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ABSTRACT ‘ ‘
We present EEWAVE — a bandwidth-efficient approach to search- i A é Q A [/:‘E %_ poaure i
ing range-specified-nearest neighbors among distributed streams N o Sttites Query
by LEVEI-wise distribution of WAVElet coefficients. To find the AN T

most similar streams to a range-specified reference one, the relevan .

wavelet coefficients of the reference stream can be sent to the peel user-defined

quey range

sites to compute the similarities. However, bandwidth can be un-
necessarily wasted if the entire relevant coefficients are sent simul-
taneously. Instead, we present a level-wise approach by leveraging
the multi-resolution property of the wavelet coefficients. Starting
from the top and moving down one level at a time, the query initia-
tor sends only the single-level coefficients to a progressively shrink-
ing set of candidates. However, there is one difficult challenge in
LEEWAVE: how does the query initiator prune the candidates with-
out knowing all the relevant coefficients? To overcome this chal- Figure 1: System model.
lenge, we derive and maintairsamilarity rangefor each candidate
and gradually tighten the bounds of this range as we move from one
level to the next. The increasingly tightened similarity ranges en-
able the query initiator to effectively prune the candidates without
causing any false dismissal. Extensive experiments with real and
synthetic data show that, when compared with prior approaches
LEEWAVE uses significantly less bandwidth under a wide range of
conditions.

ing. For akNN query, the DSPS will find thé streams that have
more similar patterns than others to a given pattern contained in
a reference stream. ComparedkNN query processing in tra-
'ditional databases, stream-badedN query processing is much
more challenging. It must handle an endlessly growing amount of
data with limited resources. Nevertheless, many researchers have
started working on various aspects of stream-bad#d query pro-

1. INTRODUCTION cessing [13, 17, 19, 21]. But, these works mainly focus on the case

Processing data streams has become increasingly important agvhere data streams are collected and processed at a central site.

more and more emerging applications are required to handle a large " many real-world applications, however, data streams are usu-
amount of data in the form of rapidly arriving streams. Exam- ally collected in a decentralized manner. For example, to forecast

ples include data analysis in sensor networks, program trading in the weather and track global climate changes, meteorologists col-
financial markets, video surveillance and weather forecasting. In 1€Ct streams of measurements, like temperatures, from observation
response, many organizations [1, 3, 5, 9, 30, 32] have started de-Stations located over a wide area. In surveillance, video cameras
veloping data stream processing systems (DSPS). are set up in many places and continuously capture images from
Finding k-nearest neighbors KN) is one of the most common ~ Various angles. Finally, readings from a sensor network are col-
applications in computing. ProcessihbiN queries has been one  lected in a distributed fashion. In these cases, it is inefficient to
of the most studied problems in traditional non-streaming databasedather all of the distributed streams to a central site before doing

research. It is also believed to be the case in data stream process@Ny query processing. It is even impossible to do so when the
available network bandwidth is limited. Hence, there is a need to

develop a bandwidth-efficient approach to processiNb queries
eg @mong distributed streams.
In this paper, we study the problem of processing distributed
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the user-defined time rangé

An obvious solution to distributedNN query processing is to
transmit to all other sites all the relevant dataSf s in the spec-
ified time range, referred to as the query object. After receiving
the query object fronP;,;:, each peer site computes the similari-
ties between locally maintained streams &hgdy, and then reports
its local kNN streams taP;,;:. Finally, P;,;: determines the true
kNN after it receives results from all the peer sites. This kind of
scheme was called Concurrent Processing (CP) in [26]. Unfortu-

ing the process of candidate pruning, we guarantee that there is no
false dismissalwhich is not provided in previous work on multi-
resolution indexing [2].

However, there is one difficult challenge ireEWAvVE: At each
step, how doed’;,.;: prune the candidate streams without know-
ing all the relevant wavelet coefficients? In fact, it is impossible
at an intermediate level to compute the true similarities. Without
them, it is difficult, if not impossible, to prune the candidates. To
address this challenge, we derive and maintaginglarity range

nately, concurrent processing is not a good one because it requiredor each candidate stream. The upper and lower bounds of a simi-

large bandwidth (size of the query stream multiplied By ¢ 1)
plusk candidate objects from each of thé— 1 sites ) and a signif-
icant part of it can be unnecessarily wasted, especially if> k

or if T is large. To save the bandwidth, the authors in [26] further

larity range can be incrementally updatedPat;: with level-wise

distances returned from the peer sites. More importantly, a simi-
larity range gradually becomes tighter as we move from one level
to the next. These increasingly tightened similarity ranges enable

suggested a probabilistic processing (PRP) method, which reducesp;,;; to effectively prune the candidate streams without causing

the amount of data transmitted back from all other peer sites. Sim-
ilar to CP, PRP first sends the query object to all other sites as well.
However, it requests only/M + 1 similar objects from each local
site. Formulating the current set of best matches, the query initia-
tor further asks objects from sites with possible candidates. PRP
indeed saves bandwidth in returning candidate objects; however,
sending the entire query object initially to a large number of sites
still consumes huge bandwidth.

Searching for a better solution, we notice that summary sketches,

instead of complete details, of the streams are usually maintained

in a data streaming environment. Among various sketches, the

wavelet-based one, especially the Haar wavelet summarization, has

been widely adopted in many stream-oriented applications due to
its efficiency and simplicity [6, 31, 34]. More importantly, the Haar
wavelet decomposition provides multiple resolutions in time and
frequency domains like all other wavelet decompositions do. In a

coarser resolution, there are fewer wavelet coefficients, each rep-

resenting a longer subsection of the original data; while in a finer

resolution, there are more wavelet coefficients, but each represents

a smaller subsection of the data. More specifically, coefficients in
a lower resolution give a rough outline of the original data, while

those in a higher resolution disclose more details. This gives us
inspiration that we can use fewer coefficients in a coarser resolu-

tion to filter out as many candidates as possible and then use more

coefficients in a finer resolution to refine the answers. The multi-
resolution property of wavelets has also been exploited by many
other applications. For example, using haar wavelet coefficients to
index images, the authors in [2] showed that it saved computation
time while still providing good results when answering queries us-

any false dismissal.

