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ABSTRACT 
Recently, a number of papers have been published showing the 
benefits of column stores over row stores.  However, the research 
comparing the two in an “apples-to-apples” way has left a number 
of unresolved questions.  In this paper, we first discuss the factors 
that can affect the relative performance of each paradigm.  Then, 
we choose points within each of the factors to study further.  Our 
study examines five tables with various characteristics and 
different query workloads in order to obtain a greater 
understanding and quantification of the relative performance of 
column stores and row stores.  We then add materialized views to 
the analysis and see how much they can help the performance of 
row stores.  Finally, we examine the performance of hash join 
operations in column stores and row stores. 
 
1.  INTRODUCTION 
Recently there has been renewed interest in storing relational 
tables “vertically” on disk, in columns, instead of “horizontally”, 
in rows.  This interest stems from the changing hardware 
landscape, where processors have increased in speed at a much 
faster rate than disks, making disk bandwidth a more valuable 
resource. 
 
The main advantage to vertical storage of tables is the decreased 
I/O demand, since I/O is an increasingly scarce resource and most 
queries do not reference all the columns of a table.  Vertical data 
storage has other advantages, such as better cache behavior [8, 18] 
and reduced storage overhead.  Some argue that column stores 
also compress better than row stores, enabling the columns to be 
stored in multiple sort orders and projections on disk for the same 
amount of space as a row store, which can further improve 
performance [18]. 
 
A vertical storage scheme for relational tables does come with 
some disadvantages, the main one being that the cost of stitching 
columns back together can offset the I/O benefits, potentially 
causing a longer response time than the same query on a row 
store.  Inserting new rows or deleting rows when a table is stored 
vertically can also take longer.  First, all the column files must be 
opened.  Second, unless consecutive rows are deleted, each delete 

will incur a disk seek.   Updates have similar problems: each 
attribute value that is modified will require a seek. 
 
Traditional row stores store the tuples on slotted pages [15], 
where each page has a slot array that specifies the offset of the 
tuple on the page.  The advantages to this paradigm are that 
updates are easy, and queries that use most or all of the columns 
are fast.  The disadvantage is that, since most queries do not use 
all columns, there can be a substantial amount of “wasted” I/O 
bandwidth.  Slotted pages also result in poor cache behavior [6] 
and are less compressible, since each tuple is stored individually 
and has its own header. 
 
However, several recent studies  [16, 13] have demonstrated that 
row stores can be very tightly compressed if the tuples are stored 
dense-packed on the page without using slot arrays.  While this 
format causes row stores to lose their advantage of easy 
updatability, the change can save substantial amounts of I/O 
bandwidth, which is where they often lose compared to column 
stores. [16, 13] also examine skewed datasets in row stores and  
use advanced compression techniques, such as canonical Huffman 
encoding [14], to achieve a degree of row store compression very 
close to that of the entropy for the table.  
 
The confluence of these two ideas, column stores and advanced 
compression in row stores, brings us to the central question of this 
paper:  How do the scan times for row and column stores compare 
when both tables are as tightly compressed as possible?  In other 
words, can row stores compete with column stores for decision-
support workloads that are dominated by read-only queries? 
 
“Performance Tradeoffs in Read-Optimized Databases,” was a 
first step toward answering this question [12].  This paper 
provides an initial performance comparison of row stores and 
column stores, using an optimized, low-overhead shared code 
base.  Additionally, the tuples for both storage paradigms are 
stored dense-packed on disk, a necessity for truly obtaining an 
apples-to-apples performance comparison.  
 
[12] studies both wide and narrow tables using the uniformly 
distributed TPC-H [19] Lineitems and Orders tables.  The two 
formats are compared without compression for Lineitems, and 
both compressed and uncompressed for Orders.  The Orders table 
is compressed using bit-packing, dictionary encoding and delta 
coding, where appropriate.  All queries are of the form: “Select 
column_1, column_2, column_3, … from TABLE where 
predicate(column_1)” with a selectivity of 0.1% or 10%.  
 
The results from [12] that are most relevant to this paper are that: 
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• At 10% selectivity, when half of the columns are returned, a 
row store will be faster than a column store only if the tuples 
are less than 20 bytes wide and the system is CPU-constrained. 

• The CPU time required for a column store to execute a scan 
query is very sensitive to the number of columns returned and 
the selectivity factor of the query.  

• The time required for a row store to process a scan query is 
relatively insensitive to the number of columns being returned 
or the selectivity of the predicate. 

• Column stores can be sensitive to the amount of processing 
needed to decompress a column. 

However, these results left a number of questions unresolved.  
First, the attribute values in each column of the TPC-H tables are 
uniformly distributed.   The results presented in [16, 13] 
demonstrate that, if the distribution of values in a column is 
skewed, even higher degrees of compression can be obtained.   
Thus, in this paper we explore non-uniform value distributions 
and the impact of advanced compression techniques. 
 
