Dynamic Partitioning of the Cache Hierarchy in
Shared Data Centers

Gokul Soundararajan, Jin Chent, Mohamed A. Sharaf and Cristiana Amza
Department of Electrical and Computer Engineering
Department of Computer Science’
University of Toronto

ABSTRACT

Due to the imperative need to reduce the management costs
of large data centers, operators multiplex several concurrent
database applications on a server farm connected to shared
network attached storage. Determining and enforcing per-
application resource quotas in the resulting cache hierarchy,
on the fly, poses a complex resource allocation problem span-
ning the database server and the storage server tiers. This
problem is further complicated by the need to provide strict
Quality of Service (QoS) guarantees to hosted applications.

In this paper, we design and implement a novel coordi-
nated partitioning technique of the database buffer pool and
storage cache between applications for any given cache re-
placement policy and per-application access pattern. We
use statistical regression to dynamically determine the map-
ping between cache quota settings and the resulting per-
application QoS. A resource controller embedded within the
database engine actuates the partitioning of the two-level
cache, converging towards the configuration with maximum
application utility, expressed as the service provider rev-
enue in that configuration, based on a set of latency sample
points.

Our experimental evaluation, using the MySQL database
engine, a server farm with consolidated storage, and two e-
commerce benchmarks, shows the effectiveness of our tech-
nique in enforcing application QoS, as well as maximizing
the revenue of the service provider in shared server farms.

1. INTRODUCTION

The costs of management, power and cooling for large ser-
vice providers hosting several applications are currently pro-
hibitive, taking up more than 77% of the average company
budget [30]. This is a major impediment on the efficiency
of this industry, by limiting reinvestment, research and de-
velopment. To achieve cost reductions, automated server
consolidation techniques for better resource usage while pro-
viding differentiated Quality of Service (QoS) to applica-
tions become increasingly important. With server consolida-

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VVLDB Endowment, ACM 978-1-60558-305-1/08/08

635

tion, several concurrent applications are multiplexed on each
physical server of a server farm connected to consolidated
network attached storage. The challenge lies in the complex-
ity of the dynamic resource partitioning problem for avoid-
ing application interference at multiple levels of this shared
system. For example, the provider may service multiple
applications on an infrastructure composed of web servers,
database servers and storage servers (as in Figure 1). An es-
pecially important problem in these environments, which we
focus on in this paper, is controlling application interference
in the cache hierarchy across two tiers contributing directly
to the performance of consolidated database applications,
namely, 1) the database server tier, and 2) the storage server
tier. Towards controlling this interference, we propose a
dynamic global cache partitioning scheme that exploits the
synergy between the cache at the database server i.e., the
buffer pool, and the cache at the storage server.

Previous work in the area of dynamic resource partitioning
has focused on controlling interference within a single tier
at a time. For example, gold/silver/bronze priority classes
within the buffer pool of a database system hosting several
concurrent applications have been used to enforce memory
priorities [4, 5]. Similarly, storage techniques for partition-
ing the I/O bandwidth between applications have been de-
veloped [31, 21, 13]. Additionally, enforcing per-application
CPU quotas through resource virtualization techniques has
been studied either at the operating system [3], or at the
database system level [23, 24].

The previous approaches fall short of providing effective
resource partitioning due to the following two reasons. The
first reason is that application QoS is usually expressed as a
Service Level Objective (SLO), not as per-resource quotas;
there is currently no automatic mechanism to accurately
assign resource quotas for applications corresponding to a
given application metric. The second reason that prevents
these approaches from providing effective resource partition-
ing is the absence of coordination between different resource
controllers located within different tiers. This absence of co-
ordination might lead to situations where local partitioning
optima do not lead to the global optimum; indeed local goals
may conflict with each other, or with the per-application
goals. This resource allocation problem is further compli-
cated when applications define different utilities (or penal-
ties) for meeting (or missing) the specified SLOs. In such
settings, the need is even stronger for an SLO-aware co-
ordinated cache partitioning method which maximizes the
system utility.

Coordination between the database buffer pool and stor-

age cache has already been shown to be an effective mech-
anism in the context of cache replacement policies [19, 32].
However, coordinated cache replacement is an efficient mech-
anism for improving the performance of a single application,
whereas in the presence of multiple applications, an orthog-
onal coordinated cache partitioning mechanism is still re-
quired. In this paper, we show that integrating our cache
partitioning solution with current coordinated cache replace-
ments policies provides further performance improvements
that are not achievable using replacement policies alone.

Towards addressing the dynamic resource allocation prob-
lem in shared server environments, we introduce a novel
technique for coordinated cache partitioning of the database
server and storage caches. Our technique is independent of
the cache replacement policy used at each level and it works
with both coordinated and uncoordinated cache replace-
ment policies. Our technique determines per-application
resource quotas in each of the two caches on the fly, in a
transparent manner, with minimal changes to the DBMS,
and no changes to existing interfaces between components.
To achieve this, we augment the DBMS with a resource con-
troller in charge of partitioning both the buffer pool and the
storage cache between applications. The target is to find a
setting that maximizes the overall utility associated with the
SLOs of a given set of applications. The resource controller
maps the application specified SLO to a target data access
latency, which is the average block access latency measured
at the database buffer pool required to meet the SLO.

To decide the right partitioning, the cache controller ex-
plores the configuration space through an on-line simulation
of the cache hierarchy. This allows us to converge faster to-
wards an optimal partitioning solution. However, the cache
controller actuates the cache partitioning settings periodi-
cally, to the current best configuration, and measures perfor-
mance in the current configuration, in order to validate the
simulation. The controller employs statistical regression to
dynamically determine per-application performance/utility
models as mapping functions between the cache quota set-
tings of the two caches and the corresponding application
latency /utility. It then uses these per-application models to
answer “what-if” cache partitioning scenarios, for any given
set of applications, hence to dynamically converge towards
a partitioning that maximizes the perceived overall reward.

We implement our technique in a prototype of a two-level
cache controller. In our experiments, we use the MySQL

database engine and two applications: the TPC-W e-commerce

benchmark, emulating an on-line bookstore, such as Ama-
zon.com, and the RUBIiS on-line bidding benchmark, emu-
lating an on-line auctions site, such as eBay.com. We use our
prototype in an experimental testbed, where instances of the
two applications share physical servers as well as the storage
server, to enforce cache quota allocations for different SLO
and load scenarios, and different cache replacement policies.
In terms of cache replacement policies, we integrate our coor-
dinated, dynamic cache partitioning technique with i) classic
uncoordinated LRU replacement at each cache level, as well
as ii) coordinated cache replacement based on demote hints
from the buffer pool to the storage cache [32].

We show that our coordinated dynamic partitioning tech-
nique provides compliance with the SLO requirement of ap-
plications with strict SLO’s, while at the same time main-
taining efficient resource usage. As a result, our dynamic
cache partitioning technique minimizes penalties in overload

636

Web Server
(Apache/PHP)

Web Server
(Apache/PHP)

Database Server
(MySQL)

Storage Server

Figure 1: Data center architecture with shared
DBMS and shared storage

and maximizes the revenue of the service provider in under-
load.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a background on server consolidation in mod-
ern data centers highlighting the detrimental effect of inter-
ference between two applications. We describe our coordi-
nated cache partitioning algorithm in Section 3. Section 4
describes our virtual storage prototype. Section 5 presents
the algorithms we use for comparison, our benchmarks, and
our experimental methodology, while Section 6 presents the
results of our experiments on this platform. Section 7 dis-
cusses related work and Section 8 concludes the paper.

