current version of each article, the identi-
fier of the most current revision (rid) is referenced by the
latest attribute of page relation. The pageid attribute of
revision references to the key of the corresponding page.
The tid attribute of text references the column rid in
revision.

These representations seem equivalent in term of infor-
mation maintained, but two questions arise: what are the

9See: http://svn.wikimedia.org/viewvc/mediawiki/
trunk/phase3/maintenance/tables.sql.

763

Figure 1: Schema Evolution in Wikipedia: schema versions 41-42

schema changes that lead from schema version 41 to 42?
and how to migrate the actual data?.

To serve the twofold goal of introducing our Schema Mod-
ification Operators (SMO) and answering the above ques-
tions, we now illustrate the set of changes required to evolve
the schema (and data) from version 41 to version 42, by
expressing them in terms of SMOs—a more formal presen-
tation of SMOs is postponed to Section 4.1. Each SMO
concisely represents an atomic action performed on both
schema and data, e.g., merge table represents a union of
two relations (with same set of columns) into a new one.

Figure 1 presents the sequence of changes10 leading from
schema version 41 to 42 in two formats: on the left, by using
the well-known relational algebra notation on an intuitive
graph, and on the right by means of our SMO language.
Please note that needed, but trivial steps (such as column
renaming) have been omitted to simplify the Figure 1.

The key ideas of this evolution are to: (i) make the meta-
data for the current and old articles uniform, and (ii) re-
group such information (columns) into a three-table lay-
out. The first three steps (S41 to S41.3)—duplication of
cur, merge with old, and join of the merged old with cur—
create a uniform (redundant) super-table curold containing
all the data and metadata about both current and old ar-
ticles. Two vertical decompositions (S41.3 to S41.5) are ap-
plied to re-group the columns of curold into the three tables:
page, revision and text. The last two steps (S41.5 to S42)
horizontally partition and drop one of the two partitions,
removing unneeded redundancy in table page.

The described evolution involves only two out of the 24 ta-
bles in the input schema (8.3%), but has a dramatic effect on
data and queries: more than 70% of the query templates11

are affected, and thus require maintenance [8].
To illustrate the impact on queries, let us consider an

actual query retrieving the current version of the text of a
page in version 41:

SELECT cur.text FROM cur

WHERE cur.title = ’Auckland’;

Under schema version 42 the equivalent query looks like:

SELECT text.text

FROM page, revision, text

10While different sets of changes might produce equivalent
results, the one presented mimics the actual data migration
that have been performed on the Wikipedia data.

11The percentage of query instances affected is incredibly
higher. Query templates, generated by grouping queries
with identical structure, represent an evaluation of the de-
velopment effort.

WHERE page.pid = revision.page AND

revision.rid = text.tid AND

page.latest = revision.rid AND

page.title = ’Auckland’;

3.4 Filling the gap
In a nutshell, PRISM assists the DBA in the process of

designing evolution steps by providing him/her with the con-
cise SMO language used to express schema changes. Each re-
sulting evolution step is then analyzed to guarantee information-
preservation, redundancy control and invertibility. The SMO
operational representation is translated into a logical one,
describing the mapping between schema versions, which en-
ables chase-based query rewriting. The deployment phase
consists in the automatic migration of the data by means
of SQL scripts and the support of queries posed against the
old schema versions by means of either SQL Views or on-
line query rewriting. As a by-product, the system stores and
maintains the schema layout history, which is accessible at
any moment.

In the following, we describe a typical interaction with
the system, presenting the main system functionalities and
briefly mentioning the key pieces of technologies exploited.
Let us now focus on the evolution of our running example:

Input: a database DB41 under schema S41, Qold an op-
tional set of queries typically issued against S41, and Qnew

an optional set of queries the DBA plans to support with
the new schema layout S42.

Output: a new database DB42 under schema S42 holding
the migrated version of DB41 and an appropriate support
for the queries in Qold (and potentially other queries issued
against S41).

Step 1: Evolution Design
(i) the DBA expresses, by means of the Schema Modifica-

tion Operators (SMO), one (or more) atomic changes to be
applied to the input schema S41, e.g., the DBA introduces
the first three SMOs of Figure 1—Desiderata: D1.1.

(ii) the system virtually applies the SMO sequence to in-
put schema and visualizes the candidate output schema, e.g.,
S41.3 in our example—Desiderata: D1.2.

(iii) the system verifies whether the evolution is informa-
tion preserving or not. Information preservation is checked
by verifying conditions, we defined for each SMO, on the
integrity constraints, e.g., decompose table is information
preserving if the set of common columns of the two output
tables is a (super)key for at least one of them. Thus, in
the example the system will inform the user that the merge
table operator used between version S41.1 and S41.2 is not

764

Figure 2: Running example Inverse SMO sequence: 42-41.

information preserving and suggests the introduction of a
column is_old indicating the provenance of the tuples (dis-
cussed in Section 4.2)—Desiderata: D2.1.

(iv) each SMO in the sequence is analyzed for redundancy
generation, e.g., the system informs the user that the copy
table used in the step S41 to S41.1 generates redundancy;
the user is interrogated on whether such redundancy is in-
tended or not—Desiderata: D2.2.

(v) the SMO sequence is translated into a logical mapping
between schema versions, which is expressed in terms of Dis-
junctive Embedded Dependencies (DEDs) [12]—Desiderata:
D3.7.

The system offers two alternative ways to support what-if
scenarios and testing queries in Qnew against the data stored
in DB41: by means of query rewriting or by means of SQL
views.