Additionally, [12] considered only a very limited set of queries.  
First, no queries with selectivity factors greater than 10% were 
studied.  Also, all of the queries considered in [12] consisted of a 
single predicate that was always applied to the first column of the 
table and only the left-most columns of a table were returned.  We 
believe that the relative performance of column and row stores is 
affected by (a) how many predicates the query has,  (b) what 
columns the predicates are applied to, and (c) which columns are 
returned.   A key focus of this paper is to explore each of these 
issues. 
 
Finally, we noticed that the row store performed very poorly 
compared to the column store for the Lineitem table, which has a 
long string attribute.  While the string does not impair the 
performance of a column store if it is not used in the query, it 
disproportionately hurts the row store since that one attribute is 
the same size as the sum of the others.  We hypothesized that if 
the string had been stored in a separate table, the performance of 
the two paradigms would have been more comparable.  Hence,  
our study will also include materialized views of the row store. 
 
While [12] was a first step at an “apples-to-apples” comparison of 
row stores and column stores in a common software framework, 
we want to achieve a greater understanding of the issues raised 
above.  The aim of this work is to systematically study scans for 
compressed row and column stores.  Specifically, we explore a 
large space of possible tables, compression methods, and queries, 
in which the results of [12] would fall as points in this space.  This 
paper’s contributions are to: 
• Provide a more in-depth discussion of the factors that affect the 

scan times for read-optimized row stores and column stores, 
and to choose points within those factors to study further. 

• Quantify the effect of (a) more qualifying tuples, (b) additional 
predicates, and (c) tables that do not have uniform data 
distributions. 

• Compare the performance of materialized views with the 
performance of column stores and row stores in this 
framework. 

• Examine the effect a hybrid hash join has on column stores and 
row stores, when using early materialization of tuples in the 
join. 

 

Section 2 discusses other related work.  Sections 3 and 4 discuss 
the overall search space and how points within it were selected for 
evaluation.  The remaining sections provide implementation 
details and results.  We conclude in Section 7 with a short 
discussion of our work and how the results might be applied. 
 
2.  RELATED WORK 
2.1 Vertical Storage 
While this paper builds on [12], two of the authors of [12] have 
also recently published a follow-up [4] that compares C-Store, a 
column store, with a commercial row store running the Star 
Schema Benchmark.  The authors implement a column store using 
a commercial relational database system by making each column 
its own table; the performance of this design is quite bad since 
every column must have its own row id.  They also implement a 
row store within C-Store by storing the entire row as if it were a 
single column and evaluate three optimizations said to provide 
column stores superior performance: compression, late 
materialization and block-iteration.  The workload is first run with 
all the optimizations.  Then, each optimization is removed to 
detemine how much performance it contributes.  They find that 
compression improves performance by a factor of two and late 
materialization improves performance by a factor of three.  We 
believe these results are largely orthogonal to ours, since we 
heavily compress both the row store and column store and our 
workload does not lend itself to late materialization of tuples. 
 
“Comparison of Row Stores and Column Stores in a Common 
Framework” also directly compares row stores and column stores 
[10].  Two contributions of this paper are the idea of a super-tuple 
and column abstraction.  The authors note that one reason row 
stores do not traditionally compress as well as column stores is the 
use of the slotted-page format. The paper introduces the idea of 
super-tuples, which store all rows on a page with just one header, 
instead of one header per tuple and no slot-array.  Column-
abstraction avoids storing repeated attributes multiple times by 
adding information to the header.  The paper compares results for 
4-, 8-, 16-, and 32- column tables, however, it focuses on 
uniformly distributed data and examines trends within column 
stores, row stores and super-tuples when returning all columns 
and all rows.  While those results are interesting, we are more 
interested in looking at the general case where a query can return 
any number of columns. 
 
One of the first vertical storage models was the decomposition 
storage model (DSM) [9], which stored each column of a table as 
pairs of (tuple id, attribute values).  Newer vertical storage 
systems include the MonetDB/X100 [8] and C-Store [18] systems. 
MonetDB operates on the columns as vectors in memory.  C-Store 
differs from DSM in that it does not explicitly store the tuple id 
with the column.  Another novel storage paradigm is PAX [7], 
which stores tuples column-wise on each disk page.  This results 
in better L2 data cache behavior, but it does not reduce the I/O 
bandwidth required to process a query.  Data Morphing further 
improves on PAX to give even better cache performance by 
dynamically adapting attribute groupings on the page [11]. 
  
2.2 Database Compression Techniques 
Most research on compression in databases has assumed slotted-
page row stores.  Two papers that have not made this assumption, 
[13, 16], were mentioned above.  Both papers also used more 
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processing-intensive techniques to achieve compression factors of 
up to 8-12 on row stores.  “Superscalar RAM-CPU Cache 
Compression” [21] and “Integrating Compression and Execution 
in Column-Oriented Database Systems” [3] examine compression 
in column stores.  Zukowski finds that compression can benefit 
both row stores and column stores in I/O-restricted systems and 
presents algorithms to optimize the effective use of modern 
processors.  [3] considers various forms of compression and the 
effects of run lengths on the degree of compression achieved.  The 
main conclusion related to this study is that RLE and dictionary 
encoding tend to be best for column stores. 
 
