
LEEWAVE: Level-Wise Distribution of Wavelet Coefficients for
Processing kNN Queries over Distributed Streams

Mi-Yen Yeh†,‡ Kun-Lung Wu‡ Philip S. Yu§ Ming-Syan Chen†

†Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
‡IBM T.J. Watson Research Center, Hawthorne, NY

§Department of Computer Science, University of Illinois at Chicago, Chicago, IL

miyen@arbor.ee.ntu.edu.tw, klwu@us.ibm.com, psyu@cs.uic.edu, mschen@cc.ee.ntu.edu.tw

ABSTRACT
We present LEEWAVE − a bandwidth-efficient approach to search-
ing range-specifiedk-nearest neighbors among distributed streams
by LEvEl-wise distribution of WAVElet coefficients. To find thek
most similar streams to a range-specified reference one, the relevant
wavelet coefficients of the reference stream can be sent to the peer
sites to compute the similarities. However, bandwidth can be un-
necessarily wasted if the entire relevant coefficients are sent simul-
taneously. Instead, we present a level-wise approach by leveraging
the multi-resolution property of the wavelet coefficients. Starting
from the top and moving down one level at a time, the query initia-
tor sends only the single-level coefficients to a progressively shrink-
ing set of candidates. However, there is one difficult challenge in
LEEWAVE: how does the query initiator prune the candidates with-
out knowing all the relevant coefficients? To overcome this chal-
lenge, we derive and maintain asimilarity rangefor each candidate
and gradually tighten the bounds of this range as we move from one
level to the next. The increasingly tightened similarity ranges en-
able the query initiator to effectively prune the candidates without
causing any false dismissal. Extensive experiments with real and
synthetic data show that, when compared with prior approaches,
LEEWAVE uses significantly less bandwidth under a wide range of
conditions.

1. INTRODUCTION
Processing data streams has become increasingly important as

more and more emerging applications are required to handle a large
amount of data in the form of rapidly arriving streams. Exam-
ples include data analysis in sensor networks, program trading in
financial markets, video surveillance and weather forecasting. In
response, many organizations [1, 3, 5, 9, 30, 32] have started de-
veloping data stream processing systems (DSPS).

Findingk-nearest neighbors (kNN) is one of the most common
applications in computing. ProcessingkNN queries has been one
of the most studied problems in traditional non-streaming database
research. It is also believed to be the case in data stream process-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Pinit

......

Query
Processor

value

time

Sref
...... ...

user-defined
query range Collected

Statistics

time

......

time

...... time

......

Answers

P2

P1 PM

Require
Further
Statistics

Figure 1: System model.

ing. For akNN query, the DSPS will find thek streams that have
more similar patterns than others to a given pattern contained in
a reference stream. Compared tokNN query processing in tra-
ditional databases, stream-basedkNN query processing is much
more challenging. It must handle an endlessly growing amount of
data with limited resources. Nevertheless, many researchers have
started working on various aspects of stream-basedkNN query pro-
cessing [13, 17, 19, 21]. But, these works mainly focus on the case
where data streams are collected and processed at a central site.

In many real-world applications, however, data streams are usu-
ally collected in a decentralized manner. For example, to forecast
the weather and track global climate changes, meteorologists col-
lect streams of measurements, like temperatures, from observation
stations located over a wide area. In surveillance, video cameras
are set up in many places and continuously capture images from
various angles. Finally, readings from a sensor network are col-
lected in a distributed fashion. In these cases, it is inefficient to
gather all of the distributed streams to a central site before doing
any query processing. It is even impossible to do so when the
available network bandwidth is limited. Hence, there is a need to
develop a bandwidth-efficient approach to processingkNN queries
among distributed streams.

In this paper, we study the problem of processing distributed
kNN (k-similarity) queries. The system model is shown in Fig 1,
where there areM distributed sites, each monitoring one or more
streams. These sites can communicate with each other via a com-
munication network. Given a reference streamSref maintained by
an initiator site,Pinit, the goal is to find thek streams among all
M sites with the highest similarities toSref than other streams in

586

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

the user-defined time rangeT .
An obvious solution to distributedkNN query processing is to

transmit to all other sites all the relevant data ofSref in the spec-
ified time range, referred to as the query object. After receiving
the query object fromPinit, each peer site computes the similari-
ties between locally maintained streams andSref , and then reports
its localkNN streams toPinit. Finally, Pinit determines the true
kNN after it receives results from all the peer sites. This kind of
scheme was called Concurrent Processing (CP) in [26]. Unfortu-
nately, concurrent processing is not a good one because it requires
large bandwidth (size of the query stream multiplied by (M − 1)
plusk candidate objects from each of theM−1 sites) and a signif-
icant part of it can be unnecessarily wasted, especially ifM ≫ k

or if T is large. To save the bandwidth, the authors in [26] further
suggested a probabilistic processing (PRP) method, which reduces
the amount of data transmitted back from all other peer sites. Sim-
ilar to CP, PRP first sends the query object to all other sites as well.
However, it requests onlyk/M + 1 similar objects from each local
site. Formulating the current set of best matches, the query initia-
tor further asks objects from sites with possible candidates. PRP
indeed saves bandwidth in returning candidate objects; however,
sending the entire query object initially to a large number of sites
still consumes huge bandwidth.

Searching for a better solution, we notice that summary sketches,
instead of complete details, of the streams are usually maintained
in a data streaming environment. Among various sketches, the
wavelet-based one, especially the Haar wavelet summarization, has
been widely adopted in many stream-oriented applications due to
its efficiency and simplicity [6, 31, 34]. More importantly, the Haar
wavelet decomposition provides multiple resolutions in time and
frequency domains like all other wavelet decompositions do. In a
coarser resolution, there are fewer wavelet coefficients, each rep-
resenting a longer subsection of the original data; while in a finer
resolution, there are more wavelet coefficients, but each represents
a smaller subsection of the data. More specifically, coefficients in
a lower resolution give a rough outline of the original data, while
those in a higher resolution disclose more details. This gives us
inspiration that we can use fewer coefficients in a coarser resolu-
tion to filter out as many candidates as possible and then use more
coefficients in a finer resolution to refine the answers. The multi-
resolution property of wavelets has also been exploited by many
other applications. For example, using haar wavelet coefficients to
index images, the authors in [2] showed that it saved computation
time while still providing good results when answering queries us-
ing approximated images in coarser resolutions. Similarly, when
considering clustering of time series, the authors in [20] also lever-
ages the multi-resolution property of wavelets to avoid local min-
ima problem and save computation time. The coarser representa-
tions are used to decide initial cluster centers while the finer ones
are used to get final results.

Armed with this insight, we present LEEWAVE − a bandwidth-
efficient approach to processingkNN queries in a distributed
streaming environment by LEvEl-wise distribution of WAVElet co-
efficients. In essence, instead of simultaneously distributing all the
relevant coefficients of the reference stream to other peer sites, the
query initiator,Pinit, sends the coefficients one level at a time,
starting from the top (the coarsest) level. At each step, with
returned level distances from the peer sites,Pinit progressively
prunes the candidates. As we progress to a lower level, which usu-
ally contains more coefficients, the number of candidates becomes
much smaller. As a result, significant bandwidth savings can be
realized because the wavelet coefficients at a lower level are sent
to a much smaller set of candidate sites. More importantly, dur-

ing the process of candidate pruning, we guarantee that there is no
false dismissal1 which is not provided in previous work on multi-
resolution indexing [2].

However, there is one difficult challenge in LEEWAVE: At each
step, how doesPinit prune the candidate streams without know-
ing all the relevant wavelet coefficients? In fact, it is impossible
at an intermediate level to compute the true similarities. Without
them, it is difficult, if not impossible, to prune the candidates. To
address this challenge, we derive and maintain asimilarity range
for each candidate stream. The upper and lower bounds of a simi-
larity range can be incrementally updated atPinit with level-wise
distances returned from the peer sites. More importantly, a simi-
larity range gradually becomes tighter as we move from one level
to the next. These increasingly tightened similarity ranges enable
Pinit to effectively prune the candidate streams without causing
any false dismissal.

To evaluate the effectiveness of LEEWAVE, we conduct extensive
experiments using both real and synthetic data. For comparisons,
we also implement the CP and PRP approaches. We measure the
total bandwidth consumed in finding thek most similar streams to
a reference one. The results show that, under a wide range of condi-
tions, LEEWAVE consumes significantly less bandwidth, especially
whenM ≫ k or T is large.

Our contributions can be summarized as follows:

• We introduce LEEWAVE as a bandwidth-efficient approach
to processingkNN queries in a distributed streaming envi-
ronment by level-wise distribution of wavelet coefficients.
The relevant coefficients of the reference stream are sent to
a progressively shrinking set of candidate streams/sites one
level at a time.