(vi-a) a DED-based chase engine [12] is exploited to rewrite
the queries in Qnew into equivalent queries expressed on S41.
As an example, consider the following query retrieving the
timestamp of the revisions of a specific page:

SELECT timestamp FROM page, revision

WHERE pid = page_id AND title = ’Paris’

This query is automatically rewritten in terms of tables of
the schema S41 as follows:

SELECT timestamp FROM cur

WHERE title = ’Paris’

UNION ALL

SELECT timestamp FROM old

WHERE title = ’Paris’;

The user can thus test the new queries against the old data—
Desiderata: D2.1.

(vi-b) equivalently the system translates the SMO sequence
into corresponding SQL Views V41.3−41 to support queries
posed on S41.3 (or following schema versions) over the data
stored in the basic tables of DB41—Desiderata: D1.2,D3.5.

(vii) the DBA can iterate Step 1 until the candidate schema
is satisfactory, e.g., the DBA introduces the last four SMOs
of Figure 1 and obtains the final schema S42—Desiderata:
D1.2.

Step 2: Inverse Generation
(i) the system, based on the forward SMO sequence and

the integrity constraints in S41, computes12 the candidate

12Some evolution step might not be invertible, e.g., dropping
of a column; in this case, the system interacts with the user
who either provides a pseudo-inverse, e.g., populate the col-
umn with default values, or rollbacks the change, repeating
part of Step 1.

inverse sequences. Some of the operators have multiple pos-
sible inverses, which can be disambiguated by using integrity
constraints or interacting with the user. Figure 2 shows the
series of inverse SMOs and the equivalent relational algebra
graph. As an example, consider the join table operator of
the step S41.2 and S41.3: it is naturally inverted by means
of a decompose table operator—Desiderata: D3.1.

(ii) the system checks whether the inverse SMO sequence
is information preserving, similarly to what has been done
for the forward sequence. Desiderata: D2.1.

(iii) if both forward and inverse SMO sequences are infor-
mation preserving, the schema evolution is guaranteed to be
completely reversible at every stage—Desiderata: D3.6.

Step 3: Validation and Query support
(i) the inverse SMO sequence is translated into a DED-

based logical mapping between S42 and S41—Desiderata:
D3.7.

Symmetrically to what was discussed for the forward case
the system has two alternative and equivalent ways to sup-
port queries in Qold against the data in DB42: query rewrit-
ing and SQL views.

(ii-a) a DED-based chase engine is exploited to rewrite
queries in Qold expressed on S41 into equivalent queries ex-
pressed on S42. The following query, posed on the old table
of schema S41, retrieves the text of the revisions of a certain
page modified by a given user after “2006-01-01”:

SELECT text FROM old

WHERE title = ’Jeff_V._Merkey’ AND

user = ’Jimbo_Wales’ AND

timestamp > ’2006-01-01’;

It is automatically rewritten in terms of tables of the schema
S42 as follows:

SELECT text

FROM page, revision, text

WHERE pid = page AND tid = text_id AND

latest <> rid AND title = ’Jeff_V._Merkey’ AND

user = ’Jimbo_Wales’ AND

timestamp > ’2006-01-01’;

The user can inspect and review the rewritten queries—
Desiderata: D2.3, D2.4.

(ii-b) equivalently the system automatically translates the
inverse SMO sequence into corresponding SQL Views V41−42

supporting the queries in Qold by means of views over the
basic tables in S42—Desiderata: D2.3, D2.4,D3.5.

(iii) by applying the inverse SMO sequence to schema S42,
the system can determine (and show to the user) the por-
tion of the input schema S′

41 ⊆ S41 on which queries are

765

Table 2: Schema Modification Operators (SMOs)
SMO Syntax Input rel. Output rel. Forward DEDs Backward DEDs
create table r(Ā) - R(Ā) - -
drop table r R(Ā) - - -
rename table r into t R(Ā) T(Ā) R(x̄) → T(x̄) T(x̄) → R(x̄)
copy table r into t RVi(Ā) RVi+1(Ā), T(Ā) RVi(x̄) → RVi+1(x̄) RVi+1(x̄) → RVi(x̄)

RVi(x̄) → T(x̄) T(x̄) → RVi(x̄)
merge table r, s into t R(Ā), S(Ā) T(Ā) R(x̄) → T(x̄); S(x̄) → T(x̄) T(x̄) → R(x̄) ∨ S(x̄)
partition table r into s with cond, t R(Ā) S(Ā), T(Ā) R(x̄), cond → S(x̄) S(x̄) → R(x̄),cond

R(x̄), ¬cond → T(x̄) T(x̄) → R(x̄),¬cond
decompose table r into s(Ā,B̄), t(Ā,C̄) R(Ā,B̄,C̄) S(Ā,B̄), T(Ā,C̄) R(x̄,ȳ,z̄) → S(x̄,ȳ) S(x̄,ȳ) → ∃z̄ R(x̄,ȳ,z̄)

R(x̄,ȳ,z̄) → T(x̄,z̄) T(x̄,z̄) → ∃ȳ R(x̄,ȳ,z̄)
join table r, s into t where cond R(Ā,B̄), S(Ā,C̄) T(Ā,B̄,C̄) R(x̄,ȳ), S(x̄,z̄), cond → T(x̄,ȳ,z̄) T(x̄,ȳ,z̄) → R(x̄,ȳ),S(x̄,z̄),cond
add column c [as const|func(Ā)] into r R(Ā) R(Ā,C) R(x̄) → R(x̄, const|func(x̄)) R(x̄,C) → R(x̄)
drop column c from r R(Ā,C) R(Ā) R(x̄,z) → R(x̄) R(x̄) → ∃z R(x̄,z)
rename column b in r to c RVi(Ā,B) RVi+1(Ā,C) RVi(x̄,y) → RVi+1(x̄,y) RVi+1(x̄,y) → RVi(x̄,y)
nop - - - -

supported by means of SMO to DED translation and query
rewriting. In our example S′

41 = S41, thus all the queries in
Qold can be answered on the data in DB42.

