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ABSTRACT
Computer architectures are increasingly based on multi-core CPUs
and large memories. Memory bandwidth, which has not kept pace
with the increasing number of cores, has become the primary pro-
cessing bottleneck, replacing disk I/O as the limiting factor. To
address this challenge, we provide novel algorithms for increas-
ing the throughput of Business Intelligence (BI) queries, as well
as for ensuring fairness and avoiding starvation among a concur-
rent set of such queries. To maximize throughput, we propose a
novel FullSharing scheme that allows all concurrent queries, when
performing base-table I/O, to share the cache belonging to a given
core. We then generalize this approach to a BatchSharing scheme
that avoids thrashing on ”agg-tables”—hash tables that are used for
aggregation processing—caused by execution of too many queries
on a core. This scheme partitions queries into batches such that the
working-set of agg-table entries for each batch can fit into a cache;
an efficient sampling technique is used to estimate selectivities and
working-set sizes for purposes of query partitioning. Finally, we
use lottery-scheduling techniques to ensure fairness and impose a
hard upper bound on staging time to avoid starvation. On our 8-
core testbed, we were able to completely remove the memory I/O
bottleneck, increasing throughput by a factor of 2 to 2.5, while also
maintaining fairness and avoiding starvation.

1. INTRODUCTION
Historically, business intelligence, or BI, has been an I/O-bound

workload. Business data is stored on the disks of a data warehouse,
and retrieving data from these disks is the main cost in query exe-
cution. The state of the art in BI is defined by this I/O bottleneck:
Low-end systems spend most of their time waiting for disk I/O;
while high-end systems use large numbers of disks to achieve high
throughput at great financial cost.

Researchers have developed several techniques to alleviate this
bottleneck by reducing amount of data a query processor needs to
touch. These techniques include aggressive compression [2, 17],
column stores [11], and materialized views [19]. With the advent
of large main memories, these techniques often allow the entire
working set of a BI system to fit in RAM, bypassing the traditional
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Figure 1: Breakdown of total CPU cycles consumed for the
query from Figure 2, when running on an 8-core server. The
stacked bar on the left is generated by pinning all threads to a
single core. When all cores are used, main memory bandwidth
becomes the performance bottleneck.

disk I/O bottleneck. For the first time, BI has become CPU-bound.
However, recent trends in hardware are bringing this new era

quickly to an end. Processor manufacturers are putting ever-increas-
ing numbers of cores onto a CPU die, and main memory bandwidth
is not keeping pace.

A simple experiment demonstrates the performance effects of the
recent trend towards multicore CPUs. We take a typical BI query
(Figure 2) and run it on the Blink query processor [18], on an In-
tel Xeon server with 2 quad-core CPUs. Blink is a compressed
main-memory database targeted at BI applications; we describe
the system in more detail in Section 2. We used theoprofile
whole-system profiler and the Xeon’s hardware performance coun-
ters to break the cycles spent on this query (across all 8 cores) into
five components: cycles spent in computation, cycles wasted on
pipeline stalls due to branch mispredictions, cycles spent on level-
1 (L1) cache misses, translation lookaside buffer (TLB) misses, and
main memory access (L2 cache misses).

As Figure 1 shows, when the query is bound to a single core,
the system is CPU-bound, with the majority of time going to com-
putation. But when we allow the query to use all 8 cores on the
machine, accessing main memory becomes the bottleneck. With
manufacturers soon to put 6 and 8 cores on a single chip, this prob-
lem will only become worse.

In this paper, we address the memory bandwidth bottleneck with
a novel scan sharing technique for main-memory query processors.
We observe that much of the memory bandwidth used in BI queries
goes towards scanning tables and indexes, and that these scans are
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often repeated across multiple queries. We attach multiple queries
to a single scan, amortizing the overhead of reading the data from
main memory into the processor’s cache.

Shared scans have been used in the past to overcome disk I/O
bottlenecks [16, 21], but bringing this technique to main-memory
DBMS’s poses significant challenges. Disk-based systems use pro-
grammable buffer pools and dedicated I/O threads to implement
scan sharing. Different queries share data via the buffer pool, and a
buffer manager choreographs the reading of data into the pool.

In a main-memory DBMS, however, the processor cache takes
the place of the buffer pool, with the cache controller hardware de-
termining the data that resides in cache. In such an environment,
scan sharing requires careful scheduling of low-level query opera-
tions, ensuring that data is resident in the cache when it is needed.

This scheduling is complicated by the fact that processor caches
are significantly smaller than buffer pools. The working set (aux-
iliary data structures like hash tables and dimension tables) of a
small group of queries can easily exceed the size of cache, leading
to thrashing. An implementation of scan sharing needs to estimate
the working set sizes of queries and to avoid grouping too many
queries together. Efficiently predicting the working set size of a
query, e.g, by sampling, is a non-trivial problem. For example,
with a group-by query, if we adopt a simple bound on the working
set – the number of distinct group-by values, we have to solve the
infamous sample-based distinct count estimation problem [10].

1.1 Contributions
In this paper, we present a query scheduling algorithm that im-

plements shared scans on a main-memory DBMS. We show that
the naive application of this algorithm can lead to thrashing as the
working set size of queries exceeds cache. We then develop ex-
tensions to our algorithm to group queries in a way that avoids
thrashing. As part of this extended algorithm, we provide a new
technique for efficiently and robustly estimating the working-set
size of group-by queries. This technique rests on the observation
that the working-set size is less than the number of distinct values
due to skew in access to the hash table buckets, so that we can ex-
ploit the well-studied statistical notion ofcoverage[9]; coverage is
a more tractable quantity to estimate than the distinct value count.
We also develop techniques for guaranteeing a fair allocation of
shared resources.

We evaluate our techniques using a thorough set of experiments
on a real-world dataset. We demonstate that our techniques signif-
icantly improve the scaling of multi-query workloads on multicore
processors. On our 8-core testbed, we obtain near linear scaling
of throughput with cores, a performance improvement of up to 2.5
times of that which is attained without these techniques.

Paper Outline
Section 2 provides architectual and system background. Section 3
describes related work. In section 4, we propose a novel approach
to achieve appropriate I/O sharing inside a cache. In section 5, we
provide a robust technique to estimate query parameters. Section 6
presents experimental results, and we conclude in Section 7.

2. BACKGROUND
This section presents some material that is useful background for

this paper. We give an overview of modern hardware architectures,
and then describe Blink, the main memory database in which our
techniques are implemented and our experiments are run.