• To enable the query initiator to prune the candidate streams
without any false dismissal, we derive and maintain a simi-
larity range based on wavelet coefficients for each candidate
stream. The similarity range is increasingly tightened by in-
corporating level-wise distances computed and returned by a
peer site.

• We conduct extensive experimental studies to evaluate LEE-
WAVE. The results show that, when compared with prior ap-
proaches, LEEWAVE uses significantly less bandwidth under
a wide range of conditions.

The remainder of this paper is organized as follows. Related
work is discussed in Section 2. Preliminaries are given in Sec-
tion 3, including wavelet decomposition and coefficient mainte-
nance. The application of LEEWAVE to the processing of dis-
tributedkNN queries is described in Section 4. Section 5 shows the
experimental results. Finally, the paper is concluded in Section 6.

2. RELATED WORK
Wavelet transform plays an important role in the field of time

series analysis [27]. Although there are many other data decom-
position methods such as discrete Fourier transform, singular value
decomposition, piecewise linear approximation and so on, none of
them provides the multiple resolutions in both time and frequency
domain. The property of multi-resolution and the feasibility of on-
line updating provides various options for maintaining synopses in

1Note that not all the wavelet coefficients are retained in a steaming
environment. As a result, the accuracy of our scheme is based only
on the retained wavelet coefficients. Namely, if there is an error in
thekNN w.r.t. the raw data, the error is solely due to the discarded
coefficients. Our scheme does not introduce any extra error.

587

the streaming environment. Bulut et al. provided a wavelet-based
index structure which incrementally summarizes data in multiple
resolutions [6]. Recent data are sketched using finer resolutions
while obsolete ones are sketched using coarser resolutions. These
indexes can then be used to answer point queries, range queries
and inner product queries. Zhu et al. considered burst detection
using a summary structure called SWT, which is a shifted-wavelet
tree based on the Haar wavelet transform [34]. Teng et al. applied
the Haar wavelet transform concept to discover frequent temporal
patterns of data streams [31].

Searchingk-nearest neighbors is an important research topic in
a streaming environment [13, 17, 19, 21]. In [13], the authors pro-
posed to continuously retrieve the latestL points of a stream as
a query pattern and then find its nearest neighbors from a time
series database. Base on traditional indexing methods, the pro-
posed scheme achieves efficient query response via prefetching.
In [19], given an error bound, approximatek-nearest neighbors are
searched among stream snapshots. In [21], the authors proposed
a new indexing technique based on scalar quantization to provide
efficient nearest-neighbor search among multiple streams. In [17],
based on the Haar wavelet synopses, the authors provided an effi-
cient approach to finding thek-nearest neighbors under an arbitrary
range constraint. All these works assume that streams are collected
and processed at a central site.

However, in practice, most streams are generated in geographi-
cally distributed places. Therefore, more and more research works
have started to focus on distributed streams. These works include
finding recently frequent itemsets [23], top-k monitoring [4], track-
ing approximate quantiles [11], processing aggregation and thresh-
olding queries [22, 25, 28], content-based indexing for inner prod-
uct queries and similarity queries [7], and so forth. To the best of
our knowledge, there is no prior work on processingkNN queries
among multiple distributed streams.

In a distributed environment, among various kind ofkNN
queries and without considering the streaming environment, the
work in [26] analyzed four schemes to tackle thek nearest neighbor
queries, which are most similar to our problem. Among them, the
Probabilistic Processing (PRP) claimed to be an optimistic search
by the authors. In PRP, the query initiator (primary server) first sub-
mits the query object to all other sites. Then, onlyk/M +1, where
M is the total number of sites, nearest candidates of each peer site
need to be sent back. From the current set of best matches, the ini-
tiator further requests objects from possible sites. The PRP method
reduces the bandwidth consumption by retrieving as fewer candi-
dates from peer sites as possible. However, sending the entire query
object to all other sites initially still needs too much bandwidth, es-
pecially when the size of the query object or the total number of
sites is large.

In [10], the concept of multi-resolution indexing is employed to
reduce the computation for shape image retrieval. Instead of con-
sidering all vantage points of images, the authors computed an ap-
proximate distance range for each candidate image using a smaller
number of vantage points. From the approximate distance ranges, a
set of candidate images were chosen to compute the true distances
with all the vantage points of the chosen candidate images. How-
ever, their scheme is different from LEEWAVE in many respects.
First, they did not use wavelet coefficients as LEEWAVE does. Sec-
ond, they did not progressively tighten their distance ranges one
level at a time as LEEWAVE does.

3. PRELIMINARIES

3.1 Wavelet decomposition

Table 1: Haar wavelet decomposition.
averages wavelet coefficients

raw data {4, 6, 7, 4, 8, 6, 5, 7} -
high resolution {5, 5.5, 7, 6} {−1, 1.5, 1,−1}
mid resolution {5.25, 6.5} {−0.25, 0.5}
low resolution {5.875} {−0.625}

n
(u)

(1,0)

du,0

n
(u)

(1,1)
n

(u)

(1,2)
n

(u)

(1,3)

du,1 du,2 du,3 du,4 du,5 du,6 du,7

n
(u)

(2,0)
n

(u)

(2,1)

n
(u)

(3,0)

n
(u)

(3,-1)

(b)

6 7 4 8 6 5 74

-0.25 0.5

-0.625

-1 1.5 1 -1

5.875

+

+ -

+

+ + + +

+ -

(a)

-

level 3

level 2

level 1

Figure 2: (a) The error tree for Example 1; (b) The notation of
an error tree proposed in [17].

Among different wavelet transformations, the Haar wavelet [16]
decomposition is the first and also the most popular one. It is
achieved by averaging two adjacent data values of a sequence of
data at different time resolutions. Then, only the overall average
and differences are kept. We show a simple example here in Ta-
ble 1 to illustrate the idea of the Haar wavelet decomposition. As-
sume the original data are{4, 6, 7, 4, 8, 6, 5, 7}. The first pairwise
averages are{(4 + 6)/2 = 5, (7 + 4)/2 = 5.5, (8 + 6)/2 =
7, (5 + 7)/2 = 6}. Then the corresponding difference can be ob-
tained:{4−5 = −1, 7−5.5 = 1.5, 8−7 = 1, 5−6 = −1}. Based
on the data of this resolution, a lower resolution can be obtained in
a similar way as described above. Finally, the wavelet coefficients
containing the overall average and the difference values of each
resolution are{5.875,−0.625,−0.25, 0.5,−1, 1.5, 1,−1}.

To better illustrate the Haar wavelet decomposition, a widely
used data structure callederror tree is proposed in [24]. The er-
ror tree for Example 1 is shown in Fig. 2(a). This tree is com-
posed of wavelet coefficients as nodes and signs as edges. The
root of this tree is the overall average and all the other non-leaf
nodes are differences at various resolutions. The leaf nodes repre-
sent the raw data, but these raw data are not maintained. Instead,
one can always reconstruct the raw data by tracing the error tree.
Along each path from the root, each data value in a leaf node is
equal to the sum of the value of a node multiplied by the sign be-
low it. For example, the fifth data value, 8, can be reconstructed by
+5.875 − (−0.625) + 0.5 + 1 = 8.

We also use an error tree to illustrate our idea, the same as the
one used in [17], which is shown in Fig. 2(b). Here, each non-leaf
node is labeled with an identifier with two attributes as subscripts:
levelandplacement. A node with a label ofn(u)

(l,p) means that it is
in the p-th placement of levell in the error tree corresponding to
streamSu. This notation can be efficiently maintained when data
keep steaming in. Moreover, when not all wavelet coefficients are
retained, we can easily find the relative positions of the retained
coefficients in the error tree via the node labels.

3.2 Coefficient maintenance
Generally, not all the wavelet coefficients in an error tree are re-

tained because the data volume tends to be huge and the memory
space is limited in a streaming environment. To meet different er-
ror requirements between the raw data and the retained coefficients,
many on-line approaches to selecting wavelet synopses have been

588

n
(u)
(1,0)

du,0

n
(u)
(1,1) n

(u)
(1,2) n

(u)
(1,3)

du,1 du,2 du,3 du,4 du,5 du,6 du,7

n
(u)
(2,0) n

(u)
(2,1)

n
(u)
(3,0)

n
(u)
(1,4)

du,8

n
(u)
(1,5) n

(u)
(1,6) n

(u)
(1,7)

du,9 du,10du,11du,12du,13du,14du,15

n
(u)
(2,3) n

(u)
(2,4)

n
(u)
(4,-1)

n
(u)
(3,1)

n
(u)
(4,0)

du,0 du,7

n
(u)
(3,0)

du,8

n
(u)
(2,3)

a(u)
(3,0)=

du,11

n(u)
(4,-1) n(u)

(4,0)+ + a(u)
(2,3)= n(u)

(4,-1) n(u)
(4,0)+ - n(u)

(3,1)+

Figure 3: Extracting complete error subtrees and relevant coef-
ficients from the whole error tree based on a desired time range.

proposed. These requirements include minimizing theL2-norm
average error [14], minimizing the maximum absolute/relative er-
ror [18], minimizing the weightedLp-norm error [15], and provid-
ing a guaranteed accuracy [12], to name a few.