2. BACKGROUND

Modern enterprise systems consist of multiple software
layers including web/application server front-ends, database
servers running on top of the operating system, and storage
servers at the lowest level. In order to reduce hardware and
management costs in large data centers, the storage system
is usually shared by a cluster farm, as shown in Figure 1.
Since slow disk access is the bottleneck in this system, both
the database servers and the shared storage server use mem-
ory to cache data blocks, resulting in a two-tier cache hier-
archy.

In this paper, we propose methods for controlling interfer-
ence among applications in this cache hierarchy. Our tech-
niques are applicable to situations where the working set of
concurrent applications does not fit into the cache hierarchy.
These situations are, and will remain common in the foresee-
able future due to the following reasons. First, while both
the buffer pool and storage server cache sizes are increasing,
so do the memory demands of applications e.g., scientific
and commercial very large databases. Second, efficiently us-
ing the combined caching capabilities of database server and
storage server is challenging even for a single application.
Indeed, the potential for double caching of blocks, and the
typically poor temporal locality of accesses that miss in the
buffer pool lead to poor cache utilization in the storage level
cache [8, 20]. Finally, running several applications on a clus-
ter with consolidated storage, and/or on the same physical
server exacerbates the above problems due to application
interference for memory, hence the increased potential for
capacity misses in the cache hierarchy.

The synergy between buffer pool and storage cache has
been exploited through replacement policies for improving
cache hierarchy effectiveness for a single application [11, 14,
15, 19, 22, 32, 33]. Specifically, recent work has shown that

1500

1500

1000

1000

Latency (us)
Latency (us)

a
<)
5}
@
=3
5]

Isolated Shared

TPC-W MRUBIS

(a) LRU/LRU

Ideal Isolated Shared

TPC-W HRUBIS

(b) LRU/DEMOTE

Ideal

Figure 2: We experiment with two cache configu-
rations: LRU/LRU and LRU/DEMOTE. The results show
significant room for improvement.

communication between caches is essential [19, 32, 33] for
effective use of multi-tier caches. For example, the DE-
MOTE [32] scheme sends block eviction hints or explicit de-
mote operations from the client cache e.g., the database
buffer pool, to the storage cache with the goal to maintain
ezclusiveness between the two caches. When the client cache
is about to evict a clean block, it sends the clean block to
the storage cache using a special DEMOTE operation. The
storage cache places the demoted block in its cache, eject-
ing another block if necessary. The storage cache moves the
blocks read by the client to the LRU (least-recently-used)
position such that they will be evicted before the demoted
blocks. Li et al. [19] and Yadgar et al. [33] extend the DE-
MOTE idea using DBMS specific information. Their work has
shown that these techniques increase the effectiveness of the
combined buffer pool and storage caches and are essential
to the performance of the database system. However, in the
next section, we show that the detrimental effect of appli-
cation interference in the cache hierarchy offsets the gains
obtained from the above advanced replacement policies.

2.1 Motivating Example

We present a motivating example to highlight the need
for better management of shared multi-tier caches. We use
two applications: TPC-W, considered strict SLO, and RU-
BiS, considered best effort, and schedule the applications
such that they share a single DBMS instance, as well as
the storage server, as shown in Figure 1. We require that
the average TPC-W query data access latency be less than
500us; in practice, some pre-defined margin of error may
be acceptable. We also assume that any reductions in the
latency of the best effort application, RUBIS, compared to
the worst case scenario are rewarded e.g., through revenue
increases for the provider; we consider the worst case sce-
nario for RUBIS to correspond to its incurring the full disk
latency on each query data access.

We run the two applications using a single MySQL /InnoDB
database engine and a consolidated storage server. Since
MySQL/InnoDB does not provide an easily partitionable
buffer pool, we replace its buffer pool with our own im-
plementation. We use a 1GB buffer pool and a 1GB stor-
age cache and we experiment with two cache replacement
policies in the two shared caches. We denote a scheme as
LRU/LRU a scheme where the classic LRU replacement pol-
icy is used in both the buffer pool and the storage cache
(Figure 2(a)). We denote as LRU/DEMOTE a scheme where
a LRU replacement is used at the buffer pool modified to

637

support the DEMOTE cache block eviction hints for the stor-
age cache (Figure 2(b)). We provide the details of our stor-
age platform in Section 4. We compare two schemes: (1)
SHARED where the applications share both the DBMS buffer
pool and the storage cache, with no quota enforcement and
(2) IDEAL where we experimentally iterate through all pos-
sible partitioning configurations of both caches and choose
the optimal setting where we meet the SLO for TPC-W,
while minimizing the latency for RUBIS.

Figure 2 shows the performance of each benchmark un-
der the above schemes, in addition to the performance for
ISOLATED, which corresponds to running each benchmark
in isolation, using a 1GB buffer pool at the DBMS and a
1GB storage cache. Figure 2(a) shows that under LRU/LRU,
the average latency of TPC-W, in isolation, is 420us, while
for RUBIS the isolation latency is 304us. This experiment
shows that our storage infrastructure is capable of meeting
the SLO for TPC-W. Next, we run both TPC-W and RU-
BiS allowing them to share the buffer pool and the storage
cache. In this case, there is no SLO enforcement resulting
in TPC-W consistently violating its SLO with an average
715us data access latency. This scenario would result in
hefty penalties for the service provider. By partitioning the
caches, the IDEAL partitioning scheme finds a cache setting
that maintains TPC-W within the SLO. This scheme shows
the best possible resource usage scenario and the highest
revenue for the service provider.

We repeat our experiments with the LRU/DEMOTE cache
replacement policy (Figure 2(b)). Since the DEMOTE scheme
results in a better utilization of the overall cache hierar-
chy, both TPC-W and RUBIS obtain lower latencies when
in isolation, compared to the LRU/LRU case. The average
data access latency is 284us for TPC-W, while for RUBIS
is 143ps. While the LRU/DEMOTE policy provides better
cache utilization, using the SHARED scheme still results in
a SLO violation, since the average data access latency for
TPC-W is 617us. Similar to the results in the LRU/LRU case,
the IDEAL scheme maintains the TPC-W latency within the
SLO for LRU/DEMOTE as well.

The above results show that the performance of a strict
SLO application can severely degrade when two database
applications are co-located within the same DBMS instance.
These experiments thus motivate coordination in terms of
both cache partitioning and replacement policy between the
two caches. However, the problem of finding the globally
optimum partitioning of the two caches to a given set of
applications is an NP-hard problem. Let’s consider the
time needed to find the IDEAL cache partitioning setting.
For example, say we can have 32 possible quota settings
for each cache. Then, in order to estimate an applica-
tion’s performance for all possible cache and storage quota
configurations, we need to gather performance samples for
32 x 32 = 1024 configurations. Each sample point measure-
ment may take 16 minutes, on average, to ensure statistical
significance e.g., due to cache warmup effects and the need to
measure latency several times in each configuration. There-
fore, in order to compute an accurate performance model for
just one application, we will need 1024 x 16 minutes, i.e.,
273 hours (approximately 11 days)! In our experiment for
obtaining the IDEAL cache setting, we reduce this time sig-
nificantly, by iterating from larger cache quotas to smaller
cache quotas for the two caches, for each application, thus
amortizing the warm-up time of the larger cache quota con-

figurations for the smaller cache quota configurations. This
still results in a total running time for the two applications
on the order of days, which is unacceptable for on-line adap-
tation.