2.1 Modern Hardware Architectures
Today, major processor vendors are shipping processors equipped

select
X2.MATL GROUP, X1.INDUSTRY, DU.SIDBASE UOM,
DU.SID STAT CURR, DT.SIDCALMONTH
sum(F.RTNSQTY),sum(F.RTNSVAL), sum(F.INVCD CST3),sum(F.INVCD QTY3), sum(F.INVCD VAL3),
sum(F.OPORDQTYBM3),sum(F.OPORDVALSC3),sum(F.ORD ITEMS3),sum(F.RTNSCST3),
sum(F.RTNSQTY3),sum(F.RTNSVAL3),sum(F.RTNSITEMS3),sum(F.CRMEM CST4),
sum(F.CRMEM QTY4), sum(F.CRMEM VAL4), sum(F.CST4),sum(F.QTY4),
sum(F.VAL4), sum(F.INVCD CST4)

from
”/BIC/FLARGE” F, ”/BIC/DLARGE1” D1 ”/BIC/XCUSTOMER” X1, ”/BIC/DLARGE2” D2,
”/BI0/XMATERIAL” X2, ”/BIC/DLARGEP” DP, ”/BIC/DLARGET” DT, ”/BIC/DLARGEU” DU

where
F.FKEY1 = D1.DIMID and D1.SID 0SOLD TO = X1.SID
and F.FKEY2 = D2.DIMID and D2.SID 0MATERIAL = X2.SID
and F.FKEYP = DP.DIMIDand F.FKEYU = DU.DIMID
and F.FKEYT = DT.DIMID
and DP.SID 0CHNGID = 0and X2.MATL GROUPIN (9, 8, 7, 6, 5, 4, 3, 2)
and DP.SID 0RECORDTP = 0and DP.SID 0REQUID≤536
and X1.INDUSTRY IN (9, 8, 7, 6, 5, 4, 3, 2)and D5.SID 0VTYPE IN (2, 3, 4, 5, 6)
and X2.OBJVERS = ’A’and X1.OBJVERS = ’A’

group by
X2.MATL GROUP, X1.INDUSTRY, DU.SIDBASE UOM, DU.SID STAT CURR, DT.SIDCALMONTH;

Figure 2: An example BI query, reporting various sales statis-
tics, broken down by industry and time.

Vendor Intel AMD Sun
CPU Name Xeon X5355 Opteron 8347 UltraSPARC T2

Num. Cores 4 4 8
L1 Cache 4 x 64 KB 4 x 128 KB 8 x 24 KB
L2 Cache 2 x 4 MB 4 x 512 KB 1 x 4 MB
L3 Cache N/A 1 x 2 MB N/A
Main Memory
(4GB modules)

Up to 32 GB Up to 32 GB Up to 256 GB

Table 1: Architectural characteristics of three recent CPUs.
The experiments in this paper were conducted on a machine
with two Intel Xeon X5355 processors.

with 4 separate processing cores, with 6- and 8- core processors in
the pipeline. Table 1 shows some statistics of processors from the
current architectural generation.

Each core in a multi-core processor is an independent CPU; this
CPU sits at the top of a memory hierarchy consisting of 2-3 lev-
els of cache and a relatively slow main memory. Each core has a
private level-1 (L1) cache that is very fast but very small. Larger
level-2 (L2) and, often, level-3 (L3) caches provide slower access
to larger amounts of memory Typically, the largest cache is shared
across all cores on the processor die, while each processor main-
tains its own private cache at the higher caching layers. For exam-
ple, the AMD Opteron processor in Table 1 has a shared L3 cache
and private L1 and L2 caches.

At each level of the hierarchy, performance drops by one to two
orders of magnitude. Storage capacity follows a different trajectory,
increasing by a factor of 2-4 at each cache layer, with a dramatic
jump in capacity at the main memory layer. Even the largest pro-
cessor caches represent less than half of one percent of a modern
computer’s memory.

This cache/memory hierarchy is somewhat similar to the mem-
ory/disk hierarchy for which mainstream database systems were
designed, with cache taking the place of the buffer pool and main
memory taking the place of disk. However, there are are two im-
portant differences.

First of all, control of this memory hierarchy is implemented
mostly in hardware, with the cache and memory controllers making
most low-level decisions about which regions of memory reside in
which level of the hierarchy. Modern CPUs provide a few instruc-
tions to “suggest” policy changes to the hardware (e.g., the x86-64
prefetch instructions [1]), but these mechanisms do not provide the
flexibility and control that a typical database buffer pool enjoys. In
addition, many of the low-level synchronization primitives needed
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to implement a buffer pool within the L2 cache are themselves as
expensive as a cache miss.

The second difference is one of scale. Even large L2 and L3
caches are typically less than 10 MB in size, which is smaller than
database buffer pools have been for many years. Business intelli-
gence (BI) queries are highly complex, and running them efficiently
requires keeping a large “working set” in cache, including indexes,
intermediate data structures, and executable code.

2.2 The Blink Query Processor
Blink is a query processor that operates on compressed main-

memory tables. We now briefly describe the data format and query
processing strategy used within Blink, focusing on the aspects that
are relevant to the work in this paper. A more complete description
of Blink can be found in [18].

2.2.1 Data Organization
Most columns are encoded with a dictionary code, where indi-

vidual column values are replaced withcodewords: offsets into a
column-specific array of distinct values (the columndictionary).
These offsets are fixed-length and bit-aligned, for extreme com-
pression. Blink also exploits skew in data distribution by horizon-
tally partitioning tables such that values with similar (marginal) fre-
quencies go to the same partition, and using shorter offset-lengths
for the partitions with more frequent values.

This dictionary compression scheme is further optimized in two
ways to ensure that we do not have to decode the codewords when
processing each tuple. First, the column dictionaries are stored in
order-preserving fashion so that equality, range, and in-list predi-
cates can be applied directly on the codewords. Second, numerical
columns with high cardinality are encoded by simply subtracting
each value from a base and representing the difference as a com-
pact integer of appropriate bit-size.

From the standpoint of this paper, the result of these optimiza-
tions is that accesses to the dictionary are done once at the start of
a query, and introduce almost no I/O after that.

Blink stores its input tables in de-normalized fashion. During
load, Blink joins tables of an input schema along primary key - for-
eign key relationships to form a de-normalized table, so that query
execution just involves scans and aggregation over this table.

2.2.2 Query Processing
The query processing component of Blink operates over fixed-

sizeblocksof tuples from the denormalized fact table. Query pro-
cessing proceeds in three stages.

In the first stage, the query processor scans the denormalized
table, accessing the columns referenced in the query’sWHERE
clause and applies selection predicates that can be applied directly
over the codewords, without decoding.

In the second stage, the query processor applies any remaining
predicates that need decoding (such as shipDate− receiptDate>
30), only over tuples that passed the first stage. For each tuple that
passes this second stage, Blink computes a uniquegroup codefrom
the compressed values of the columns referenced in the query’s
GROUP BY clause.

The third stage of processing uses each group code as a key for an
in-memory hash table called theagg-table. Each entry in the agg-
table holds a pointer to an array of running aggregates, the array
holding one value for each clause in the query’sSELECT list. The
agg-table is implemented via open addressing with linear probing,
because this provide good cache locality and avoids the overhead
of pointers that happens with chaining.

To take advantage of multi-core CPUs, Blink’s query proces-

sor is heavily multi-threaded. Blink maintains a pool of worker
threads, one thread per core. Each thread “picks up” one query at
a time and runs the query, scanning blocks of compressed tuples.
When there are more threads than queries, the idle threads “steal
work”, attaching themselves to queries that are already executing.
These additional worker threads split the compressed table among
themselves, executing the query in parallel. To avoid locking over-
head, each thread maintains aprivatecopy of the agg-table for each
query that it executes. At query completion time, these agg-tables
are merged, if necessary, to produce the final query result.

The query processing steps that Blink uses have memory ac-
cess characteristics similar to the low-level operations in a conven-
tional relational database. From the memory subsystem’s perspec-
tive, reading compressed tuples from the denormalized fact table
is similar to a conventional table or index scan. Likewise, dictio-
nary lookups are analogous to index joins on primary key - foreign
key relationships. Finally, Blink’s agg-table is similar to the data
structures most DBMSs use for hash-based aggregation. Because
of these low-level similarities, we expect that our results on Blink
should also apply to other main-memory query processors.

