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ABSTRACT
In the near future, commodity hardware is expected to in-
corporate both flash and magnetic disks. In this paper we
study how the storage layer of a database system can ben-
efit from the presence of both kinds of disk. We propose
using the flash and the magnetic disk at the same level of
the memory hierarchy and placing a data page to only one
of these disks according to the workload of the page. Pages
with a read-intensive workload are placed on the flash disk,
while pages with a write-intensive workload are placed on
the magnetic disk. We present a family of on-line algorithms
to decide the optimal placement of a page and study their
theoretical properties. Our system is self-tuning, i.e., our al-
gorithms adapt page placement to changing workloads. We
also present a buffer replacement policy that takes advantage
of the asymmetric I/O properties of the two types of storage
media to reduce the total I/O cost. Our experimental evalu-
ation shows remarkable I/O performance improvement over
both flash-only and magnetic-only systems. These results,
we believe, exhibit both the potential and necessity of such
algorithms in future database systems.

1. INTRODUCTION
Though primarily designed for mobile devices, flash disks

are also starting to appear in commodity computer hard-
ware, as their capacity is constantly growing, while their
price is proportionally dropping. As of February 2008, flash
disks with capacities of 64 or even 128 gigabytes have reached
the market. It is expected that in the near future commodity
hardware will incorporate not only conventional magnetic
disks, but also flash disks. Additionally, operating systems
are already providing facilities to take advantage of flash
disks [11]. Given these trends, in this paper we investigate
how the presence of both types of disk can be taken advan-
tage of when designing I/O-intensive database applications.

Manufacturers have striven to make the existence of flash
disks transparent to users by providing them with an I/O

interface that is identical to that of magnetic disks. How-
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ever, though both kinds of disk have the same interface, their
I/O characteristics are widely disparate. Flash disks demon-
strate extremely fast random read speeds, but slow random
write speeds. At the same time, conventional magnetic disks
are more efficient than flash disks at random write patterns,
but slower when randomly reading data. For instance, the
flash disk we used for our experiments can read pages from
random locations more than twenty times faster than a mag-
netic disk. On the contrary, a magnetic disk can write pages
at random locations ten times faster than the flash disk. Our
goal is to design a database system that uses both a flash
and a magnetic disk as storage media and improve its I/O

performance. We do so by combining the fast read speed of
the flash disk with the fast write speed of the magnetic disk.
Our experimental results show that in such a hardware setup
our proposals can have significant and immediate impact.
Flash disks. The most common type of flash memory
found in solid state drives (SSDs) is NAND flash. NAND flash
disks are typically used in mobile devices and low energy
environments, as they are shock resistant, demonstrate low
power consumption, and operate completely silently. How-
ever, the I/O characteristics of NAND flash disks differ sub-
stantially from the characteristics of conventional magnetic
platter disks, and need to be taken into account when de-
signing applications for such disks. The most important I/O

characteristics of SSDs are:
� I/O interface. At the operating system level, SSDs behave
identically to magnetic drives, as they are accessed through
the same I/O interface. Typically, the unit of I/O operations
on a flash disk is a sector of 512 bytes, which is equal to the
size of a magnetic disk sector (for most magnetic disks).
� No mechanical latency. Flash disks are purely electronic
devices and have no mechanical moving parts. The time
needed to access a data item on a flash disk is independent
of its position on the physical medium, i.e., access latency
does not depend on the access pattern. Additionally, access
latency is orders of magnitude less than the random access
latency for mechanical disks. Both properties present great
opportunities for performance gains over magnetic disks.
� I/O asymmetry. The electrical properties of flash cells
result in read operations being much faster than write oper-
ations: when the value of a NAND cell is changed, it takes
some time before it reaches a stable state. For most flash
disks read speed is twice as fast as write speed.
� Erase-before-write limitation. The most important limi-
tation of flash disks is that a sector cannot be overwritten:
it has to be erased before it can be updated. Moreover,
only entire blocks can be deleted, with each block contain-
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ing many sectors. Updating a sector requires that the whole
block to which it belongs be erased and rewritten. Consider-
ing that a deletion is more expensive than a read or a write,
updating a NAND flash sector becomes quite costly.

Our proposals target commodity hardware equipped with
both magnetic and flash disks. While high-end flash disks
that completely outperform magnetic disks have recently
been announced, such as the ioDrive [5], they are not likely
to appear in commodity hardware any time soon. High-
performance flash disks use Single Level Cell (SLC ) flash
memory that stores one bit of data per cell. The alterna-
tive is Multi Level Cell (MLC ) flash memory that uses four
voltage levels and can thus store two bits of data per cell.
While MLC flash has twice (or even more) the density of
SLC, programming an MLC cell takes much longer [16]. As
a result, MLC flash disks have greater capacity at a frac-
tion of the cost of SLC ones, but quite worse write perfor-
mance. Given the higher storage capacity (comparable to
that of magnetic disks) and lower cost of MLC flash disks,
commodity hardware is expected to incorporate that type of
disk, which clearly cannot outperform magnetic disks with
respect to write performance. In this paper we consider such
flash disks.

One idea is to use the flash disk as a cache for the mag-
netic disk, i.e., as an extended buffer. While this design
might be reasonable for a file system, it can prove subop-
timal for database workloads as it disregards the writing
inefficiency of the flash disk. The reading efficiency of the
flash disk, on the other hand, is an argument for using it for
persistent storage [7]. Given this discrepancy, and consid-
ering the growing capacity of flash disks, we propose to use
both types of disk at the same level of the memory hierar-
chy, i.e., a database page can reside either on the flash disk
or on the magnetic disk, but not on both. We present algo-
rithms for optimally placing a page according to its work-
load. Pages with a read-intensive workload are placed on
the flash disk, while pages with a write-intensive workload
are placed on the magnetic disk. We propose ways of accu-
rately predicting the workload of a page and of improving
the page eviction choices of the buffer manager when it is
aware that both kinds of disk are present.

The types of system that can benefit from our proposal
include (but are not limited to): (a) (parts of) database sys-
tems with well-defined workloads, especially when a portion
of the data is very frequently accessed but only scarcely up-
dated e.g., the database catalog, typical access paths, etc.;
(b) archiving systems, where a percentage of data appearing
only in the latest versions are frequently accessed, whereas
a larger percentage of the archive (also referred to as the
deep archive) is infrequently used; (c) file systems, where
both kinds of disk are transparently handled by the operat-
ing system, but user data is organized according to its I/O

workload for maximum efficiency; (d) hybrid hard disks,
i.e., magnetic disks that are equipped with flash memory,
which they use as non-volatile cache [15]. Our algorithms
can be employed by the controllers of such disks to boost
performance.
Contributions and organization. In the following sec-
tions we present our approach to data management using
both a magnetic and a flash disk as storage media. Our
main contributions are:

• We propose using the flash disk and the magnetic disk
at the same level of the memory hierarchy, i.e., the

flash disk is not used as a cache for the magnetic disk.
We show that important performance benefits can be
gained with such a design, especially for queries touch-
ing large sets of pages with read-intensive workloads.

• We study the problem of optimal placement of each
data page (i.e., whether it should reside on the flash
or on the magnetic disk) both from a practical and
a theoretical perspective. We present a family of on-
line algorithms that can be used to dynamically decide
the optimal placement of each data page. Our algo-
rithms adapt to changing workloads for maximum I/O

efficiency.