3.  FACTORS AFFECTING 
PERFORMANCE  
In this paper, we consider four factors that can have a significant 
effect on the relative performance of row stores and columns 
stores for a given system: 
1) The width of a table (i.e. number of columns), the cardinality of 

each column (i.e. the number of unique attribute values in the 
column), and the distribution of these values (uniform or 
skewed). 

2) The compression techniques employed.  
3) The query being executed, including the number of predicates 

and which columns the query returns. 
4) The storage format (i.e. slotted pages or super-tuples). 
 
These four factors combine to produce a very large search space.  
In the following sections, we describe each factor in additional 
detail.  In Section 4, we explain how the search space was pruned 
in order to make our evaluation feasible while still obtaining a 
representative set of results. 
 
3.1 Data Characteristics 
Each relational table can have a range of characteristics.  First, 
and foremost, the number of columns and rows in a table directly 
affects the time required to scan a table.  Second, the type of each 
attribute column (i.e. VAR CHAR or INT) determines how the 
data would be stored when uncompressed, and the distribution of 
values within the column (such as uniform or skewed) affects how 
well the column’s values can be compressed.  The number of 
unique values stored within the column, or column cardinality, 
also affects the column’s compressibility.      
 
To illustrate, imagine a table with a single column of type INT 
which can only assume one of the four values: 1, 2, 3, or 4.  The 
column cardinality for this column is 4.  If the values are 
distributed equally within the column (i.e., each value has the 
same probability of occurring), then the column’s distribution is 
termed uniform, otherwise, the distribution is termed skewed.  For 
a row-store with a slotted page format, this column would most 
likely be stored as a 32-bit integer.  However, only two bits are 
actually needed to represent the four possible values.  The 
distribution of the values and whether or not the table is sorted on 
this column will determine if the column can be stored in, on 
average, less than two bits per row by using compression. 
 
3.2 Compression 
Many different types of compression exist in the literature, from 
light-weight dictionary coding, to heavy-weight Huffman coding.  
Since a full evaluation of compression techniques is outside the 

scope of this paper, based on the results in [13], we focus on those 
techniques that seem to generally be most cost-effective.  These 
techniques are bit-packing, dictionary coding, delta coding, and 
run-length encoding (RLE). 
 
As demonstrated in the example above, bit packing uses the 
minimum number of bits to store all the values in a column; for 
example, two bits per attribute value are used instead of the 32 
normally needed for an INT.  This space savings means that bit-
packed attributes (whether in a column or row) will not generally 
be aligned on a word boundary.  With the current generation of 
CPUs, that cost has been found to be negligible [3, 13]. 
 
Dictionary coding is another intuitive compression technique in 
which each attribute value is replaced with an index into a 
separate dictionary.  For example, the months of the year 
(“January” to “December”) could be replaced with the values 1 to 
12, respectively, along with a 12-entry dictionary to translate the 
month number back to a name.  Although dictionaries are often 
useful, they can sometimes hurt performance, for instance, if they 
do not fit into the processor’s L2 data cache.  Dictionaries should 
also not be used if the index into the dictionary would be bigger 
than the value it is replacing, or if the size of the un-encoded 
column is smaller than the size of the encoded column plus the 
size of the dictionary. 
 
Delta coding stores the difference between the current value and 
the previous value.  To delta encode a sequence, first the sequence 
is sorted and the lowest value is stored.  Then, each difference 
should be stored in two parts: the difference itself starting at the 
first ‘1’ in the bit representation of the difference, and the number 
of leading zeroes.  For instance, consider the sequence 24, 25, 27, 
32.  The bit representation for each is 011000, 011001, 011011, 
100000, respectively.  The differences between subsequent values 
in the sequence are 000001, 000010, and 000101.  Thus, the 
sequence to encode would be 24, (5, “1”), (4,”10”), (3,”101”), 
which would be 011000 101 1 100 10 011 101.  The number of 
leading zeroes should be encoded as a fixed-width field, but the 
difference will generally be variable length.  To simplify 
decoding, the number of leading zeroes should be stored before 
the difference.  Delta coding can be performed both at a column 
level, and at a tuple level, provided that each column of the tuple 
has been bit packed.  Delta coding should not be used on unsorted 
sequences or when the encoding for the number of leading zeroes 
plus the average size of the differences in bits is bigger than the 
non-delta-coded value. 
 
Run-length encoding (RLE) transforms a sequence into a vector 
of <value, number of consecutive occurrences (runs)> pairs.  For 
instance, the sequence 1, 1, 1, 1, 2, 2, 4, 4, 4 would become 
<1,4>, <2,2>, <4,3>.  RLE compresses best if the sequence has 
first been sorted, and if there are many long runs. 
 