In the rest of this paper, we describe the design and imple-
mentation of a novel approximate algorithm that partitions
both the database buffer pool and the storage cache on-line
for any cache replacement policy and any per-application
access pattern.

3. CACHE PARTITIONING ALGORITHM

In this section, we describe our approach to providing ef-
fective coordinated cache partitioning in two-level caches.
Our main objective is to maximize the utility i.e., reward
or revenue, derived by the server provider from running a
set of applications concurrently on a shared cache hierarchy.
Towards this, we use a novel technique, called utility-aware
iterative learning to determine the size of cache quotas at dif-
ferent levels in the system, i.e., the DBMS and the storage
server. The key idea is to dynamically determine, through a
statistical regression method, the mapping between a cache
partitioning setting for a given set of applications and its
corresponding overall utility for the service provider.

In the following, we first introduce the problem statement,
and an overview of our approach. Then, we introduce our
utility-aware iterative learning approach along with details
of its main components.

3.1 Problem Statement

We study dynamic cache allocation to multiple applica-
tions with pre-defined QoS requirements in the cache hier-
archy of server farms with network attached storage.

In our model, we assume that the system is hosting n ap-
plications, where each application runs on only one database
engine. Each engine has its own buffer pool cache. Addition-
ally, the system has a storage cache which is shared among
all applications. Finally, we assume that each application is
associated with a pre-specified utility, i.e., benefit as a func-
tion of the data access latency perceived by the given appli-
cation. Thus, the cache partitioning problem translates into
allocating each application a buffer pool quota and a storage
cache quota in such a way to maximize the service provider’s
revenue. Specifically, let’s denote with r1, 72, ..., r, the data
access latencies of the n applications hosted by the service
provider and let U;(r;) represent the utility function for the
it" application. The goal of the service provider is to maxi-
mize the sum of all application utilities i.e.,:

mamz Ui(ri) (1)
i=1

Finding a practical solution to this problem is difficult,
because of the following three reasons:

First, as we have shown in Section 2, exhaustively evalu-
ating the application performance for all possible configura-
tions experimentally is infeasible.

Second, effective utilization of the caches depends on sev-
eral factors, including the (dynamic) access patterns of the
applications, the (dynamic) number of applications sched-
uled on the server farm, and the cache replacement policy
used in each cache. Due to the unpredictable impact of these
cache and application parameters, implementing an analyt-
ical model of performance for guiding the cache partitioning

638

search becomes a daunting task.

Third, accurately evaluating the utility, i.e., benefit gained
from an application’s use of its total memory quota within
a system component, such as, the database or storage server
is non-trivial. Using common cache metrics, such as mon-
itoring the hit rate in each of the two caches is impracti-
cal because: i) the hit rate at the storage cache depends
on the behavior of the upper level cache, i.e. the size of
the buffer pool and its replacement policy and ii) their re-
spective access times differ. In more detail, increasing the
allocation for an application in the buffer pool usually af-
fects the block accesses seen, hence the hit rate measured,
at the storage cache. Moreover, different cache replacement
algorithms e.g., LRU versus DEMOTE influence the number
and type of accesses seen at the storage cache. Finally, a
buffer pool hit is usually more valuable to the application
than a storage cache hit, because the storage cache access
usually incurs the additional network delay to the storage
server. Therefore, simply combining the two cache hit rates
for each application does not provide a meaningful overall
utility value for memory usage.

3.2 Overview of Approach

Our technique determines per-application resource quotas
in the database and storage caches, on the fly, in a trans-
parent manner, with minimal changes to the DBMS, and
no changes to existing interfaces between system compo-
nents. For this purpose, we introduce a novel algorithm,
called wutility-aware iterative learning, which iteratively per-
forms the following two inter-related operations:

1. We build approximate performance models, called ap-
plication surfaces for mapping cache configuration quo-
tas to the application latency, and its corresponding
utility, for each application, on the fly, and

2. We use the per-application performance models to an-
swer “what-if” cache partitioning scenarios, for any
given set of applications, as part of an efficient auto-
matic search for the optimal two-tier cache partition-
ing solution.

Specifically, we employ statistical support vector machine
regression (SVR) [12] for approximating the per-application
performance models, based on a set of sample points. Each
sample point consists of the application latency for a given
cache quota configuration. As sample points are incremen-
tally collected, our algorithm iterates through successive re-
finement steps, re-approximating the per-application perfor-
mance models and the optimal solution, until convergence
of both the models and the overall optimum occurs.

To achieve this, we augment the DBMS with a resource
controller in charge of partitioning both caches between ap-
plications. The DBMS cache controller runs our wutility-
aware iterative learning algorithm to dynamically converge
towards a partitioning setting that maximizes the combined
application utilities. For each application, the DBMS col-
lects a set of sample points recording the average data ac-
cess latency, and its corresponding calculated utility in each
cache configuration. In order to speed up convergence, the
controller gathers sample points by cache simulation, in-
stead of experimentally. However, the cache controller ac-
tuates cache partitioning to better configurations periodi-
cally, in order to reduce the penalties incurred by the service

provider, whenever the latencies of applications exceed the
SLO. When actuating, the controller samples the latency in
that cache quota configuration, hence can validate/adjust
the respective simulation-based sample point.

In the following subsections, we first describe our perfor-
mance models in more detail, then introduce our utility-
aware iterative learning algorithm.

3.3 Performance Models

We dynamically build a per-application latency model,
which maps cache partitioning quotas for the respective ap-
plication to the expected latency. Each per-application model
is thus a 3D-surface, of the form 7;(gi.,¢is), or simply
ri(qe, gs), where ¢ and ¢ are the quotas allocated to the ap-
plication in the buffer pool and storage cache, respectively.
Each sample point 7;(gc,gs) is the data access latency of
the application, as estimated by an on-line simulation of
the cache hierarchy. Selective experimental points are also
collected to validate or adjust the simulation points.

For the purposes of approximating each function, r;, based
on a set of sample points for that application, we use support
vector machine regression (SVR) [12]. Then, for each ap-
proximated latency model, r;, we compute the correspond-
ing wtility model as U;(r;), which is another 3D-surface, we
call application surface. The application surface represents
the service provider’s revenue for hosting application i for
the corresponding application latency function r;, obtained
for different cache configurations (gc, gs).

3.4 Utility-Aware Iterative Learning Algorithm

For a given set of applications and a cache hierarchy, our
goal is to find the cache configuration maximizing the com-
bined application utilities. Towards this, we propose our
utility-aware iterative learning algorithm.

In each iteration of our algorithm, we enhance the quality
of the latency models described above. Specifically, we em-
ploy statistical regression to approximate the per-application
latency models, as a set of functions r;, one such function for
each application i, based on a set of latency sample points,
73(ge, gs), collected for different cache configurations (gc, gs).
Given the enhanced latency models, we calculate the corre-
sponding application surface for each application. Finally,
our goal is to pick from each 3D application surface a single
point (i.e., a cache configuration), which:

1. provides maxy_;_, Us(ri), and

2. respects the constraint that the sum of the cache quo-
tas (proportions) allocated to applications for each level
of cache must be equal to 1.

In order to expedite this search process, we perform a hill-
climbing search for the cache configuration settings over the
n application surfaces given the requirements above.