• We present a novel buffer pool page replacement algo-
rithm, designed to benefit from the asymmetric prop-
erties of the disks. Page replacement is not only de-
cided by the probability of a page being accessed in the
future, but also by the I/O cost of evicting the page
and re-fetching it into main memory.

• We have implemented all proposed algorithms and con-
ducted an extensive experimental study. Our algo-
rithms can significantly improve I/O performance over
magnetic-disk-only and flash-disk-only setups, and for
database workloads that frequently occur in practice.

The rest of this paper is organized as follows. Related
work is presented in Section 2. The problem statement is
given in Section 3, and a family of on-line algorithms for
deciding the placement of pages on storage media is pre-
sented in Section 4. In Section 5 we present our novel page
replacement algorithm to be used by the buffer manager of
a hybrid system. The results of our experimental study are
given in Section 6, followed by a discussion of the advan-
tages of our design in Section 7. We conclude and present
our future research directions in Section 8.

2. RELATED WORK
To overcome the “erase-before-write” limitation of NAND

flash, flash disks employ a software layer called the Flash
Translation Layer (FTL). Its main purpose is to provide
logical-to-physical address mapping, power-off recovery, and
wear-levelling. Many different algorithms have been pro-
posed for the FTL [4]. In [8], the authors propose main-
taining a small number of log blocks as temporary storage
for overwrites, with each logical sector being mapped only
to a certain log block (block level associativity). This tech-
nique substantially improves the random-write performance
of flash disks. In [10], the authors present a scheme for
fully associative translation between logical sectors and log
blocks, thereby improving the space utilization of log blocks.
The scheme further improves write performance (by as much
as 50%). In [1], it is argued that increasing the amount of
volatile RAM on flash disks is the only way to achieve accept-
able random access write performance and present a design
for flash disks with large volatile buffers.

File system FTL algorithms are not well-suited for database
workloads. As shown in [9], random write operations in file
systems are mostly required for metadata. When execut-
ing typical database workloads, however, DBMSs perform
random write operations that are scattered over the whole
disk address space. To improve write efficiency for flash-
based databases, an in-page logging (IPL) scheme is pro-
posed in [9]: changes made to a data page are not written
directly to disk, but to log records associated with the page.
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Changes are logged on a per-page basis, while each data
page and its log records are located in the same physical
block of the disk i.e., in the same erase unit. Each erase
unit is divided into a number of data pages and a number
of log sectors for the log records of the pages. In-memory
representation of a page includes an in-memory log sector
(of the same size as the flash log sector). When a page is
dirtied in memory, its contents need not be written back to
disk; only the log records for the page need to be appended
to the log sector for the page on disk. When the erase unit
is out of free log sectors, the logged changes are applied to
the corresponding data pages in the unit. Then, the data
pages are written to a new erase unit (that has its log sec-
tors erased). That way, page updates only involve writing
already erased log sectors. Simulation results of the IPL

scheme show that it improves the random write efficiency
of flash disks by an order of magnitude for typical database
workloads. The authors also propose an IPL-based recovery
mechanism for transactions that minimizes the cost of sys-
tem recovery. Such logging schemes are orthogonal to our
proposals; they can be used complementary and will most
likely result in further I/O efficiency.

Research has also been conducted in the area of flash-
aware indexing. In [17], the authors propose storing B+-tree
nodes as a sequence of log records spread over multiple disk
blocks. To update a page, one appends log records to this
sequence, thereby not having to erase the entire block for
each page update. The evaluation of the approach shows
that it improves performance both in terms of time and en-
ergy efficiency. On the same topic, authors in [12] propose a
self-tuning B+-tree that provides indexing functionality to
the storage manager of a flash-based database system. The
index dynamically adapts its storage structure according to
the database workload and the underlying storage device.
Specifically, nodes of the B+-tree are stored either in log
mode or in disk mode. In disk mode, the entire node is
written in consecutive disk pages, while nodes in log mode
are stored as log entries, that may be spread over multiple
disk pages. Pages in log mode are written very efficiently
(as updates do not incur overwriting physical blocks), while
read operations require all log entries for the page to be
gathered, so that the page can be reconstructed. On the
contrary, pages in disk -mode can be read efficiently (by just
reading a page from disk), but writing a disk mode page
requires erasing the physical block first. Switching between
modes incurs a specific cost, therefore authors propose an
on-line algorithm to decide the optimal mode of a page.

The algorithm we propose for page placement is also an
on-line one. The problem we are solving is an instance of
the page migration problem: deciding the optimal node of
a network to store a data page, so as to minimize the total
cost of serving requests for the page from other nodes of
the network. In [2], the authors thoroughly study this prob-
lem and present competitive algorithms for different network
topologies. In [3], the authors study metrical task systems
similar to the one we use to model our system and provide
a (2n−1)-competitive on-line algorithm (n is the number of
states of the task system). However, our task system is not
metrical, as discussed in Section 3. Page migration in graphs
with arbitrary edge distances is studied in [14] where the
authors propose a randomized algorithm that approaches
2.62-competitiveness against an oblivious adversary.

Storage Manager

Buffer Manager

Flash Disk Magnetic Disk

User-Level Page I/O

Logical I/O Operations 

Requests for Physical I/O 

Physical I/O Operations 

Page Migrations

Replacement 
Policy

Figure 1: An overview of our system

3. PROBLEM STATEMENT
The two problems we solve are (a) adapting to changing

I/O workloads to optimally place pages across the two disks,
and (b) making the optimal choice of the page to replace in
the buffer pool when such a need arises. The high-level
architecture of our system is shown in Figure 1. A magnetic
disk and a NAND flash disk operate at the same level of the
memory hierarchy. Each data page exists only on the flash,
or on the magnetic disk at any given time.
Page placement. The storage manager decides the opti-
mal placement for each page according to the workload of
the page. Pages with a read-intensive workload are placed on
the flash disk, while pages with a write- or update-intensive
workload are placed on the magnetic disk. Thus, reads
are faster than a magnetic-disk-only system, and writes are
faster than a flash-disk-only system. In this manner the to-
tal I/O cost is reduced. The main challenge in this approach
is how one can predict the future workload of a page based
on past accesses to the page. Also of paramount importance
is the ability to self-tune, i.e., adapt the placement choice
for each page when its workload changes from read-intensive
to write-intensive and vice-versa. Considering that moving
a page from one disk to another incurs significant I/O cost,
the prediction of a page’s future workload has to be as ac-
curate as possible. Failure to achieve an acceptable level
of accuracy means that the I/O cost will be heavily penal-
ized, as the page will migrate from disk to disk before the
migration cost has been expensed.
Page replacement. The buffer manager can also benefit
from the asymmetric properties of the two different storage
media. The efficiency of a buffer manager under a specific
workload is determined by the total I/O cost paid for that
workload. Unlike traditional systems that use only magnetic
disks, this cost in our system depends not only on the num-
ber of page misses, but also on the cost of each page miss.
The problem then is how to adjust the page replacement
policy of the buffer pool to further reduce the I/O cost. Our
goal is to improve I/O efficiency by reducing page misses
(i.e., the total number of I/O operations), while at the same
time reducing the I/O cost of each miss. We achieve the lat-
ter by taking into account the I/O cost for each page eviction
when choosing the next page to evict.