To evaluate the effectiveness of EWAVE, we conduct extensive
experiments using both real and synthetic data. For comparisons,
we also implement the CP and PRP approaches. We measure the
total bandwidth consumed in finding tthemost similar streams to
areference one. The results show that, under a wide range of condi-
tions, LEEWAVE consumes significantly less bandwidth, especially
whenM > k or T is large.

Our contributions can be summarized as follows:

e We introduce [EEWAVE as a bandwidth-efficient approach
to processingeNN queries in a distributed streaming envi-
ronment by level-wise distribution of wavelet coefficients.
The relevant coefficients of the reference stream are sent to
a progressively shrinking set of candidate streams/sites one
level at a time.

To enable the query initiator to prune the candidate streams
without any false dismissal, we derive and maintain a simi-
larity range based on wavelet coefficients for each candidate
stream. The similarity range is increasingly tightened by in-
corporating level-wise distances computed and returned by a
peer site.

We conduct extensive experimental studies to evaluate L
WAVE. The results show that, when compared with prior ap-
proaches, EEWAVE uses significantly less bandwidth under
a wide range of conditions.

The remainder of this paper is organized as follows. Related

ing approximated images in coarser resolutions. Similarly, when work is discussed in Section 2. Preliminaries are given in Sec-
considering clustering of time series, the authors in [20] also lever- tion 3, including wavelet decomposition and coefficient mainte-
ages the multi-resolution property of wavelets to avoid local min- nance. The application of HEWAVE to the processing of dis-
ima problem and save computation time. The coarser representalributedkNN queries is described in Section 4. Section 5 shows the
tions are used to decide initial cluster centers while the finer ones experimental results. Finally, the paper is concluded in Section 6.
are used to get final results.

Armed with this insight, we presentdEWAVE — a bandwidth-
efficient approach to processingNN queries in a distributed

. - . ST Wavelet transform plays an important role in the field of time
str_egmlng enwronmen’g by LEVEI'Wlse distribution c_)f V_\/AV_EIet €O series analysis [27]. Although there are many other data decom-
efficients. In essence, instead of simultaneously distributing all the

- . eposition methods such as discrete Fourier transform, singular value
relevant coefficients of the reference stream to other peer sites, th decomposition, piecewise linear approximation and so on, none of
query initiator, P;,;:, sends the coefficients one level at a time, . ’ . ' . . '
starting from the top (the coarsest) level. At each step, with them provides the multiple resolutions in both time and frequency

returned level distances from the peer sit&%,.; progressivel domain. The property of multi-resolution and the feasibility of on-
. P it Prog ey line updating provides various options for maintaining synopses in
prunes the candidates. As we progress to a lower level, which usu-

ally contains more coefficients, the number of candidates becomesqute that not all the wavelet coefficients are retained in a steaming
much smaller. As a result, significant bandwidth savings can be environment. As a result, the accuracy of our scheme is based only

realized because the wavelet coefficients at a lower level are sentohn thﬁl\rletainedhwavel?jt coefﬂcients. .Namlelly, éf there rils aan err%r ig
to a much smaller set of candidate sites. More importantly, dur- "€5NN w.r.t. the raw data, the error is solely due to the discarde

coefficients. Our scheme does not introduce any extra error.

2. RELATED WORK
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the streaming environment. Bulut et al. provided a wavelet-based

index structure which incrementally summarizes data in multiple Table 1: Haar wavelet decomposition.

resolutions [6]. Recent data are sketched using finer resolutions raw data azl/e(riagef 8.6,5.77 \_/vavelet coefficients
while obsolete ones are sketched using coarser resolutions. These high resolution 5’ 5f5 ’776}1 — 1151, 1]
indexes can then be used to answer point queries, range queries miq resolution 5?25,’6.5;} —0?2576.5’)}

and inner product queries. Zhu et al. considered burst detectionTow resolution | {5.875} —0.625]

using a summary structure called SWT, which is a shifted-wavelet
tree based on the Haar wavelet transform [34]. Teng et al. applied
the Haar wavelet transform concept to discover frequent temporal
patterns of data streams [31].
Searchingt-nearest neighbors is an important research topic in
a streaming environment [13, 17, 19, 21]. In [13], the authors pro-
posed to continuously retrieve the latdsipoints of a stream as
a query pattern and then find its nearest neighbors from a time
series database. Base on traditional indexing methods, the pro-
posed scheme achieves efficient query response via prefetching.
In [19], given an error bound, approximdtenearest neighbors are
searched among stream snapshots. In [21], the authors proposegtigure 2: (a) The error tree for Example 1; (b) The notation of
a new indexing technique based on scalar quantization to provide an error tree proposed in [17].
efficient nearest-neighbor search among multiple streams. In [17],
based on the Haar wavelet synopses, the authors provided an effi-
cient approach to finding thenearest neighbors under an arbitrary ~ Among different wavelet transformations, the Haar wavelet [16]
range constraint. All these works assume that streams are collectediecomposition is the first and also the most popular one. It is
and processed at a central site. achieved by averaging two adjacent data values of a sequence of
However, in practice, most streams are generated in geographi-data at different time resolutions. Then, only the overall average
cally distributed places. Therefore, more and more research worksand differences are kept. We show a simple example here in Ta-
have started to focus on distributed streams. These works includeble 1 to illustrate the idea of the Haar wavelet decomposition. As-
finding recently frequent itemsets [23], tégnonitoring [4], track- sume the original data affel, 6, 7, 4, 8, 6, 5, 7}. The first pairwise
ing approximate quantiles [11], processing aggregation and thresh-averages ar¢(4 +6)/2 = 5,(7+4)/2 = 55,(8 +6)/2 =
olding queries [22, 25, 28], content-based indexing for inner prod- 7, (5 +7)/2 = 6}. Then the corresponding difference can be ob-
uct queries and similarity queries [7], and so forth. To the best of tained:{4—5 = —1,7-5.5=1.5,8—7=1,5—-6 = —1}. Based

our knowledge, there is no prior work on processiiN queries on the data of this resolution, a lower resolution can be obtained in

among multiple distributed streams. a similar way as described above. Finally, the wavelet coefficients
In a distributed environment, among various kind /dafiN containing the overall average and the difference values of each

queries and without considering the streaming environment, the resolution arg5.875, —0.625, —0.25,0.5, —1,1.5,1, —1}.