3. RELATED WORK
DBMSs have always aimed to share the results of I/O among

concurrent tasks via the buffer manager. Many recent systems ex-
plicitly synchronize concurrent queries to improve the amount of
I/O that can be shared at the buffer pool, by grouping together
queries that run at similar speeds [16, 21]. Unlike previous sys-
tems, the sharing in main-memory DBMSs must be done in L2
cache and not in memory. As we have discussed, this buffer pool
model does not lend itself well to the implementation within the L2
cache. If large shared L3 caches become common, this approach is
more promising. The much smaller cache sizes (when compared to
memory) means that the combined working set of the queries often
fails to fit. The thrashing of the working set leads to significant I/O
that competes with the table I/O that we are trying to share.

An alternative approach to sharing is a data-driven approach in
which a single pipeline of tuples feeds multiple concurrent queries.
This is typically done using an operator that is shared among mul-
tiple queries, such as in a staged database system [12] or a contin-
uous query processor [15, 5]. Our FullSharing scheme is similar to
this approach. Recently, Johnson et al. [13] discuss the tradeoffs
of work sharing in a multi-core processor using shared operators.
In particular, they obtain the same observation as we do from a dif-
ferent perspective. That is, work sharing does not always improve
throughput in a multicore system. This is similar to our statement
that FullSharing is not always beneficial. However, we focus on
solving issues related to hardware resource constraints, e.g. cache
contention, while they focus on solving throughput degradation due
to serialization. Our results on estimating the working set size and
batching queries appropriately are applicable to any shared opera-
tor in a staged database system.

Another popular technique for avoiding the I/O bottleneck is to
lay out records of a table in a column-major order. Harizopou-
los et. al [11] quantify the extent of I/O savings in this layout for
queries that access various fractions of a table. Such a layout is
complementary to the techniques described in this paper; for ex-
ample, our BatchSharing method can cluster queries according to
the vertical partitions of the data they access.

Finally, another approach to scaling on a multicore system is
intra-query parallelism. Recent papers on this topic have proposed
specialized hash-based aggregation algorithms to avoid lock con-
tention across cores [7]. This paper focuses on throughput and
inter-query parallelism. Each thread uses a private hash table to
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Figure 3: Illustration of the data access patterns ofNaiveShar-
ing and FullSharing on a two-core system.FullSharing inverts
the traditional division of work among cores.

store its running aggregates, so lock contention is avoided.
Recently, the OS community has begun to consider the problem

of sharing a cache among multiple threads on chip multi-processors.
Chang et al. [4] proposed a cooperative cache partitioning scheme
to achieve high throughput using multiple threads. Kim et al. [14]
addressed the issue of fairness in cache sharing. Chen et al. [6] pre-
sented a constructive cache sharing scheduler that allows threads to
share an overlapping working set. These techniques are orthogo-
nal to our work, and applying them in a shared cache can further
improve throughput and fairness of our system.

4. SCAN-SHARING
Query processors that run concurrent queries usually operate in

a multi-threaded fashion, where each thread handles a query at a
time. When this model is applied to a main-memory, multicore
system, each thread runs on a core and scans data from memory.
The challenge of I/O sharing is to optimize the memory access so
that the threads are always busy doing work, and are not bound by
memory bandwidth. As we discussed in Section 2, main-memory
DBMSs lack buffer pools, instead relying on hardware to read data
into the processor’s caches.

Even in the absence of a buffer pool, main-memory DBMS’s
can attain some speedup through “incidental” I/O sharing, which
occurs because of the convoy phenomenon [3]. Consider the case
when multiple queries, running on different cores, start scanning a
table at approximately the same time. The first query will incur a
cache miss to read each tuple from main memory. The remaining
queries, however, can take advantage of the data that the “trail-
blazer” query has read into the processor’s shared L2 or L3 cache.
The queries form a “convoy” behind whichever query is furthest
along in scanning the table; slower queries can catch up while faster
queries wait for the memory controller to respond. Throughout the
rest of this paper, we use the termNaiveSharingto describe the
traditional multithreaded approach to scheduling query execution,
which achieves limited I/O sharing via the convoy phenomenon.

4.1 FullSharing
In the rest of Section 4, we develop techniques that obtain signif-

icantly more I/O sharing — and hence better performance — than
NaiveSharing. Our first technique is calledFullSharing. Here, each
processing thread executes a separate table scan. A given thread
feeds each block of tuples through every query before moving on
to the next block. Figures 3(a) and 3(b) show howFullSharing’s
query scheduling contrasts with that ofNaiveSharing. FullSharing
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Figure 4: NaiveSharing vs FullSharing

inverts the traditional division of work within the database: instead
of processing all blocks of an entire query at a time, each thread
“processes” a block of data at a time across all queries.

The benefits ofFullSharingoverNaiveSharingare demonstrated
in Figure 4. We constructed a batch query workload consisting of
multiple copies of the query from Figure 1 and ran it on an 8-core
server, first usingNaiveSharingto schedule the 8 cores, and then
using FullSharing. We repeated the experiment multiple times,
varying the number of queries in the workload. For each run of the
experiment, we compared overall throughput against the through-
put of the one-query workload.

As the number of queries in the system increases,FullSharingis
able to amortize memory I/O across the entire group of queries,
more than doubling its query throughput. Beyond 4 concurrent
queries,NaiveSharingachieves some speedup through I/O sharing.
However, the speedup is negligible compared to that ofFullShar-
ing. Even though all the queries in the workload are identical and
start at the same time, the convoy effect is not sufficient to induce
effective sharing of memory I/O.

4.2 Implementing FullSharing
In Blink, FullSharing is implemented easily, with only modest

code changes. Recall from Section 2.2 that Blink queries scan
a compressed denormalized fact table. Blink divides this table
horizontally intoblocks, so that multiple cores can work on the
same query simultanesouly. To support this intra-query parallelism,
Blink has a global scheduler that tells each thread which queries
to run over which blocks. Our implementation ofFullSharing in
Blink replaces this scheduler component, leaving all other portions
of the system unchanged.

Our new scheduler works as follows: When we want to run a
workloadQ of queries, we create a pool of work-units, where each
work-unit corresponds to a block. Each thread steals work from
this pool as follows:
Repeat until the pool is empty:
• Pick a block from the pool of work-units.
• Scan this block.
• For every queryq ∈ Q, applyq on this block.

4.3 Agg-Table Thrashing
The overall goal of scan-sharing in a main-memory DBMS is

to reduce the number of cache misses. TheFullSharingtechnique
achieves this goal by loading tuples into cache once, then sharing
them among multiple queries. However, applyingFullSharingtoo
aggressively can lead tomorecache misses, due to an effect we call
agg-table thrashing. In this subsection, we explain why agg-table
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Figure 5: Performance improvement due to theFullSharing
technique. Unless selectivity is below 0.1%, throughput de-
grades when the working set of the queries, combined with the
current block of tuples, exceeds L2 cache size. We call this phe-
nomenonagg-table thrashing.

thrashing occurs. In the sections that follow, we use this knowledge
to develop scan-sharing techniques that are immune to the problem.

A query that scans a table typically streams the results of the scan
into another operation, such as index nested-loops join, or grouped
aggregation. To run efficiently, these operations require fast access
to a “working set” of data structures, such as indexes or hash tables.
If too many queries share a scan, their working sets can overflow
the cache. Once this situation occurs, the queries start to thrash,
incurring frequent cache misses to fetch portions of their working
sets. The resulting accesses to main memory can easily negate the
benefits of scan-sharing. The working set of a Blink query consists
primarily of the agg-table data structure (see Section 2.2); hence,
we use the name “agg-table thrashing” to describe this effect.