4. PAGE PLACEMENT
We present a family of algorithms to decide the optimal
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Figure 2: Abstraction as a two-state task system

placement of data pages. We employ a typical buffer pool:
pages are fetched on demand from disk to main memory.
Read and write operations that are served in main memory
are referred to as logical hereafter, while ones that reach
the disk are referred to as physical. Whenever the buffer
pool is out of space, a page is selected to be replaced ac-
cording to the buffer manager’s replacement policy. At that
point the system needs to decide the placement of the page,
i.e., whether the page will be stored on the flash or on the
magnetic disk. The decision is made dynamically and on a
per-page basis, it depends only on the history of the page,
and is independent of all other pages. Our system keeps
track of the location of each page (so that it knows which
disk to read it from) and statistics about its workload.

The decision algorithm is an on-line one. We model the
decision process for each page as a two-state task system [3],
depicted in Figure 2. The two states of the system are f and
m, representing that a page is on the flash disk or on the
magnetic disk, respectively. The cost for reading a random
page from the magnetic disk is rm, while the cost for writing
a page to a random position is wm; rf and wf are the respec-
tive costs for the flash disk. The transition cost from one
state to the other is equal to the cost of writing a page to the
other disk (when a transition occurs, the page has already
been read). The tasks in our task system are I/O operations.
The cost of processing a read request is rf when the system
is in state f and rm when it is in state m (resp. wf and wm
for write/update operations).

The problem we solve resembles the page migration prob-
lem on an arbitrary tree [2]. The key difference is that in our
case the page migration cost depends on the direction of the
migration. Our proposed solution resembles the algorithm
given in [12] as the mode-deciding algorithm. However, one
cannot simply adapt that approach if one wants to real-
istically model the problem we solve. The reason is that
one needs to make the crucial distinction between logical
and physical I/O operations. The interaction between phys-
ical and logical operations is not clear, unless buffer pool
and storage management parameters are taken into account.
This is due to the actual I/O cost being decided by physical
operations, while application-level I/O requests are merely
logical. This salient distinction is elegantly captured in our
model. As we shall see in Section 6, our results prove this
non-trivial extension necessary in an implementation with
real-world workloads (and not in a simulation). We present
a family of on-line algorithms that have the same structure,
but use different cost metrics.

4.1 Conservative Algorithm
The first algorithm, which we refer to as conservative, is

given in Figure 3. For each page in the system, the algorithm
maintains a counter C that is updated after each physical
operation. The cost of reading the page from the current

Algorithm conservative (Page pg)

1. if (pg is a new page)
2. pg.state← m, pg.C ← 0
3. After each physical read of the page:
4. pg.C ← pg.C + (r − r′)
5. Upon eviction of the page:
6. if (pg.dirtybit = 1)
7. pg.C ← pg.C + (w − w′)
8. if (pg.C > wf + wm)
9. pg.state← other state
10. pg.C ← 0
11. pg.dirtybit← 1

Figure 3: The conservative algorithm

disk is r, while the cost of reading the page from the other
disk is r′ (resp. w and w′ for writing). When a page is
physically read, C is incremented by the cost difference r−r′
(line 3), that represents the cost units that would have been
saved, had the page been read from the other disk (if r−r′ <
0 the page was read from the read-efficient disk). The same
happens when a dirty page is to be evicted from the buffer
pool: the cost counter is incremented by w − w′. Upon
eviction, C is examined (line 8) and if it is greater than the
cost of two migrations (wf +wm), the page migrates to the
other disk (by changing its state value and setting its dirty
bit to 1 – lines 9 to 11).

The conservativity of the algorithm lies in two points:
(a) The algorithm initiates a migration only after the ac-
cumulated cost for a page has surpassed wf + wm. This
is the earliest point in time that the algorithm can be sure
that the page is not on the optimal storage medium. For
the time period during which the counter accumulated the
wf + wm cost units, the cost would have been less if the
page was stored on the other disk. This is because the cost
of migrating to the other disk and back has been already
reached during the last physical operations and those phys-
ical operations would have been served more efficiently by
the other disk. (b) The algorithm takes into account only
physical operations on pages, not logical ones. The physical
cost is the actual cost paid by the system and therefore the
conservative algorithm does not try to induce the physical
access pattern from the logical one. Rather, it waits until
the logical access pattern has been translated into physical
accesses. Note that due to the lack of any access history for
new pages, they are always written to the magnetic disk for
the first time, since the magnetic drive is more write-efficient
(line 1 in Figure 3).

An off-line algorithm that knows the exact workload for
each page beforehand can decide the optimal placement of
the page i.e., it incurs the minimum I/O cost for the work-
load. An algorithm like conservative is 3-competitive with
respect to the optimal off-line algorithm, as we prove in the
Appendix. Our evaluation shows, however, that the cost of
conservative remains more than 1.5 times less than the cost
of the optimal algorithm for realistic workloads.

4.2 Optimistic Algorithm
Though physical operations capture the actual cost paid

by the system, their sequence is dictated by logical opera-
tions and the replacement policy of the buffer pool. More-
over, while the page remains in the buffer pool (i.e., between
two physical operations on the page) many logical operations
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Algorithm optimistic (Page pg)

1. if (pg is a new page)
2. pg.state← m, pg.reads← 0, pg.writes← 0
3. No accounting until after the first physical write
4. After each logical read of the page:
5. pg.reads← pg.reads + 1
6. After each logical write of the page:
7. pg.writes← pg.writes + 1
8. Upon eviction of the page:
9. cf ← pg.reads · rf + pg.writes · wf
10. cm ← pg.reads · rm + pg.writes · wm
11. if ((cf > cm and pg.state = m) or

(cm > cf and pg.state = f))
12. pg.state← other state
13. pg.reads← 0, pg.writes← 0
14. pg.dirtybit← 1

Figure 4: The optimistic algorithm

may occur. The conservative algorithm, will only record two
(or one) physical operations on the page, and thus, if the
workload changes, it will take many physical operations be-
fore conservative adapts. This gives rise to an “optimistic”
version of the algorithm that works only on logical page op-
erations and adapts to new workloads as quickly as possible;
the algorithm is presented in Figure 4.

For each page pg the optimistic algorithm maintains a read
counter (pg.reads) and a write counter (pg.writes). Each
counter is incremented when a logical read or write oper-
ation occurs, respectively. These counters hold the total
logical read and write operations on the page since its last
migration. Upon eviction, the algorithm computes the total
cost the system would pay if these operations were phys-
ical, for each of the two disks (cf for the flash disk, cm
for the magnetic one – lines 10 and 11 in Figure 4). The
page migrates to the disk with the least total cost, if it is
not already there, and its read and write counters are reset
(lines 11 to 14). When a new page is created, the algorithm
does not account for logical operations until the page has
been physically written for the first time (line 3). This is
because most newly created pages will be logically written
to many times when they are created (e.g. after a B+-tree
node split). These logical writes do not reflect the normal
workload for the page and are therefore not logged.

The optimistic algorithm is not conservative in the num-
ber of migrations. It assumes that when the workload of a
page changes from read-intensive to write-intensive (or vice-
versa), the migration cost will be amortized, i.e., changes to
the workload of the page are not frequent. Thus, optimistic
adapts quickly to changing workloads but when changes do
not last long enough for the migration cost to be expensed,
the overall cost paid by the system grows. Our experimental
results verify these observations.