(iv) the DBA, based on this validation phase, can decide
to repeat Steps 1 through 3 to improve the designed evolu-
tion or to proceed to test query execution performance in
Step 4 —Desiderata: D1.2.

Step 4: Materialization and Performance
(i) the system automatically translates the forward (in-

verse) SMO sequence into an SQL data migration script13—
Desiderata: D3.4.

(ii) based on the previous step the system materializes
DB42 differentially from DB41 and support queries in Qold

by means of views or query rewriting. By default the sys-
tem preserves an untouched copy of DB41 to allow seamless
rollback—Desiderata: D2.5.

(iii) query in Qnew can be tested against the materialized
DB42 for absolute performance testing—Desiderata: D2.5.

(iv) query in Qold can be tested natively against DB41

and the performance compared with view-based and query-
rewriting-based support of Qold on DB42—Desiderata: D2.5.

(v) the user reviews the performance and can either pro-
ceed to the final deployment phase or improve performance
by modifying the schema layout and/or modify the indexes
in S42. In our example the DBA might want to add an index
on the latest column of page to improve the join perfor-
mance with revision—Desiderata: D1.2.

Step 5: Deployment
(i) DB41 is dropped and queries Qold are supported by

means of SQL views V41−42 or by on-line query rewriting—
Desiderata: D3.3.

(ii) the evolution step is recorded into an enhanced
information schema to allow schema history analysis and
schema evolution temporal querying—Desiderata: D1.3.

(iv) the system provides the chance to perform a late
rollback (migrating back all the available data) by generat-
ing an inverse data migration script from the inverse SMO
sequence—Desiderata: D3.6.

Finally desideratum D1.4 and scalability issues are dealt
with at interface and system implementation level, Section 7.

13The system is capable of generating two versions of this
script: a differential one, preserving DB41, and a non-
preserving one, which reduces redundancy and storage re-
quirements.

Interesting underlying theoretical and engineering challenges
have been faced to allow the development of this system,
among which we recall mapping composition and invertibil-
ity, scalability and performance issues, automatic transla-
tion between SMO, DED and SQL formalisms, which are
discussed in details in the following Sections.

4. SMO AND INVERSES
Schema Modification Operators (SMO) represent a key

element in our system. This section is devoted to discussing
their design and invertibility.

4.1 SMO Design
The set of operators we defined extends the existing pro-

posal [4], by introducing the notion of function to support
data type and semantic conversions. Moreover, we provide
formal mappings between our SMOs and both the logical
framework of Disjunctive Embedded Dependencies (DEDs)14

and the SQL language, as discussed in Section 5.
SMOs tie together schema and data transformations, and

carry enough information to enable automatic query map-
ping. The set of operators shown in Table 2 is the result
of a difficult mediation between conflicting requirements:
atomicity, usability, lack of ambiguity, invertibility, and pre-
dictability. The design process has been driven by contin-
uous validation against real cases of Web Information Sys-
tem schema evolution, among which we list: MediaWiki,
Joomla!, Zen Cart, and TikiWiki.

An SMO is a function that receives as input a relational
schema and the underlying database, and produces as output
a (modified) version of the input schema and a migrated
version of the database.

Syntax and semantics of each operator are rather self ex-
planatory; thus, we will focus only on a few, less obvious
matters: all table-level SMOs consume their input tables,
e.g., join table a,b into c creates a new table c containing
the join of a and b, which are then dropped; the partition
table operator induces a (horizontal) partition of the tuples
from the input table—thus, only one condition is specified;
nop represents an identity operator, which performs no ac-
tion but namespace management—input and output alpha-
bets of each SMO are forced to be disjoint by exploiting the
schema versions as namespaces. The use of functions in add
column allows us to express in this simple language tasks

14DEDs have been firstly introduced in [11].

766

Figure 3: SMOs characterization w.r.t. redundancy,
information preservation and inverse uniqueness

such as data type and semantic conversion (e.g., currency
or address conversion), and to provide practical ways of re-
covering information lost during the evolution, as described
in Section 4.2.2. The functions allowed are limited to oper-
ating at a tuple-level granularity, receiving as input one or
more attributes from the tuple on which they operate.

Figure 3 provides a simple characterization of the opera-
tors w.r.t. information preservation, uniqueness of the in-
verse, and redundancy. The selection of the operators has
been directed to minimize ambiguity; as a result, only join
and decompose can be both information preserving and
not information preserving. Moreover, simple conditions on
integrity constraints and data values are available to effec-
tively disambiguate these cases [30].

When considering sequences of SMOs we notice that: (i)
the effect produced by a sequence of SMOs depends on the
order; (ii) due to the disjointness of input and output alpha-
bets each SMO acts in isolation on its input to produce its
output; (iii) different SMO sequences applied to the same
input schema (and data) might produce equivalent schema
(and data).

4.2 SMO Invertibility
Fagin et al. [13, 15] recently studied mapping invertibil-

ity in the context of source-to-target tuple generating de-
pendencies (s-t tgds) and formalized the notion of quasi-
inverse. Intuitively a quasi-inverse is a principled relaxation
of the notion of mapping inverse, obtained from it by not dif-
ferentiating between ground instances (i.e., null-free source
instances) that are equivalent for data-exchange purposes.
This broader concept of inverse corresponds to the intu-
itive notion of “the best you can do to recover ground in-
stances,” [15] which is well-suited to the practical purposes
of PRISM.