Given the retained coefficients of a stream, we can extract the
relevant coefficients within any time range [ts, te]. As sug-
gested in [17], the extraction procedure costs a time complexity of
O(log2 N), whereN is the total number of data values in a stream.
The extration method is outlined as follows. When a time range
[ts, te] is given, it first decomposes the range into several subranges
where each of them corresponds to a complete error subtree. Using
Fig. 3 as an example, suppose the given range is[t0, t11], which
contains the shaded triangular area in Fig. 3. We can decompose it
into two complete error subtrees where one covers[t0, t7] and the
other [t8, t11]. For each complete error subtree, the new average
node will be computed by traversing from the original root node
n

(u)

(4,−1) to the root of the subtree. In Fig. 3, the black nodes rep-
resent retained coefficients, while the white ones are those being
discarded. When traversing the path to get the new average, the
missing nodes are just treated as zero. For example, the new aver-
age nodea(u)

(2,3) equals ton(u)

(4,−1) − n
(u)

(4,0) + n
(u)

(3,1), where in fact

n
(u)

(3,1) is a missing node and just be treated as zero.

4. THE LEEWAVE APPROACH TO PROCESS-
ING DISTRIBUTED KNN QUERIES

Based on the maintained wavelet synopses, the goal of ourkNN
query is to find thek most similar streams toSref . We denote a
kNN query asQ(Sref , k, ts, te), wherek is the desired number of
most similar streams, and[ts, te] defines the time range of inter-
est. For the similarity measure between two streams, we adopt the
commonly used Euclidean distance in this paper.

4.1 Computing similarities using wavelet co-
efficients

Given wavelet coefficients of two streams, we can compute the
Euclidean distance directly from the coefficients themselves with-
out doing inverse wavelet transform back to the original data [8].
By reformulating the distance computation proposed in [17], for a
given time rangeT=[ts, te], the distance between two streamsSu

andSv can be computed as follows:

dst(Su, Sv)|te

ts
= [

∑

Ti

∑

n
(u)

(l,p)
or n

(v)

(l,p)
∈CTi

D
(u,v)

(l,p) × 2l]1/2, (1)

where

D
(u,v)

(l,p) =






[n
(u)

(l,p) − n
(v)

(l,p)]
2 if n

(u)

(l,p) ∈ CTi
& n

(v)

(l,p) ∈ CTi
,

[n
(u)

(l,p)]
2 if n

(u)

(l,p) ∈ CTi
& n

(v)

(l,p) /∈ CTi
,

[n
(v)

(l,p)]
2 if n

(u)

(l,p) /∈ CTi
& n

(v)

(l,p) ∈ CTi
,

Ti is one of the subrange inT with a complete error subtree, and
CTi

is the set of retained coefficients which are in the subrangeTi.
Eq. (1) computes the distance between two streams based on

the complete error subtrees. Unfortunately, this error-subtree-based
distance computation is not useful in LEEWAVE because peer sites
only receive the retained coefficients ofSref one level at a time.
We need a level-wise approach to computing the distance for LEE-
WAVE.

To better illustrate our idea, we introduce three definitions.

DEFINITION 1. We define the square sum of Euclidean distance
between streamSu andSv asDst(Su, Sv). Namely,

Dst(Su, Sv) = dst(Su, Sv)2.

Also, for ease of exposition, when we use the word ”distance” from
now on, we mean this square sum of Euclidean distance,Dst(u, v).

DEFINITION 2. We define thelevel-l distancebetween streams
Su andSv as the distance of retained coefficients at levell.

Dst
l(Su, Sv)|te

ts
=

∑

p

D
(u,v)

(l,p) × 2l
,

whereD
(u,v)

(l,p) satisfies the same condition as in Eq.(1).

DEFINITION 3. We define the accumulated distance between
streamsSu and Sv from the highest levelL down to levelρ (the
top-down accumulated distance) as:

accDst
ρ(Su, Sv)|te

ts
=

L∑

l=ρ

Dst
l(u, v)|te

ts
.

If we combine Definitions 2 and 3, and assume that the height of
the whole retained error tree isL, then Eq.(1) can be reformulated
as:

Dst(Su, Sv)|te

ts
= dst(Su, Sv)|te

ts

2

=
∑

p

D
(u,v)

(1,p) × 21 + ... +
∑

p

D
(u,v)

(L,p) × 2L

=

L∑

l=1

∑

p

D
(u,v)

(1,p) × 2l

=

L∑

l=1

Dst
l(u, v)|te

ts

= accDst
1(u, v)|te

ts
(2)

Eq. (2) is important to LEEWAVE as it suggests a level-wise
approach to computing the distance between two streams. LEE-
WAVE will use Eq. (2) to derive a similarity range for each candi-
date stream and gradually tighten this range in order to prune the

589

Sx = [1,4,2,5,7,8,4,2,5,8,6,6]
Sref = [4,5,2,6,7,8,3,5,3,7,5,5]

Error subtrees of Sx

Sx = [1.5, 4.5, 3, 3, 7.5, 7.5, 3, 3, 4.75, 7.75, 6.25, 6.25]
Sref = [4.25, 4.25, 2.25, 6.25, 7, 8, 3, 5, 3, 7, 5, 5]

4.125
-1.125

5
-0.75

-0.5

Error subtrees of Sref

: Retained wavelet coefficients

6.25
2.25

-1.5 -2 -1 -2

5
1.75

T1 T2

level 3:
[(4.125-5)2 + (-1.125+0.75)2] * 23 = 7.25

level 2:
[(6.25-5)2 + (2.25-1.75)2] * 22 = 7.25

[(-1.5)2 + (-2)2 + (-0.5)2 +(-1)2 + (-1.5+2)2] * 21

=15.5

level 1:

ts te T1 T2ts te

Original raw data
Reconstructed data via inverse DWT
from the error subtrees 30),(=xref SSDst

30),(),(
3

1

==∑
=l

xref
l

xref SSDstSSDst

3022),(
2),(),(1),(),(or

),(
),(

 or

),(
),(=×+×= ∑∑

∈∈ Tnn

lxref
pl

l

Tnn

xref
plxref

x
pl

ref
pl

x
pl

ref
pl

DDSSDst

Error-subtree-based distance computation:

Level-wise distance computation:

-1.5

Figure 4: Example of level-wise vs. error-subtree-based dis-
tance computation.

candidates. Before we delve into the details, let us look at an exam-
ple to understand the subtle, yet crucial, difference between Eq. (1)
and (2). Note that, for ease of exposition, we will omit the notation
of [ts, te] from now on in our description of the distance between
two streams.

Fig. 4 shows two different approaches to computing the
distance between two streams,Sref and Sx. Assume that
during the time range [ts,te], Sx has 12 raw data values
[1, 4, 2, 5, 7, 8, 4, 2, 5, 8, 6, 6] andSref also has 12 raw data val-
ues[4, 5, 2, 6, 7, 8, 3, 5, 3, 7, 5, 5]. These raw data are transformed
into separate error trees. Then a series of complete error subtrees
and retained coefficients are extracted. To verify the correctness,
we also show the reconstructed data and use them to compute the
distance. However, in practice, we never need to do such recon-
struction. The distance computation between two streams is done
completely with retained wavelet coefficients.

EXAMPLE 1. Error-subtree-based computation:Based on
Eq.(1), the distance between two streams is the summation of the
distance between each pair of their corresponding complete error
subtrees. For the first pair of error subtrees in rangeT1, the dis-
tance is: ((4.125 − 5)2 + (−1.125 + 0.75)2) × 23 + ((2.25 −
1.75)2+)×22+((−1.5)2+(−2)2+(0.5)2+(−1)2)×21 = 23.25.
For the second pair of error subtrees in rangeT2, the distance is:
(6.25 − 5)2 × 22 + (−1.5 + 2)2 × 21 = 6.75. The final distance
Dst(Sref , Sx) is 23.25 + 6.75 = 30. If we check the distance
from the reconstruction data by inverse DWT, we get exactly the
same distance value. �

EXAMPLE 2. Level-wise computation:From Fig. 4, we can
also compute the total distance in a level-wise manner. The to-
tal distance computed this way is also 30, which is the same as the
computed distance in Example 1. �

4.2 LEEWAVE for a kNN query
The central idea of LEEWAVE is as follows. The query initiator

sends the coefficients ofSref one level at a time. At each step, each
candidate peer site reports the level-l distance and other necessary
information to the initiator site. The initiator then gradually prunes

the candidates with the returned level distances. However, the key
challenge is: how does the initiator prune the candidates?