Our proposed learning algorithm iterates through suc-
cessive refinement steps, as more sample points are incre-
mentally added, re-approximating the per-application per-
formance models, as a set of functions r;, as well as the opti-
mal solution, using statistical regression, and hill-climbing,
respectively, until convergence of both the models and the
overall optimum occurs. The learning algorithm converges
when either one of the following conditions occurs: i) adding
more sampling points does not increase the accuracy of the
regression function i.e., the per-application surfaces vary

639

Algorithm 1 Iterative learning for searching the optimal
cache partitioning configuration Q*

1: Initialize: Vi, sample set S; of application i, S; =
2: repeat

3: fori=1tondo

4: 1) Add k new samples to sample set S;

5 2) Use SVR to learn the function r; using sample
set S;

6: end for

7 3) Map data access latencies r; to utility values

8 4) Find MCU = max Y., Ui(ri(gc, gs)) for all valid

configurations.
9: 5) Actuate to current best configuration @Q* which

generates MCU.
10: until Regression error is below a threshold or the MCU
value is stable

only within a predefined deviation bound across iterations,
or ii) the maximum value of the combined utilities for all ap-
plications does not change anymore across iterations, even
with increasing the resolution of the regression functions.

Algorithm 1 shows the pseudo-code for our iterative learn-
ing process. At a given iteration of the algorithm, each ap-
plication 7 has a sample set, denoted by S;, initialized to
empty (line 1). In each iteration step, for each applica-
tion i, we generate a new set of sample points to expand
the current sample set (line 4); we then learn the regres-
sion functions r;, based on the current sample set. Based
on the regression functions for all applications, we convert
application performance metrics i.e., average data access la-
tency to the respective utility values (line 7). Next, we
employ hill climbing to find the maximum combined util-
ity (MCU) value for all valid configurations in the result-
ing search space (line 8). Next, we actuate to the opti-
mal cache partitioning configuration Q*, which is a set of
pairs of cache configurations per application, that is, Q* =
(1,65 q1,5)5 (42,¢5G2,5)s 5 (Gn,es @n,s) (line 9), and we proceed
to check for convergence (line 10).

In the following, we describe the main operations in our
utility-aware iterative learning algorithm. In particular, we
provide the details of steps 1-4 in Algorithm 1 above.

Step 1: Sampling

We experiment with two methods for generating sample
points: (1) random sampling, and (2) greedy sampling. In
random sampling, a sample is selected randomly from all
possible cache partitioning configurations; every possible sam-
ple has an equal chance of being selected. Random sampling
is not goal oriented, hence can lead to relatively slow con-
vergence. Greedy sampling optimistically predicts that the
current optimum found at a given iteration is close to the
global optimum. It thus preferentially adds sample points
within a gradually increasing radius of the current optimum,
seeking rapid convergence. A variant of our greedy algorithm
is to add sample points along vectors with the highest gra-
dient in the current search space.

Step 2: Statistical Regression

For the purposes of approximating each function, r;, based
on a set of sample points for that application, we use support
vector machine regression (SVR) [12]. SVR is a non-linear
regression algorithm that is tolerant to measurement errors

D D+e D'

Time

Utility ©
3
utility &

3
5

‘ Time

D D'

(a) High Priority (b) Best Effort

Figure 3: Utility Functions

(small noise) in the sample set, as well as generalizing for the
regions that are not sampled, unlike other machine learning
techniques, such as multi-linear-regression [17]. SVR maps
the regression problem to a quadratic optimization, finding
the optimum solution.

Given a set of training points {(x1,y1),.-., (Xm,¥Ym)},
SVR finds a function f(x) that has a small deviation (¢)
from the targets y; for all training data points. The esti-
mated function f(x) takes the form:

flx) = ZaiyiK(szX) (2)

To build our latency model per-application, each train-
ing point i represents one of the sample points, where x;
is the cache configuration for that point (i.e., (gc,¢s)) and
y; is the latency corresponding to that configuration. Each
training point x; is associated with a variable «; that repre-
sents the strength with which the training point is embed-
ded in the final function. The points which lie closest to the
hyperplane, denoting f(x), are called the support vectors.
K (x;,x) is a kernel function which maps the input into a
high dimensional space, called feature space, where linear
support vector regression is applied. We use radial basis
functions (RBFs) as our kernel functions.

Step 3: Mapping Latency to Utility

The utility function corresponding to the performance of
any given application (e.g., [18, 6]) varies since it depends
on the contract between the service provider and the client
and the costs for the service provider to host the application.
Our algorithm does not depend on the exact specification of
the utility function. Thus, without loss of generality, for
the purposes of this paper, we classify applications in two
categories: strict SLO (or high priority) applications and
best effort applications.

Figure 3(a) depicts the utility function we use for strict
SLO applications. For this application class, the provider
pays a penalty whenever the application’s SLO i.e., its av-
erage data access latency (denoted as response time in the
Figure), is violated beyond a small margin of error called
slack. On the other hand, the provider has no benefits for
providing service better than the pre-agreed SLO for the
application. As shown in the Figure, as long as the appli-
cation’s response time is less than a deadline D with some
slack €, the utility is constant at zero. Beyond this value,
the provider starts paying penalties for SLO violations, pro-
portional to the magnitude of the violation, until another
threshold D’ considered to be unacceptable to the customer.

Figure 3(b) shows the utility function for the best effort

application class. The provider pays no penalties, regardless
of the level of service for an application in this class. Hence,
the baseline level of performance with response time beyond
D’ has the utility value zero. This baseline level would cor-
respond to the application performance for 100% cache miss
rates for any level of cache in our case. However, we assume
that performance above the baseline carries a reward for the
service provider, which increases proportionally to the level
of service until reaching a maximum performance level, after
which no more benefits accrue.

Step 4: Finding the Maximum Combined Utility

In order to achieve a near-optimal performance, we need to
select from each 3D application surface a cache configuration
so that the total application utilization is maximized. This
results in a combinatorial search space where finding the
optimal solution is not feasible. Hence, we use the greedy hill
climbing algorithm with random restarts to find the point
where the combined utility is the maximum.

3.5 On-line Adaptation to Dynamic Changes

After our wutility-aware iterative learning algorithm con-
verges, we obtain accurate per-application surfaces, and the
optimal Q™ cache partitioning configuration, for the current
set of applications running on the infrastructure. Depend-
ing on the type of dynamic change, the entire algorithm,
or selected parts of it, may need to be re-executed. For
example, if a new application is co-scheduled on the same
infrastructure, we need to sample the latency and compute
the application surface, only for the new application. Then,
we re-compute the new optimum, @, cache partitioning
configuration by hill climbing, based on the new set of ap-
plication surfaces. If the access pattern of a given applica-
tion changes e.g., as detected by significant changes in its
miss ratio curve monitored on the trace collected on-line
for simulation purposes, we need to build a new application
surface from scratch for the given application, and recom-
pute the global optimum configuration. For any other type
of dynamic change where the application pattern does not
change, hence the cache behavior is stable, e.g., if the num-
ber of clients of any given set of applications increases, the
per-application surfaces remain accurate, hence we simply
need to recompute the optimum configuration in order to
minimize losses.

4. PROTOTYPE IMPLEMENTATION

We implement our dynamic cache partitioning algorithm
within MySQL and in our Linux-based virtual storage pro-
totype, Gemini. We run a database server using a networked
storage server. The architecture, shown in Figure 4, includes
a two-level cache hierarchy, consisting of a buffer pool and
a storage cache.