Another caveat is that optimistic tries to minimize the cost
of future physical operations on the page based on its history
of logical operations. Consider a page p having been brought
into the buffer pool at time t1 and evicted at time t2, after
having been logically read a large number of times: its work-
load upon eviction is found to be strongly read-intensive and
the page will be written to the flash disk. Then, the work-
load of the page changes to write-intensive and optimistic
needs to see some k logical writes on p before deciding it
is now write-intensive. If the page is frequently replaced

Algorithm hybrid (Page pg)

1. if (pg is a new page)
2. pg.state← m
3. pg.lr ← 0, pg.lw ← 0, pg.pr ← 0, pg.pw ← 0
4. No accounting until after the first physical write
5. After each logical read of the page:
6. pg.lr ← pg.lr + 1
7. After each physical read of the page:
8. pg.pr ← pg.pr + 1
9. After each logical write of the page:
10. pg.lw ← pg.lw + 1
11. Upon eviction of the page:
12. if (pg.dirtybit = 1)
13. pg.pw ← pg.pw + 1
14. q ← 1− b/n
15. cf ← (pg.lr · q + pg.pr) · rf + (pg.lw · q + pg.pw) · wf
16. cm ← (pg.lr · q + pg.pr) · rm + (pg.lw · q + pg.pw) · wm
17. if ((cf − cm > wf + wm and pg.state = m) or

(cm − cf > wf + wm and pg.state = f))
18. pg.state← other state
19. pg.lr ← 0, pg.lw ← 0, pg.pr ← 0, pg.pw ← 0
20. pg.dirtybit← 1

Figure 5: The hybrid algorithm

by the buffer manager until the k logical writes have been
served, these k logical writes will have been realized as phys-
ical ones (since the page is frequently evicted). Reasons for
these frequent evictions include the buffer manager deciding
to assign fewer pages to the file p belongs to, or some other
file becoming hot, or the time between writes on p being
much longer than the time between reads, (i.e., the page
becomes cold). In this scenario, not only is the benefit from
the migration never realized (since read operations are very
scarce after the initial eviction), but also the system pays
a very high penalty by writing the page to the flash disk,
before the write-intensive workload has been identified.

4.3 Hybrid Algorithm
To minimize the total cost of physical operations, one

needs both physical and logical operations on data pages
to be taken into account. We introduce a hybrid algorithm
that combines the strong points of conservative and opti-
mistic, at the same time avoiding their weak points. The
basic idea is that a physical operation on a page has more
impact on the decision of the algorithm than a logical one.
This is because physical operations on a page are typically
fewer than logical ones, but at the same time they are the
ones to affect the actual cost.

The probability that a logical operation will not be re-
alized as a physical one is proportional to the size of the
buffer pool. Let n is the number of pages in a file and b the
number of pages the buffer manager has dedicated to the
file: the probability that a logical operation on a page will
be served in-memory is b/n. The probability that a logical
operation on a page will affect the total I/O cost is equal to
the probabilty of the logical operation to result in a physical
one. Thus, the probability that a logical operation will have
an impact on the I/O cost is equal to (1− b/n). We use this
probability to scale the impact of a logical operation.

The hybrid algorithm, shown in Figure 5, maintains four
counters per page: lr and lw count logical reads and writes
since the last migration, respectively; pr and pw count phys-
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ical reads and writes since the last migration, respectively.
Newly created pages are written to the magnetic disk and
counters are not modified until the page has been written for
the first time (lines 1-4). For each logical or physical oper-
ation on the page, the correspoding counter is incremented
(lines 5-10). Upon eviction, the algorithm computes the to-
tal cost physical and logical operations would incur for each
disk (lines 16-17). As mentioned, the cost of logical oper-
ations is scaled by 1 − b/n. A page migrates to the other
disk if the accumulated cost for the current disk surpasses
the cost for the other disk by wf + wm cost units (line 18).

Accounting for logical operations when deciding the place-
ment of a page allows hybrid to recognize changes in the
workload of the page very early, as does optimistic. However,
hybrid is not as eager as optimistic to trigger page migration.
It decides that a page should migrate only after it is certain
that the page is on the wrong disk (i.e., the cost of migrating
to the other disk and back has been already paid). In that
sense, hybrid resembles conservative. By taking into account
physical costs (i.e., actual costs) the system has a realistic
view of the effect of the buffer pool on logical operations.

5. PAGE REPLACEMENT
The buffer manager’s page replacement policy plays an

important role in the system’s I/O efficiency. Consider a
page that is chosen for eviction. The I/O cost of this choice
depends on whether the page is dirty, and whether it will be
referenced by a logical operation in the future. If the page
is dirty, then it has to be physically written and the cost of
writing is added to the total cost. If the page is referenced
by some operation in the future, then it has to be physically
read and the total cost grows by the reading cost.

When using one or more disks with the same read/write
speeds (e.g., magnetic disks), the I/O efficiency of the re-
placement policy is determined by how well the policy can
predict which page will be referenced in future I/O opera-
tions. In our case the write speed of the flash disk is two
orders of magnitude less than its read speed. Moreover,
read and write speeds for the magnetic disk are one order of
magnitude less than the read speed of the flash disk and one
order of magnitude greater than its write speed. Consider
a page p1 that is stored on the flash disk and is not dirty
at a given point in time, and page p2 that is stored on the
magnetic disk and is also not dirty. These two pages are
the ones that have the least probability of being accessed
by future requests among all pages in the buffer pool. If p1

is chosen for eviction, at the next read operation on p1 the
system will pay the cost of reading from the flash disk; if p2

is chosen, the system will pay the cost of reading from the
magnetic disk, which is more than 20 times higher. The best
choice for eviction is p1: if p2 has not been evicted by the
next access to it, the system will have avoided rm−rf ' rm
cost units (if both pages have been evicted by the time of
their next access the cost is the same). We therefore propose
a novel buffer management policy that decides on page re-
placement not only based on access frequency, but also based
on the I/O cost that the replacement is likely to induce. The
proposed replacement policy exploits the asymmetric prop-
erties of the two media to further improve performance and
complements the role of the theoretical model of Section 4.

The buffer pool is logically divided into two segments: the
time segment and the cost segment, as shown in Figure 6.
Pages in the time segment are sorted on their timestamp
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Figure 6: Buffer Pool Segments

(i.e., the time of their last access). Pages in the cost segment
are sorted on their cost of eviction. If the buffer pool is B
pages in size, the cost segment size is λB, λ ≤ 1. Of all
pages in the buffer pool, the cost segment contains the λB
least recently used ones, at any given time. According to
our replacement policy, the next page to be evicted is always
selected from the cost segment, while new pages fetched from
one of the disks are always inserted in the time segment.

The eviction cost of a page is rf if the page is on the flash
disk (rf+wf if it is dirty) and rm if it is on the magnetic disk
(rm + wm if dirty). Pages in the time segment are sorted
on their timestamp in typical Least-Recently-Used (LRU)
fashion. Implementation-wise, a queue (termed main queue)
is maintained with the timestamps of pages and pointers to
them. The front of the queue always refers to the page with
the minimum timestamp (i.e., the least recently used page).
When a page is accessed (and therefore has the greatest
timestamp), it is put in the back of the queue.

The cost segment consists of four queues, one for each
eviction cost class, as shown in Figure 6: (a) the flash read
queue (FRQ) holds pointers to non-dirty pages that are on
the flash disk, (b) the flash write queue (FWQ) holds pointers
to dirty pages on the flash disk; (c) the magnetic read queue
(MRQ) and (d) the magnetic write queue (MWQ) hold clean
and dirty pages on the magnetic disk, respectively. Each
queue holds its elements sorted on their timestamp, just
like the main queue.