Note that, even with Eq. (2), the query initiator still cannot prune
the candidate streams without risking some false dismissal. This
is because, at a given level, it does not know how much those not-
yet-seen coefficients of the candidate streams at lower levels will
contribute to the final distances.

To overcome this problem, we maintain a similarity range into
which the exact distance may fall for each candidate stream. To
estimate the similarity range, we first decompose Eq.(2) into two
parts: one is the accumulated distance so far and the other is the
distance from those not-yet-seen coefficients.

Dst(Sref , Sx)

=

L∑

l=1

Dst
l(Sref , Sx)

= accDst
ρ(Sref , Sx) +

ρ−1∑

l=1

Dst
l(Sref , Sx). (3)

At level ρ, theaccDstρ(Sref , Sx) can be easily maintained by
Pinit. However, the second term of Eq. (3) is still unknown. Let us
further decompose the second terms:

ρ−1∑

l=1

Dst
l(Sref , Sx)

=

ρ−1∑

l=1

∑

p

[n
(ref)

(l,p) − n
(x)

(l,p)]
2 × 2l

=

ρ−1∑

l=1

∑

p

([n
(ref)

(l,p)]2 + [n
(x)

(l,p)]
2 − 2n

(ref)

(l,p) n
(x)

(l,p)) × 2l
. (4)

In Eq. (4), Pinit can easily compute the first term using
its own coefficients. It can also compute the second term,
∑ρ−1

l=1

∑
p([n

(x)

(l,p)]
2×2l), by first receiving

∑L−1
l=1

∑
p([n

(x)

(l,p)]
2×

2l) at the initial step and then gradually subtracting
∑

p[n
(x)

(ρ,p)]
2 ×

2ρ from it at each subsequent levelρ. The only problem left is the
last term in Eq. (4), which involves the product of coefficients at
levels belowρ. NeitherPinit nor any candidate site can compute
this term at the current levelρ. To guarantee no false dismissal, we
would like to find a substitute for this term which is an overestimate
but can be computed with level-wise coefficients.

Fortunately, we do find such a substitute. According to Cauchy-
Schwarz inequality [29], we can find an upper bound of the inner
product of two vectors in real space, where this upper bound is the
product of the linear square sum of each vector:

(

h∑

i=1

αiβi)
2 ≤

h∑

i=1

α
2
i ×

h∑

i=1

β
2
i , whereαi, βi ∈ R.

Now we if letαi = −[n
(ref)

(l,p)]×2l, andβi = [n
(x)

(l,p)], then the last
term of Eq. (4) has an upper bound as follows:

2 ×

√
√
√
√

ρ−1∑

l=1

∑

p

(−[n
(ref)

(l,p)] × 2l)2 ×

ρ−1∑

l=1

∑

p

[n
(x)

(l,p)]
2

= 2 ×

√
√
√
√

ρ−1∑

l=1

∑

p

([n
(ref)

(l,p)] × 2l)2 ×

ρ−1∑

l=1

∑

p

[n
(x)

(l,p)]
2.

590

Procedure: LEEWAVE for akNN query
Input: Pinit, Sref , k, T = [ts, te]
Output: Thek most similar streams toSref

Pinit: A candidate peer sitePx:
1. Extract relevant coefficients ofSref in [ts,te].
2. Sendts, te, and coefficients ofSref at levelL to all other

M − 1 sites.
3. For each local candidate stream,Sx, compute and

return a 3-tuple (DstL(Sref , Sx),
∑L−1

l=1

∑
p[n

(x)

(l,p)]
2,

∑L−1
l=1

∑
p([n

(x)

(l,p)]
2 × 2l)) to Pinit.

4. Compute the upper and lower bound of the similarity range
based on Eq. (5) for each candidate stream. Do the first
pruning. Then, sort out a list of candidate sites and streams.

5. for (ρ = L − 1; (ρ! = 0 && !done); ρ = ρ − 1) {
6. Send level-ρcoefficients ofSref and the list of can-

didate streams to each candidate peer site.
7. Compute and return a 2-tuple (Dstρ(Sref , Sx),

∑
p[n

(x)

(ρ,p)]
2) for each local candidate stream,Sx.

8. Update the upper and lower bound of the similarity
range based on Eq. (5) for each candidate stream. Do
pruning. Setdone to true if there are no more thank
candidate streams left.

9. Ask the contents of the finalk streams within the
query range.

10. Send back corresponding contents.

11. }

Figure 5: Algorithm for distributed kNN query processing using LEEWAVE .

Therefore, at levelρ, the true distance betweenSref and Sx,
which is described in Eq.(3), is bounded in the following range:

accDst
ρ(Sref , Sx) ≤ Dst(Sref , Sx) ≤

accDst
ρ(Sref , Sx) +

ρ−1∑

l=1

∑

p

([n
(ref)

(l,p)]2 + [n
(x)

(l,p)]
2) × 2l

+2 ×

√
√
√
√

ρ−1∑

l=1

∑

p

([n
(ref)

(l,p)] × 2l)2 ×

ρ−1∑

l=1

∑

p

[n
(x)

(l,p)]
2. (5)

With Eq. (5), it is now possible to maintain both the lower bound
and the upper bound of this similarity range in a level-wise manner
with Dstρ(Sref , Sx) and

∑
p[n

(x)

(ρ,p)]
2 returned by a peer site at

each levelρ. This is because the term
∑ρ−1

l=1

∑
p[n

(x)

(l,p)]
2 can now

be incrementally computed atPinit by subtracting
∑

p[n
(x)

(l,p)]
2

from
∑ρ

l=1

∑
p[n

(x)

(l,p)]
2, which was computed at the previous level

ρ+1. More importantly, as we move from one level to the next, the
similarity range becomes tighter. This is because the lower bound
of a similarity range is non-decreasing, based on Definition 3, and
the upper bound is non-increasing.

THEOREM 1. The upper bound of a similarity range is non-
increasing when we move from levelρ to levelρ − 1.

Proof: See the Appendix. �

We are now ready to describe the details of how LEEWAVE pro-
cesses a distributedkNN query in a level-wise manner and how
Pinit gradually prunes the candidates. Fig. 5 shows the algorithm
of distributedkNN query processing using LEEWAVE. At the first
step,Pinit extracts the relevant wavelet coefficients ofSref in the
range of[ts, te]. Then, it sendsts, te and the level-Lcoefficients
of Sref to all otherM − 1 peer sites. Each peer site then extracts
relevant coefficients for each stream it monitors. And it returns 3
numbers for each local candidate stream,Sx. They are the level-L
distance,DstL(Sref , Sx), and two other numbers that will be used

by Pinit to progressively tighten the similarity range:

L−1∑

l=1

∑

p

[n
(x)

(l,p)]
2 and

L−1∑

l=1

∑

p

([n
(x)

(l,p)]
2 × 2l).

After receiving the 3 numbers from each candidate stream,Pinit

updates the lower and upper bounds of a similarity range based
on Eq. (5) for each candidate stream. It will then do some ini-
tial pruning, if possible, and sort out a list of candidate streams
that might be the finalk most similar streams. Then, it moves to
the next level. For a given levelρ, Pinit sends the level-ρcoef-
ficients of Sref and the list of candidate streams to a candidate
site. A candidate site will compute and return two level-specific
numbers:Dstρ(Sref , Sx) and

∑
p[n

(x)

(ρ,p)]
2. Pinit will update the

two bounds of a similarity range, making it tighter, with these two
level-specific numbers. With increasingly tighter ranges,Pinit can
better prune the candidate list. The algorithm ends when there are
no more thank candidate streams left.

To prune,Pinit first sorts the candidate streams in an ascending
order based on the upper bounds of their similarity ranges. Any
candidate stream whose similarity lower bound is higher than the
upper bound of thek-th streams in the sorted list cannot be the final
answer, and thus is pruned. From Theorem 1, we can guarantee that
there is no false dismissal under this pruning strategy.

EXAMPLE 3. In this example, we use a concrete example to
demonstrate the increasingly tightened similarity range for a can-
didate stream. Consider the case in Fig. 4. Table 2 shows the
flow of data exchanges betweenPinit andPx, the values of various
terms in Eq.(5) maintained byPinit, and the similarity range of
Sx. Each column shows the level currently in progress.