MySQL communicates with the virtual storage device through

standard Linux system calls and drivers, either iSCSI or
NBD (network block device), as shown in the Figure 4. NBD
is a standard storage access protocol similar to iSCSI, sup-
ported by Linux. It provides a method to communicate
with a storage server over the network. We modified ex-
isting client and server NBD protocol processing modules
for the storage client and server, respectively, in order to
interpose Gemini modules on the I/O communication path.

In the following, we first describe the interfaces and com-
munication between the core modules, then describe the role

of each core module in more detail. Finally, we describe
the dual role of the Gemini prototype as an on-line cache
simulator, where the same modules which service an I/O
request are used concurrently to explore the configuration
space faster and with minimal overhead.

4.1 Virtual Storage System

Gemini is a modular virtual storage system which can be
deployed over commodity storage firmware. It supports data
accesses to multiple virtual volumes and it can interface
through Linux with either a storage controller for a RAID
system or a single hard disk. Finally, we design a database
system plug-in to enable coordination between the database
system and the storage server.

Storage clients, such as MySQL, use NBD for reading and
writing logical blocks. For example, as shown in Figure 4,
MySQL/InnoDB mounts the NBD device (/dev/nbdl) on
/dev/raw/rawl. The Linux virtual disk driver uses the NBD
protocol to communicate with the storage server. AnI1/0 re-
quest from the client takes the form <type,offset,length>
where type is a read or write. The I/O request is passed
by the OS to the NBD kernel driver on the client, which
transfers the request over the network to the NBD protocol
module running on the storage server.

The storage server is built using different modules. Each
module consists of several threads processing requests. The
modules are interconnected through in-memory buffers. The
modular design allows us to build many storage configura-
tions by simply connecting different modules together.

Disk module: The disk module sits at the lowest level
of the module hierarchy. It provides the interface with the
underlying physical disk by translating application 1/O re-
quests to the virtual disk into pread()/ pwrite() system
calls, reading/writing the underlying physical data. We dis-
able the operating system buffer cache by using direct I/O
i.e., the I/O O_DIRECT flag in Linux.

Cache module: The cache module allows data to be
cached in memory for faster access times. The cache module
is portable to different environments by providing a simple
hashtable-like interface (modelled after Berkeley DB) sup-
porting get(), put(), delete() and flush() operations.
It supports different block sizes, dynamic resizing, asyn-
chronous I/0, several cache replacement algorithms and sev-
eral prefetching policies. For the purposes of this paper, the
cache maintains data as a collection of blocks, implements
two cache replacement policies, either LRU or DEMOTE,
and manages accesses from concurrent threads. Since
MySQL/InnoDB does not support buffer pool partitioning,
we embed our caching library into MySQL, replacing MySQL
buffer pool manager. The server cache is located on the same
physical node as the storage controller. The two instances
of the cache module create a two-tier cache hierarchy.

NBD Protocol module: We modify the original NBD
processing module on the server side, used in Linux for vir-
tual disk access, to convert the NBD packets into our own
internal protocol packets, i.e., into calls to our Gemini server
cache module.

El

4.2 Cache Simulator

The Gemini system has the capability to double-up as a
simulator in any runtime configuration in order to estimate
settings with the best performance, on-line. In on-line simu-
lation mode, it explores the search space of cache partition-

S

641

MySQL Gemini
NBD Cache Disk
—

/dev/raw/rawl y s

/dev/sdbl

OO0

SERVER

Linux

NBD

/dev/nbd1

CLIENT

Figure 4: Gemini Storage Architecture: We show one
client connected to a storage server using NBD.

ing settings for any given cache replacement and data distri-
bution technique employed by our prototype. The modifica-
tions to the operations are minimal and consist of simulat-
ing: i) disk accesses and network communication by record-
ing their corresponding delays on a virtual clock and ii) data
touches based on a real access trace. We replace the NBD
processing modules with a trace module. The trace module
replays the most recent accesses in the trace collected at the
level of the MySQL buffer pool. The same cache code, as
described for the caching module, runs for the two caches in
simulation as in the real implementation.

S. EVALUATION

In this section, we describe several cache partitioning al-
gorithms we use in our evaluation, as well as the benchmarks
and our evaluation platform.

5.1 Algorithms used in Experiments

We implemented a prototype of our utility-aware iterative
learning algorithm (Section 3), which we will call DYNAMIC
and compared it to the following schemes:

CONSERVATIVE: We take the conservative approach and
allocate both the buffer pool and the storage cache to the
high-priority application. To the low-priority application,
we allocate only a minimum cache quota, such that its data
accesses can still occur i.e., 32MB in our implementation,
and dedicate the rest of the cache space to the high-priority
application.

PROFILE: We profile each application off-line to determine
the amount of buffer pool it needs in order to meets its SLO.
We assign each application the respective amount of buffer
pool cache, whereas the storage cache is shared among all
applications with no-quota enforcement. Hence, this scheme
is SLO-aware, however, it is oblivious to the presence of the
second-level cache.

MRC: A miss-ratio curve (MRC) estimates the page miss
ratio for an application given a particular amount of mem-
ory. It has been applied to effectively allocate memory to
several applications [34]. In this paper, we extend MRC
for the purpose of partitioning a two-level cache hierarchy.
Specifically, at the buffer pool level, we partition the buffer
pool using the MRC computed for each application. Sim-
ilarly, at the storage cache level, we partition the storage
cache by building an MRC for each application using its
missed data accesses (i.e., accesses that are not satisfied by
the buffer pool cache).

IDEAL: We perform off-line experiments iterating through

all possible partitioning configurations of the two caches and
choose the setting which maximizes the revenue.
SHARED: We allow applications to share both the DBMS
buffer pool and the storage cache with no quota enforcement.
DYNAMIC: This is our cache partitioning scheme described
in Section 3.

5.2 Benchmarks

We use two industry-standard benchmarks, TPC-W and
RUBIS, to evaluate our proposed algorithm.

TPC-W'°: The TPC-W benchmark from the Transac-
tion Processing Council [1] is a transactional web benchmark
designed for evaluating e-commerce systems. Several web in-
teractions are used to simulate the activity of a retail store.
The database size is determined by the number of items in
the inventory and the size of the customer population. We
use 100K items and 2.8 million customers which results in a
database of about 4 GB. We use the shopping workload that
consists of 20% writes. To fully stress our architecture, we
create TPC-W'° by running 10 TPC-W instances in parallel
creating a database of 40 GB.

RUBIS!’: We use the RUBiS Auction Benchmark to sim-
ulate a bidding workload similar to e-Bay. The benchmark
implements the core functionality of an auction site: sell-
ing, browsing, and bidding. We distinguish between three
kinds of user sessions: visitor, buyer, and seller. For a vis-
itor session, users are only allowed to browse. During a
buyer session, in addition to the functionality provided dur-
ing the visitor sessions, users can bid on items and consult
a summary of their current bid, rating, and comments left
by other users. We are using the default RUBiS bidding
workload containing 15% writes, considered the most repre-
sentative of an auction site workload according to an earlier
study of e-Bay workloads [27]. We create a scaled workload,
RUBiS' by running 10 RUBiS instances in parallel.