We have conducted detailed experiments to determine the con-
ditions in which agg-table thrashing can occur; full results can be
found in Section 6. To aid the discussion in the current section,
we have created Figure 5, which shows a small subset of our re-
sults. The experiments behind Figure 5 usedFullSharingto share
a single scan between multiple copies of a given query. We var-
ied the number of simultaneous queries from 1 to 64 and measured
the resulting throughput improvement. The two lines in the graph
show the performance improvement for two variants of the query in
Figure 2. We produced these variants by modifying theWHERE
clause of the query, changing the query selectivies to 100% and
0.1%, respectively. The high-selectivity query experiences agg-
table thrashing, suffering a performance reduction when more than
8 queries run simultaneously.

Our experiments identified two factors that determine whether
agg-table thrashing will occur: query selectivity and working set
size. The results in Figure 5 illustrate these two factors. The effects
of selectivity are most readily apparent: The high-selectivity query
thrashes, while the low-selectivity query does not. Overall, we have
found that queries with selectivities of 0.1% or less do not exhibit
agg-table thrashing.

The effects of working set size can also be seen by focusing on
points at which thrashing occurs: in the case of Figure 5, at all
points beyond 8 queries. The agg-tables for the queries shown
here take up 200KB of memory each. (Recall that, in the Blink
query processor, the agg-table data structure is the dominant part
of a query’s working set.) Note the secondary scale across the
top of the graph; this scale shows the total size of the agg-tables

across all queries. Our test machine has two 4MB L2 caches, each
split between two cores. Effectively, each core has 2MB of cache.
The block size was 400K, leaving 1.6MB of space per core for the
queries’ working sets When the total agg-table size exceeds 1.6MB,
the queries start to thrash. Our experiments have verified this result
across queries with selectivities from 1 to 100 percent and agg-table
sizes ranging from 30KB to 3.2MB.

To summarize, a scan-sharing technique must avoid agg-table
thrashing in order to achieve the benefits of shared scans. The two
factors that determine whether thrashing will occur are query se-
lectivity and working set size. In the rest of Section 4, we use this
knowledge to develop techniques to avoid thrashing.

4.4 BatchSharing
To achieve the benefits of scan-sharing without inducing agg-

table thrashing, we have developed a technique that we callBatch-
Sharing. The intuition behindBatchSharingis simple: Prevent
thrashing by grouping together smaller numbers of queries into
batches. However, making this intuition work in practice is dif-
ficult, because it is hard to determine whether a given set of queries
can share a scan without thrashing.

In this section, we describe the components of theBatchShar-
ing technique. We start by discussing the problem of determining
which queries can safely share a scan. Then we describe the query
parametrization algorithm that we use to solve this problem. Fi-
nally, we explain how we implementBatchSharingin Blink.

For ease of exposition, this section describes a “static” version
of BatchSharing. That is, we assume that the system is executing
a single workload of queries (as in a report-generation scenario)
all at once. Further, we assume that the goal of the system is to
finish this entire workload as quickly as possible without regard for
the relative running times of individual queries. This scenario is
analogous to running daily reporting queries over a data warehouse.
Later, in Section 4.5, we will relax these assumptions and extend
BatchSharingto handle dynamic query arrival while ensuring a fair
division of system resources among queries.

4.4.1 Query Parameter Estimation
In Section 4.3, we examined the phenomenon of agg-table thrash-

ing. Our analysis identified two factors that, taken together, can be
used to predict whether a batch of queries will thrash. These factors
are query selectivity and query working-set size.

For queries in Blink, the working set is dominated by its agg-
table. In general, there is no known efficient (i.e., sampling-based)
method to estimatea priori the number of rows in an agg-table—
i.e., the number of groups that the query’sGROUP BY clause
produces—with guaranteed error bounds [10]. However, by care-
fully defining the estimation problem, we can sidestep these issues
so that a sampling-based technique will meet our needs.

Our algorithm hinges on three key observations:
OBSERVATION 4.1: Based on our characterization of agg-table
thrashing ( Section 4.3), we can classify queries into 3 categories:
• Always share: If a query has low selectivity (<0.1% as shown in

our experiments), it can be grouped with any other query without
thrashing.
• Never share: If a query’s working set size exceeds the size of

cache, adding that query toanybatch will lead to thrashing.
• Could share: If a query does not fit into the previous two cate-

gories, then the system needs to estimate the query’s working set
size to know whether it can be safely added to a given batch.

OBSERVATION 4.2: Some parts of a query’s agg-table are accessed
very rarely, while others are accessed frequently; thus the working
set can be viewed, approximately, as the set of groups that are nec-
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essary to account for almost every access to the query’s agg-table
(here “almost every” is a tunable parameter). If this working set
resides in cache, thrashing will not occur.

OBSERVATION 4.3: It is easier to estimate a query’s working set
size from a sample than it is to estimate the size of its agg-table,
because hard-to-capture rare values impact the distinct-value count
but not the working-set size. Working-set size is closely related to
the classical statistical notion of “sample coverage,” and techniques
for estimating sample coverage are applicable.
These observations allow us to convert a potentially hard estimation
problem into a tractable one:

First, identify queries with selectivities of less than
0.1%, as well as queries with working sets that clearly
exceed the size of cache. Then, for theremainingqueries,
estimate the working-set size.

In Section 5, we describe our query-parameter estimation algo-
rithm in detail. For now, we give a synopsis of the algorithm and
an intuition for how it works.

Our algorithm operates using two phases of sampling. Each
phase operates over preallocated random samples of the table be-
ing scanned. The first phase identifies queries in the “always share”
category. This phase proceeds by running the query over a sample
of the table. If very few tuples pass the query’s selection predicate,
the query is marked as “always share.” This phase works well be-
cause it is relatively easy to estimate predicate selectivities on the
order of 0.1% or higher from a sample.

During its second phase, the algorithm feeds a sample of the
table through the query while monitoring the number of distinct
groups encountered thus far. The algorithm stops either when the
groups encountered thus far account for almost every access to the
agg-table (as measured by sample coverage) or when the groups
encountered thus far would not fit into cache. In the latter case, the
query is classified as “never share,” whereas in the former case, the
algorithm returns the number of groups encountered thus far as its
estimate of the working-set size. This phase works well because the
coverage estimator that we employ is accurate as long as the actual
number of groups in the working set is sufficiently small relative
to the number of tuples in the sample. By definition, every “could
share” query meets this criterion, because a processor cache can
only hold roughly 10,000 agg-table entries.

After the two phases of sampling, the algorithm has collected
enough information to decide which queries can be safely batched
together. In practice, we can obtain sufficiently accurate results for
both phases with sample sizes of less than 100,000 tuples. Even
when running a highly complex query, the Blink query processor
can scan such a small sample in less than 5 msec.

4.4.2 Packing queries into batches
The result of the above estimation procedure is a quantification

of the working set sizewq for each queryq that the system needs
to assign to a batch. For “always share” queries, this working set
size is effectively zero; for “never share” queries, the working set
size is effectively infinite. The next stage ofBatchSharinguses this
working set information to pack the queries into batches.