work in [26] analyzed four schemes to tackle theearest neighbor To better illustrate the Haar wavelet decomposition, a widely

queries, which are most similar to our problem. Among them, the used data structure calledror treeis proposed in [24]. The er-
Probabilistic Processing (PRP) claimed to be an optimistic searchror tree for Example 1 is shown in Fig. 2(a). This tree is com-
by the authors. In PRP, the query initiator (primary server) first sub- posed of wavelet coefficients as nodes and signs as edges. The
mits the query object to all other sites. Then, oM + 1, where root of this tree is the overall average and all the other non-leaf
M is the total number of sites, nearest candidates of each peer sitenodes are differences at various resolutions. The leaf nodes repre-
need to be sent back. From the current set of best matches, the inisent the raw data, but these raw data are not maintained. Instead,
tiator further requests objects from possible sites. The PRP methodone can always reconstruct the raw data by tracing the error tree.
reduces the bandwidth consumption by retrieving as fewer candi- Along each path from the root, each data value in a leaf node is
dates from peer sites as possible. However, sending the entire quergqual to the sum of the value of a node multiplied by the sign be-
object to all other sites initially still needs too much bandwidth, es- |ow it. For example, the fifth data value, 8, can be reconstructed by
pecially when the size of the query object or the total number of 45875 — (—0.625) + 0.5 + 1 = 8.
sites is large. We also use an error tree to illustrate our idea, the same as the
In [10], the concept of multi-resolution indexing is employed to  one used in [17], which is shown in Fig. 2(b). Here, each non-leaf
reduce the computation for shape image retrieval. Instead of con-node is labeled with an identifier with two attributes as subscripts:
sidering all vantage points of images, the authors computed an ap-jeye|andplacement. A node with a label 01(7) means that it is
proximate distance range for each candidate image using a smallerin the p-th placement of level in the error t:’éz‘) corresponding to
number of vantage points. From the approximate distance ranges, &eamg,  This notation can be efficiently maintained when data
set of candidate images were chosen to compute the true distancegq e steaming in. Moreover, when not ail wavelet coefficients are

with aILthe ve;]ntage_pc:jl_r#s of thfe chosen car_ldldate images. How- retained, we can easily find the relative positions of the retained
ever, their scheme is different fromEEWAVE in many respects. o efficients in the error tree via the node labels.

First, they did not use wavelet coefficients aseEMVAVE does. Sec-
ond, they did not progressively tighten their distance ranges one 3.2 Coefficient maintenance

level at atime as EEWAVE does. Generally, not all the wavelet coefficients in an error tree are re-
tained because the data volume tends to be huge and the memory

3. PRELIMINARIES space is limited in a streaming environment. To meet different er-
.- ror requirements between the raw data and the retained coefficients,
3.1 Wavelet decomp05|t|0n many on-line approaches to selecting wavelet synopses have been
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dst(Su, Su)lis = Y > D x 2V ()

where
(w) () 12 ¢, (w) (v)
g ) ["Ez,gv) 2—"(1,,,)} i P € Cr, &n Lp) € Cri,
\‘\ag)o:+ng)—l)"n§:)0 (u) (u) (u) (u) ) N [nglﬁp)] If nEl’p) ° CTi & " of gé CT“
) g .0) ’,,r"a\(“2,3):+ N4,-1)"a,0+N(3,1) [’I‘L(z))p)]Z if n(?;)) ¢ CT,L- & ’I’L(z))p) [S CTi,

T; is one of the subrange i with a complete error subtree, and
C', is the set of retained coefficients which are in the subradige

Eq. (1) computes the distance between two streams based on
the complete error subtrees. Unfortunately, this error-subtree-based
Figure 3: Extracting complete error subtrees and relevant coef-  distance computation is not useful it EWAVE because peer sites

ficients from the whole error tree based on a desired time range. ~ Only receive the retained coefficients 8f.; one level at a time.
We need a level-wise approach to computing the distanceder L

WAVE.
To better illustrate our idea, we introduce three definitions.

proposed. These requirements include minimizing Eenorm
average error [14], minimizing the maximum absolute/relative er- ~ DEFINITION 1. We define the square sum of Euclidean distance
ror [18], minimizing the weighted.”-norm error [15], and provid- between strearfi, and S, as Dst(Su, S,). Namely,
ing a guaranteed accuracy [12], to name a few.

gGivgn the retained coe¥fi£:ie31ts of a stream, we can extract the Dst(Su, Sv) = dst(Su, S’”)Q'
relevant coefficients within any time range,[ t.]. As sug- Also, for ease of exposition, when we use the word "distance” from
gested in [17], the extraction procedure costs a time complexity of now on, we mean this square sum of Euclidean distaRee(u, v).
O(log? N), whereN is the total number of data values in a stream. . .
The extration method is outlined as follows. When a time range  DEFINITION 2. We define théevel-l distancebetween streams
[t., t.] is given, it first decomposes the range into several subrangesS« andS, as the distance of retained coefficients at ldvel
where each of them corresponds to a complete error subtree. Using l te _ (u,v) l
Fig. 3 as an example, suppose the given rand&is11], which Dst' (Su, Su)lis = Z D(Lp) X2,
contains the shaded triangular area in Fig. 3. We can decompose it
into two complete error subtrees where one coykrs7] and the whereD(Z"“) satisfies the same condition as in Eq.(1)
other|[ts, t11]. For each complete error subtree, the new average tr)
node will be computed by traversing from the original root node =~ DEFINITION 3. We define the accumulated distance between
n{y_,, to the root of the subtree. In Fig. 3, the black nodes rep- Stréamss. and S, from the highest level, down to levelp (the

resent retained coefficients, while the white ones are those beingoP-down accumulated distance) as:
discarded. When traversing the path to get the new average, the
missing nodes are just treated as zero. For example, the new aver-

age nodex(;;, equals tmgj{’)fl) — n{yh) + niy),, where in fact
(u)

n(3 1) is @ missing node and just be treated as zero.

p

L
accDst?(Su, Su)|i¢ = Z Dst' (u,v)];°.
=p

If we combine Definitions 2 and 3, and assume that the height of
the whole retained error tree Is then Eq.(1) can be reformulated