Whenρ = 3, Dst3(Sref , Sx) = 7.25 is obtained as shown
in Fig. 4,

∑2
l=1

∑
p[n

(x)

(l,p)]
2 = ((−1.5)2 + (−1.5)2 + 2.252 +

6.252) = 48.625, and
∑2

l=1

∑
p[n

(x)

(l,p)]
2 × 2l = (((−1.5)2 +

(−1.5)2) × 21 + (2.252 + 6.252) × 22) = 185.5. The terms
∑ρ−1

l=1

∑
p[n

(ref)

(l,p) ×2l]2 and
∑ρ−1

l=1

∑
p[n

(ref)

(l,p)]2×2l can be com-
puted byPinit similarly. With above values, the first similarity
range for streamSx is [7.25, 7.25 + 130.75 + 185.5 + 2 ∗ (486×

591

Table 2: Example of an increasingly tightened similarity range for a candidate stream.

ρ = 3 ρ = 2 ρ = 1
Pinit to Px ((5,−0.75), ts, te) (1.75, 5) (−2,−0.5,−1,−2)
Px to Pinit (7.25, 48.625, 185.5) (7.25, 44.125) (15.5, 4.5)
∑ρ−1

l=1

∑
p[n

(ref)

(l,p) × 2l]2 486.0 37.0 0
∑ρ−1

l=1

∑
p[n

(ref)

(l,p)]2 × 2l 130.75 18.5 0
∑ρ−1

l=1

∑
p[n

(x)

(l,p)]
2 48.625 4.5 0

∑ρ−1
l=1

∑
p[n

(x)

(l,p)]
2 × 2l 185.5 9 0

similarity range forSx [7.25, 630.95] [14.5, 67.81] [30, 30]

48.625)1/2 = 630.95]. This completes the values in the first col-
umn.

When ρ=2, Px sends backDst2(Sref , Sx) = 7.25, and
∑

p[n
(x)

(2,p)]
2 = (2.252 + 6.252) = 44.125. After receiv-

ing this 2-tuple,Pinit then subtracts these two numbers from
the maintained terms in the middle rows. Takeρ=2 as an ex-
ample,

∑2−1
l=1

∑
p[n

(x)

(l,p)]
2 = 48.625 − 44.125 = 4.5, and

∑2−1
l=1

∑
p[n

(x)

(l,p)]
2 × 2l = 185.5 − 44.125 × 22 = 9. For

the sum related to coefficients ofSref , Pinit updates them simi-
larly. Then, the second similarity range forSx is [7.25 + 7.25 =

14.5, 14.5 + 18.5 + 9 + 2 ∗ (37 × 4.5)1/2 = 67.81].
The last row in Table 2 shows the similarity range ofSx at each

level. It clearly shows that the similarity range does indeed become
tighter, [7.25, 630.95] to [14.5, 67.81] to [30, 30], as we move from
one level to the next. �

5. PERFORMANCE STUDY
We conducted a series of experiments with both real and syn-

thetic data to evaluate LEEWAVE. We compared LEEWAVE with
the CP and PRP approaches. All approaches were implemented in
Visual C++ and the experiments were run on a PC with 2.8GHz
CPU and 2GB RAM.

We compared the total bandwidth requirements for LEEWAVE

with those for the Concurrent Processing (CP) and Probabilistic
Processing (PRP) approaches proposed in [26]. We focused on
the impacts of query rangeT , k and the total number of sitesM
on the bandwidth consumption. The total bandwidth consumption
was calculated by adding up the data transmitted fromPinit to all
other candidate peer sites and those transmitted back from each
peer candidate site. Each data value sent was counted as one unit of
bandwidth. For coefficients in the same level, the total bandwidth
was 2 (value and placement index) multiplied by the total number
of coefficients at that level plus 1 (level number).

For the CP approach, the total retained coefficients of the ref-
erence stream within the query range plus 3 additional values
(k, ts, te) were sent toM −1 peer sites. The number of data trans-
mitted from theM −1 peer sites toPinit is decided by the number
of candidate streams (at mostk) returned. It is the summation of
the total returned coefficient size within the query range plus the
stream index and the corresponding distances.

For the PRP approach, the bandwidth is computed as the same
way as CP does. Only the number of returned candidates is differ-
ent. Besides, PRP needs to send the current bestk-th value to sites
which are possible to have candidates and request them back.

For LEEWAVE, we summed up the data transmitted at each level.
For the highest level, only the level-L relevant coefficients of the
reference stream plus (ts, te) were counted fromPinit to theM−1
peer sites. The number of data values sent back from each of the

M − 1 peer sites for each locally maintained stream was 4, includ-
ing the stream index, the level-Ldistance and two other values for
pruning. For a subsequent levelρ, Pinit sends the level-ρcoeffi-
cients and the candidate stream list for a candidate site. Then, for
each local candidate stream, a candidate site only sends back the
level-ρ distance and another data value needed forPinit to do the
pruning. When the finalk neighbors are decided, the size of those
requested stream patterns are added in.

It it noted that LEEWAVE is independent of the way wavelet co-
efficients are chosen. Without loss of generality, here the wavelet
coefficients were retained using the method proposed in [14], which
retains theB largest coefficients in terms of absolute normal-
ized coefficient values. We randomly picked one stream from our
dataset as the reference stream and performedkNN queries using
three approaches. Since the total bandwidth used for processing
kNN queries depends on the reference stream, we averaged the
bandwidth consumption over a few different reference streams for
each bandwidth value we reported.

5.1 Experiments with real data
The real data we used here were the daily average temperature

data of 300 cities around the world, which were obtained from the
temperature data archive of the University of Dayton2. The data
from each city was regarded as a stream, each of which has3, 416
data points. In addition, these streams were evenly distributed
among theM sites for all the experiments.

The first experiment examined the impacts ofk and the num-
ber of sitesM on bandwidth consumption for a givenT=2048.
The results are shown in Fig. 6. The value ofk was varied from
5 to 30 andM was varied from 10, 30, 60, 100, 150 and 300.
Compared with CP and PRP, LEEWAVE saves a significant band-
width. WhenM is small, for example 10, the number of streams
in a site is always larger thank. This means that CP will always
retrieve exactlyk candidates from each peer sites. Fig. 6(a) shows
that the required bandwidth of CP grows linearly ask increases.
On the other hand, as shown in Fig. 6(b), the bandwidth required
for PRP also increases but at a slower rate since (k/M+1) grows
slowly. However for a biggerM , the bandwidth is insensitive to
k for both CP and PRP. For CP, since the number of streams in
each site is smaller thank, it always retrieves all of them back. For
PRP, whenk ≪ M , (k/M + 1) remains the same value, i.e., 1,
for differentMs. In this regard, the bandwidth used for transmit-
ting the query stream to other sites dominates the total bandwidth
consumption. The larger the number of sites, the more the band-
width is consumed. Also, this is the reason why both CP and PRP
almost have the same bandwidth consumption whenM is 300. On
the contrary, instead of sending the entire relevant coefficients of
the reference stream to all other sites, LEEWAVE sends as fewer

2http://www.engr.udayton.edu/weather/

592

100

200

300

10

20

30

0

2

4

6

8

10

12

14

x 10
5

M (total sites)

(a) CP (real)

k

B
an

dw
id

th

100

200

300

10

20

30

0

2

4

6

8

10

12

14

x 10
5

(b) PRP (real)

100

200

300

10

20

30

0

2

4

6

8

10

12

14

x 10
5

(c) LeeWave (real)

Figure 6: Impacts of k and M on bandwidth consumption with
real data.

coefficient as possible to only those candidate sites by leveraging
the multi-resolution property of wavelet coefficients. This saves a
lot of bandwidth as shown in Fig. 6(c).

The second experiment examined the impacts of query rangeT

andk on bandwidth consumption for a givenM = 150. The re-
sults are shown in Fig. 7. In this experiment,k was varied from
5 to 30 and the query range was varied from the following set
of values:90, 365, 730, 1, 024, 1, 200, 1, 600 and2, 048. From
Fig. 7(a) and (b), the bandwidth consumption of the CP and PRP
approaches increases significantly as the query range increases, be-
cause more relevant coefficients need to be sent to the peer sites.
Fig. 7(b) shows that PRP has less bandwidth consumption than CP
does. WhenM equals 150, each site contains only 2 streams on
average. Therefore, compare with the CP approach which retrieves
all 2 streams for each site, the number,(k/M + 1) = 1, allows
the PRP approach to save almost half in the bandwidth consump-
tion in returning data. Note that the PRP approach may need to
send few more candidates in the second round to make sure all real
k stream patterns are obtained. In contrast, LEEWAVE continues
to maintain a substantially smaller bandwidth requirement, even as
the query range increases. Specifically, fork = 5 andT = 2, 048,
the bandwidth requirement of LEEWAVE is only about 6.5% that of
CP and 9.7% that of PRP. Considering the impacts ofk, from 7(a)
and (b), the bandwidth consumption of CP and PRP is not sensitive
to k, because it always sends the entire relevant coefficients of the
reference stream to all other sites. On the other hand, the band-
width requirement of LEEWAVE increases slightly ask increases,
as shown in Fig. 7(c). This is because it uses thekth lowest upper
bound to do pruning. Whenk is larger, the upper bound is higher,
which means the pruning ability becomes less effective.