In this work, we place ourselves within the elegant theoret-
ical framework of [15] and exploit the notion of quasi-inverse
as solid, formal ground to characterize SMO invertibility.
Our approach deals with the invertibility within the opera-
tional SMO language and not at the logical level of s-t tgds.
However, SMOs are translated into a well-behaved fragment
of DEDs, as discussed in Section 5. The inverses derived by
PRISM, being based on the same notion of quasi-inverse,
are consistent with the results shown in [13, 15].

Thanks to the fact that the SMOs in a sequence oper-
ate independently, the inverse problem can be tackled by
studying the inverse of each operator in isolation. As men-
tioned above, our operator set has been designed to simplify
this task. Table 3 provides a synopsis of the inverses of each

Table 3: SMO inverses
SMO unique perfect Inverse(s)
create table yes yes drop table
drop table no no create table

copy table
nop

rename table yes yes rename table
copy table no no drop table

merge table
join table

merge table no no partition table
copy table
rename table

partition table yes yes merge table
join table yes yes/no decompose table
decompose table yes yes/no join table

add column yes yes drop column
drop column no no add column, nop
rename column yes yes rename column

nop yes yes nop

SMO. The invertibility of each operator can be characterized
by considering the existence of a perfect/quasi inverse and
uniqueness of the inverse. The problem of uniqueness of the
inverse is similar to the one discussed in [13]; in PRISM,
we provide a practical workaround based on the interaction
with the DBA.

The operators that have a perfect unique inverse are:
rename column, rename table, partition table nop,
create table, add column, while the remaining operators
have one or more quasi-inverses. In particular, join table
and decompose table represent each other’s inverse, in
the case of information preserving forward step, and (first-
choice) quasi-inverse in case of not information preserving
forward step.

copy table is a redundancy-generating operator for which
multiple quasi-inverses are available: drop table, merge
table and join table. The choice among them depends
on the evolution of the values in the two generated copies.
drop table is appropriate for those cases in which the two
output tables are completely redundant, i.e., integrity con-
straints guarantee total replication. If the two copies evolve
independently, and all of the data should semantically par-
ticipate to the input table, merge table represents the ideal
inverse. join table is used for those cases in which the input
table corresponds to the intersection of the output tables15.
In our running example the inverse of the copy column
between S41 and S41.1 has been disambiguated by the user
in favor of drop table, since all of the data in cur1 were
also available in cur.

merge table does not have a unique inverse. The three
available quasi-inverses differently distribute the tuples from
the output table over the input tables. partition table
allocates the tuples based on some condition on attribute
values; copy table redundantly copies the data in both
input tables; drop table drops the output table without
supporting the queries over the input tables.

drop table invertibility is more complex. This operator
is in fact not information preserving and the default (quasi-
)inverse is thus nop—queries on the old schema insisting
on the drop table are thus not supported. However, the
user might be able to recover the lost information thanks
to redundancy, a possible quasi-inverse is thus copy table.

15Simple column adaptation is also required.

767

Again in some scenario the drop of a table represents the fact
that the table would have been empty, thus a create table
will provide proper answers (empty set) to queries on the old
version of the schema. These are equivalent quasi-inverses
(i.e., equivalent inverses for data-exchange purposes), but,
when used for the purpose of query rewriting, they lead to
different ways of supporting legacy queries. The system as-
sists the DBA in this choice by showing the effect on queries.

drop column shares the same problem as drop table.
Among the available quasi-inverses, there are add column
and nop. The second corresponds to the choice of not sup-
porting any query operating on the column being dropped,
while the first corresponds to the case in which the lost in-
formation can be recovered (by means of functions) from
other data in the database. Section 4.2.2 shows an example
of information recovery based on the use of functions.

4.2.1 Multiple inverses
PRISM relies on integrity constraints and user-interaction

to select an inverse among various candidates; this practical
approach proved effective during our tests.

If the integrity constraints defined on source and target
schema do not carry enough information to disambiguate the
inverse, two scenarios are considered: the DBA identifies
a unique (quasi-)inverse to be used for all the queries, or
the DBA decides to manage different queries according to
different inverses. In the latter case, typically involving deep
constraints changes, the DBA is responsible for instructing
the system on how each query should be processed.

As mentioned in Section 3.4, the system always allows the
user to override the default system behavior, i.e., the user
can specify the desired inverse for every SMO. The user in-
ferface masks most of these technicalities by interacting with
the DBA via simple and intuitive questions on the desired
effects on queries and data.

4.2.2 Example of a practical workaround
In our running example, the step from S41.1 to S41.2 merges

the tables cur1 and old as follows: merge table cur1, old
into old. The system detects that this SMO has no in-
verse and assists the DBA in finding the best quasi-inverse.
The user might accept a non-query-preserving inverse such
as drop table; however, PRISM suggests to the user an
alternative solution based on the following steps: (i) intro-
duce a column is_old in cur1 and in old representing the
tuple provenance, (ii) invert the merge operations as par-
tition table, posing a condition on the is_old column.
This locally solves the issue but introduces a new column
is_old, which is hard to manage for inserts and updates
under schema version 42. For this reason, the user can (iii)
insert after version S41.3 the following SMO: drop column
is_old from curold. At first, this seems to simply post-
pone the non-invertibility issue mentioned above. However,
the drop column operation has, at this point of the evolu-
tion, a nice quasi-inverse based on the use of functions:

add column is_old as strcmp(rid,latest) into curold

At this point of the evolution, the proposed function16

is capable of reconstructing the correct value of is_old for
each tuple in curold. This is possible because the same

16User-defined-functions can be exploited to improve perfor-
mance.

information is derivable from the equality of the two at-
tributes latest and rid. This real-life example shows how
the system assists the user to create non-trivial, practical
workarounds to solve some invertibility issues. This simple
improvement of the initial evolution design increases sig-
nificantly the percentage of supported queries. The evolu-
tion step described in our example becomes, indeed, totally
query-preserving. Cases manageable in this fashion were
more common in our tests than what we expected.