5.3 Evaluation Platform

We run our Web based applications on a dynamic content
infrastructure consisting of the Apache web server, the PHP
application server and the MySQL/InnoDB (version 5.0.24)
database storage engine. We run the Apache Web server and
MySQL on Dell PowerEdge SC1450 with dual Intel Xeon
processors running at 3.0 Ghz with 2GB of memory. MySQL
connects to the raw device hosted by the NBD server. We
run the NBD server on a Dell PowerEdge PE1950 with 8
Intel Xeon processors running at 2.8 Ghz with 3GB of mem-
ory. The storage uses a direct-attached SAS enclosure with
15 10K RPM 250GB hard disks configured to use RAID-0.
We install Ubuntu 6.06 on both the client and server ma-
chines with Linux kernel version 2.6.18-smp. We configure
our caching library to use 16KB block size to match the
MySQL/InnoDB block size.

6. RESULTS

In this section, we present an experimental evaluation
of our multi-tier cache allocation technique. We conduct
experiments on our prototype storage system to evaluate
the performance of our approach. We use two applications:
TPC-W as the strict SLO (high-priority) application, and
RUBIS as the best-effort application. We express the SLO in
terms of average data access latency. A data access latency
SLO of less than 500us provides an average query response
time below 500ms for both our benchmarks, which closely

642

approximates values used as QoS for the two e-commerce
applications in previous studies [28]. Thus, in our utility
function, we set D = 500us, D' = 3500us (the average disk
access time), Umin = —100 and Upmaee = 100. In addition,
we experiment with relaxing the SLO by varying the slack
(e) from 10% (D + e < 550us) to 100% (D + € < 1000us).
We explore the effects of different application access pat-
terns and the effect of different replacement policies on the
optimal cache partitioning. We use 1 database server and 1
storage server, each configured with a 1GB cache.

6.1 Latency Surfaces

In Figure 5, we show the latency surface of two applica-
tions: (1) TPC-W, and (2) RUBIS. The figure shows the
data access latency for different settings of the buffer pool
size and the storage cache size. The light gray areas indi-
cate configurations with high data access latency, whereas
the dark gray areas indicate configurations with low data ac-
cess latency. These applications have varying working sets.
TPC-W, having a small working set, obtains low data access
latencies even with small allocations of cache space. RUBIS,
with a larger working set, requires more cache space in the
cache hierarchy to obtain low data access latencies.

6.2 Latency under LRU/LRU

In Figure 6, we compare the performance of the different
cache partitioning schemes when both the database buffer
pool and the storage cache use the LRU cache replacement
policy. Figure 6(a) shows that, under the SHARED and the
MRC schemes, the SLO of our high-priority application (i.e.,
TPC-W) is violated. For instance, the average data access
latency of TPC-W under SHARED is 715us, as opposed to
the pre-specified SLO of 500us. This is mainly because both
schemes are oblivious to the SLO requirements.

On the other hand, both the CONSERVATIVE and the PRO-
FILE schemes satisfy the SLO requirements of TPC-W. How-
ever, both schemes over-allocate cache resources to TPC-W
to the detriment of the best-effort application (RUBIS). Be-
tween the two schemes, RUBIS performs worse under CON-
SERVATIVE, which allocates all the available cache to TPC-
W. In contrast, under PROFILE, RUBIS achieves a better
performance, since PROFILE allows RUBIS to share the stor-
age cache with TPC-W.

The IDEAL scheme, and similarly our DYNAMIC scheme,
are both able to strike a fine balance between satisfying
the TPC-W SLO requirement while providing an acceptable
performance to RUBIS. This is simply due to the fact that
under LRU/LRU, the storage cache typically includes blocks
already contained in the database buffer pool. Thus, there
is no additional benefit for an application, if its partition in
the storage cache is smaller than its partition in the buffer
pool. Since both CONSERVATIVE and PROFILE are oblivious
to this inclusiveness property exhibited by LRU/LRU, they
might allocate storage cache to TPC-W. This is wasteful,
since TPC-W does not derive any additional benefit from
the storage cache allocation, while the respective allocation
of storage cache could have been of a significant benefit if
allocated to RUBIS. Our DYNAMIC scheme dynamically rec-
ognizes this trade-off and it detects that more revenue is
achievable if the storage cache is allocated to RUBIS. Thus,
by accurately computing the overall utility function, DY-
NAMIC chooses a near-optimal cache partitioning setting,
where most of the database buffer pool is allocated to TPC-

Latency Surface

Latency (ms)

@

C o kR R NNWWR
@

51
Buffer Pool Size (MB)

768

(a) TPC-W (small working set)

Latency Surface

Latency (ms)

@

Ok R NN W W R
@

51
Buffer Pool Size (MB)

76

(b) RUBIS (large working set)

Figure 5: Latency Surfaces: Data access latency for different partitionings of buffer pool and storage cache.
2000 i 100
o 1500 75
5 3
g 1000
£ 5 50
8]
= 500 :I «
sLo 25 i . | - |
0 |
> 3 @ @ © > 0 — .
Q’b‘o é" '&5‘ (°° ’P& \be 0/ o, o 0/ o
S 0(‘] 0.\0 0% 10% 25% 50% 100%
C)
Pl Slack
TPC-W HRUBIS Dynamic B Profile

(a) Strict SLO

(b) Profit with varying Slack

Figure 6: LRU/LRU

W (the high-priority application) and most of the storage
cache is allocated to RUBIS (the best-effort application).
With near-optimal settings, using DYNAMIC, we reduce the
latency of RUBIS to 1193us (versus 1844us for PROFILE).

6.3 Revenue under LRU/LRU

The gains provided by our DYNAMIC scheme are even more
prominent when the provided latencies are mapped to the
corresponding revenues, as shown in Figure 6(b). The fig-
ure also shows that with larger slack, we are able to further
increase revenue. For instance, DYNAMIC increases the rev-
enue from 43 (with 0% slack) to 87 (with 100% slack). This
increase is achieved by reducing the RUBIS data access la-
tency from 1193us to 612us. On the other hand, the PRO-
FILE scheme is unable to take advantage of the slack to the
same degree. For example, there is no additional revenue
generated when the slack is 0%, and the revenue generated
with larger slacks is significantly lower than the revenue gen-
erated using the DYNAMIC scheme.

6.4 Latency under LRU/DEMOTE

In Figure 7, we repeat the previous experiment using the

LRU/DEMOTE scheme, where the database buffer pool in-
forms the storage cache of block evictions, and the storage
cache uses the DEMOTE cache replacement policy. The DE-
MOTE policy maintains ezclusiveness between the database
buffer pool and the storage cache. Thus, the DEMOTE scheme
results in a better utilization of the overall cache hierarchy,
leading to both TPC-W and RUBIS obtaining lower laten-
cies even when in isolation, compared to the LRU/LRU case.

Under SHARED, both applications compete for the cache
space, causing TPC-W to incur higher cache misses at both
the buffer pool and the storage cache; this in turn leads to
an average data access latency of 615us for TPC-W, which
is 23% higher than the pre-specified SLO. The fact that the
best effort RUBIS is doing well under this scheme does not
matter since the provider incurs substantial loss for violating
TPC-W SLO.