Bit packing, dictionary coding and run-length encoding are all 
light-weight compression schemes.  They can lead to substantial 
space and I/O savings while incurring very little extra processing.  
Delta coding can provide extremely good compression for the 
right type of data, but requires much more processing to decode 
[13]. 
  
Generally, the row store and column store versions of the same 
table should be compressed using different techniques.  For 
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instance, RLE is often a good scheme for column stores but not 
for row stores, since it is rare to have multiple consecutive rows 
that are identical. 
 
3.3 Query Characteristics 
The third factor we considered was the characteristics of the 
queries to be used for evaluating the relative performance of the 
column store and row store configuration, including the number 
of predicates and the columns to which the predicates are applied, 
the number of output columns and which ones, and the selectivity 
of the selection predicate(s).  To simplify the search space 
somewhat, we primarily considered scan queries.  Row stores can 
benefit from indexes, but clustered indexes should have very 
similar behavior to sequentially scanning a subset of the table.  
Additionally, column stores will benefit from queries with 
aggregation, but this issue has been studied extensively by others 
[5], and we wanted to keep our queries similar to those in [12].  
 
Each query materializes its output as un-encoded row-store tuples, 
but these tuples are not written back to disk. The number of 
predicates and the number of output columns affect the number of 
CPU cycles needed for the query.  In this paper, a predicate is a 
Boolean expression of the form “Coli >= Value.” For queries with 
more than one predicate, predicates are “anded” together.  
 
The type of each column can also have a significant effect on scan 
time, since different types can consume varying amounts of CPU 
and I/O time.  A column of CHARs will take four times less I/O 
than a column of INTs, and a well-compressed RLE column of 
CHARs will take even less, while scanning a delta-coded column 
may consume a substantial amount of CPU time.   
  
The output selectivity (i.e. number of tuples returned), also 
impacts the scan time since materializing result tuples requires, at 
the very least a copy.   
  
3.4 Storage 
The two main paradigms used by the current generation of 
commercial database system products for table storage are row 
stores with slotted pages and dense-packed column stores.  
However, there are other possibilities, such as PAX [7], DMG 
[11], and column abstraction [10].  Column abstraction tries to 
avoid storing duplicate leading attribute values multiple times.  
For instance, if four tuples in a row have ‘1’ in their first attribute, 
that knowledge is encoded in the first header, and the subsequent 
tuples do not store the ‘1.’  We will refer to dense-packed row 
stores as “super-tuples” [10]. 
 
4.  NARROWING THE SEARCH SPACE 
AND GENERATING THE TABLES 
Once the overall parameters were identified, they had to be 
narrowed down to a representative and insightful set.  The 
parameter space can be viewed as two sets: the set of tables 
(affected by the data characteristics, storage format, and 
compression) and the set of queries. 
 
4.1 Table Parameters 
We elected not to use TPC-H tables since we wanted more control 
over all aspects of the tables.  Instead, we devised five tables: 

• Narrow-E:  This table has ten integer columns and 60 million 
rows.  The values in column i are drawn uniformly and at 
random from the range of values [1 to 2(2.7 * i)]: column 1 from 
the values [1 to 6]; column two from [1 to 42]; column three 
from [1 to 274]; column four from [1 to 1,782]; column five 
from [1 to 11,585]; column six from [1 to 75,281]; column 
seven from [1 to 489,178]; column eight from [1 to 3,178,688]; 
column nine from [1 to 20,655,176]; and column ten from [1 to 
134,217,728]. 

• Narrow-S:  This table is similar to the table in Narrow-E (ten 
integer columns and 60 million rows) but the values in each 
column are drawn from a Zipfian distribution with an exponent 
of 2 instead of uniformly at random from the given ranges. 

• Wide-E:  This table is similar to Narrow-E, except it has 50 
columns instead of 10 and 12 million rows instead of 60 
million. Thus, the uncompressed sizes of the two tables are the 
same.  The values for column i are drawn uniformly and at 
random from the range [1 to 24+(23/50*i)]. 

• Narrow-U:  This table has ten integer columns and 60 million 
rows.  The values in each column are drawn uniformly and at 
random from the range [1-100 million]. 

• Strings:  This table has ten 20-byte string columns and 12 
million rows.  No compression is used on this table. 

 
We initially studied a wider range of tables, but we found that 
these tables provide the most interesting and, in our opinion, 
representative results. 
 
We limited our study to predominantly integer columns, since 
they are common and generalize nicely.  However, we did decide 
to study one table comprised solely of strings.  Strings tend not to 
compress as well as integers and at the same time are wider than 
integers, so they are an important point to study. 
  
The tables are stored on disk in either row store or column store 
format, with both using super-tuples and no slot array.  This 
storage method results in read-optimized tuples.    
 