5. DATA MIGRATION & QUERY SUPPORT
This section discusses PRISM data migration and query

support capabilities, by presenting SMO to DED transla-
tion, query rewriting, and SQL generation functionalities.

5.1 SMO to DED translation
In order to exploit the strength of logical languages toward

query reformulation, we convert SMOS to the logical lan-
guage called Disjunctive Embedded Dependencies (DEDs)
[11], extending embedded dependencies with disjunction.

Table 2 shows the DEDs for our SMOs. Each SMO pro-
duces a forward mapping and backward mapping. Forward
mapping tells how to migrate data from the source (old)
schema version to the target (new) schema version. As
shown in the table, forward mappings do not use any ex-
istential quantifier in the right-hand-side, an satisfy the def-
inition of full source-to-target tuple generating dependen-
cies. This is natural in a schema evolution scenario where
the mappings are “functional” in that the output database
is derived from the input database, without generating new
uncontrolled values. The backward mapping is essentially
a flipped version of forward mapping, which tells that the
target database doesn’t contain data other than the ones
migrated from the source version. In other words, these two
mappings are two-way inclusion dependencies that establish
an equivalence between source and target schema versions.

Given an SMO, we also generate identity mappings for
unaffected tables between the two versions where the SMO
is defined. The reader might be wondering whether this sim-
ple translation scheme produces optimal DEDs: the answer
is negative, due to the high number of identity DEDs gener-
ated. In Section 6.1, we discuss the optimization technique
implemented in PRISM.

While invertibility in the general DED framework is a very
difficult matter, dealing with invertibility at the SMO level
we can provide for each set of forward DEDs (create from
our SMO), a corresponding (quasi)inverse.

5.2 Query Rewriting: Chase and Backchase
Using the above generated DEDs, we rewrite queries using

a technique called chase and backchase, or C&B [12]. C&B
is a query reformulation method that modifies a given query
into an equivalent one: given a DED rule D, if the query Q
contains the left-hand-side of D, then the right-hand-side of
D is added to Q as a conjunct. This does not change Q’s
answers—if Q satisfies D’s left-hand-side, it also satisfies D’s
right-hand-side. This process is called chase. Such query ex-
tension is repeated until Q cannot be extended any further.
We call the largest query obtained at this point a universal
plan, U . At this point, the system removes from U every
atom that can be obtained back by a chase. This step does
not change the answer, either, and it is called backchase.
U ’s atoms are repeatedly removed, until no atom can be

768

dropped any further, whereupon we obtain another equiva-
lent query Q′. By properly guiding this removal phase, it is
possible to express Q only by atoms of the target schema.

In our implementation we employ a highly optimized C&B
engine called MARS17 [12]. Using the SMO-generated DEDs
and a given query posed on a schema version (e.g., S41,)
MARS seeks to find an equivalent rewritten query valid on
the specified target schema version (e.g., S42.) As an exam-
ple, consider the query on schema S41:

SELECT title, text FROM old;

By the C&B process this query is transformed into the fol-
lowing query:

SELECT title, text FROM page, revision, text

WHERE pid = pageid AND rid <> latest AND rid = tid

This query is guaranteed to produce an equivalent answer
but is expressed only in terms of S42.

5.2.1 Integrity constraints to optimize the rewriting
Disjunctive Embedded Dependencies can be used to ex-

press both inter-schema mappings and intra-schema integrity
constraints. As a consequence, the rewriting engine will
exploit both set of constraints to reformulate queries. In-
tegrity constraints are, in fact, exploited by MARS to opti-
mize, whenever possible, the query being rewritten, e.g., by
removing semi-joins that are redundant because of foreign
keys. The notion of optimality we exploit is the one intro-
duced in [12]. This opportunity further justifies the choice
of exploiting a DED-based query rewriting technique.

5.3 SMO to SQL
As mentioned in Section 3.4, one of the key features of

PRISM is the ability to automatically generate data mi-
gration SQL scripts and view definitions. This enables a
seamless integration with commercial DBMSs. PRISM is
currently operational on MySQL and DB2.

5.3.1 SMO to data migration SQL scripts
Despite their syntactic similarities, SMOs differ from SQL

in their inspiration. SMOs are tailored to assist data migra-
tion tasks; therefore, many operators combine actions on
schema and data, thus providing a concise and unambigu-
ous way to express schema evolution. In order to deploy
in relational DBMSs the schema evolution being designed,
PRISM translates the user-defined SMO sequence into ap-
propriate SQL (DDL and DML) statements. The nature of
our SMO framework allows us to define, independently for
each operator, an optimized sequence of statements imple-
menting the operator semantics in SQL. Due to space limi-
tations, we only report one example of translation. Consider
the evolution step S41.1 − S41.2 of our example:

merge table cur1,old into old

This is translated into the following SQL (for MySQL):

INSERT INTO old

SELECT cid as oid,title,user,

minor_edit,text,timestamp

FROM cur1;

DROP TABLE cur1;

17See http://rocinante.ucsd.edu:8080/mars/demo/mars
demo.html for an on-line demonstration showing the actual
chase steps.

While the translation of each operator is optimal when
considered in isolation, further optimizations are being con-
sidered to improve performance of sequences of SMOs; this
is part of our current research.