4. THE Leewave APPROACH TO PROCESS- &

ING DISTRIBUTED NN QUERIES Dst(Su, Su)fts = dst(Su, Su)lis”
Based on the maintained wavelet synopses, the goal gffdhir (o) _ o1 () oL
query is to find theék most similar streams t8,.y. We denote a = Z D(1,p) X2 4.+ Z D(L,p) X2
kNN query asQ(Srey, k, ts, te), Wwherek is the desired number of P P
most similar streams, and, ¢.] defines the time range of inter- L () - ol
est. For the similarity measure between two streams, we adopt the = Z Z Doy x2
commonly used Euclidean distance in this paper. =1 p
L
- - - -y . J— l tﬂ
4.1 Computing similarities using wavelet co- = > Dst'(u )i
efficients =t
= accDst' (u,v)| 2

Given wavelet coefficients of two streams, we can compute the
Euclidean distance directly from the coefficients themselves with-
out doing inverse wavelet transform back to the original data [8]. Eq. (2) is important to EEWAVE as it suggests a level-wise
By reformulating the distance computation proposed in [17], for a approach to computing the distance between two streangg- L
given time rang€’'=[t,, t.], the distance between two strea$\s WAaVE will use Eq. (2) to derive a similarity range for each candi-
andS, can be computed as follows: date stream and gradually tighten this range in order to prune the
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Reconstructed data via inverse DWT

from the error subtrees DstS,;.S,)=30
S=[15,45,8,3,75,75,3,3,4.75,7.75, 6.25, 6.25]
S =1[4.25,4.25,2.25,6.25,7,8,3,5,3,7,5, 5]

Original raw data

S,=[1,4,25,7,8,4,2538,6,6]
S = [4,52,6,7,8,3,5,3,7,5,5]

Error subtrees ok,

/s

Error subtrees o6,

level 3:
[(4.125-5) + (-1.125+0.75)] * 23=

4.125

7.25

-0,75
’ level 2:
[(6.25-5p + (2.25-1.75)] *
. level 1:
rrrrrrrrrrrr 5 [(LBP+ (2P + (0.5F +(-1 + (-1.5+25] * 2
T t‘ =155
2

22=1725

22

@ : Retained wavelet coefficients ‘ Level-wise distance computatio%:

‘ Error-subtree-based distance computat‘on:

Dst S, S) = ZD”E' %2+

i) 07Ny T

D¢t . $)=2 Dst(S,.S)=30
ZDHED'{X) x2=30

i) o T

Figure 4: Example of level-wise vs. error-subtree-based dis-
tance computation.

candidates. Before we delve into the details, let us look at an exam-
ple to understand the subtle, yet crucial, difference between Eq. (1)

and (2). Note that, for ease of exposition, we will omit the notation
of [ts, te] from now on in our description of the distance between
two streams.

Fig. 4 shows two different approaches to computing the
distance between two streams,..; and S,. Assume that
during the time range [it.], S, has 12 raw data values
[1,4,2,5,7,8,4,2,5,8,6,6] and S,.; also has 12 raw data val-
ues4,5,2,6,7,8,3,5,3,7,5,5]. These raw data are transformed

the candidates with the returned level distances. However, the key
challenge is: how does the initiator prune the candidates?

Note that, even with Eq. (2), the query initiator still cannot prune
the candidate streams without risking some false dismissal. This
is because, at a given level, it does not know how much those not-
yet-seen coefficients of the candidate streams at lower levels will
contribute to the final distances.

To overcome this problem, we maintain a similarity range into
which the exact distance may fall for each candidate stream. To
estimate the similarity range, we first decompose Eq.(2) into two
parts: one is the accumulated distance so far and the other is the
distance from those not-yet-seen coefficients.

Dst(Sr,-ef,S )
= Z Dst ref7 )
= accDst’(Sref, S Z DSt Sref,Sz)- (3

At level p, theaccDst? (Sref, Sz) can be easily maintained by
P;,it. However, the second term of Eq. (3) is still unknown. Let us
further decompose the second terms:

ipstl(smf,sz)
ZZ
ZZ

(ref)
" 1,p)

(=)

~ p)

}2><2l

(Tef)

(@
na, p) ]

(ref),, (@)
Nl —2n

l
M) Mip)) X 2 (4)

into separate error trees. Then a series of complete error subtrees

and retained coefficients are extracted. To verify the correctness,

we also show the reconstructed data and use them to compute théls own coefficients.

distance. However, in practice, we never need to do such recon-

struction. The distance computation between two streams is doney; )

completely with retained wavelet coefficients.

ExampPLE 1. Error-subtree-based computationBased on

Eq.(1) the distance between two streams is the summation of the

distance between each pair of their corresponding complete error
subtrees. For the first pair of error subtrees in range, the dis-
tance is: ((4.125 — 5)% + (—1.125 + 0. 75) ) x 2% 4 ((2.25 —
1.75)%4) x 224+ ((=1.5)2+(—2)?+(0.5)*+(—1)?) x 2" = 23.25.

For the second pair of error subtrees in ran@g, the distance is:
(6.25 — 5)% x 22 + (=1.5 + 2)? x 2* = 6.75. The final distance
Dst(Sref, Sz) 1s 23.25 + 6.75 = 30. If we check the distance
from the reconstruction data by inverse DWT, we get exactly the
same distance value. |

ExAMPLE 2. Level-wise computationfFrom Fig. 4, we can
also compute the total distance in a level-wise manner. The to-

tal distance computed this way is also 30, which is the same as the

computed distance in Example 1. |

4.2 Leewave for a kNN query

The central idea of EEWAVE is as follows. The query initiator
sends the coefficients 6F..; one level at a time. At each step, each
candidate peer site reports the levelistance and other necessary
information to the initiator site. The initiator then gradually prunes
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In Eq. (4), Pm“ can easily compute the first term using

It can also compute the second term,
2"), by first receivingy/ ' ° ([néf;>]2><

™ (1,p)
at the initial step and then gradually subtractm [n(z) 2 x

2° from it at each subsequent leyel The only problem Ieft is the
last term in Eq. (4), which involves the product of coefficients at
levels belowp. NeitherP;,;: nor any candidate site can compute
this term at the current level To guarantee no false dismissal, we
would like to find a substitute for this term which is an overestimate
but can be computed with level-wise coefficients.