Since there are so many different compression techniques, it 
would be impossible to implement and test all of them in a timely 
manner.  Thus, this study compresses each table once for each 
storage format (row and column) using the compression technique  
that optimizes the I/O and processor trade-offs.  While Huffman 
encoding could provide better compression for the Narrow-S 
table, it often results in worse overall performance due to the extra 
CPU cycles it consumes decoding attribute values.  How the 
tables are generated and compressed is presented in the next 
section. 
 
4.2 Table Generation and Compression 
First, an uncompressed row-store version of each of the five tables 
was generated.  Then, each table was sorted on all columns 
starting with the left-most column in order to maximize the run 
lengths of each column.  From this table, projections of each 
column were taken to form the column-store version of the table.   
The value of each attribute of each column is a function of a 
randomly generated value, the column cardinality, and the 
column’s distribution.  For the table Narrow-S, a traditional 
bucketed implementation of Zipfian took prohibitively long with 
column cardinalities greater than 1000 so a faster algorithm that 
produces an approximation of Zipfian results was used [1]. 
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The compression technique(s) used for each configuration of each 
table is shown in Table 1.  Dictionaries are “per page”.   That is, 
the dictionary for the attribute values (whether organized as rows 
or columns) on a page is stored on the same page. 
 
Traditionally, RLE uses two integers: one for the value, and one 
for the run length.  However, this can easily result in sub-optimal 
compression, particularly when the value range for the column 
does not need all 32 bits to represent it.  As a further optimization, 
we store each RLE pair as a single 32-bit integer, with n bits used 
for the value and 32-n bits for the run length.  For example, 
consider the last column of Narrow-E, whose values range from 1 
to 134 million.  In this case, 27 bits are needed for the value, 
leaving 5 bits to encode the run length.  If the length of a run is 
longer than 31, the entire run cannot be encoded into one entry 
(32 bits), so multiple entries are used.  This optimization allows us 
to store the RLE columns in half the space. 
 
For the table Narrow-S, columns 7-10 are dictionary encoded for 
the row store.  Each column is individually dictionary-encoded, 
but, in total, there can be no more than 2,048 (211) dictionary 
entries shared amongst the four columns.  This requirement means 
that each of the attribute values is encoded to 11 bits, but allows 
the number of entries for each individual column’s dictionary to 
vary from page to page.   
 
To find a reasonable dictionary size, we estimated how many 
compressed tuples, t, would fit on a page, then we scanned the 
table to calculate the dictionary size needed to fit t tuples per 
page.  The reasoning behind this approach is that the page size 
must be greater than or equal to the size of the dictionary and all 
of the tuples on that page.  A 2,048 entry dictionary is 8KB, so for 
a 32KB page, there is room for 24KB of data.  So, if the data are 
expected to compress to 8 bytes per tuple. (assuming each 
dictionary encoded column is 11 bits), 3K tuples will fit on the 
page.  If, after scanning the data, it is found that a 2,048 entry 
dictionary would be too small, the dictionary size should be 
doubled and the analysis redone.  For the best dictionary 
compression possible, analysis would be performed for every 
page, but we were satisfied with the compression we obtained 
using this simpler method. 
 
For the column store version of Narrow-S, columns 7-10 are also 
dictionary encoded.  Since each column is stored in its own file, 
the dictionary does not need to be shared.  However, a larger 
dictionary is needed – in this case, we allow a maximum of 4,096 
dictionary entries per page, which encodes to 12 bits per value. 
 
4.3 Query Parameters 
In order to understand the base effects of the different tables and 
queries, most of the queries we tested have one predicate.  
However, a few have three predicates in order to study the effect 
of queries with multiple predicates on response time.  Each query 
is evaluated as a function of the number of columns included in 
the output table: 1, 25% of the columns, 50% of the columns, and 
all columns.  The selectivity factor is varied from 0.1% to 50%. 
Runtimes for different selectivity factors and number of columns 
returned can be interpolated between these points. 

 
 

 

Table 1.  Type of compression used for each table. 
Table Row Store 

Compression 
Column Store 
Compression 

Narrow-E All columns bit-packed  
Columns 1-5 delta 
encoded 

Columns 1-3 RLE,  
Columns 4-10 bit-
packed 

Narrow-S Columns 1-6 bit packed  
Columns 7-10 
dictionary encoded 

Columns 1-6 RLE,  
Columns 7-10 
dictionary encoded 

Wide-E All columns bit-packed 
Columns 1-8 delta 
encoded 

Columns 1-4 RLE,  
Columns 5-50 bit-
packed 

Narrow-U All columns bit-packed All columns bit-packed 
 
4.4 Query Generation 
The query generator takes four inputs: the schema definition for 
the input table (Narrow-E, Narrow-S, Narrow-U, Wide-E, 
Strings), the desired selectivity factor, the total number of 
columns referenced, c, and the number of predicates, p.   Since 
each column has different processing and I/O requirements, which 
columns are used, and the order in which they are processed, 
affects the execution time of logically equivalent queries. Thus, 
for each configuration of input parameters, the query generator 
randomly selects the columns used to produce a set of 
“equivalent” queries.  This differs from [12], where every query 
returned the columns in the same order, and the single predicate 
was always applied to the first column.   
 