The buffer manager maintains a hash index on pages by
their page identifier. If a page is in the buffer pool, a lookup
in this index returns the queue element that represents the
page (which can be an element of any one of the five queues).
On access, a page is inserted into the buffer pool as in al-
gorithm fetchPage of Figure 7. A hash index lookup is per-
formed to check if the page is in the buffer pool (line 1).
If it is in the pool and in the main queue (i.e., in the time
segment), it is given the current timestamp and moved to
the back of the queue (lines 2-4). If it is in a queue of the
cost segment, it is removed from that queue, given the cur-
rent timestamp and inserted to the back of the main queue
(lines 5-8). Then, the least recently used page of the time
segment (i.e., the front of the main queue) is removed from
the main queue and inserted to the back of the cost seg-
ment queue that holds pages with the same eviction cost
(lines 9-10).

If the page is not in the buffer pool it is read from the disk
on which it resides. If the pool is full, a page is evicted us-
ing algorithm evictPage of Figure 8 (line 13). The requested
page is read from disk, given the current timestamp, and
added to the back of the main queue (i.e., in the time seg-
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Algorithm fetchPage (PageId pid)

1. pg ← hash lookup(pid)
2. if (pg found in main queue)
3. give pg a new timestamp
4. move pg to the back of main queue
5. else if (pg found in cost segment queue q)
6. remove pg from q
7. give pg a new timestamp
8. add pg to the back of main queue
9. pg′ ← the front element of the main queue
10. insert pg′ to the back of cost segment queue q′

that holds pages with cost evict cost(pg′)
11. else
12. if (buffer pool is full)
13. evictPage ()
14. read pid from disk into pg
15. give pg a new timestamp
16. if (size of main queue < (1− λ)B)
17. add pg to the back of main queue
18. else
19. insert pg to the back of cost segment queue

that holds pages with cost evict cost(pg)

Figure 7: Algorithm fetchPage

ment). If the size of the time segment is less than (1− λ)B,
it means there is room in the time segment so the page is in-
serted there. Otherwise, all new pages will be inserted into
the cost segment, until the pool is full. Thus, when the pool
becomes full, the size of the time segment is (1−λ)B and the
size of the cost segment is λB. After page eviction, the size
of the time segment is less than (1−λ)B (i.e., (1−λ)B−1)
and the size of the cost segment stays λB.

Page evictions are decided by algorithm evictPage shown
in Figure 8. The page to be evicted is the front element from
the non-empty queue that holds pages with the least eviction
cost (lines 2-5). If the page is dirty (i.e., it comes from
either MWQ or FWQ), it is written to disk (line 6). Then, it
is removed from the queue in which it resided and deleted
from main memory (lines 7-8). Finally, the least recently
used page of the time segment is removed and placed into
the cost segment, by being appended to the back of the
appropriate queue (lines 9-10). The cost segment maintains
the same size and a free page is created, so the page to be
read after the eviction can be inserted in the time segment.

The value of λ affects the efficiency of the algorithm. For
simplicity, consider that pages in the buffer pool are not
dirty. As λ grows, the number of magnetic disk pages in the
buffer pool grows, while the number of flash disk pages in
the buffer pool shrinks (because FRQ pages are evicted first,
they will typically be found only in the main queue which
decreases in size with increasing λ), i.e., the hit probabil-
ity of a magnetic disk page increases, but so does the miss
probability of a flash disk page. Let Hm denote the increase
of magnetic page hits (with respect to simple LRU) and Mf

denote the increase of flash page misses. Then, performance
is improved so long as rm ·Hm > rf ·Mf ⇒ Hm >

rf

rm
Mf .

The buffer manager can keep track of these quantities and
adapt λ accordingly in real time (this can be straightfor-
wardly extended to account for dirty pages). In Section 6.4
we experimentally verify the effect of λ on performance.

Observe that for each page access or page eviction the
complexity of our algorithm is constant in the size of the

Algorithm evictPage ()

1. Page pg;
2. if (FRQ is not empty) pg ← front of FRQ

3. else if (MRQ is not empty) pg ← front of MRQ

4. else if (MWQ is not empty) pg ← front of MWQ

5. else pg ← front of FWQ

6. if (pg is dirty) write pg to disk
7. remove pg from the queue it belongs to
8. delete pg
9. pg′ ← front of main queue
10. insert pg′ to the back of cost segment queue q′

that holds pages with cost evict cost(pg′)

Figure 8: Algorithm evictPage

buffer pool. All operations on queues are O(1) and both
fetchPage and evictPage incur a constant number of opera-
tions on queues (one at least, two at most). Additionally,
each hash index lookup is also O(1). The complexity of our
algorithm is only greater than the complexity of LRU by
some constant c. As we show in Section 6, however, our
algorithm is much more I/O efficient than LRU.

6. EXPERIMENTAL STUDY
We implemented our algorithms to evaluate their perfor-

mance under various workloads. Our system consists of a
storage manager and a buffer manager and uses B+-trees for
storing data. Though we have implemented other file struc-
tures as well (i.e., heap files and linear hash files), we only
present results with B+-trees since they are the most com-
monly used database structures and make our presentation
more succinct. Moreover, B+-trees have the extra property
of exhibiting both random access patterns (e.g., when de-
scending the levels of the tree) and sequential ones (e.g.,
when scanning the leaves). The system was implemented in
C++ and was running on an Intel Pentium 4 box clocking
at 2.26GHz with 1.5GB of physical memory. The operating
system was Debian GNU/Linux with the 2.6.21 kernel. The
system has two magnetic disks and a flash disk. Our system
and the operating system ran from one of the magnetic disks.
The other magnetic disk (referred to simply as the magnetic
disk hereafter) and the flash disk were used to store data
pages. The magnetic disk was a 300GB Maxtor Diamond-
Max 6L300R0 with 16MB of cache memory. The flash disk
was a Samsung MCAQE32G5APP, an MLCNAND flash disk
with a capacity of 32GB. Both disks were connected to the
system using the IDE interface. To reduce the effects of op-
erating system caching we used both storage media as raw
devices. Therefore, the operating system did not cache data
pages, pages were never double buffered and our system had
absolute control of physical I/O operations.
Metadata. As discussed in Section 4, the storage manager
keeps accounting information for each page. For the conser-
vative algorithm this information is nine bytes per page, of
which one byte represents the state of the page and the rest
hold a 64-bit integer that represents the accumulated cost
for the page. The optimistic algorithm needs one byte for the
state of the page and eight bytes for two integers counting
logical reads and writes, for a total of nine bytes. The hybrid
algorithm requires one byte for the state and sixteen bytes
for four 32-bit integers counting logical and physical reads
and writes. For a data file of size n bytes, the metadata is
d n

4096
e ·9 bytes for conservative and optimistic and d n

4096
e ·17
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Operation Time (CPU cycles ×103) Cost units

Flash read 915 1
Flash write 108987 118

Magnetic read 21470 23
Magnetic write 10983 12

Table 1: I/O costs

bytes for hybrid, if 4096-byte pages are used. To reduce this
amount, one can increase the page size. However the size of
extra data is negligible for most practical purposes, as it is
three orders of magnitude less than the size of the data. For
instance, for the hybrid algorithm (which has the largest re-
quirements), the metadata for a 10GB table are only 44MB.
All accounting information is stored on the hard disk with
the operating system (i.e., file pages contain only raw data).