Fortunately, we do find such a substitute. According to Cauchy-
Schwarz inequality [29], we can find an upper bound of the inner
product of two vectors in real space, where this upper bound is the
product of the linear square sum of each vector:

S Y, ()1

h

<D el

X Z 67, wherea, 8; € R.

i=1

Z aifB:)?

Now we if leta; = —[n ET;’;)] x 2!, andg; = [
term of Eq. (4) has an upper bound as follows

)} then the last

p—1
2 X ZZ (i) ] XQZQXZZZ )2
=1 p
p—1
- 20 ST <2 ST
P =1 p



Procedure: LEEWAVE for a kNN query
InDUt: Pi7Lit! Sref: k: T= [t37 te]
Output: Thek most similar streams t6,.. s

Pinit: A candidate peer sit&,:
1. Extract relevant coefficients 6.5 in [ts,Z].
2. Send, t., and coefficients ob,.; at level L to all other | 3.  For each local candidate streanf,, compute and
M — 1sites. return a 3-tuple (Dt (Sres,Sa), 315 Y, InG) 12,
Y, ()17 % 21) 10 P
4.  Compute the upper and lower bound of the similarity range
based on Eq. (5) for each candidate stream. Do the ffirst
pruning. Then, sort out a list of candidate sites and streams.
5. for(p=L—-1;(p!=0&&!done); p=p—1){
6. Send level-coefficients ofS,.; and the listof can- | 7. Compute and return a 2-tuple §I(Srey, Sz),
didate streams to each candidate peer site. 3 [ngm )12) for each local candidate streas,.
p >
8. Update the upper and lower bound of the similarity nr
range based on Eq. (5) for each candidate stream.|Do
pruning. Setoneto true if there are no more thah
candidate streams left.
9. Ask the contents of the findl streams within the | 10. Send back corresponding contents.
query range.
1. }

Figure 5: Algorithm for distributed kNN

Therefore, at levep, the true distance betweef)..; and S,
which is described in Eq.(3), is bounded in the following range:

accDst’ (Sref, Sz) < DSt(S“af,S ) <

+ZZ

(ref )
lm)

accDst” (Sref, S. EiL)f) x 2!

+2 x (%)

p—1
Z 2. oy 1% 202 % 33 [y )2
=1 p
With Eq. (5), itis now possible to maintain both the lower bound
and the upper bound of this similarity range in a level-wise manner

with Dst?(Syrey, Sz) and Zp[nfi?p)]z returned b(y)a peer site at

each levep. This is because the terlny=, > [n;,
be incrementally computed a®,,;: by subtractingzp[n

J? can now
() ]2

(t,p)
from>>7_, > [n Efb] , which was computed at the previous level
p+1. More |mportantly, as we move from one level to the next, the
similarity range becomes tighter. This is because the lower bound
of a similarity range is non-decreasing, based on Definition 3, and
the upper bound is non-increasing.

THEOREM 1. The upper bound of a similarity range is non-
increasing when we move from leyeto levelp — 1.

Proof: See the Appendix. |

We are now ready to describe the details of haeeWAVE pro-
cesses a distributetNN query in a level-wise manner and how

P;ni+ gradually prunes the candidates. Fig. 5 shows the algorithm
of distributedkNN query processing usingdeWAVE. At the first
step, P;ni: extracts the relevant wavelet coefficientsht s in the
range offts, te]. Then, it sends., t. and the level-Icoefficients
of Sr.s to all otherM — 1 peer sites. Each peer site then extracts
relevant coefficients for each stream it monitors. And it returns 3
numbers for each local candidate stredfn, They are the level-L
distance Dst” (S, Sz ), and two other numbers that will be used
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query processing using LEEWAVE.

by P, to progressively tighten the similarity range:

Zzp: and ZZP:

After receiving the 3 numbers from each candidate stréam:
updates the lower and upper bounds of a similarity range based
on Eq. (5) for each candidate stream. It will then do some ini-
tial pruning, if possible, and sort out a list of candidate streams
that might be the finak most similar streams. Then, it moves to
the next level. For a given level, P;,;: sends the level-goef-
ficients of Sy.y and the list of candidate streams to a candidate
site. A candidate site will compute and return two level-specific

numbers:Dst’(Syey, Sz) andy_ [ngﬁ)w]2 init Will update the
two bounds of a S|m|Iar|ty range, making it tighter, with these two
level-specific numbers. With increasingly tighter rang@s,: can
better prune the candidate list. The algorithm ends when there are
no more thark candidate streams left.

To prune,P;,;: first sorts the candidate streams in an ascending
order based on the upper bounds of their similarity ranges. Any
candidate stream whose similarity lower bound is higher than the
upper bound of thé-th streams in the sorted list cannot be the final
answer, and thus is pruned. From Theorem 1, we can guarantee that
there is no false dismissal under this pruning strategy.

(w)
(, P

(w)
na, p

ExamMPLE 3. In this example, we use a concrete example to
demonstrate the increasingly tightened similarity range for a can-
didate stream. Consider the case in Fig. 4. Table 2 shows the
flow of data exchanges betweBp,;; and P, the values of various
terms in Eq.(5) maintained byP;,;:, and the similarity range of
S.. Each column shows the level currently in progress.

Whenp = 3, Dst*(S,.r,S.) = 7.25 is obtained as shown
in Fig. 4,37, Y, In )12 = ((—1.5)% + (-1.5)? + 2.25% +
6.25%) = 48.625, and Y7, 3 [n( )17 x 28 = (((~1.5)* +
(— 15)2) x 2 4 (2.25% + 6.25%) x 2%) = 185.5. The terms
> Zp[n&‘;’;). ><.21]2 and_E{’:_l1 Zp[nE;‘;J;)P x 2! can be com-
puted byP;,:: similarly. With above values, the first similarity
range for strean®,, is [7.25, 7.25 + 130.75 4 185.5 + 2 % (486 x



Table 2: Example of an increasingly tightened similarity range for a canddate stream.

p=3 p=2 p=1

Pinit 10 Py ((5,=0.75), ts, 1) (1.75,5) (—2,-05,—1,-2)
P, t0 Pt (7.25,48.625,185.5) | (7.25,44.125) (15.5,4.5)
Sy e x 2 486.0 37.0 0
et zp[ngg;)]? x 2! 130.75 18.5 0
S Y, P 48.625 45 0