The query generator first randomly picks c columns to include in 
the output table.  The first p of those columns have predicates 
generated for them.  The column store’s query is generated first.  
There is a different column scanner for each kind of compression 
used: an RLE scanner, a dictionary scanner, and a bit-packed 
scanner.  The generator knows which scanner to choose based on 
the table’s schema and column number (see Table 1).  The inputs 
to the scanner are then picked, including any predicate values.  
The primary scanner inputs are the data file, that column’s offsets 
within the output tuple, and the number of bits needed to represent 
the encoded input column value.  After all the columns have been 
processed, the generator outputs C++ code for the column store 
variant of the query.   
 
Then, using the same set of columns, the code for the row store’s 
query is generated.  Each of the five table types (see Section 4.1)  
must be scanned differently because of compression, and the 
generator outputs the minimum code necessary to decode the 
columns used in the query in order to save processing cycles.  
 
Some desired output selectivities are difficult to obtain when 
queries are randomly generated.  For example, assume that the 
input table is Narrow-E and that the query has a single predicate 
on the first column.   In this case, it is only possible to obtain 
selectivity factors that are multiples of 0.1666 since the first 
column only has six values that are uniformly distributed.  Since 
the selectivity factor affects performance, we needed a way to 
obtain finer control over the selectivity factor of the query’s 
predicates.  To do this, we modified how predicates are evaluated 
by also incorporating how many times the function itself has been 
called.  For instance, if the desired selectivity is 10%, every tenth 
call to the predicate function will pass, regardless of whether the 
attribute value satisfies the predicate.  Since selectivities are 
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multiplicative, when there are multiple predicates, each predicate 
has a selectivity of desired_selectivity(1/p), where p is the number 
of predicates.   
 
5.  IMPLEMENTATION DETAILS 
The results presented in this paper are based on the same code-
base as [12], which is provided online [2].  The scanners and page 
creation procedures were modified to allow for the different forms 
of compression.  We first discuss why we chose this code-base, 
then the next two subsections discuss and summarize the salient 
features of the software.  The last subsection gives the 
experimental methods. 
 
5.1 Choice of Code-Base 
We chose this code-base for a variety of reasons.  First, our work 
follows on to that in [12]; thus, we use the same code so that a 
direct comparison can be made between our results and theirs.  
The code is also easy to understand and modify, and, most 
importantly, is minimal, so we can have more confidence that 
performance differences between the row store and the column 
store are fundamental, and not related to code overheads or quirks 
in the file system. Additionally, this experimental setup has 
passed the vetting process of reviewers. 
 
The two main research column-store databases are C-Store and 
MonetDB [18, 8].  Both systems are available online, but they are 
heavier-weight, and we are trying to understand performance 
fundamentals.  MonetDB uses a different processing model, 
where columns (or parts of columns) are stored in vectors in 
memory, whereas we assume the columns are disk resident.  
MonetDB proponents argue this main memory-based kernel can 
provide better performance than C-Store, but, to our knowledge, 
no direct comparison of the systems has been published.  
 
5.2 Read-Optimized Pages 
Both the row store and column store dense pack the table on the 
pages.  The row store keeps tuples together, placed one after 
another, while the column store stores each column in a different 
file.  The page size is 32 KB.  In general, the different entries on 
the page are not aligned to byte or word boundaries in order to 
achieve better compression. 
 
Each page begins with the number of entries on the page.  The 
row or column entries themselves come next, followed by the 
compression dictionary (if one is required).  The size of the 
compression dictionary is stored at the very end of the page, with 
the dictionary growing backwards from the end of the page 
towards the front.  For the row store, the dictionaries for the 
dictionary-compressed columns are stored sequentially at the end 
of the page.  
 
5.3 Query Engine, Scanners and I/O 
The query engine and table scanners provide only a minimal set of 
functions.  All queries are precompiled, and the query executor 
operates on the table an output block at a time.  The scanners 
decode values, apply predicates and either project or combine the 
columns into a materialized tuple buffer. 
 
The query scanner and I/O architecture are depicted in Figure 1.  
Since the row scanner is simpler to understand, it is explained 
first.  The relational operator calls “next” on the row scanner to 

receive a block of tuples.  The row scanner first reads data pages 
from disk into an I/O buffer, then iterates through each page in the 
buffer.  The scanner always decodes the columns of the tuple that 
might be used, then applies the predicate(s).  If the tuple passes 
the predicate(s), the uncompressed projection is written to the 
materialized tuple buffer.  When the buffer is full, it is returned to 
the relational operator parent, which can print the tuples, write 
them to disk, or do nothing (for our experiments the parent 
operator simply tosses the output tuples).  The relational operator 
then empties the buffer and returns it to the scanner. 
 