The goal of the packing algorithm is to minimize per-batch over-
heads by packing the queries into as few batches as possible; while
avoiding agg-table thrashing. To prevent thrashing, we ensure that
there is enough space in the cache for the working set of every
query in a given batch. That is, ifC is the size of the cache andB
is the size of a block of data, then we guarantee that the queries in
a batch have a total working set size of less thanC −B.
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Figure 6: Query execution with BatchSharing on a two-core
processor, running two batches; each core shares a single scan
among the queries from one batch. If one core finishes its batch
before the other, the idle core will steal work from the remain-
ing batch.

This constraint is based on a conservative model of cache behav-
ior. Let γ denote the fraction of memory accesses covered by each
query’s working set. We assume that the cache controller will keep
the most popularγth percentile of memory in cache for each query.
As long as this invariant holds, the overall cache miss rate across
the queries in the batch is bounded from above by1− γ. In reality,
the controller will use a global replacement policy to allocate cache
lines across all queries in a batch; this actual policy will achieve a
lower miss rate than the simplified policy we assume.

More formally, our packing problem is: Given a setQ of queries
and corresponding working set sizeswq , find a partitioning:

Q = Q1 ⊎Q2 ⊎ · · · ⊎Qp, (1)

that minimizesp, subject to the constraint:
X

q∈Qi

wq ≤ C −B, ∀ 1 ≤ i ≤ p, (2)

whereC is the size of the cache andB is the size of a block of
tuples (Agg-table thrashing occurs when the total working set of
the queries in a batch is greater thanC −B bytes).

This problem is identical to the standard bin-packing problem,
with bin sizeC − B. We use the well known first-fit decreas-
ing heuristic, which sorts queries by decreasingwq and repeatedly
packs a query into the first batch with sufficient space, starting a
new batch if none is found. This heuristic is known to pack no
worse than a factor of11/9 times the optimal solution [8].

4.4.3 Execution
We have implementedBatchSharingon the Blink query proces-

sor. As with our implementation ofFullSharing, all of our changes
to Blink were concentrated in the query scheduler. The general
scheduling algorithm that we use is illustrated in Figure 6. The
scheduler assigns a separate batch of queries to each core in the
processor. Each core scans the table, feeding each block of tuples
through its batch of queries.

SinceBatchSharingassigns queries to batches purely according
to their agg-table sizes, the batches can be very heterogeneous. As a
result, the running times of different batches can vary significantly,
and the division of work among cores can be uneven. To prevent
cores from being idle, our implementation ofBatchSharinguses
the work-stealing features already present in Blink.

Recall from Section 2.2 that Blink’s conventional query sched-
uler detects idle cores and assigns them to “help out” other cores
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that have been assigned expensive queries. Our implementation
of FullSharing disables this feature, sinceFullSharing naturally
levels the load across threads. WithBatchSharing, we re-enable
work-stealing. If a thread finishes its batch of queries before the
other threads, the thread can steal work (table blocks) from another
batch. Thus, multiple threads work concurrently on the expensive
batches, automatically achieving a balanced load.

4.5 Dynamic Query Grouping
The description ofBatchSharingin the previous section assumed

a single static workload of queries. In this section, we extend the
technique to handle an online environment with dynamic query ar-
rival, as in a data warehouse supporting a stream of analyst queries.

We still want to run queries in batches, with the combined work-
ing set of each batch fitting in the L2 cache to avoid agg-table
thrashing. The basic methods from the previous section on esti-
mating the agg-table size of each query and on packing queries
into batches still apply. But we need to form and maintain batches
for a dynamic query stream. We have two choices in how we form
and maintain batches of queries for a dynamic query stream:
• If a batchX of queries is running and a new queryq arrives, add

q to X if the working sets ofX andq together fit in cache.
• Once a batch of queries has started running, treat it as immutable.
The first option could potentially give higher throughput, but re-
quires additional book-keeping to track which queries in a batch
have operated on which blocks. To keep our design simple, we
choose the second option.

Our dynamic approach toBatchSharingworks as follows: At
any point in time, the queries in the system fall into two categories:
activeandunassigned. Active queries have been assigned to query
batches; theseactive batchesare in the process of being executed
over shared scans. Unassigned queries are not yet part of a batch;
these queries reside in a special staging area until they are assigned
to a batch.

Dynamic workloads arise primarily in interactive applications,
with concurrent users submitting queries from their individual con-
soles. It is important for these users to see consistent query re-
sponse times. To function correctly in such an environment, a query
processor must schedule queries fairly and avoid starvation. Our
dynamicBatchSharingimplementation targets two kinds of fair-
ness:
• Fair scheduling: On average, every active query receives an

equal fraction of CPU time to within a constant multiplicative
factord.
• No starvation: As long as the system is not overloaded, the

amount of time that a query can be in the unassigned state is
strictly bounded.

4.5.1 Scheduling Queries Fairly
Since the queries in a given batch share a scan, it follows that

every query in the batch must complete at the same time. Should a
batch contain both fast and slow queries, the faster queries will re-
ceive a smaller slice of the CPU, violating our fair scheduling goal.
To avoid this problem, we incorporate constraints on query running
time into our bin-packing algorithm. A given pair of queries are al-
lowed to share a batch only if their running times differ by a factor
of less thand. We choosed experimentally in Section 6.4. Since
we do table scans, query running times can be easily estimated from
running the query on a sample.

Another obstacle to fairness is the relative weight of different
batches in scheduling the activities of the CPU’s cores. If two
batches of unequal size receive equal slices of CPU time, the queries
in the smaller batch will receive a greater share of CPU. To avoid

such inbalances, we ensure that each batch receives an amount of
CPU time proportional to its size.

We use lottery scheduling [20] to implement this allottment of
CPU time. Each running batch receives a number oflottery tick-
etsproportional to the number of queries in the batch. We store
the mapping from tickets to batches in an array, where each entry
represents a single ticket. We divide time into slices that are suffi-
ciently large to amortize the overhead of flushing the processor’s L2
cache. At the start of each time slice, every core chooses a lottery
ticket uniformly at random and executes the corresponding batch
for the remainder of the time slice. Overall, the expected amount
of CPU time that each batch receives is proportional to its number
of tickets, and hence to its number of queries.

4.5.2 Avoiding Starvation
To prevent starvation, our implementation ofBatchSharingen-

forces an upper boundtw on the amount of time a query can be in
the unassigned state. At the same time, we want to keep queries in
the staging area as long as possible, so as to maximize the opportu-
nities for effective bin-packing. We achieve a compromise between
these two factors by tracking the original arrival time of each unas-
signed query.

During query processing, the staging area is left untouched until
one of the following occurs:
• No more active queries remain, or
• A query has spent more thantw time in the staging area.

When either of these events happens, it triggers the following
sequence of actions:
1. Pack all the unassigned queries into batches.

2. Activate any batch containing a query that has spent more than
tw time in the pool.

3. Activate a batch if there are still no active batches.

4. Return the remaining queries to the staging area.

5. WORKING-SET SIZE ESTIMATION
As discussed in Section 4.4.1, we need to classify queries as

always-share, never-share, or could-share and, for the could-share
queries, estimate the working-set (WS) size. We now describe our
sampling-based classification and estimation algorithm.