EDNEE A ; ;
similarity range forS,, [7.25,630.95] [14.5,67.81] [30, 30]

48.625)1/2 = 630.95]. This completes the values in the first col- M — 1 peer sites for each locally maintained stream was 4, includ-

umn. ing the stream index, the level-distance and two other values for
When p=2, P, sends backDst*(S,.r,S:) = 7.25, and pruning. For a subsequent leyel P;,,;: sends the level-goeffi-
Zp[ng)p)]Q = (2.25% + 6.25%) = 44.125. After receiv- cients and the cf'indidate stream list fpr a capdidate site. Then, for
ing this 2-tuple, Pini: then subtracts these two numbers from each Ioc_al candidate stream, a candidate site only sends back the
the maintained terms in the middle rows. Take2 as an ex-  |evel-pdistance and another data value neededHar; to do the
ample, Zf:f Zp[nETL)]Q — 48.625 — 44.125 — 4.5, and pruning. When the finat neighbors are decided, the size of those
N @ - requ_ested stream patterns_ are added in.
=1 2plpl” X 20 = 1855 — 44125 x 2° = 9. For It it noted that LEEWAVE is independent of the way wavelet co-
the sum related to coefficients 8f.;, Pini: updates them simi-  efficients are chosen. Without loss of generality, here the wavelet
larly. Then, the second similarity range f6¥, is [7.25 4+ 7.25 = coefficients were retained using the method proposed in [14], which
14.5,14.5 + 18.5 + 9 4 2 (37 x 4.5)1/2 = 67.81]. retains theB largest coefficients in terms of absolute normal-
The last row in Table 2 shows the similarity rangeSafat each ized coefficient values. We randomly picked one stream from our

level. It clearly shows that the similarity range does indeed become dataset as the reference stream and perforkbiNd queries using
tighter, [7.25, 630.95] to [14.5, 67.81] to [30, 30], as we move from  three approaches. Since the total bandwidth used for processing

one level to the next. ] kNN queries depends on the reference stream, we averaged the
bandwidth consumption over a few different reference streams for
5. PERFORMANCE STUDY each bandwidth value we reported.

We conducted a series of experiments with both real and syn-5.1  Experiments with real data

thetic data to evaluatedEWAVE. We compared EEWAVE With  The real data we used here were the daily average temperature
the CP and PRP approaches. All approaches were |m|c_)lemented IMNHata of 300 cities around the world, which were obtained from the
Visual C++ and the experiments were run on a PC with 2.8GHz emperature data archive of the University of DajtoiThe data

CPU and 2GB RAM. . . from each city was regarded as a stream, each of whicB hd$

‘We compared the total bandwidth requirements f@BEWAVE —  gata points. In addition, these streams were evenly distributed
with those for the Concurrent Processing (CP) and Probabilistic among the\/ sites for all the experiments.
Processing (PRP) approaches proposed in [26]. We focused on  The first experiment examined the impactskoéind the num-
the impacts of query rangg, k and the total number of sitéd/  per of sitesM on bandwidth consumption for a givefi=2048.
on the bandwidth consumption. The total bandwidth consumption The results are shown in Fig. 6. The valuekofvas varied from
was calculated by adding up the data transmitted ffém:. to all 5 to 30 and)M was varied from 10, 30, 60, 100, 150 and 300.

other candidate peer sites and those transmitted back from eac'bompared with CP and PRPEEWAVE saves a significant band-
peer candidate site. Each data value sent was counted as one unit Qfidth. Whena/ is small, for example 10, the number of streams
bandwidth. For coefficients in the same level, the total bandwidth , 3 site is always larger than This means that CP will always
was 2 (value and placement index) multiplied by the total number yetrieve exactly: candidates from each peer sites. Fig. 6(a) shows
of coefficients at that level plus 1 (level number). that the required bandwidth of CP grows linearlyfascreases.

For the CP approach, the total retained coefficients of the ref- o the other hand, as shown in Fig. 6(b), the bandwidth required
erence stream within the query range plus 3 additional values for pRP also increases but at a slower rate sig@/+1) grows
(K, ts, tc) were senttalf — 1 peer sites. The number of data trans-  gjowly. However for a bigged/, the bandwidth is insensitive to
mitted from theM — 1 peer sites tdn;. is decided by the number i tor both CP and PRP. For CP, since the number of streams in
of candidate streams (at mdst returned. Itis the summation of  each site is smaller thah it always retrieves all of them back. For
the total returned coefficient size within the query range plus the prp wherk < M, (k/M + 1) remains the same value, i.e., 1,
stream index and the corresponding distances. for different Ms. In this regard, the bandwidth used for transmit-

For the PRP approach, the bandwidth is computed as the samgjng the query stream to other sites dominates the total bandwidth
way as CP does. Only the number of returned candidates is differ- consymption. The larger the number of sites, the more the band-
ent. Besides, PRP needs to send the currentibifsvalue to sites ity js consumed. Also, this is the reason why both CP and PRP
which are possible to have candidates and request them back. almost have the same bandwidth consumption wieis 300. On

For LEEWAVE, we summed up the data transmitted at each level. {he contrary, instead of sending the entire relevant coefficients of

For the highest level, only the levél-relevant coefficients of the the reference stream to all other sitesEMAVE sends as fewer
reference stream plus,(it.) were counted fron®;,,;; to the M — 1

peer sites. The number of data values sent back from each of thehttp://www.engr.udayton.edu/weather/
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(a) CP (real) (b) PRP (real) (c) LeeWave (real) (a) CP (real) (b) PRP (real) (c) LeeWave (real)
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Figure 6: Impacts of k and M on bandwidth consumption with Figure 7: Impacts of 7" and k on bandwidth consumption with
real data. real data.

(a) k=5 (real) (b) k = 25 (real)
3 150

coefficient as possible to only those candidate sites by leveraging **°f
the multi-resolution property of wavelet coefficients. This saves a
lot of bandwidth as shown in Fig. 6(c).