We assume the capacity of either disk is enough to hold
all data placed on it. The address for a page is the same
for both disks (i.e., we only used the first 32GB of the mag-
netic disk) and no explicit mapping is necessary. In a real
deployment, metadata for files, pages, page mappings, and
free space on each of the disks would be maintained. This
is necessary even for systems using just one disk, so stan-
dard file system techniques could be used for that purpose
without any additional overhead. To keep the experimental
study as simple as possible we chose not to implement these
structures, since they would not affect our measurements.
Given the current capacities of flash drives, it is conceivable
that the flash disk is not large enough to accommodate all
read-intensive pages. For such cases, ranking algorithms are
required to capture the utility of each read-intensive page
being kept on the flash disk. We are currently working on
such ranking primitives.
Raw performance of disks. We measured the read costs
for each disk by computing the average of 106 read requests
of 4096 bytes each at random offsets on the disk. Requested
page offsets span the whole disk address space; this is par-
ticularly important for the magnetic disk, as measured costs
need to reflect the average rotational latency of a read. We
similarly measured the average time for random writes for
each disk. The results are shown in Table 1. The second col-
umn is the measured average times, while the third column
is the costs normalized by the read time of the flash disk.
The flash disk was 23 times faster than the magnetic disk
at reading random pages; the magnetic disk was 10 times
faster than the flash disk at writing to random locations. It
is clear from the relative cost differences that when pages
are placed on the correct medium (according to their work-
load), I/O cost will significantly drop – almost regardless of
the access pattern.
Datasets and workloads. We tested the efficiency of our
system under a multitude of workloads. The record layout
consisted of a key that was sixteen bytes long and a payload
of eighty bytes. The B+-tree contained one million records
and had a size of 140MB. To minimize the effect of on-disk
caches, the pages of the tree were not stored consecutively
on disk, but separated by nine-page intervals (i.e., the pages
of the B+-tree spanned 1.4GB). We experimented with trees
and buffer pools of various sizes. Across all configurations
the results were consistent. To avoid repetition, and due to
space limitations, we present the results for the aforemen-
tioned B+-tree size and a buffer pool of 20MB. We choose
to show the results for this setup as it is more in line with
the discrepancy between disk and main memory capacities;
one can expect a difference of three orders of magnitude

between the two in current configurations. The workloads
on the B+-tree consisted of reads, i.e., lookups and range
queries, and writes, i.e., insertions and updates. Each inser-
tion or update to the B+-tree results in the destination leaf
being both read and written, and internal nodes on the path
from the root of the tree to the leaf being at least read and
potentially written (i.e., in the case of a split). We focus on
these simple operations as we aim to show that the place-
ment of the page on the right medium (in addition to our
buffer pool replacement policy) is what primarily makes a
difference. Our algorithms prove this point true for such ba-
sic workloads; it will most certainly continue to hold for any
complex workload that will surely use all these primitives.

6.1 Impact of using both disks
In the first set of experiments we measure the performance

improvement gained by using both types of disk over using
only one. We ran the same set of queries in three different
setups: (a) using only the flash disk, (b) using only the
magnetic disk, and (c) using both disks. In all cases the
conservative algorithm decided the placement of pages. Since
the workload of a page does not change, the conservative
algorithm gives the least performance improvement among
all three algorithms. Additionally, we used LRU as the buffer
pool replacement policy as it is applicable in all three setups
(the policy proposed in Section 5 would favor the two-disk
setup). In the first experiment, we executed a set of 50, 000
read queries (80% of which were lookups and 20% range
queries) that targeted all leaf nodes of the B+-tree. We
executed this set of queries 15 times (emptying the buffer
pool after each execution) and measured the wall clock time
of each run. Results are shown in Figure 9 (a) with the
query set run shown on the x-axis and total execution time
shown on the y-axis. Our system is shown as “M/F”; the
system using only the flash disk is shown as “F”; and the
system using only the magnetic disk is shown as “M ”.

As expected, F is much faster than M for reads. The per-
formance of our system is initially equal to that of M, since
all pages are first on the magnetic disk. A large number
of frequently accessed pages (e.g., the internal nodes of the
B+-tree and some hot leaf pages) migrate to the flash disk
during the 4th execution of the query set, while the remain-
ing read-intensive leaf node pages migrate to the flash disk
during the 7th execution. Since we are using the conservative
algorithm the point in time at which pages migrate depends
only on the number of physical accesses to the page. Next,
we executed a set of 50, 000 insert/update queries (30% in-
sertions, 70% updates) using the same buffer pool size. Re-
sults are shown in Figure 9 (b). In this case, F is one order
of magnitude slower than M, as expected. Our system has
initially the same performance with M. At the 4th execution
the pages storing the internal nodes of the B+-tree migrate
to the flash disk and performance improves slightly (due
to the number of insertions being relatively small, internal
nodes have mostly a read workload). Had the size of the
buffer pool been too small to fit all internal node pages, the
performance boost would have been much greater.

Next, we generated mixed query sets including both read
and write queries. In the first set, 40% of pages are read-
only, 40% are write-only and the remaining 20% have a 50%
probability of being read and a 50% probability of being up-
dated. Results are shown in Figure 10 (a). Then, we altered
the query set, so that 70% of the pages are read-only and
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Figure 10: Execution of mixed queries

30% are update-only. The results are shown in Figure 10 (b).
As the ratio of pages with a read workload grows, the perfor-
mance of both F and M/F improves, while the performance
of M remains almost constant. Clearly, using both a mag-
netic and a flash disk is more I/O efficient than using only
one type of disk, provided that pages are placed on the disk
that best suits their workload.

6.2 Comparison of page placement algorithms
We then moved on to study how well the page placement

algorithms adapt to changing workloads. We created a set
of 100,000 read queries and a set of 100,000 update queries.
Using these two query sets, we created two different B+-tree
query sequences and executed them using the conservative,
optimistic and hybrid algorithms. Additionally, each query
sequence was executed using the optimal placement for each
page, which we computed off-line. The difference between
the two query sequences is the frequency with which the
page workload changes. In the first sequence, the set of
read queries is executed 10 times, followed by 10 executions
of the update query set; then, the read query set is executed
again 20 times. In the second sequence, 3 executions of the
read query set are followed by 3 executions of the update
query set and vice-versa for a total of 18 query set runs.
The buffer pool was emptied after each execution. Neither
sequence is very likely to occur in real-world workloads; how-
ever, they highlight the difference between the three algo-
rithms and their relationship to the optimal one in terms of
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their adaptability to changing workloads. The results of the
two execution sequences are shown in Figure 11 and in Fig-
ure 12 respectively. On the x-axis, r’s stand for read query
set executions and u’s stand for executions of the update
query set. In addition to showing the total execution time
on the y-axis, we also show an alternative plot with the y-
axis denoting the number of pages being placed on the flash
disk by the different placement algorithms, as this gives a
more succinct picture of their decisions.