The column scanner is similar to the row scanner, but must read 
multiple files – one for each column referenced by the query.  
Each column is read until the materialized output tuple buffer is 
full (this buffer is discussed shortly); at that point, the read 
requests for the next column are submitted.  Since predicates are 
applied on a per-column basis, columns are processed by order of 
their selectivity, most selective (with the fewest qualifying tuples) 
to least selective (the most qualifying tuples).  Placing the most 
selective predicate first allows the scanner to read more of the 
current file before having to switch to another file, since the 
output buffer fills up more slowly. 
 
For each attribute value that satisfies its predicate, the value and 
its position in the input file are written into the output buffer.  The 
passing positions (pos list in Figure 1) are then input into the next 
column’s scanner, and that column is only examined at those 
positions.  
 
The materialized tuple buffer holds 100 tuples.  At this size, it can 
fit in the 32KB L1 data cache, even if there are dictionaries, for 
each of the five different tables.  This buffer is used to reduce 
overhead.  Instead of performing aggregate computation, 
outputting qualifying tuples, or switching from column to column 
for every individual tuple, these operations are batched.  For our 
experiments, the qualifying tuples are simply materialized – they 
are not output to the screen or to disk.  A buffer size that is too 
small can lead to unnecessary overhead and poor performance by, 
for instance, writing to disk as soon as one tuple has been found to 
qualify.  On the other hand, if the buffer is too big, it will fall out 
of the data cache and increase processing time.  We ran scans with 
multiple buffer sizes and found 100 gave the best performance. 
 
All I/O is performed through Linux’s Asynchronous I/O (AIO) 
library.  The code’s AIO interface reads I/O units of 128KB (a 
user-set parameter), and it allows non-blocking disk prefetching 
of up to depth units.  Data is transferred from the disk to memory 
using DMA and does not use Linux’s file cache.  The code does 
not use a buffer pool, instead it writes the transferred data to a 
buffer pointed to by a program variable. 
 
5.4 System and Experimental Setup 
All results were run on a machine running RHEL 5 on a 2.4 GHz 
Intel Core 2 Duo processor and 2GB of RAM.  The disk is a 320 
GB 7200 RPM SATA Western Digital WD3200AAKS hard disk.  
We measured its bandwidth to be 70 MB/s.  Column stores and 
row stores are affected by the amount of I/O and processing 
bandwidth available in the system; our experiments have less I/O 
bandwidth than those in [12], but the general shape of the graphs 
are similar.  Runs are timed using the built-in Linux “time” 
function.    For each combination of output selectivity and number  
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Figure 1.  Query Engine Architecture [12]. 

 
of columns accessed, 50 equivalent queries were generated.  The 
run times presented in Section 6 are the averages of those queries.  
 
Sometimes we observed transient AIO errors, which caused a 
query to abort.  When this happened, the run was terminated and 
restarted.  We verified that runs that completed without errors 
returned the correct results.  We also verified that running the 
same query multiple times in a row had negligible timing 
differences between runs. 
   
The program has four user-defined variables: I/O depth, page size, 
I/O unit (scan buffer) size, and block (materialized tuple buffer) 
size.  We use an I/O depth of 48; thus, each scan buffer can be 
prefetched up to 47 I/O units in advance.  We use a larger page 
size than [12], but otherwise the program parameters are the same.  
We decided to use 32KB pages instead of 4KB pages since we 
think the larger size is more common in practice.  However, [12] 
found that, as long as the page was not too small, the size did not 
significantly impact performance. 
 
6.  RESULTS 
The results of our experiments are presented in this section, 
beginning with the amount of compression we were able to 
obtain. 
 
6.1 Amount of compression 
The compression methods used to encode each table are listed in 
Table 1.  Table 2 presents their compressed sizes. The 
compression factors achieved range from 1 to 3 if just variable 
length, bit aligned attributes are used (column 3) and from 2 to 
almost 6 when compressed (column 4).  While techniques that 
compress the tables even more could have been used (e.g. 
Huffman encoding), we think the techniques presented are a good 
tradeoff.  
 
This final compressed size is almost exactly the same for both the 
row store and the column store, i.e. the size of the compressed 
row store file is the same as the sum of the column file sizes for 
the column store.  This result is very important since column store 
proponents argue column stores compress better than row stores, 
so the columns can be saved in multiple sort orders and 
projections  for  the  same  space  as one row store [18].  Thus, for  

Table 2.  Total tuple sizes with and without compression. 
Table Uncompressed Bit-aligned Compressed 

Narrow-E 40 Bytes 153 bits (20 
Bytes) 

17 Bytes 

Narrow-S 40 Bytes 153 bits (20 
Bytes) 

7 Bytes 

Wide-E 200 Bytes 811 bits (102 
Bytes) 

100 Bytes 

Narrow-U 40 Bytes 270 bits (34 
Bytes) 

34 Bytes 

 
read-optimized row stores, this assertion is not true, even with 
aggressive column store compression. 
 