The second experiment examined the impacts of query range
andk on bandwidth consumption for a givevl = 150. The re-
sults are shown in Fig. 7. In this experimehtwas varied from
5 to 30 and the query range was varied from the following set
of values: 90, 365, 730, 1,024, 1,200, 1,600 and2,048. From
Fig. 7(a) and (b), the bandwidth consumption of the CP and PRP
approaches increases significantly as the query range increases, be <
cause more relevant coefficients need to be sent to the peer sites
Fig. 7(b) shows that PRP has less bandwidth consumption than CP
does. WhenM, equals 150, each site contains only 2 streams on % s a s v 1 12 % 2 4 ¢ v 1
average. Therefore, compare with the CP approach which retrieves Step Step
all 2 streams for each site, the numbgr/M + 1) = 1, allows
the PRP approach to save almost half in the bandwidth consump-Figure 8: Size of candidate sites at each step ofHEWAVE in
tion in returning data. Note that the PRP approach may need to Fig. 7.
send few more candidates in the second round to make sure all real
k stream patterns are obtained. In contra®#EWAVE continues
to maintain a substantially smaller bandwidth requirement, even asT = 1,024 (the 4" line along thek-axis) than forl" = 1,200
the query range increases. Specifically,foe 5 andT = 2,048, (the B" line along thek-axis.) Then we examine the charts shown
the bandwidth requirement ofHEWAVE is only about 6.5% that of in Fig. 8(a). Although the size of candidate sites drops faster for
CP and 9.7% that of PRP. Considering the impactg, dfom 7(a) T = 1,024 than forT = 1, 200 at the initial few steps, the reduc-
and (b), the bandwidth consumption of CP and PRP is not sensitivetion is faster at the final few steps (step 8 to 10) Tor= 1, 200
to k, because it always sends the entire relevant coefficients of thethan forT = 1,024. Note that there are usually more coefficients
reference stream to all other sites. On the other hand, the band-retained at the lower levels. Hence, the sizes of candidate sites at
width requirement of EEWAVE increases slightly ak increases, the final few steps dominate the total bandwidth consumption. As
as shown in Fig. 7(c). This is because it usesiHelowest upper a result, the total bandwidth is smaller wHER= 1, 200 than when
bound to do pruning. Wheh is larger, the upper bound is higher, T = 1,024. For the case ok = 25, the final sizes of candi-
which means the pruning ability becomes less effective. date sites are closer for bo#h = 1,024 and1, 200. As a result,

In addition, from Fig. 7(c) we observe that the 3D surface is not the bandwidth drop between these two ranges is less obvious (see
smooth for LEEWAVE, especially along the query-range axis. The Fig. 7(c)). ForT' = 2, 048, for bothk=5 andk=25 cases, although
reason is as follows. For a different query range, we extracted dif- it generally has a smaller size of candidate sites than others, how-
ferent series of complete error subtrees, with different heights and ever, a lot more retained coefficients are involved for a larger range,
subranges. Hence, the relevant retained coefficients might be rathecconsuming more bandwidth.
different for different query ranges. Since EWAVE computes the The third experiment, as shown in Fig. 9, examined the impacts
distance in a top-down, level-wise fashion, the retained coefficients of query rangel’ and total number of sited/ on bandwidth con-
at different levels under different query ranges have different influ- sumption wherk is fixed at 10. The time range settings were the
ences on the pruning effectiveness. To see the details of such im-same as those used in the previous experiment. The number of sites
pacts, we collected the average number of candidate sites at eachvas also increased from 10 to 300 as the first experiment did. From
step during the query processing ig#WAVE. In Fig. 8, we plot- Fig. 9(a) and (b), the bandwidth consumption of CP and PRP in-
ted the number of candidate sites at each step (level) Whérin creases significantly not only as query rafdgéncreases, but also
Fig. 8(a) andk=25 in Fig. 8(b). First we look at the case when asM increases. In contrast, Fig. 9(c) shows thaelWavE is much
k = 5. From Fig. 7(c), the bandwidth consumption is higher for less sensitive tal/. This is because unnecessary coefficients are
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(a) CP (real) (b) PRP (real) (c) LeeWave (real) X 10° M =30, k=10 (real) X 10° T=365, k=10 (real) X 10° T=365, M= 30 (real)
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Figure 9: Impacts of T"and M on bandwidth consumption with
real data.
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Figure 12: Impacts of k and M on bandwidth consumption

% 2 4 & 8 10 12 % 2 4 & 8 10 1 with synthetic data.
Step Step
Figure 10: Size of candidate sites at each step ofdEWAVE in as shown in Fig. 11(c), to give a better illustration of the former
Fig. 9. statement. However, when the query range is large, or when the

number of distributed sites is largeEEWAVE indeed is a much
better solution in bandwidth savings.
not distributed by the query initiator. It is noted that there is an . . )
obvious bend for CP in Fig. 9(a) for every fix&when M jumps 5.2 Evaluation with synthetic data
from 10 to 30. Similar situation also happens at Fig. 6(a). When The synthetic data were generated by a random walk data model
is not bigger than 30, each site has more thahO streams, there-  proposed in [33]. For a streaf, it was generated as follows:
fore both the bandwidth for sending entire relevant coefficients to
and retrievingk candidates from all other sites increase. That is the
reason why the slope of the curve is steeper. On the other hand,
whenM is bigger than 30, the number of streams in each site is al-
ways less thar, then all streams are always requested by the query whereu; was randomly picked from [0,1].
initiator. Then only the bandwidth for sending relevant coefficients =~ We generated 1,000 streams in total, where each stream has
of the reference stream is increasing, which results in a lower slope 20,000 data points. For a given number of sites, the 1,000 streams
for the curve. were evenly distributed among them.