5.3.2 SMO to SQL Views
The mapping between schema versions can be expressed

in terms of views, as it often happens in the data integration
field. Views can be used to enable what-if scenarios (forward
views,) or to support old schema versions (backward views.)
Each SMO can be independently translated into a corre-
sponding set of SQL Views. For each table affected by an
SMO, one or more views are generated to virtually support
the output schema in terms of views over the input schema
(the SMO might be part of an inverse sequence). Consider
the following SMO of our running example S41.2 − S41.3:

join table cur, old into old where cur.title = old.title

This is translated into the following SQL View (for MySQL):

CREATE VIEW curold AS

SELECT * FROM cur,old

WHERE cur.title = old.title;

Moreover, for each unaffected table, an identity view is
generated to map between schema versions. This view gen-
eration approach is practical only for limited length histo-
ries, since it tends to generate long view chains which might
cause poor performance. To overcome this limitation an
optimization has been implemented in the system. As dis-
cussed in Section 6.2, MARS chase/backchase is used to
implement view composition. The result consists of the gen-
eration of a set of highly optimized, composed views, whose
performance is presented in Section 8.

6. SCALABILITY AND OPTIMIZATION
During the development of PRISM, we faced several

optimization issues due to the ambitious goal of supporting
very long schema evolution histories.

6.1 DED composition
As we discussed in the previous section, DEDs generated

from SMO tend to be too numerous for efficient query rewrit-
ing. In order to achieve efficiency in query reformulation
between two distant schema versions, we compose, where
possible, subsequent DEDs.

In general, mapping composition is a difficult problem as
previous studies have shown [21, 14, 25, 4]. However, as
discussed in Section 5.1, our SMOs produce full s-t tgds for
forward mappings, which has been proved to support com-
position well [14]. We implemented a composition algorithm
that is similar to the one introduced in [14], to compose our
forward mappings. As explained in Section 5.1, our back-
ward mapping is a flipped version of forward mapping. The
backward DEDs are derived by flipping forward DEDs pay-
ing attention to: (i) union forward DEDs with the same
right-hand-side, and (ii) existentially quantify variables not
mentioned in the backward DED left-hand-side.

This is clearly not applicable for general DEDs, but serves
the purpose for the simple class of DEDs generated from
our SMOs. Since the performance of the rewriting engine
are mainly dominated by the cardinality of the input map-
ping, such composition effectively improves rewriting per-
formance.

769

Figure 4: PRISM system architecture

6.2 View composition
Section 5.3.2 presented the PRISM capability of trans-

lating SMOs into SQL views. This näıve approach has scala-
bility limitations. In fact, after several evolution steps, each
query execution may involve long chains of views and thus
deliver poor performance. Thanks to the fact that only the
actual schema versions are of interest, rather than the inter-
mediate steps, it is possible to compose the views and map
the old schema version directly to the most recent one–e.g.,
in our example we map directly from S41 and S42.

View composition is obtained in PRISM by exploit-
ing the available query rewriting engine. The “body” of
each view is generated by rewriting a query representing
the “head” of the view in terms of the basic tables of the
target schema. For example, the view representing the old

table in version 41 can be obtained by rewriting the query
SELECT * FROM old against basic tables under schema ver-
sion 42. The resulting rewritten query will represent the
“body” of the following composed view:

CREATE VIEW old AS

SELECT rid as oid, title, user,

minor_edit, text, timestamp

FROM page, revision, text

WHERE pid = page AND rid = tid AND latest <> rid;

Moreover, the rewriting engine can often exploit integrity
constraints available in each schema to further optimize the
composed views, as discussed in Section 5.2.1.

7. SYSTEM IMPLEMENTATION
PRISM system architecture decouples an AJAX front-

end, which ensures a fast, portable and user-friendly in-
teraction from the back-end functionalities implemented in
Java. Persistency of the schema evolution being designed
is obtained by storing intermediate and final information in
an extended version of the information schema database,
which is capable of storing versioned schemas, queries, SMOs,
DEDs, views, migration scripts.

The back-end provides all the features discussed in the
paper as library functions invoked by the interface.

The front-end acts as a wizard, guiding the DBA through
the steps of Section 3.4. The asynchronous interaction typ-
ical of AJAX helps to further mask system computation
times, this further increase usability by reducing the user
waiting times, e.g., during the incremental steps of design
of the SMO sequence the system generates and composes
DEDs and views for the previous steps.

SMO can also be derived “a posteriori”, mimicking a given
evolution as we did for the MediaWiki schema evolution
history. Furthermore, we are currently investigating auto-
matic approaches for SMO mining from SQL-log integrating
PRISM with the tool-suite of [8].

Table 4: Experimental Setting
Machine RAM: 4Gb

CPU (2x): QuadCore Xeon 1.6Ghz
Disks: 6x500Gb RAID5

OS Distribution: Linux Ubuntu Server 6.06
Kernel: 2.6.15-26-server

Java Version: 1.6.0-b105
MySQL Version: 5.0.22

Queries posed against old schema versions are supported
at run-time either by on-line query rewriting performed by
the PRISM backend, which acts in this case as a “magic”
driver, or directly by the DBMS in which the views gener-
ated at design-time have been installed.

8. EXPERIMENTAL EVALUATION
While in practice it is rather unlikely that a DBA wants to

support hundreds of previous schema versions on a produc-
tion system, we stress-tested PRISM against an herculean
task such as the Wikipedia schema evolution history.

Table 4 describes our experimental environment. The
data-set used in these experiments is obtained from the
schema evolution benchmark of [8] and consists of actual
queries, schemas and data derived from Wikipedia.