We first introduce some notation. For a specified queryq and real
numberγ ∈ [0, 1], aworking setWγ(q) is defined as a minimal set
of rows in the agg-table—not necessarily unique—that accounts
for 100γ% of rows in the answer toq after predicates have been
applied but prior to grouping. I.e., if the cache comprises the rows
in Wγ(q), then the cache-hit rate for queryq (in isolation) will be
100γ%. (We use a value ofγ = 0.8 in our prototype.) Given
a value ofγ, we wish to (1) classify a query as always-share if
its selectivityσ is less than a thresholdσ∗, (2) classify a query as
never-share if the WS size will clearly exceed the space threshold
d∗ = B−C allotted for the agg-tables, and (3) otherwise compute
|Wγ(q)| for purposes of bin packing.

To avoid expensive table scans, we sample the tableT of interest,
and merely estimateσ and |Wγ(q)|. The idea is to execute the
classification steps (1)–(3) above, but modify each step to take into
account the uncertainty due to sampling, using an “indifference-
zone” approach, which we now describe. Setxi = 1 if the ith row
of T satisfies the predicates inq, andxi = 0 otherwise, so that
σ = (1/|T |)

P|T |
i=1 xi. Also setα2 = (1/|T |)

P|T |
i=1(xi − σ)2.

To determine whetherσ < σ∗, we take a simple random sample
of n rows from tableT and apply the predicates inq to the sam-
pled rows. SetXi = 1 if the ith sampled row satisfies the predi-
cates inq, andXi = 0 otherwise. We then estimateσ by σ̂n =
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(1/n)
Pn

i=1 Xi, and classifyq as always-share if̂σn < σ∗ − ǫn.
The formulas forn andǫn are given below, and are chosen so that
the probability of a “type-1” or “type-2” error is less than a user-
specified thresholdp. A type-1 error occurs ifσ > σ∗ + δ2 but
σ̂ < σ∗ − ǫn, whereδ2 is an “indifference” constant. That is, a
type-1 error occurs ifσ lies “significantly” aboveσ∗, as measured
by δ2, but our procedure, which usesσ̂, incorrectly classifies query
q as always-share. Similarly, a type-2 error occurs ifσ < σ∗ − δ1

but σ̂ > σ∗ − ǫn. If σ lies in the interval[σ∗ − δ1, σ
∗ + δ2], then

we can tolerate a misclassification. In general, the repercussions of
a type-1 error are much more serious than those of a type-2 error.
Based on preliminary experiments, we found that suitable values
of the foregoing constants are given byσ∗ = 0.001, δ1 = σ∗, and
δ2 = 0.099.

Specifically, we set

n =

„

2αz1−p

δ1

«2

∨ nmin,

and

ǫn =

„

αz1−p
√

n
− δ2

«+

wherenmin ≈ 500, zx is the100x% quantile of the standard (mean
0, variance 1) normal distribution,x ∨ y = max(x, y), andx+ =
max(x, 0). Note that the constantα appearing in the above for-
mulas is unknown; in practice we use a small pilot sample of size
m = nmin to estimateα by α̂2

m = (m − 1)−1
Pm

i=1(Xi − σ̂m)2.
To see that use of the foregoing values achieves (approximately)
the desired error control, observe that

P { type-1 error} = P { σ̂n < σ
∗ − ǫn }

= P



σ̂n − σ

α/
√

n
<

σ∗ − σ

α/
√

n
−

ǫn

α/
√

n

ff

≤ P

(

σ̂n − σ

α/
√

n
<
−δ2

α/
√

n
−

„

z1−p −
δ2

α/
√

n

«+
)

≤ P



σ̂n − σ

α/
√

n
< −z1−p

ff

≈ p,

where the last≈ follows from the central limit theorem (CLT) and
the definition ofz1−p. (Our choice ofnmin attempts to ensure the
accuracy of the CLT approximation.) Similarly,

P { type-2 error} = P { σ̂n > σ
∗ − ǫn }

= P



σ̂n − σ

α/
√

n
>

σ∗ − σ

α/
√

n
−

ǫn

α/
√

n

ff

≤ P



σ̂n − σ

α/
√

n
>

δ1

α/
√

n
− z1−p

ff

≤ P



σ̂n − σ

α/
√

n
> z1−p

ff

≈ p,

To obtain a reasonable estimate of the working-set size for a
queryq, we incrementally maintain a uniform multiset sampleW

of grouping values by incrementally sampling tableT ; for each
sampled tuple, we apply all of the predicates inq and, if the tuple
survives, project it onto the grouping attributes before adding it to
W . After each incremental sampling step, we estimate thecover-
ageV of the setD(W ) of distinct grouping values inW . Denoting
by T ∗ the reduced version ofT obtained by applying the selection
predicates inq, we define the coverage as

P

i∈D(W ) πi, whereπi

is the fraction of rows inT ∗ whose grouping values match theith
value inD(W ); see [9] for a discussion of coverage. As soon as

V ≥ γ, we stop the sampling process and use the number of rows
in W as the estimate of the working-set size. The idea is that the
most frequent grouping values will appear inW , so thatW will be
approximately minimal; more elaborate approaches are possible,
but experiments indicate that our proposed technique is adequate
for our task. As with query selectivity, the test of whether or not
V ≥ γ is modified to take into account the uncertainty introduced
by sampling, using an indifference-zone approach.

In more detail, whenW containsn elements, we estimate the
coverageV by V̂n = 1 − f1/n, wherefj [1 ≤ j ≤ |D(W )|] is
the number of distinct grouping values that appear exactlyj times
in W ; see [9] for a discussion of this estimator, which is originally
credited to Turing. Choose an indifference zone of the form[γ −
δ′1, γ + δ′2] and set

n
′ =

„

2βnz1−p

δ′2

«2

∨ nmin,

and

ǫ
′
n =

„

βnz1−p
√

n
− δ

′
1

«+

,

whereβn = (f1/n) + 2(f2/n) − (f1/n)2. Then, provided that
|W | ≥ n′, declare thatV ≥ γ if and only if V̂|W | > γ + ǫ′|W |.
An argument similar to the one given above shows that, to a good
approximation, the probability of a type-1 or type-2 error will be at
mostp. (The key difference from the prior argument is that we use
a CLT for the coverage estimator due to Esty [9], rather than the
standard CLT.) In our prototype, we use indifference-zone values
of δ′1 = 0.05 andδ′2 = 0.10.

The overall technique is given as Algorithm 1. In the algorithm,
the function DISTINCT(W ) computes the number of distinct el-
ements inW , and NUMWITHFREQ(W, i) computes the quantity
fi defined previously. The function SAMPLE(T, n) takes a simple
random sample ofn rows from tableT , without replacement. The
function INCREMENTSAMPLE(W,T, i) repeatedly samples from
T until a sampled tuple survives the predicates inq. This tuple is
then projected onto the grouping attributes and added toW . The
sampling fromT is incremental within and between function calls;
the variablei records the cumulative number of tuples that have
been sampled fromT over all calls to INCREMENTSAMPLE.

We achieve efficiency by precomputing a sampleT ′ of 100k

rows, and storing them in random order, so that incremental sam-
pling of T corresponds to a simple scan ofT ′. We setnmax = |T ′|,
so that if the sample becomes exhausted at any point (lines 14 and
25), the algorithm terminates and conservatively categorizes query
q as never-share. In practice, the same sampleT ′ can be used for
both the selectivity test (pilot and regular samples) and the WS size-
estimation phase, without much adverse impact on the effectiveness
of BatchSharing. Finally, note that, in line 26, DISTINCT(W ) is es-
sentially a lower bound on the size of the working set, so that the
test in line 26 indeed identifies whetherq is a never-share query.