For fairness of comparison, we modify the MRC algorithm
to support DEMOTE policy and we use our modified MRC
algorithm to allocate the memory to applications. Specifi-
cally, the MRC algorithm analytically derives the miss-ratio
curve by tracking cache contents using an LRU stack. Upon
a read/write request, it moves the accessed block to the

2000 3508

1500

1000

Latency (us)

TPC-W BRUBiS
(a) Strict SLO

Revenue

100

0% 10%

25%
Slack

50% 100%

Dynamic M Profile
(b) Profit with varying Slack

Figure 7: LRU/DEMOTE

top of the LRU stack. In the presence of DEMOTEs, to
model the policy correctly, we modify MRC so that to place
blocks referenced in a DEMOTE request to the top of the
LRU stack instead of blocks referenced in I/O reads. Fi-
nally, I/O writes are handled the same for both LRU and
Demote cache policies. Under our modified MRC, the aver-
age data access latency for TPC-W is within the SLO, while
the RUBIS latency is still higher than our DYNAMIC scheme
(1095us under MRC vs. 903us under DYNAMIC).

While, the CONSERVATIVE and the PROFILE algorithms

maintain TPC-W’s latency within the SLO, they over-provision

the cache resources, leading to high latencies for RUBIS,
3508us for the CONSERVATIVE scheme and 1476us for the
PROFILE scheme. The PROFILE scheme allocates the buffer
pool to TPC-W assuming that the storage cache provides
no additional benefit. While this assumption is true for
the LRU/LRU layout, it is false for the LRU/DEMOTE layout,
where by using the DEMOTE algorithm, the storage cache
provides a significant benefit to TPC-W. Hence, the PRO-
FILE scheme provides a data access latency of 376us, even
while profiling to meet the 500us SLO.

By accurately modelling the effect of two-tier caching, our
DYNAMIC scheme selects a near-optimal partitioning setting,
where TPC-W is allocated enough buffer pool space such
that it meets its SLO. With this allocation, the TPC-W
latency is within the SLO and the RUBIS latency is 903us.

6.5 Revenue under LRU/DEMOTE

With larger slack, as shown in Figure 7(b), we can further
reduce RUBIS latency, from 903us to 284 us, thereby increas-
ing the revenue from 74 (with 0% slack) to 95 (with 100%
slack). The PROFILE scheme also generates higher revenue
compared to the LRU/LRU layout, due to higher utilization of
the storage cache. However, the DYNAMIC scheme provides a
higher revenue than the PROFILE scheme. Hence, integrating
our cache partitioning DYNAMIC scheme with the DEMOTE
coordinated cache replacement policy provides further rev-
enue improvements that are not achievable using DEMOTE
with other comparison schemes.

6.6 Performance under Overload Scenario

To better understand the improvement in performance
achieved by DYNAMIC, we experiment with an overload sce-
nario where two high-priority applications are scheduled.

Specifically, we use two instances of the high-priority TPC-
W application (denoted A and B) sharing the database and
storage cache, thus creating an overload case, where the
available resources are not sufficient to meet the SLO, given
no slack. In this case, no additional revenue can be gener-
ated, and all schemes simply strive to minimize the losses.
With two equally high priority applications, the CONSERVA-
TIVE, PROFILE, and MRC schemes divide the database buffer
pool and the storage cache equally (50/50) among the two
TPC-W instances. Under the LRU/LRU layout, this leads
to an average data access latency of 833us, while our DY-
NAMIC scheme matches the IDEAL by obtaining an average
data access latency of 743us. DYNAMIC achieves this im-
provement by dynamically selecting an optimal cache con-
figuration, which exploits the inclusiveness in LRU/LRU.

To provide an insight into the optimal partitioning, in Fig-
ure 8, we show the revenue function. The z-azis shows the
fraction of the storage cache given to application A and the
y-axis shows the fraction of the buffer pool given to applica-
tion A. Since only two applications are running, Application
B is given the remaining cache space. Figure 8 shows the
revenue for different cache partitioning settings. The “low”
revenue settings are shown in dark colors, and the “high”
revenue is shown in light colors. The contour lines highlight
the near-optimal settings. For example, as shown in Fig-
ure 8, the LRU/LRU layout has two optimal configurations.
One optimal setting (top-left of the figure) is when Applica-
tion A is given most of the buffer pool and a small fraction
in the storage cache. The other optimal setting (bottom-
right of the figure) is when Application B is given most of
the buffer pool and very little of the storage cache.

If LRU/LRU is used, then the storage cache only provides
a marginal benefit to the application given a large propor-
tion of the database buffer pool. Thus, the plot shows that
the optimal setting is achieved when the buffer pool is al-
located to one application (A or B), and the storage cache
allocated to the other (B or A). On the other hand, using
the LRU/DEMOTE scheme, the storage cache benefits both
applications equally leading to an optimal partitioning of
50/50 (Figure 8(b)).

6.7 Sampling Convergence

In Figure 9, we compare the speed of convergence of two
sampling strategies: (1) greedy sampling and (2) random

Buffer Pool (A)
Buffer Pool (A)

Storage Cache (A)

(a) LRU/LRU

Storage Cache (A)

(b) LRU/DEMOTE

Figure 8: Overload: We show the total revenue for
TPC-W /TPC-W for several configurations with the
light regions showing “high” revenue and the dark
regions showing “low” revenue. We also highlight
the optimal cache partitioning settings.

sampling. In greedy sampling, we gather samples near the
currently found optimal configuration. In random sampling,
we select a set of random samples at each iteration. The
benefit of greedy sampling is intuitively in potentially faster
convergence towards the optimal cache configuration.

In Figure 9, the z-axis shows the number of samples se-
lected for our statistical regression, and the y-axis shows the
deviation from optimal. The deviation from optimal is the
difference in revenue by using the estimated optimal par-
titioning, as opposed to the revenue generated using ideal
cache partitioning. Initially, with a small number of sam-
ples, both the greedy approach and the random approach
are far from optimal. However, after 64 samples, the greedy
approach starts converging to the optimal, reached with only
160 samples (on average). On the other hand, the unguided
random sampling converges only after 352 samples. Our
sampling approach is efficient; we can collect 350 samples in
simulation within 30 minutes. During this period of time, on
average, two actuations take place, hence two experimental
latency points are also collected.

6.8 Simulation Accuracy

We also evaluate the accuracy of our simulations by com-
paring the predicted latency with the measured latency when
running in a specific configuration. In this experiment, we
ran several configurations from small caches (64MB) to large
caches (1GB). For each configuration, we compared the pre-
dicted latency obtained from simulation and the measured
latency by running our prototype system. In all configu-
rations the predicted latency is within 5% of the measured
latency.

7. RELATED WORK

This section discusses previous work exploring different
techniques for improving caching efficiency in the storage
cache hierarchy.

The general area of adaptive cache management based on
application patterns, or query classes has been extensively
studied in database systems. For example, the DBMIN al-
gorithm [10] uses the knowledge of the various patterns of
queries to allocate buffer pool memory efficiently. The LRU-
k [22], and its variant 2Q [15] cache replacement algorithms

645

3000

K

E

R

2 2000
(]

£

g 1000
§ N
§ 0
>

]

9 000

0 128 256 384

Number of Samples

512

Random -#- Greedy

Figure 9: Comparison of Sampling Methods

prevent useful buffer pages from being evicted due to se-
quential scans running concurrently. Brown et al. [4, 5]
study schemes to ensure per-class response time goals in
a system executing queries of multiple classes by sizing the
different memory regions. Recently, IBM DB2 added the
self-tuning memory manager (STMM) to size different mem-
ory regions [29]. However, the above works target only the
memory regions within the DBMS. In our study, we have
shown that optimally partitioning multi-tier caches results
in significant performance gains.