In addition, from Fig. 7(c) we observe that the 3D surface is not
smooth for LEEWAVE, especially along the query-range axis. The
reason is as follows. For a different query range, we extracted dif-
ferent series of complete error subtrees, with different heights and
subranges. Hence, the relevant retained coefficients might be rather
different for different query ranges. Since LEEWAVE computes the
distance in a top-down, level-wise fashion, the retained coefficients
at different levels under different query ranges have different influ-
ences on the pruning effectiveness. To see the details of such im-
pacts, we collected the average number of candidate sites at each
step during the query processing in LEEWAVE. In Fig. 8, we plot-
ted the number of candidate sites at each step (level) whenk=5 in
Fig. 8(a) andk=25 in Fig. 8(b). First we look at the case when
k = 5. From Fig. 7(c), the bandwidth consumption is higher for

10

20

30

500

1000

1500

2000

0

2

4

6

8

10

x 10
5

k

(a) CP (real)

T (time range)

B
an

dw
id

th

10

20

30

500

1000

1500

2000

0

2

4

6

8

10

x 10
5

(b) PRP (real)

10

20

30

500

1000

1500

2000

0

2

4

6

8

10

x 10
5

(c) LeeWave (real)

Figure 7: Impacts of T and k on bandwidth consumption with
real data.

0 2 4 6 8 10 12
0

50

100

150

Step

A
vg

. n
um

be
r

of
 c

an
di

da
te

 s
ite

s

(a) k = 5 (real)

T = 1,024
T = 1,200
T = 1,600
T = 2,048

0 2 4 6 8 10 12
0

50

100

150

Step

A
vg

. N
um

be
r

of
 c

an
di

da
te

 s
ite

s

(b) k = 25 (real)

T = 1,024
T = 1,200
T = 1,600
T = 2,048

Figure 8: Size of candidate sites at each step of LEEWAVE in
Fig. 7.

T = 1, 024 (the 4th line along thek-axis) than forT = 1, 200
(the 5th line along thek-axis.) Then we examine the charts shown
in Fig. 8(a). Although the size of candidate sites drops faster for
T = 1, 024 than forT = 1, 200 at the initial few steps, the reduc-
tion is faster at the final few steps (step 8 to 10) forT = 1, 200
than forT = 1, 024. Note that there are usually more coefficients
retained at the lower levels. Hence, the sizes of candidate sites at
the final few steps dominate the total bandwidth consumption. As
a result, the total bandwidth is smaller whenT = 1, 200 than when
T = 1, 024. For the case ofk = 25, the final sizes of candi-
date sites are closer for bothT = 1, 024 and1, 200. As a result,
the bandwidth drop between these two ranges is less obvious (see
Fig. 7(c)). ForT = 2, 048, for bothk=5 andk=25 cases, although
it generally has a smaller size of candidate sites than others, how-
ever, a lot more retained coefficients are involved for a larger range,
consuming more bandwidth.

The third experiment, as shown in Fig. 9, examined the impacts
of query rangeT and total number of sitesM on bandwidth con-
sumption whenk is fixed at 10. The time range settings were the
same as those used in the previous experiment. The number of sites
was also increased from 10 to 300 as the first experiment did. From
Fig. 9(a) and (b), the bandwidth consumption of CP and PRP in-
creases significantly not only as query rangeT increases, but also
asM increases. In contrast, Fig. 9(c) shows that LEEWAVE is much
less sensitive toM . This is because unnecessary coefficients are

593

100

200

300

500

1000

1500

2000

0

5

10

15

x 10
5

M (total sites)

(a) CP (real)

T

B
an

dw
id

th

100

200

300

500

1000

1500

2000

0

5

10

15

x 10
5

(b) PRP (real)

100

200

300

500

1000

1500

2000

0

5

10

15

x 10
5

(c) LeeWave (real)

Figure 9: Impacts of T and M on bandwidth consumption with
real data.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Step

A
vg

. n
um

be
r

of
 c

an
di

da
te

 s
ite

s

(a) M = 60 (real)

T = 1,024
T = 1,200
T = 1,600
T = 2,048

0 2 4 6 8 10 12
0

50

100

150

200

250

300

Step

A
vg

. N
um

be
r

of
 c

an
di

da
te

 s
ite

s

(b) M = 300 (real)

T = 1,024
T = 1,200
T = 1,600
T = 2,048

Figure 10: Size of candidate sites at each step of LEEWAVE in
Fig. 9.

not distributed by the query initiator. It is noted that there is an
obvious bend for CP in Fig. 9(a) for every fixedT whenM jumps
from 10 to 30. Similar situation also happens at Fig. 6(a). WhenM

is not bigger than 30, each site has more thank=10 streams, there-
fore both the bandwidth for sending entire relevant coefficients to
and retrievingk candidates from all other sites increase. That is the
reason why the slope of the curve is steeper. On the other hand,
whenM is bigger than 30, the number of streams in each site is al-
ways less thank, then all streams are always requested by the query
initiator. Then only the bandwidth for sending relevant coefficients
of the reference stream is increasing, which results in a lower slope
for the curve.

For LEEWAVE, the results under different query ranges behave
similarly to those from the previous set of experiments. We also
show the average number of candidate sites at each step forM =
60 andM = 300 cases in Fig. 10.

Before the end of this section, we zoom in to smaller values of
T andM , on the bandwidth consumption for the three approaches,
using the 2-D representation. The results are shown in Fig. 11. The
defaultT is 365,M is 30, andk is 10. From Fig. 11(a), we discover
that when the query time range is small, which means a smaller size
of relevant coefficients, LEEWAVE may not outperform either CP
or PRP. The same is true in Fig. 11(b) whenM is not substantially
large. We fixedT at 365 andM at 30, and let the value ofk vary,

0 500 1000 1500 2000
0

1

2

3

4

5

6

7
x 10

5

Time Range

B
an

dw
id

th

M = 30, k = 10 (real)

CP
PRP
LeeWave

50 100 150 200 250 300
0

1

2

3

4

5

6

7
x 10

5

Site Number

B
an

dw
id

th

T = 365, k = 10 (real)

CP
PRP
LeeWave

5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

5

k

B
an

dw
id

th

T = 365, M = 30 (real)

CP
PRP
LeeWave

Figure 11: Bandwidth consumption for smaller values ofT and
M .

200
400

600
800

1000

10

20

30

0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

M (total sites)

(a) CP (synthetic)

k

B
an

dw
id

th

200
400

600
800

1000

10

20

30

0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

(b) PRP (synthetic)

200
400

600
800

1000

10

20

30

0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

(c) LeeWave (synthetic)

Figure 12: Impacts of k and M on bandwidth consumption
with synthetic data.

as shown in Fig. 11(c), to give a better illustration of the former
statement. However, when the query range is large, or when the
number of distributed sites is large, LEEWAVE indeed is a much
better solution in bandwidth savings.

5.2 Evaluation with synthetic data
The synthetic data were generated by a random walk data model

proposed in [33]. For a streamSi, it was generated as follows:

Si = 100 +

i∑

j=1

(uj − 0.5),

whereuj was randomly picked from [0,1].
We generated 1,000 streams in total, where each stream has

20,000 data points. For a given number of sites, the 1,000 streams
were evenly distributed among them.

The first experiment for synthetic dataset studied the impacts of
k and the number of sitesM on bandwidth consumption for a given
T=2048. The results are shown in Fig. 12. Thek was varied from
5 to 30 andM was varied from 10, 20, 50, 100, 200, 500 and
1000. We see that LEEWAVE significantly saves bandwidth, when
compared with the CP and PRP approaches. Similar to the curves
in Fig. 6, when the number of sites is small, the bandwidth usage for
both the CP and PRP approaches increases linearly ask increases.
CP increases faster than PRP. For a biggerM , the bandwidth is
insensitive tok for both CP and PRP.

Note that the query range used here was the same as the one
used in Fig. 6. Also, the ratio of retained coefficient number to

594

Table 3: The bandwidth consumption whenk=30,M=100, and
T=2048.