The first sequence shows that optimistic performs nearly
optimally, while conservative is the slowest algorithm to adapt
to workload changes. The performance of hybrid lies between
the performance of optimistic and conservative, i.e., hybrid
adapts to workload changes more gracefully than optimistic,
but more eagerly than conservative. Updates have a higher
impact than reads on the decisions of the algorithms. This
is due to update costs for the two disks differing by 107
cost units, while read costs differ by 22 cost units. This is
why all algorithms adapt very quickly to the update work-
load. Also, observe that conservative and hybrid adapt very
quickly to the initial read workload, but they adapt much
more slowly after the execution of the ten update query sets.
This is due to the cost threshold of wf + wm having to be
surpassed before a migration is triggered. When the work-
load changes from read- to update-intensive, some pages are
read from the flash disk and written to the magnetic disk,
which is the best case in terms of I/O efficiency. This ex-
plains why the first execution of the update query set, after
the 10 executions of the read query set, is executed faster
than the following 9 update query executions. Note that
the total time for conservative was 9,784 seconds, for opti-
mistic it was 7,003 seconds, for hybrid it was 8,338 seconds,
while executing the queries according to the optimal off-line
algorithm took 6,366 seconds. The time for executing this
sequence only on the magnetic disk was 13,920 seconds and
12,760 for executing it only on the flash drive, amounting to
a substantial improvement in all cases.

In the second sequence of runs, the workload changes ev-
ery three executions. Since the cost of a page migration
from the magnetic disk to the flash disk is not expensed by
the three successive read query set executions, the optimal
placement for pages is on the magnetic disk (except for the
internal nodes of the B+-tree). For this reason, the optimal
algorithm only places internal node pages on the flash disk.
The conservative algorithm places only a small number of
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Figure 12: Alternating workloads execution

pages on the flash disk during the third read query set exe-
cution, but places them back on the magnetic disk after the
first set of update queries. The optimistic algorithm eagerly
places pages on the flash disk, which incurs a great cost
when the workload changes. Of course, not all read pages
are placed on the flash disk by optimistic, but only the ones
that are logically read many times by the read query set.
For hybrid, some pages migrate to the flash disk during the
second and third query set executions. However, after the
first three update query sets, all pages migrate back to the
magnetic disk (except for the internal node pages of the B+-
tree). The total times were 3,932 seconds for conservative,
4, 560 seconds for optimistic, and 4,060 seconds for hybrid,
while executing the queries according to the optimal algo-
rithm took 3, 920 seconds. The total time for executing this
sequence using only the magnetic disk was 4,150 seconds
and 6,552 seconds when using only the flash disk.

Of all on-line algorithms, optimistic gives the greatest per-
formance improvement when it makes the right decisions.
However, when workload changes do not last long enough
for the migration cost to be paid off, optimistic introduces
extra I/O cost due to wrong migration decisions. On the
contrary, conservative decides migrations only after work-
load changes persist for a number of future accesses. Thus,
conservative is less likely to make the wrong decision and
does not migrate pages with frequently changing workloads.
For this reason, however, it improves performance less than
optimistic. The hybrid algorithm, by taking into account the
decision criteria of both optimistic and conservative, manages
to balance its adaptivity between the aggressive behavior of
optimistic and the defensive behavior of conservative. Thus,
hybrid is more I/O-efficient than conservative, without taking
the risks of optimistic that could lead to very poor perfor-
mance. Therefore, we believe that hybrid is the most appro-
priate algorithm to decide on page migration and we focus
on that algorithm for the remaining sections.

6.3 Mixed workloads
For the next set of experiments we created query sets that

have mixed-type queries. We picked a range of record key
values (which we refer to as the interesting set) and per-
formed B+-tree operations on these key values with a pre-
determined probability. All other records had equal 50%
read and update probabilities. All records (both the ones
in the interesting set and all remaining) had the same prob-
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Figure 13: Performance in mixed workloads

ability of appearing in the query set. No set of pages was
made artificially hot and the only thing that changed was
the ratio between reads and updates among the pages in the
interesting set. We varied the read and update probabilities,
as well as the range of key values for records in the inter-
esting set. We executed 1,000,000 queries using the hybrid
algorithm using a 20MB buffer pool and measured the total
execution time. Results are shown in Figure 13.

Performance improves when the workload of the inter-
esting set pages becomes more read-intensive. For a given
number of records in the interesting set, the number of pages
that migrate to the flash disk is constant across workloads
with different read/update probabilities. However, as the
update probability grows, pages of the interesting set (most
of which are on the flash disk) become more frequently up-
dated, thus decreasing the performance gain of having them
on the flash disk. When the workload is more than than
70% read-intensive, one can see that performance improves
as the size of the interesting set increases. This is because
more pages migrate to the flash disk where read operations
are more efficient. One can also see that when records in
the interesting set are updated more than 30% of the time,
performance does not improve as the size of the interesting
set grows. This is due to leaf nodes that store records of the
interesting set not migrating to the flash disk. In this case
only internal nodes are placed on the flash disk and thus
performance is slightly improved over a system employing
only a magnetic disk. When using the magnetic disk only,
execution time is comparable to that of the “60% read - 40%
write” workload for all workloads and interesting set sizes
(with only slight deviations). When using only the flash
drive, execution time is much higher due to the pages not
belonging to the interesting set being updated 50% of the
time (except when the entire dataset is interesting).

6.4 Buffer pool replacement policy
In the last set of experiments, we measured the impact

of the buffer replacement policy proposed in Section 5. We
experimented with two different query sets, using different
values for λ. In the first query set (query set A), 50% of
B+-tree leaf nodes have a read workload and the remaining
50% of leaf nodes are read and updated with equal probabil-
ity. Therefore half of the leaf pages are placed on the flash
disk and the remaining are placed on the magnetic disk (of
course, internal pages are placed on the flash disk, since no
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Figure 14: Replacement policy for different λ

insertions occur). All measurements are taken after pages
have been placed on the appropriate disk. All leaf nodes
have an equal probability of being referenced by a query.
Query set A consists of 100,000 queries. We measured the
total execution time as we varied λ and plotted the results
in the top part of Figure 14. When λ = 0, the replace-
ment policy degenerates to simple LRU, while when λ = 1
the whole buffer pool is used as a cost segment, with page
replacement decided only by the eviction cost of a page.

One can see that performance improves as the value of λ
increases, for values of λ up to 0.9. This is because pages on
the flash disk and pages on the magnetic disk are accessed
with the same probability and therefore Hm ' Mf (using
the terms of Section 5). When pages for internal nodes of
the tree (stored on the flash disk) do not fit in the time
segment, i.e., for λ > 0.9, they are evicted in favor of pages
on the magnetic disk. Then, each leaf page access requires 3
physical flash read operations (the depth of the tree was 4),
and thus performance degrades. Performance with λ = 1
remaining better than with simple LRU has to do with flash
pages not being particularly hot. The performance benefit
of our replacement policy reaches 21% in this case.

In the second set of queries (query set B), 10% of the
B+-tree leaf nodes have a read workload, while the rest are
read and updated with equal probability. The set consists
of 150,000 queries. However, only 15,000 queries access leaf
pages on the magnetic disk, while the remaining 135, 000
access leaf pages that are on the flash disk (i.e., 10% of all
leaf pages); thus, 10% of the B+-tree leaf pages are hot.
The results, as we varied λ, are shown in the bottom part
of Figure 14. The best performance is for λ = 0.5: 15%
better than the performance of LRU. As λ grows greater than
0.5 performance degrades. More than half of the buffer pool
fills up with magnetic disk pages that are scarcely accessed,
while for most accesses to flash disk pages (which amount
to 90% of all accesses) a miss occurs. When internal node
pages do not fit in the time segment (for some λ > 0.9),
performance again degrades and becomes even worse than
the performance of LRU.