Several works pass explicit hints from the client cache to
the storage cache [25, 19, 7]. For example, these hints can
indicate the reason behind a write block request to storage,
and whether a block is about to be evicted from the client
cache and should be cached at the storage level [19], ex-
plicit demotions of blocks from the storage client to server
cache [32], or the relative importance of requested blocks [8].
These techniques modify the interface between the storage
client and server, by requiring that an additional identifier
be passed to the storage server. As opposed to our work,
these techniques need thorough understanding of the ap-
plication internals and changes to the kernel API and the
storage protocol. For example, Li et al. [19] require the
understanding of database system internals to distinguish
the context surrounding each block I/O request. Similarly,
Wong et. al [32] require the addition of a DEMOTE command
to the SCSI protocol.

Transparent and gray-box techniques for storage cache
optimization include inferring access patterns of the up-
per tier by observing characteristics of I/O requests [2, 9,
16], or using meta-data available at the file system layer.
Schindler et al. investigate ways for providing the DBMS
with more knowledge of the underlying storage character-
istics [26]. The drawback of these techniques is that they
are DBMS-specific or specific to the storage hardware. This
may not be feasible in a data center.

8. CONCLUSIONS

In order to reduce the costs of management, power and
cooling in large data centers, operators co-schedule several
applications on each physical server of a server farm con-
nected to a shared network attached storage. Determining
and enforcing per-application resource quotas on the fly in
this context poses a complex and challenging resource allo-
cation and control problem due to i) the strict Quality of
Service (QoS) requirements of many database applications,

ii) the unpredictable resource needs and/or access patterns
of applications in modern environments with dynamic ap-
plication co-scheduling and iii) the existing interdependency
between tiers, such as the effects of cache replacement poli-
cies on application patterns at different levels.

Our contribution in this paper is to introduce a novel ap-
proach for controlling application interference in the cache
hierarchy of shared server farms. Specifically, we design and
implement a technique for partitioning the buffer pool and
storage caches adaptively, online; a cache controller embed-
ded into the DBMS actuates the partitioning of the two
caches with the goal to dynamically converge towards a par-
titioning setting that minimizes the perceived application
penalties. At the same time, the controller allocates any
spare resources to best effort applications in order to maxi-
mize the revenue for the service provider.

Our method is implemented in a Linux-based prototype,
called Gemini, which requires minimal DBMS instrumenta-
tion, and no changes to existing interfaces between commod-
ity software and hardware components. Our experimental
evaluation shows the effectiveness of our technique in enforc-
ing application SLOs as well as maximizing the revenue of
the service provider in shared server farms. In contrast, all
other techniques we evaluated suffer from either violations
of the SLO requirement of strict SLO applications, missed
revenue opportunities, or both.

Acknowledgments

We would like to thank Daniel Lupei for helping with the
experimental evaluation and Saeed Ghanbari for the dis-
cussions on statistical regression. Finally, we would like to
thank the anonymous reviewers for their insightful feedback.

9. REFERENCES

[1] Transaction processing council. http://www.tpc.org.

[2] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau.
Information and Control in Gray-Box Systems. In SOSP,
2001.

P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L.
Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In SOSP, 2003.

K. P. Brown, M. J. Carey, and M. Livny. Managing
Memory to Meet Multiclass Workload Response Time
Goals. In VLDB, 1993.

K. P. Brown, M. J. Carey, and M. Livny. Goal-Oriented
Buffer Management Revisited. In SIGMOD, 1996.

D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik,

M. Cherniack, and M. Stonebraker. Operator scheduling in
a data stream manager. In VLDB, 2003.

F. W. Chang and G. A. Gibson. Automatic I/O Hint
Generation Through Speculative Execution. In OSDI, 1999.
Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer.
Empirical evaluation of multi-level buffer cache
collaboration for storage systems. In SIGMETRICS, 2005.
Z. Chen, Y. Zhou, and K. Li. Eviction-based Cache
Placement for Storage Caches. In USENIX Annual
Technical Conference, General Track, 2003.

H.-T. Chou and D. J. DeWitt. An Evaluation of Buffer
Management Strategies for Relational Database Systems.
In VLDB, 1985.

F. J. Corbat. A Paging Experiment with the Multics
System. MIT Press, 1969.

H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and
V. Vapnik. Support Vector Regression Machines. In NIPS,
1996.

3]

(4]

(5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

646

[13] A. Gulati, A. Merchant, and P. J. Varman. pClock: an
arrival curve based approach for QoS guarantees in shared
storage systems. In SIGMETRICS, 2007.

S. Jiang and X. Zhang. LIRS: an efficient low
inter-reference recency set replacement policy to improve
buffer cache performance. In SIGMETRICS, 2002.

T. Johnson and D. Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm.
In VLDB, 1994.

S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Geiger: monitoring the buffer cache in a
virtual machine environment. In ASPLOS, 2006.

D. G. Kleinbaum, L. L. Kupper, A. Nizam, and K. E.
Muller. Applied Regression Analysis and Multivariable
Methods (4th Edition). Duxbury Press, 2007.

A. Labrinidis, H. Qu, and J. Xu. Quality contracts for
real-time enterprises. In BIRTE, 2006.

X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao.
Second-Tier Cache Management Using Write Hints. In
FAST, 2005.

S. Liang, S. Jiang, and X. Zhang. STEP: Sequentiality and
Thrashing Detection Based Prefetching to Improve
Performance of Networked Storage Servers. In ICDCS,
2007.

C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade:
Virtual Storage Devices with Performance Guarantees. In
FAST, 2003.

E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm For Database Disk Buffering.
In SIGMOD, 1993.

O. Ozmen, K. Salem, M. Uysal, and M. H. S. Attar.
Storage workload estimation for database management
systems. In SIGMOD, 2007.

P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,

S. Singhal, A. Merchant, and K. Salem. Adaptive control of
virtualized resources in utility computing environments. In
FEuroSys, 2007.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed Prefetching and Caching. In
SOSP, 1995.

J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger.
Track-aligned Extents: Matching Access Patterns to Disk
Drive Characteristics. In FAST, 2002.

K. Shen, T. Yang, L. Chu, J. Holliday, D. A. Kuschner, and
H. Zhu. Neptune: Scalable Replication Management and
Programming Support for Cluster-based Network Services.
In USITS, 2001.

G. Soundararajan, M. Mihailescu, and C. Amza. Context
aware block prefetching at the storage server. In USENIX,
2008.

A. J. Storm, C. Garcia-Arellano, S. Lightstone, Y. Diao,
and M. Surendra. Adaptive Self-tuning Memory in DB2. In
VLDB, 2006.

A. Trossman. Virtualization capabilities of IBM Tivoli. In
1st Workshop on Virtualization and the Management of
Information Services, 2007.

M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared storage
servers. In FAST, 2007.

T. M. Wong and J. Wilkes. My Cache or Yours? Making
Storage More Exclusive. In USENIX Annual Technical
Conference, General Track, 2002.

G. Yadgar, M. Factor, and A. Schuster. Karma: know-it-all
replacement for a multilevel cache. In FAST, 2007.

P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,

Y. Zhou, and S. Kumar. Dynamic tracking of page miss
ratio curve for memory management. In ASPLOS, 2004.

14]

[15]

(16]

(17]

(18]

19]

20]

21]

(22]

(23]

(24]

[25]

[26]

27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