For LEEWAVE, the results under different query ranges behave  The first experiment for synthetic dataset studied the impacts of
similarly to those from the previous set of experiments. We also & and the number of site® on bandwidth consumption for a given
show the average number of candidate sites at each stéy for T=2048. The results are shown in Fig. 12. Theas varied from
60 and M = 300 cases in Fig. 10. 5 to 30 andM was varied from 10, 20, 50, 100, 200, 500 and

Before the end of this section, we zoom in to smaller values of 1000. We see thateEWAVE significantly saves bandwidth, when
T and M, on the bandwidth consumption for the three approaches, compared with the CP and PRP approaches. Similar to the curves
using the 2-D representation. The results are shown in Fig. 11. Thein Fig. 6, when the number of sites is small, the bandwidth usage for
defaultT" is 365,M is 30, andk is 10. From Fig. 11(a), we discover  both the CP and PRP approaches increases lineakljraseases.
that when the query time range is small, which means a smaller sizeCP increases faster than PRP. For a bighgrthe bandwidth is
of relevant coefficients, EEWAVE may not outperform either CP  insensitive tok for both CP and PRP.
or PRP. The same is true in Fig. 11(b) whihis not substantially Note that the query range used here was the same as the one
large. We fixedI” at 365 and\M at 30, and let the value d@f vary, used in Fig. 6. Also, the ratio of retained coefficient number to

S; =100+ Y (u; —0.5),
j=1
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(a) k = 5 (synthetic) (b) k = 25 (synthetic)

Table 3: The bandwidth consumption whenk=30, /=100, and 500 500
== T=28.192 =% T=8192
T=2048. -©- T=10,000 -©- T=10,000
CP PRP LEEWAVE 8 400 = T=14,000 2 400 = T=14,000
real data 795759.6| 411008.2] 132315.5 o % T-16384 o —#- T-16,384
16.6% of CP, 32.2% of PRP § §
synthefic dafa] 1738185[ 321973.8] 91588.4 5% 53
5.3% of CP, 28.4% of PRP 5 5
2 200 B 200
£ £
(a) CP (synthetic) (b) PRP (synthetic) (c) LeeWave (synthetic) ; Z
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§ 1 Figure 14: Size of candidate sites at each step ofHEWAVE in
® Fig. 13.
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Figure 13: Impacts of T" and k on bandwidth consumption with
synthetic data.

original data size was also the same. Wiiér100,7'=2048, and
k=30, the bandwidth requirements of three approaches for the two
data sets are shown in Table. 3. The bandwidth consumption of
CP for synthetic data is higher than that for real data. It is be- T 00 1 otal sites)
cause CP retrieves back 10 streams from each site on average for

synthetic data compared with 3 streams for real data. For PRP, itFigure 15; Impacts of T and M on bandwidth consumption
requires almost the same bandwidth for both data sets. Ear L ith synthetic data.

WAVE, it requires 16.6% of the bandwidth that is consumed by CP

for real data. On the other hand, the ratio is 5.3% for synthetic

data. It shows that EEWAVE saves even more bandwidth for the pacts of the query rangéand the number of sitel on bandwidth

synthetic dataset compared with CP. This is also true whes L consumption whe#=10. The settings of were the same as those

WAVE is compared with PRP. One reason is due to the nature of the ,gad in the previous experiment. The valué\éfwas varied from

data sets. The synthetic data were generated randomly. Hence, thg( 99, 50, 100, 200, 500 to 1,000. From Fig. 15(a) and (b), we

deviations between streams were much larger than those betweerypserve the same phenomena as in real data. The bandwidth con-

temperature streams of different cities. It is easier to separate aparkymption of CP and PRP increases significantly as both query range

those dissimilar streams in synthetic data set by using only the first gn the number of sites increase. In contrast, as shown in Fig. 15(c),

few levels of coefficients in distance computation. The other rea- | cp\wave saves a huge amount of bandwidth. From Fig. 16, the

son is that by pruning candidate streams efficientlseWAVE can speed at which the size of candidate sites reduces is faster when

quickly decide the finak = 10 out of either 300 streams for real 5, — 1,000 than whenM = 200. This shows that EEWAVE out-

data or 1000 streams for synthetic data without sending the e”tireperforms the CP and PRP approaches, especially when the number

relevant coefficients of the reference stream to all other sites. This qf gites is large.

again proves the superiority o EEWAVE approach. . At the end of this section, we also plot a 2-D plot which fo-
The second experiment in this section, shown in Fig. 13, studied ¢y ses on smaller values @f and M. The defaultl is 1000, M

the impacts of query range andk on bandwidth consumption for 5 50, andk is 10. Fig. 17(a) shows the bandwidth consumption

a givenM = 500. The query range was varied from the follow-  ynqer differentds whenT is fixed at 1000. Fig 17(b) shows the

ing: 300, 512, 3,000, 6,000, 8,192, 10, 000, 14,000 and16, 384. bandwidth consumption under differeftwhen M is fixed at 50.

k was varied from 5 to 30. From Fig. 13 EEWAVE consumes Fig. 17(c) further shows the results under differkrior smaller?”

dramatically less bandwidth, when compared with the CP and PRP 504 07, As shown in Fig. 17, EEWAVE may not be a better solu-

approaches. Similar to the previous experiment seEEWAVE tion when the time range or when the number of sites is relatively

saves a lot of bandwidth by quickly pruning candidates. This can gmal. However, when the query range is large or when the num-

be clearly seen in Fig. 14, where the size of candidate sites shrinkspay of distributed sites is large EEWAVE indeed is a significantly
quickly after the first few steps. Sometimes the final answers can bepetter approach in bandwidth savings.

obtained at an intermediate level. This is why the size of candidate

sites approaches to zero in Fig. 14. Wheis larger, the size of

candidate sites is higher. This also shows that a higher upper boun06- CONCLUSION

has less pruning ability. In this paper, we presentedtEWAVE - a bandwidth-efficient ap-
Finally, the last experiment, shown in Fig. 15, studied the im- proach to processing range-specifiedN queries in a distributed
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Compare Eq. (10) with Eq. (11), by eliminating the same terms,

p—1
(ref) ! (z) we only need to prove
+wjzz(wxzxzzam

=1 p =1 p

p—2 p—2
\J O‘(Qp—lm) Z Z 5(2171') + 5(211—1717) Z Z CY(Ql,zn)

DSEFIELIE B S TAC NN =5 =5

=1 p Z

p—2 pP—2
To prove the upper bound is non-increasing, we need to prove _ 9 a<p1,p)ﬁ(p1,p)$ Z Z a?l ) X Z Z ﬂ(zl - (12)

that Eq. (7) is> 0. For ease of exposition, we lef; ;) = [n E}"‘;’;)}x =1 p =1 p
2!, and ;) = [n{;),]. By expanding the temst*~" (Sy.y, S.) By using the inequality of arithmetic and geometric means,
=3, (In <;ef1)p)]2 T 2n(;6f1) p)ngzllm) +n </f) ) p)} ) x 2! and Eq. (12) holds, and so does Eq. (9). Q.E.D.
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