7. CURRENT DESIGN ADVANTAGES
We present some advantages of the current design that one

can employ to further improve the performance of a system
with a mixed disk setup.
Deferred page migrations. Most solid state disks, includ-
ing the one we used in our experiments, are equipped with

a DRAM buffer. The buffer is partitioned into a number of
segments (a typical size for each segment is 512KB to 1MB).
Its purpose is to temporarily hold the contents of updated
blocks (erase units) in order to avoid some erase operations,
i.e., to act as a write cache. Each DRAM segment can store
a number of contiguous blocks. Thus, when writes to sec-
tors are sequential, page sectors that belong to the same
block are buffered in a DRAM segment. When the segment
becomes full, all updates to the sectors of the block are per-
formed with a single erase operation. Our benchmarks show
that writing pages sequentially to the flash disk is over 10
times faster than writing them in a random fashion.

Our system can take advantage of this to further reduce
the I/O cost and improve response time. During normal
operation, the system can only mark pages that should mi-
grate to the flash disk and perform all write operations on
the magnetic disk. Then, migrations can be executed se-
quentially and in the background e.g., when the system load
is lower, or when execution of the query that marked them
for migration has finished. Such a strategy is sensible for
pages that are scarcely updated, or else the benefit of using
the flash disk is cancelled.
Accelerating flash reads. As shown in Section 6.3, the
improvement of our system shrinks as the frequency of up-
dates to the flash disk pages grows. To minimize this effect
one can employ the logging techniques of [9, 12], which are
complementary to ours. The combination of both techniques
will most likely lead to increased I/O efficiency.
Sequential access patterns. A typical access pattern of
a database system is a sequential scan. The magnetic disk is
more efficient at both reading and writing sequential data.
It is conceivable to have the query engine supply hints to
the buffer and storage managers whenever such patterns are
encountered. As in [6, 13], the buffer manager can use se-
quential access hints not only for page replacement but also
for page placement. In particular, it can employ sequential
access costs in the page placement algorithm as opposed to
random access ones, thereby favoring the magnetic disk and
ensuring that sequentially accessed pages do not migrate to
the flash disk.
Replacement algorithm. Our replacement algorithm uses
LRU replacement for the pages in the time segment. How-
ever, when a page has to be moved from the time segment
to the cost segment, the page to be moved can be chosen
using any replacement algorithm. Therefore we expect the
performance benefit seen in our experiments, in which LRU

is used, to also be seen if we compare our algorithm to any
other page replacement algorithm, provided we use the same
replacement algorithm for the pages of the time segment.

8. CONCLUSIONS AND FUTURE WORK
With the capacity of flash disks rapidly increasing and

their price dropping, commodity hardware in the near fu-
ture will most likely include both a flash disk and a mag-
netic one. In this paper we presented a storage management
scheme for such mixed systems. Our system takes advan-
tage of the fast read speed of the flash disk and the fast
write speed of the magnetic disk to reduce the total I/O

cost of a database workload. Our technique dynamically
places pages with read-intensive workloads on the flash disk
and pages with write-intensive workloads on the magnetic
one. We proposed, theoretically studied, implemented, and
tested three different on-line algorithms that adapt well to
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changing workloads. Furthermore, we have devised a novel
buffer pool replacement policy that exploits the asymmetric
properties of the two disks to reduce the total I/O cost. An
experimental evaluation has shown that our techniques can
reduce the I/O cost by a significant factor, especially when
hot pages have read-intensive workloads.

We next plan to investigate how the ideas of [9, 12] can
be applied to our design to further improve the efficiency of
writing to the flash disk. An interesting problem is how page
placement can be statically decided when the query work-
load is known in advance. We also plan to investigate how
the query engine can provide workload and/or access pattern
hints to the storage manager and to what extent this could
benefit I/O performance. Finally, we plan to study ranking
algorithms to capture the utility of each read-intensive page
being kept on the flash disk, to enable our system to oper-
ate with flash disks that are too small to accommodate all
read-intensive pages.
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APPENDIX
We will show that conservative is 3-competitive w.r.t. the
optimal off-line adversary, i.e., at any time t, CONS(t) <
3OPT (t) + C0, where CONS(t) is the total cost incurred
by conservative up to that time, OPT (t) is the total cost
incurred by the optimal on-line algorithm, and C0 is a con-
stant. First we will show that conservative is 3-competitive
in a metric space i.e., when the migration cost is the same

for both directions and equal to K =
wf +wm

2
. A migration

happens when C = wf +wm = 2K (to comply with this our
algorithm could trivially set C = 2K when C > 2K; this
would yield the same decisions). The accumulated cost of
the page we are running the algorithm for is C; at time t
suppose that conservative is in state s1, while optimal is in
state s2. We define a potential function φ(t) as follows:

φ(t) =


2C if s1 = 22

3K − C otherwise

Observe that φ(t) ≥ 0 and φ(0) = 0. Also CONS(0) =
OPT (0) = 0. For each possible event at a time t, we will
show that ∆CONS + ∆φ ≤ 3∆OPT , in which ∆X indicates
the change in the value of X as a result of the event. By
summing over all events we obtain the desired inequality
(since φ ≥ 0). Possible events are:

1. Transition of conservative. Then ∆CONS = K and
∆OPT = 0. Before the transition C = 2K holds, and
after the transition C = 0 holds. Also:
∆φ = φ(t+1)−φ(t) = (3K-0)−2 ·2K = −K, if s1 = s2
and
∆φ = φ(t+1)−φ(t) = 0−(3K−2K) = −K, if s1 6= s2.

In both cases ∆CONS+∆φ = K−K = 0 ≤ 3∆OPT = 0.
2. Transition of the optimal off-line algorithm. Then,

∆CONS = 0 and ∆OPT = K. Also:
∆φ = (3K − C)− 2C = 3K − 3C ≤ 3K, if s1 = s2
and
∆φ = 2C − (3K − C) = 3C − 3K ≤ 6K − 3K = 3K,
if s1 6= s2.

Hence ∆CONS + ∆φ = 0 + 3K = 3K = 3∆OPT .

3. The last event is serving a read/write request. Let c1
be the cost of serving the request in state s1 and c2
in state s2. Then ∆CONS = c1 and ∆C = c1 − c2. If
s1 = s2, ∆OPT = c1 and ∆φ = 2 · ∆C ≤ 2c1 since
∆C = c1 − c2 ≤ c1. Thus:
∆CONS + ∆φ ≤ c1 + 2c1 = 3c1 = 3∆OPT

If s1 6= s2, then ∆OPT = c2 and ∆φ = −∆C = c2 − c1.
Therefore:
∆CONS + ∆φ ≤ c1 + c2 − c1 = c2 ≤ 3c2 = 3∆OPT

Thus conservative is 3-competitive for the symmetric graph
H with transition costs equal to K for both states. We will
show that conservative is also 3-competitive for our asym-
metric graph G that has a transition cost of wf when mov-
ing to f and wm when moving to m. Since the algorithm is
the same (and starts from the same state), it will perform
the same transitions in G as it would in H, in which case
it would be 3-competitive. However, two consecutive transi-
tions on H would cost the same as they cost on G (because
the cost of a cycle is wf + wm in both graphs). Thus, the
algorithm has the same cost in both graphs if it performs an

even number of transitions, and an extra cost of wf−
wf−wm

2
for G and an odd number of transitions. This extra cost is
constant, so conservative is 3-competitive in G as well. 2
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