CP PRP LEEWAVE
real data 795759.6 411008.2 132315.5

16.6% of CP, 32.2% of PRP
synthetic data 1738185 321973.8 91588.4

5.3% of CP, 28.4% of PRP

10

20

30

5000

10000

15000

0

0.5

1

1.5

2

2.5

x 10
7

k

(a) CP (synthetic)

T (time range)

B
an

dw
id

th

10

20

30

5000

10000

15000

0

0.5

1

1.5

2

2.5

x 10
7

(b) PRP (synthetic)

10

20

30

5000

10000

15000

0

0.5

1

1.5

2

2.5

x 10
7

(c) LeeWave (synthetic)

Figure 13: Impacts ofT and k on bandwidth consumption with
synthetic data.

original data size was also the same. WhenM=100,T=2048, and
k=30, the bandwidth requirements of three approaches for the two
data sets are shown in Table. 3. The bandwidth consumption of
CP for synthetic data is higher than that for real data. It is be-
cause CP retrieves back 10 streams from each site on average for
synthetic data compared with 3 streams for real data. For PRP, it
requires almost the same bandwidth for both data sets. For LEE-
WAVE, it requires 16.6% of the bandwidth that is consumed by CP
for real data. On the other hand, the ratio is 5.3% for synthetic
data. It shows that LEEWAVE saves even more bandwidth for the
synthetic dataset compared with CP. This is also true when LEE-
WAVE is compared with PRP. One reason is due to the nature of the
data sets. The synthetic data were generated randomly. Hence, the
deviations between streams were much larger than those between
temperature streams of different cities. It is easier to separate apart
those dissimilar streams in synthetic data set by using only the first
few levels of coefficients in distance computation. The other rea-
son is that by pruning candidate streams efficiently, LEEWAVE can
quickly decide the finalk = 10 out of either 300 streams for real
data or 1000 streams for synthetic data without sending the entire
relevant coefficients of the reference stream to all other sites. This
again proves the superiority of LEEWAVE approach.

The second experiment in this section, shown in Fig. 13, studied
the impacts of query rangeT andk on bandwidth consumption for
a givenM = 500. The query range was varied from the follow-
ing: 300, 512, 3, 000, 6, 000, 8, 192, 10, 000, 14, 000 and16, 384.
k was varied from 5 to 30. From Fig. 13, LEEWAVE consumes
dramatically less bandwidth, when compared with the CP and PRP
approaches. Similar to the previous experiment sets, LEEWAVE

saves a lot of bandwidth by quickly pruning candidates. This can
be clearly seen in Fig. 14, where the size of candidate sites shrinks
quickly after the first few steps. Sometimes the final answers can be
obtained at an intermediate level. This is why the size of candidate
sites approaches to zero in Fig. 14. Whenk is larger, the size of
candidate sites is higher. This also shows that a higher upper bound
has less pruning ability.

Finally, the last experiment, shown in Fig. 15, studied the im-

0 5 10 15
0

100

200

300

400

500

Step

A
vg

. n
um

be
r

of
 c

an
di

da
te

 s
ite

s

(a) k = 5 (synthetic)

T = 8.192
T = 10,000
T = 14,000
T = 16,384

0 5 10 15
0

100

200

300

400

500

Step

A
vg

. N
um

be
r

of
 c

an
di

da
te

 s
ite

s

(b) k = 25 (synthetic)

T = 8.192
T = 10,000
T = 14,000
T = 16,384

Figure 14: Size of candidate sites at each step of LEEWAVE in
Fig. 13.

200
400

600
800

1000

5000

10000

15000

0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

M (total sites)

(a) CP (synthetic)

T

B
an

dw
id

th

200
400

600
800

1000

5000

10000

15000

0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

(b) PRP (synthetic)

200
400

600
800

1000

5000

10000

15000

0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

(c) LeeWave (synthetic)

Figure 15: Impacts of T and M on bandwidth consumption
with synthetic data.

pacts of the query rangeT and the number of sitesM on bandwidth
consumption whenk=10. The settings ofT were the same as those
used in the previous experiment. The value ofM was varied from
10, 20, 50, 100, 200, 500 to 1, 000. From Fig. 15(a) and (b), we
observe the same phenomena as in real data. The bandwidth con-
sumption of CP and PRP increases significantly as both query range
and the number of sites increase. In contrast, as shown in Fig. 15(c),
LEEWAVE saves a huge amount of bandwidth. From Fig. 16, the
speed at which the size of candidate sites reduces is faster when
M = 1, 000 than whenM = 200. This shows that LEEWAVE out-
performs the CP and PRP approaches, especially when the number
of sites is large.

At the end of this section, we also plot a 2-D plot which fo-
cuses on smaller values ofT andM . The defaultT is 1000,M
is 50, andk is 10. Fig. 17(a) shows the bandwidth consumption
under differentM whenT is fixed at 1000. Fig 17(b) shows the
bandwidth consumption under differentT whenM is fixed at 50.
Fig. 17(c) further shows the results under differentk for smallerT
andM . As shown in Fig. 17, LEEWAVE may not be a better solu-
tion when the time range or when the number of sites is relatively
small. However, when the query range is large or when the num-
ber of distributed sites is large, LEEWAVE indeed is a significantly
better approach in bandwidth savings.

6. CONCLUSION
In this paper, we presented LEEWAVE - a bandwidth-efficient ap-

proach to processing range-specifiedkNN queries in a distributed

595

0 5 10
0

20

40

60

80

100

120

140

160

180

200

Step

A
vg

. n
um

be
r

of
 c

an
di

da
te

 s
ite

s
(a) M = 200 (synthetic)

T = 8.192
T = 10,000
T = 14,000
T = 16,384

0 5 10
0

100

200

300

400

500

600

700

800

900

1000

Step

A
vg

. N
um

be
r

of
 c

an
di

da
te

 s
ite

s

(b) M = 1,000 (synthetic)

T = 8.192
T = 10,000
T = 14,000
T = 16,384

Figure 16: Size of candidate sites at each step of LEEWAVE in
Fig. 15.

0 5000 10000 15000
0

1

2

3

4

5

6

7

8

9
x 10

6

Time Range

B
an

dw
id

th

M = 50, k = 10 (synthetic)

CP
PRP
LeeWave

0 500 1000
0

1

2

3

4

5

6

7

8

9
x 10

6

Site Number

B
an

dw
id

th

T = 1000, k = 10 (synthetic)

CP
PRP
LeeWave

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9
x 10

6

k

B
an

dw
id

th

T = 1000, M = 50 (synthetic)

CP
PRP
LeeWave

Figure 17: Bandwidth consumption for smaller values ofT and
M .

streaming environment. Leveraging the multi-resolution property
of wavelet coefficients, LEEWAVE distributes the relevant wavelet
coefficients to the peer sites in a level-wise fashion. Starting from
the top level and moving down one level at a time, the query ini-
tiator only sends single-level coefficients to a gradually reduced set
of candidate sites. In order to overcome the challenge of pruning
the candidates without knowing all the relevant coefficients, we de-
vised and maintained a similarity range for each candidate stream.
This similarity range is tightened with each returned level distance.
This increasingly tightened similarity range enables the query ini-
tiator to effectively prune the candidates. Significant bandwidth
savings are achieved by avoiding sending unnecessary coefficients.
We conducted extensive experiments with both real and synthetic
data. The results show that (1) When compared with the CP and
PRP approaches under a wide range of conditions, LEEWAVE uses
significantly less bandwidth, especially when query range or the
number of sites is large. (2) When the deviations among the streams
are large, the performance advantage of LEEWAVE is more signifi-
cant.

7. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the Borealis stream processing engine. InCIDR,
2005.

[2] M. G. Albanesi, M. Ferretti, and A. Giancane. A compact
wavelet index for retrieval in image database. InProc. of

IEEE Int. Conf. on Image Analysis and Processing, 1999.
[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,

R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas,
R. Varma, and J. Widom. STREAM: The Stanford stream
data manager.IEEE Data Engineering Bulletin, 26, 2003.

[4] B. Babcock and C. Olston. Distributed top-k monitoring. In
ACM SIGMOD, 2003.

[5] H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
M. Cherniack, C. Convey, E. Galvez, J. Salz,
M. Stonebraker, N. Tatbul, R. Tibbetts, and S. Zdonik.
Retrospective on Aurora.VLDB Journal, 2004.

[6] A. Bulut and A. K. Singh. SWAT: Hierarchical stream
summarization in large networks. InIEEE ICDE, 2003.

[7] A. Bulut, R. Vitenberg, and A. K. Singh. Distributed data
streams indexing using content-based routing paradigm. In
IPDPS, 2005.

[8] F. K.-P. Chan, A. W.-C. Fu, and C. Yu. Haar wavelets for
efficient similarity search of time-series: With and without
time warping.IEEE TKDE, 15(3):686–705, 2003.