6. EXPERIMENTS
We now present a detailed performance evalution of our scan-

sharing algorithms. The evaluation proceeds in roughly the same
order that we have described the algorithms:
Extent of Thrashing: Early in this paper we introduced a fairly

simple algorithm, FullSharing, and then we argued that it leads
to thrashing of agg-tables. Does it? How bad is the thrashing
(Section 6.1)? Can we avoid this thrashing just by adding a sim-
ple admission-control scheme to FullSharing (Section 6.2)?

Mixed Workloads: BatchSharing is much more fancy than Full-
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Algorithm 1 Query classification and WS size estimation
1: T, q: table and query under consideration
2: σ∗, γ: selectivity and WS-size cutoff values
3: d∗ = C −B: agg-table threshold for never-share
4: δ1, δ2, δ

′
1, δ

′
2: indifference-zone values

5: p: maximum allowed error probability
6: nmin, nmax: minimum and maximum sample sizes
7:
8: // test selectivity
9: m← nmin

10: T ′ ← SAMPLE(T, m) // take pilot sample
11: σ̂ ← m−1Pm

i=1 Xi

12: α̂←
`

(m− 1)−1
Pm

i=1(Xi − σ̂)2
´1/2

13: n← (2α̂z1−p/δ1)
2 ∨ nmin

14: if n > nmax then return “never-share”
15: T ′ ← SAMPLE(T, n) // take actual sample
16: σ̂ ← n−1Pn

i=1 Xi

17: α̂←
`

(n− 1)−1Pn

i=1(Xi − σ̂)2
´1/2

18: ǫ←
`

(α̂z1−pn−1/2)− δ2

´+

19: if σ̂ < σ∗ − ǫ then return “always-share” // selectivity test
20:
21: // estimate WS size
22: W ← ∅; i← 0 // initialize
23: while true do
24: INCREMENTSAMPLE(W, T, q, i)
25: if i > nmax then return “never-share”
26: if DISTINCT(W ) > d∗ then return “never-share”
27: f1 ← NUMWITHFREQ(W, 1)
28: f2 ← NUMWITHFREQ(W, 2)

29: β ←
`

(f1/n) + 2(f2/n) − (f1/n)2
´1/2

30: n′ ← (2βz1−p/δ′2)
2 ∨ nmin

31: if |W | ≥ n′ then // is |W | big enough for testing?
32: V̂ ← 1− (f1/|W |)

33: ǫ′ ←
`

(βz1−pn−1/2)− δ′1
´+

34: if V̂ > γ + ǫ′ then return DISTINCT(W )
35: end if
36: end while

Sharing. Focusing purely on throughput, how good is it? Es-
pecially, what happens with a mixed workload of queries with
small and large working sets? Is BatchSharing able to correctly
batch the queries (Section 6.2)?

Interaction of Selectivity with Working Set: How does selectiv-
ity impact the thrashing of agg-tables? Were we right to model
queries with low selectivity as not contributing to the working
set of a batch (Section 6.3)?

Fairness: How well does BatchSharing maintain fairness among
concurrent queries (Section 6.4)?

Putting it all together: We started this paper with a problem of
scaling on a multicore system. Have we solved this problem
(Section 6.5)?

Setup: Our test machine has two Intel Xeon quad-core CPUs (2.66
GHz/core). The memory hierarchy is 16GB of RAM, 4MB L2
cache (shared between two cores), and 64KB each of L1 data cache
and instruction cache per core.

We use an actual customer dataset, CUST1 for our experiments.
The denormalized table has 28M rows, and takes up 25GB uncom-
pressed in a traditional commerical DBMS. Blink’s compression
reduces this to 2.8GB, an amount that comfortably fits in memory.

The queries used in our experiments have the following template
(all column names are anonymized):
SELECT SUM(col1), . . . SUM(col12) FROM table
WHERE conjunction of single column predicates
GROUP BY grouping cols

6.1 Tackling Agg-Table Thrashing
For our first experiment, we ran workloads with varying numbers

of queries but homogeneous agg-table sizes. All the queries in a
given workload have the same GROUP-BY clause, chosen so as to
achieve a specific size for the query agg-table. The predicates were
chosen to be non-selective (about 98% selectivity), so that almost
all tuples participate in aggregation.

Figure 7(a) plots the throughput of each workload: increasing the
number of queries on the x-axis, with a separate curve for each agg-
table size. BS refers to BatchSharing and FS to FullSharing. For
instance, ”BS-50KB” is BatchSharing for queries with 50KB agg-
table size. The total agg-table size for each workload is (number of
queries)× (query agg-table size).

Observe that the throughput using FullSharing (the dotted curves)
starts to drop when the total working-set size exceeds 1.6MB, which
maps well to the 2MB L2 cache available per core (the remainder
holds one block of the table being scanned). BatchSharing, on the
other hand, does not exhibit any such thrashing. We have noted
from logs that it behaves like FullSharing up to the thrashing point,
and starts partitioning queries into batches thereafter.

Observe also that the throughput of BatchSharing does plateau,
but at different numbers of queries for different agg-table sizes:
about 16 queries for 800KB agg-tables, about 64 for 200KB agg-
tables. By turning on logging, we have found that this corresponds
to the point when the queries are partitioned into 8 batches: at this
point each core gets its own batch and we cannot improve perfor-
mance any further.

Figure 7(b) plots a more detailed version of the results for the
same experiment, showing more query agg-table sizes. The x-axis
shows the total agg-table size of the workload: notice that through-
put keeps increasing well beyond the 1.6MB point at which Full-
Sharing peaked.

6.2 Mixed workloads
The homogeneous workload used in the last experiment is be-

coming less and less common as users consolidate different appli-
cations against the same DBMS. For example, queries whose re-
sults are to be shown to a human being usually have a small number
of groups and hence small agg-table sizes, since they must fit on a
screen, whereas drill-down OLAP queries involve fine-granularity
grouping clauses that lead to large agg-table sizes. In real-world
scenarios, the ratio of small-result queries to large-result queries
varies across systems and over time.

So a natural question is whether BatchSharing is able to handle
such mixed workloads. To test BatchSharing’s robustness, we gen-
erate mixed workloads with queries of two agg-table sizes: 1.6MB
and 50KB. Each workload has 100 queries, with the ratio of large
to small varying from 1:1 to 1:32.

This experiment also tests another hypothesis. Based on the
results in Figure 7(a), one might think that FullSharing can be
fixed just by adding an admission control scheme that permitsn

concurrent queries at a time. Call such a schemeFullSharing-
n. We show a full comparison among NaiveSharing, FullSharing,
FullSharing-2, FullSharing-4, and BatchSharing in Figure 8. Ob-
serve that none of the FullSharing schemes with admission con-
trol is always better than the others. So there is no magic admis-
sion control value for FullSharing. Moreover, FullSharing with
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Figure 7: BatchSharing Throughput

admission control is not a replacement for BatchSharing, because
BatchSharing always outperforms such a scheme.