8.1 Impact of our system
To assess PRISM effectiveness in supporting the DBA

during schema evolution we use the following two metrics:
(i) the percentage of evolution steps fully automated by
the system, and (ii) overall percentage of queries supported.
To this purpose we select the 66 most common query tem-
plates18 designed to run against version 28 of the Wikipedia
schema and execute them against every subsequent schema
version19. The percentage of schema evolution steps in which
the system completely automate the query reformulation ac-
tivity is: 97.2%. In the remaining 2.8% of schema evolution
steps the DBA must manually rework some of the queries
— the following results discuss the proportions of this man-
ual effort. Figure 5 shows the overall percentage of queries
automatically supported by the system (74% in the worst
case) as compared to the manually rewritten queries (84%)
and the original portion of queries that would succeed if
left unchanged (only 16%). This illustrates how the sys-
tem effectively “cures” a wide portion of the failing input
queries. The spikes in Figure are due to syntax errors man-
ually introduced (and immediately roll-backed) by the Me-
diaWiki DBAs in the SQL scrips20 installing the schema in
the DBMS, they are considered as outliers in this perfor-
mance evaluation. The usage of PRISM would also avoid
similar practical issues.

8.2 Run-time performance
Due to privacy issues, the WikiMedia foundation does not

release the entire database underlying Wikipedia, e.g, per-
sonal user information are not accessible. For this reason,
we selected 27 queries out of the 66 initial ones operating on

18Each template has been extracted from millions of
query instances issued against the Wikipedia back-
end database by means of the Wikipedia on-line pro-
filer: http://noc.wikimedia.org/cgi-bin/report.py?db=
enwiki&sort=real&limit=50000.

19Up to version 171, the last version available in our dataset.
20As available on the MediaWiki SVN.

770

40 60 80 10
0

12
0

14
0

16
00

20

40

60

80

100
%

of
qu

ery
 su

cc
es

s

prism rewritten queries

user rewritten queries

original queries

version (ordinal)

Figure 5: Query success rate on Wikipedia schema
versions.

a portion of the schema for which the data were released.
The data exploited are a dump, dated 2007-10-07, of the
wiki: “enwikisource”21. The database consists of approxi-
mately 2,130,000 tuples for about 6.4 Gb of data, capturing
the main content of the wiki: articles, revisions, links, im-
ages metadata, logs, etc. To show execution times of queries,
we selected two key schema versions (28 and 75), which in-
cludes the most active portion of the evolution history and
correspond to two major releases of the front-end software
(1.3 and 1.5.1). Figure 6 shows the execution times of: (i)
manually rewritten queries, (ii) original queries executed on
top of PRISM-generated views, and (iii) automatically
rewritten queries. Since no explicit integrity constraints
can be exploited to improve the query rewriting, the two
PRISM-based solutions perform almost identically. The
35% gap of performance between manual and automatic
rewritten queries is localized in less than 12% of the queries,
while the remaining 88% performs almost identically. For
such queries, the user was able to remove an unneeded join
(between revision and text) by exploiting his/her knowl-
edge on an implicit integrity constraint (between old_id and
rev_id). The system focuses the DBA’s attention on this
limited set of under-performing queries (12%) and encour-
ages him/her to improve them manually. Moreover, this
overhead is completely removed if we assume this integrity
constraint to be fed into PRISM. At the current stage
of development, this would require the user to express the
schema integrity constraints in terms of DEDs. We plan to
provide further support for automatically loading integrity
constraints from the schema or inputing them through a
simple user interface.

8.3 Usability
Here we focus on response time that represents one of

the many factors determining the usability of the system.
PRISM research plans call for a future evaluation of other
usability factors as well. To measure user waiting times
during design, let us consider the time to compute DED-
composition. This is on average 30 seconds for each schema
change22, a reasonable time during the design phase. Part
of this time is further masked by the asynchronous nature
of our interface. The view generation performance is di-
rectly related to query rewriting times. Even without ex-

21Source: http://download.wikimedia.org/.
22The composition is incremental and previous step compo-
sitions are stored in the enhanced information schema.

Figure 6: Query execution time on Wikipedia data.

ploiting the DED optimizations discussed in Section 6.1, the
view-generation time over the complex evolution step of our
running example is on average 980 milliseconds per view,
which sums up to 26.5 seconds for the entire set of views,
again a reasonable design-time performance. The system
is extremely responsive (few milliseconds) when performing
operations such as information-preservation analysis, redun-
dancy check, SMO inversion, and SQL script generation.

Finally, it is worthwhile to note that each of the 170 evo-
lution steps of Wikipedia has been successfully modelled by
our SMO language. This indicates that PRISM is practi-
cally complete for many applications.

9. FUTURE DEVELOPMENTS
PRISM represents a major first step toward graceful

schema evolution. Several extensions of the current proto-
type are currently being investigated and more are part of
our future development plans.
PRISM exploits integrity constraints to optimize queries

and to disambiguate inverses. Currently, our system sup-
ports this important feature in a limited and ad-hoc fashion,
and further work is needed to fully integrate integrity con-
straints management into PRISM. Extensions of both the
SMO language and the system in this direction are part of
our short-term research agenda. Further attention will be
devoted to the problem of update management, which will
be tackled starting from the solid foundations of PRISM.

As a by-product of the adoption of PRISM, critical in-
formation describing the schema evolution history is recorded
and currently accessible by the PRISM interface as dis-
cussed in [9].

We plan to support rich temporal queries over this pre-
cious collection of metadata and, by integrating PRISM
with the tool-suite of [8], to enable the a posteriori analysis
of schema evolution histories. This will provide the DBA
with a powerful framework that, by generating full docu-
mentation of existing evolution histories, is invaluable for:
data provenance analysis, database flashback and historical
archives.

10. CONCLUSIONS
We presented PRISM, a tool that supports the time-

consuming and error-prone activity of Schema Evolution.
The system provides the DBA with a concise operational
language to represent schema change and increases predictabil-
ity of the evolution being designed by automatically verify-
ing information preservation, redundancy and query sup-

771

port. The SMO-based representation of the schema evo-
lution is used to derive logical mappings between schema
versions. Legacy queries are thus supported by means of
query rewriting or automatically generated SQL views.