[9] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. R. Madden, V. Raman, F. Reiss, and M. A. Shah.
TelegraphCQ: Continuous dataflow processing for an
uncertain world. InCIDR, 2003.

[10] T.-C. Chiueh, A. Ballman, and K. Kreeger. Multi-resolution
indexing for shape images. InACM CIKM, 1998.

[11] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
distributed tracking of approximate quantiles. InACM
SIGMOD, 2005.

[12] G. Cormode, M. Garofalakis, and D. Sacharidis. Fast
approximate wavelet tracking on streams. InEDBT, 2006.

[13] L. Gao, Z. Yao, and X. S. Wang. Evaluating continuous
nearest neighbor queries for streaming time series via
pre-fetching. InACM CIKM, 2002.

[14] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. One-pass wavelet decompositions of data streams.
IEEE TKDE, 15(3):541–554, 2003.

[15] S. Guha and B. Harb. Wavelet synopsis for data streams:
minimizing non-euclidean error. InACM SIGKDD, 2005.

[16] A. Haar. Zur theorie der orthogonalen funktionensysteme.
Mathematische Annalen, 69, 1910.

[17] H.-P. Hung and M.-S. Chen. Efficient range-constrained
similarity search on wavelet synopses over multiple streams.
In ACM CIKM, 2006.

[18] P. Karras and N. Mamoulis. One-pass wavelet synopses for
maximum-error metrics. InVLDB, 2005.

[19] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang.
Approximate NN queries on streams with guaranteed
error/performance bounds. InVLDB, 2004.

[20] J. Lin, M. Vlachos, E. J. Keogh, and D. Gunopulos. Iterative
incremental clustering of time series. InEDBT, 2004.

[21] X. Liu and H. Ferhatosmanoglu. Efficientk-NN search on
streaming data series. InSSTD, 2003.

[22] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and
deltas: efficient and robust aggregation in sensor network
streams. InACM SIGMOD, 2005.

[23] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston.
Finding (recently) frequent items in distributed data streams.
In IEEE ICDE, 2005.

[24] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based

596

histograms for selectivity estimation. InACM SIGMOD,
1998.

[25] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. InACM
SIGMOD, 2003.

[26] A. N. Papadopoulos and Y. Manolopoulos. Distributed
processing of similarity queries.Distributed and Parallel
Databases, 9:67–92, 2001.

[27] I. Popivanov and R. J. Miller. Similarity search over
time-series data using wavelets. InIEEE ICDE, 2002.

[28] I. Sharfman, A. Schuster, and D. Keren. A geometric
approach to monitoring threshold functions over distributed
data streams. InACM SIGMOD, 2006.

[29] J. M. Steele.The Cauchy-Schwarz Master Class: An
Introduction to the Art of Mathematical Inequalities.
Cambridge University Press, New York, NY, USA, 2004.

[30] StreamBase Systems. http://www.streambase.com/, May
2007.

[31] W.-G. Teng, M.-S. Chen, and P. S. Yu. Resource-aware
mining with variable granularities in data streams. InSIAM
Data Mining, 2004.

[32] K.-L. Wu, P. S. Yu, B. Gedik, K. W. Hildrum, C. C.
Aggarwal, E. Bouillet, W. Fan, D. A. George, X. Gu, G. Luo,
and H. Wang. Challenges and experience in prototyping a
multi-modal stream analytic and monitoring application on
system S. InVLDB, Sept. 2007.

[33] Y. Zhu and D. Shasha. Statstream: statistical monitoring of
thousands of data streams in real time. InVLDB, 2002.

[34] Y. Zhu and D. Shasha. Efficient elastic burst detection in data
streams. InACM SIGKDD, 2003.

Appendix
Proof of Theorem 1: At levelρ, the upper bound is:

accDst
ρ(Sref , Sx) +

ρ−1∑

l=1

∑

p

([n
(ref)

(l,p)]2 + [n
(x)

(l,p)]
2) × 2l

+2 ×

√
√
√
√

ρ−1∑

l=1

∑

p

([n
(ref)

(l,p)] × 2l)2 ×

ρ−1∑

l=1

∑

p

[n
(x)

(l,p)]
2. (6)

From levelρ to ρ − 1, the upper bound is reduced by the amount
of:

−Dst
ρ−1(Sref , Sx) +

∑

p

([n
(ref)

(ρ−1,p)]
2 + [n

(x)

(ρ−1,p)]
2) × 2l

+2 × (

√
√
√
√

ρ−1∑

l=1

∑

p

([n
(ref)

(l,p)] × 2l)2 ×

ρ−1∑

l=1

∑

p

[n
(x)

(l,p)]
2

−

√
√
√
√

ρ−2∑

l=1

∑

p

([n
(ref)

(l,p)] × 2l)2 ×

ρ−2∑

l=1

∑

p

[n
(x)

(l,p)]
2). (7)

To prove the upper bound is non-increasing, we need to prove
that Eq. (7) is≥ 0. For ease of exposition, we letα(l,p) = [n

(ref)

(l,p)]×

2l, andβ(l,p) = [n
(x)

(l,p)]. By expanding the termDstρ−1(Sref , Sx)

=
∑

p([n
(ref)

(ρ−1,p)]
2 + 2n

(ref)

(ρ−1,p)n
(x)

(ρ−1,p) + [n
(x)

(ρ−1,p)]
2) × 2l and

using substitutes, Eq. (7) becomes:

2α(ρ−1,p)β(ρ−1,p)

+2 × (

√
√
√
√

ρ−1∑

l=1

∑

p

α2
(l,p) ×

ρ−1∑

l=1

∑

p

β2
(l,p)

−

√
√
√
√

ρ−2∑

l=1

∑

p

α2
(l,p) ×

ρ−2∑

l=1

∑

p

β2
(l,p)). (8)

Now the task becomes to prove Eq. (8)≥ 0. We divide
Eq. (8) into two cases, which is whenα(ρ−1,p)β(ρ−1,p) ≥ 0 and
α(ρ−1,p)β(ρ−1,p) < 0. If it is the former case, Eq. (8)≥ 0 must be
true. Therefore, we only need to prove the later case. By reformu-
lating Eq. (8) and omitting the factor 2, to prove Eq. (8), we need
to prove the following:

√
√
√
√

ρ−1∑

l=1

∑

p

α2
(l,p) ×

ρ−1∑

l=1

∑

p

β2
(l,p) ≥

−α(ρ−1,p)β(ρ−1,p) +

√
√
√
√

ρ−2∑

l=1

∑

p

α2
(l,p) ×

ρ−2∑

l=1

∑

p

β2
(l,p).(9)

Since both the left-hand side and the right-hand side of Eq. (9)
are positive, we can square the terms of both side while the inequal-
ity still holds. The square value of left-hand side of Eq. (9) is:

ρ−1∑

l=1

∑

p

α
2
(l,p) ×

ρ−1∑

l=1

∑

p

β
2
(l,p)

= (α2
(ρ−1,p) +

ρ−2∑

l=1

∑

p

α
2
(l,p)) × (β2

(ρ−1,p) +

ρ−2∑

l=1

∑

p

β
2
(l,p))

= α
2
(ρ−1,p)β

2
(ρ−1,p) + α

2
(ρ−1,p)

ρ−2∑

l=1

∑

p

β
2
(l,p)

+β
2
(ρ−1,p)

ρ−2∑

l=1

∑

p

α
2
(l,p) +

ρ−2∑

l=1

∑

p

α
2
(l,p)

ρ−2∑

l=1

∑

p

β
2
(l,p).(10)

The square value of the right-hand side of Eq. (9) is:

α
2
(ρ−1,p)β

2
(ρ−1,p)

−2 × α(ρ−1,p)β(ρ−1,p)

√
√
√
√

ρ−2∑

l=1

∑

p

α2
(l,p) ×

ρ−2∑

l=1

∑

p

β2
(l,p)

+

ρ−2∑

l=1

∑

p

α
2
(l,p)

ρ−2∑

l=1

∑

p

β
2
(l,p). (11)

Compare Eq. (10) with Eq. (11), by eliminating the same terms,
we only need to prove

α
2
(ρ−1,p)

ρ−2∑

l=1

∑

p

β
2
(l,p) + β

2
(ρ−1,p)

ρ−2∑

l=1

∑

p

α
2
(l,p)

≥

−2 × α(ρ−1,p)β(ρ−1,p)

√
√
√
√

ρ−2∑

l=1

∑

p

α2
(l,p) ×

ρ−2∑

l=1

∑

p

β2
(l,p). (12)

By using the inequality of arithmetic and geometric means,
Eq. (12) holds, and so does Eq. (9). Q.E.D.

597