The other important point from Figure 8 is that the benefit of
BatchSharing varies when the query ratio changes. The throughput
improvement of BatchSharing decreases when there is a larger pro-
portion of queries with a large working set. In practice, a BI system
usually runs many more analytical queries than reporting queries;
such a workload favors BatchSharing. Overall, BatchSharing out-
performs other sharing schemes by up to a factor of 2.5.
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Figure 8: Throughput Speedup in a Mixed Query Workload

6.3 Impact of Selectivity on Thrashing
Our next goal is to validate the assumption in Section 5 that

queries with low selectivity do not contribute to thrashing and can

be ignored while estimating the working set size of a batch. We
run queries with selectivity varying from 100% from 0.01%, using
FullSharing. FullSharing does no batching, so this shows us the
extent of agg-table thrashing at various selectivities.

Query agg-table size agg-table size
selectivity in Fig. 9(a) in Fig. 9(b)

100% 0.9MB 0.22MB
10% 0.9MB 0.22MB
1% 0.84MB 0.22MB

0.1% 0.61MB 0.21MB
0.01% 0.19MB 0.12MB

Table 2: Working-set sizes in Figure 9
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Figure 9: FullSharing vs query selectivity

Figure 9 shows the throughput speedup for queries under two
situations: in Figure 9(a), the agg-table size before predicates are
applied is 0.9MB, and in Figure 9(b) it is 0.2MB. But this size only
applies to the 100% selectivity queries. When the WHERE clause
is changed to reduce the selectivity, the agg-table size reduces be-
cause some groups get no tuples. Table 2 lists the agg-table sizes
for various selectivities.

Observe that for the queries with 1% to 100% selectivity, the
agg-table size does not differ much. But the peak throughputs are
very different: e.g, in Figure 9(a), throughput peaks with 4 queries
at 10% selectivity and with 2 queries with 100% selectivity. This
phenomenon arises because queries with low selectivity do very
few agg-table IOs for each base table I/O: most tuples fail the pred-
icate and never reach the aggregation stage. So the extent of agg-
table thrashing is low for such queries; at selectivities below 0.1%,
the agg-table thrashing is negligible.
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6.4 Fairness and Starvation Avoidance Using
Dynamic Grouping Algorithm

We now turn our attention from throughput to fairness and star-
vation avoidance. Instead of a static workload, we generate queries
on the fly at an arrival rate of 6 queries/second and feed this stream
into the dynamic BatchSharing scheduler. Queries are randomly
generated, varying two parameters: the predicates are varied to
achieve selectivities ranging from 0.01% to 98%, and the group-by
columns are varied to achieve agg-table sizes ranging from 0.2MB
to 0.9MB. This ensures a mix of: short-running queries (with low
selectivity and small agg-table sizes), long-running queries (with
high selectivity and large agg-table sizes), and medium queries (the
rest). The individual query execution times vary from 81 millisec-
onds to 554 milliseconds.

As described in Section 4.5, to achieve fair scheduling, we use a
multiplicative factord to bound the (estimated) the execution times
of queries within a batch. We use this experiment to study the sen-
sitivity to the value ofd and pick a good number. We report both
fairness and throughput in the following.

6.4.1 Fairness and Starvation Avoidance
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Figure 10: Fairness Using Dynamic Scan-sharing

To measure fairness, we look at the ratio of execution times for a
query, when running concurrently vs when running standalone: if
these ratios are identical for all queries we have perfect justice for
all. Figure 10 is a scatter plot of individual (x-axis) and concurrent
(y-axis) query execution time. Each point represents a query. To
help visualize the degree of fairness, we also add a trendline, based
on a linear regression fit passing through the origin. The equation

of the regression line is displayed in each figure, along with theR2

goodness-of-fit statistic. (Values ofR2 between 0.8 and 1 indicate
a good fit.)

Figure 10(a) shows the result withd = 2. Notice that the data
points are naturally clustered into two groups. Queries from this
workload form two types of batches: one for short running queries
and the other for long running queries. Across batches, the lottery
scheduler ensures that the batches with short queries get the same
share of the CPU as the batches with long queries. Figure 10(b)
shows the result with a smallerd = 1.25. The data points form
more clusters when compared to Figure 10(a). Moreover, the data
points are more closely clustered around the trendline, with aR2

of 0.9, compared withR2 = 0.8 for d = 2.
At the same time, for bothd = 2 andd = 1.25, all the queries

are present in the plot, so no starvation occurs.
Overall, the results are as we would expect. Smaller values ofd

result in more fairness (values tightly clustered around a line), but
both values ofd avoid starvation.

6.4.2 Throughput
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Figure 11: Dynamic Grouping Throughput vs Query Range
(1/d, d)

We choose a good value ofd based on throughput. Figure 11
reports throughput for dynamic grouping algorithm withd varying
between 1 and 2. For the dynamic grouping algorithm, the sys-
tem throughput decreases with smallerd, because that leads to a
smaller pool of queries that are available to form a batch. However,
throughput only differs 12% betweend = 2 andd = 1.25, whereas
it differs 50% betweend = 2 andd = 1. So, we pickd = 1.25 as
a sweet spot to reach a balance between throughput and fairness.

The same plot also shows a variant of NaiveSharing which takes
a query stream as input. Comparing dynamic grouping withd =
1.25 to NaiveSharing, we see that the system throughput of the
former is 2x of that of the latter.

6.5 Multi-core Scaling
Our last experiment repeats the query from Figure 2 of the in-

troduction, but using BatchSharing. Our goal is to see if the I/O
bottleneck has been removed.

Using theoprofilesystem profiler and Xeon hardware counters,
we break the total CPU cycles into 5 components (Figure 12): com-
putation, pipeline stall due to branch misprediction, L2 cache hit,
DTLB miss, and resource stall due to memory loads (using Xeon
counters:CPU CLK UNHALTED, RS UOPSDISPATCHEDNONE,
MEM LOAD RETIRED(with mask 0x01 and 0x04),DTLB MISSES,
andRESOURCESTALLS (with mask 0x10 and 0xf)).

The plot compares NaiveSharing and BatchSharing, run using 1
core and using 8 cores. With NaiveSharing on 8 cores much of
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Figure 12: CPU breakdown of BatchSharing

the total CPU cycles go to memory access, because the bandwidth
is saturated with all 8 cores issuing loads. For BatchSharing, the
portion spent on memory access remains almost the same in going
from 1 to 8 cores. BatchSharing also has more L2 cache hits than
NaiveSharing, due to sharing of base table IOs.
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Figure 13: Performance scaling on multi-cores

Figure 13 plots the speedup in throughput as a function of the
number of cores. NaiveSharing increases sub-linearly with increas-
ing number of cores, saturating at 2.9. BatchSharing scales almost
linearly, to a factor of 7 on 8 cores. Certain phases of query pro-
cessing are not parallelizable in our system, such as query parsing
and compilation, and the merging of partial agg-tables into a global
agg-table (as described in Section 2.2). This explains why use of
BatchSharing results in a speedup factor of 7, and not 8, for 8 cores.

7. CONCLUSION
The stories we have been hearing about the multicore trend have

so far been mostly negative: clock speeds are decelerating, we have
to write parallel programs, parallel programs do not scale easily,
and enterprise software will perform poorly. The results of this
paper suggest that the situation may not be so dire in all cases. In
the context of a compessed database, we have shown a solution that
achieves near-linear speedup of query throughput when running an
8-query workload on a server with 8 cores.

Looking forward, a board with two quad-core processors is a far
cry from the GPUs with 100s of cores that are available today, or
the CPUs with dozens of cores that are on the horizon. With such
aggressively multicore architectures, the amount of cache available
per core will decrease. An interesting direction for future work is to
design aggregation tables that are tightly compressed, so that they
fit in small caches, yet are efficiently updateable.
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