The system provides interfaces with commercial relational
DBMSs to implement the actual data migration and to de-
ploy views and rewritten queries. As a by-product, the
schema evolution history is recorded. This represents an in-
valuable piece of information for the purposes of documenta-
tion, database flash back, and DBA education. Continuous
validation against challenging real-life evolution histories,
such as the one of Wikipedia, proved invaluable in mold-
ing PRISM into a system that builds on the theoretical
foundations laid by recent research and provides a practical
solution to the difficult problems of schema evolution.

Acknowledgements
The authors would like to thank Alin Deutsch and Letizia
Tanca for the numerous in-depth discussions, MyungWon
Ham for the support on the experiments, Julie Nguyen and
the reviewers for many suggested improvements. This work
was supported in part by NSF-IIS award 0705345: “III-
COR: Collaborative Research: Graceful Evolution and His-
torical Queries in Information Systems—A Unified Approach”.

11. REFERENCES
[1] R. B. Almeida, B. Mozafari, and J. Cho. On the

evolution of wikipedia. In Int. Conf. on Weblogs and
Social Media, March 2007.

[2] D. Barbosa, J. Freire, and A. O. Mendelzon.
Designing information-preserving mapping schemes for
xml. In VLDB, pages 109–120, 2005.

[3] P. A. Bernstein. Applying model management to
classical meta data problems. In CIDR, 2003.

[4] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing mapping composition. VLDB J.,
17(2):333–353, 2008.

[5] P. A. Bernstein and E. Rahm. Data warehouse
scenarios for model management. In ER, 2003.

[6] H. Bounif and R. Pottinger. Schema repository for
database schema evolution. DEXA, 0:647–651, 2006.

[7] A. Cleve and J.-L. Hainaut. Co-transformations in
database applications evolution. Generative and
Transformational Techniques in Software Engineering,
pages 409–421, 2006.

[8] C. A. Curino, H. J. Moon, L. Tanca, and C. Zaniolo.
Schema Evolution in Wikipedia: toward a Web
Information System Benchmark. ICEIS, 2008.

[9] C. A. Curino, H. J. Moon, and C. Zaniolo. Managing
the history of metadata in support for db archiving
and schema evolution. In ECDM, 2008.

[10] DB2 development team. DB2 Change Management
Expert. 2006.

[11] A. Deutsch and V. Tannen. Optimization properties
for classes of conjunctive regular path queries. In
DBPL ’01: Revised Papers from the 8th International
Workshop on Database Programming Languages,
pages 21–39, London, UK, 2002. Springer-Verlag.

[12] A. Deutsch and V. Tannen. Mars: A system for
publishing XML from mixed and redundant storage.
In VLDB, 2003.

[13] R. Fagin. Inverting schema mappings. ACM Trans.
Database Syst., 32(4):25, 2007.

[14] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. In PODS, pages 83–94,
2004.

[15] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Quasi-inverses of schema mappings. In PODS ’07,
pages 123–132, 2007.

[16] R. d. M. Galante, C. S. dos Santos, N. Edelweiss, and
A. F. Moreira. Temporal and versioning model for
schema evolution in object-oriented databases. Data &
Knowledge Engineering, 53(2):99–128, 2005.

[17] M. Golfarelli, J. Lechtenbörger, S. Rizzi, and
G. Vossen. Schema versioning in data warehouses. In
ER (Workshops), pages 415–428, 2004.

[18] J.-M. Hick and J.-L. Hainaut. Database application
evolution: a transformational approach. Data Knowl.
Eng., 59(3):534–558, 2006.

[19] H. V. Jagadish, I. S. Mumick, and M. Rabinovich.
Scalable versioning in distributed databases with
commuting updates. In Conference on Data
Engineering, pages 520–531, 1997.

[20] T. Lemke and R. Manthey. The schema evolution
assistant: Tool description, 1995.

[21] J. Madhavan and A. Y. Halevy. Composing mappings
among data sources. In VLDB, 2003.

[22] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A
programming platform for generic model management.
In SIGMOD, 2003.

[23] H. J. Moon, C. A. Curino, A. D. C.-Y. Hou, and
C. Zaniolo. Managing and querying transaction-time
databases under schema evolution. In VLDB, 2008.

[24] M. M. Moro, S. Malaika, and L. Lim. Preserving XML
Queries during Schema Evolution. In WWW, pages
1341–1342, 2007.

[25] A. Nash, P. A. Bernstein, and S. Melnik. Composition
of mappings given by embedded dependencies. In
PODS, 2005.

[26] Oracle development team. Oracle database 10g online
data reorganization and redefinition. 2005.

[27] Y.-G. Ra. Relational schema evolution for program
independency. Intelligent Information Technology,
pages 273–281, 2005.

[28] S. Rizzi and M. Golfarelli. X-time: Schema versioning
and cross-version querying in data warehouses. In
ICDE, pages 1471–1472, 2007.

[29] J. Roddick. A Survey of Schema Versioning Issues for
Database Systems. Information and Software
Technology, 37(7):383–393, 1995.

[30] J. Ullman. Principles of Database System. Computer
Science Press, 1982.

[31] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping
adaptation under evolving schemas. In VLDB, 2003.

[32] Wikimedia Foundation. Mediawiki
http://www.mediawiki.org, 2007. [Online].

[33] Wikimedia Foundation. Wikipedia
http://en.wikipedia.org/, 2007. [Online].

[34] C. Yu and L. Popa. Semantic adaptation of schema
mappings when schemas evolve. In VLDB, 2005.

772