6.2 Effect of selectivity 
In Figure 2 we explore the impact of selectivity factor as a 
function of the number of columns returned (presented in bytes) 
for table Narrow-E.  The x-axis is the number of bytes returned, 
and the y-axis is the elapsed time. For both the column store (C-
%) and row store (R-%), each line corresponds to a different 
output selectivity, with one, three, five or ten columns returned, 
and one predicate.   Each data point is the average of 50 randomly 
generated queries, as described in Sections 4.4 and 5.4.  The time 
to scan the uncompressed row store with 50% selectivity is also 
included (R-Uncomp) to illustrate how much time compression 
can save.  Additionally, this graph presents error bars of plus and 
minus a standard deviation; however, the standard deviations are 
often quite small, so the error bars are difficult to see.  For most of 
the graphs in this paper, all but the selectivity of 50% line for the 
row store tests (only) have been omitted to improve the clarity of 
graphs, since the response time was not significantly affected by 
the selectivity factor of the query.  The C-0.1% and C-1% 
response times are also almost exactly the same.   
 
The column store is faster than the row store when eight of the 
columns are returned with selectivity factors of 0.1% and 1%; 
when five of the columns are returned with a selectivity factor of 
10%; when two of the columns are returned with a selectivity of 
25%; and basically never at a selectivity of 50%.  Further, for this 
table configuration, the best speedup of the column store over the 
compressed row store is about 2, while the best speedup for the 
compressed row store over the column store is about 5. 
 
Next, we turn to investigating the factors underlying the 
performance of the two systems at a selectivity factor of 10%.  
Figure 3 presents the total CPU and elapsed times for both the 
row and column store.  Both the CPU and elapsed times are 
constant for the row store as the number of columns returned is 
increased, since the run is primarily disk-bound.  The results for 
the column store are substantially different, as the CPU time 
consumed increases as more columns are returned.  This increase 
comes from two main sources: more values must be decoded, and 
more tuples must be stitched back together (materialized) using 
some form of a memory copy instruction.  At a selectivity factor 
of 0.1%, the CPU cost of the column store is constant, since very 
few tuples must be materialized, and, at 50% selectivity, both the 
column store and the row store become CPU-bound.  While the 
number of columns returned definitely has a large effect on 
column store scan times, the selectivity of the predicate is also an 
extremely important factor. 
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Figure 2.  Elapsed time for Narrow-E with various selectivity 
factors. 

 
Figure 3.  Elapsed time and CPU time for Narrow-E with 
10% selectivity. 
 
6.3 Effect of Skewed Data Distribution 
To study the effect of a skewed data distribution, we repeated the 
experiments on table Narrow-S that we had performed on 
Narrow-E.  Narrow-S allows more columns to be run-length (or 
delta) encoded, and made dictionary compression worthwhile for 
the columns with larger column cardinalities (number of different 
values in the column).  Using these techniques, the row store went 
from averaging 17 bytes per tuple to 7 bytes per tuple (recall that 
the uncompressed tuple width is 40 bytes).  The total size of the 
compressed column store tuple is the same as that for the row 
store tuple; each column compressed to less than two bytes per 
attribute, with the first attributes averaging just a few bits.  The 
selectivity graph is presented in Figure 4.  Error bars are also 
present on this graph, but the standard deviation is again small 
enough that they cannot be seen. Again, each data point represents 
the average of 50 different randomly generated queries in which 
both the columns returned and the column to which the predicate 
is applied are selected at random.  The difference between the 
elapsed times for the column store runs with 0.1% and 1% 
selectivity factors are negligible.  At 0.1% and 1% selectivity, the  
column store (C-0.1%,1%) is faster than the row store (R-
0.1%,1%) when seven columns are returned, and at 10% 
selectivity, the column store is faster than the row store when 
three columns are returned. At a selectivity factor of 50%, the row  

Figure 4.  Elapsed time for Narrow-S at various selectivity 
factors. 
 
store is always faster.  For this table, the elapsed time for the row 
stores is affected by the selectivity factor since very little 
bandwidth is needed.  Thus, the CPU time consumed dominates 
the overall execution time for the query for both column stores 
and row stores.  Those queries with higher selectivity factors 
require more computation, so they have longer run times.  For this 
table, the performance of the row store is very competitive with  
the column store largely due to the significant decrease in the 
amount of I/O it performs. 
  
6.4 Wide Tables 
Our next experiment was conducted using table Wide-E.  Wide-E 
has fifty integer (4 byte) columns whose column cardinalities 
increase from left to right (see Table 1 for details).  After bit 
compression, each tuple averages 100 bytes. To keep the total 
uncompressed table size the same as for Narrow-E, Wide-E has 
only 12 million rows (instead of 60 million). The time to scan the 
uncompressed table is shown in the R-Uncomp line. For the 
column store, the response times with either a 0.1% or 1% 
selectivity factor are essentially the same.  The row store is faster 
than the column store when 85% of the columns are returned with 
0.1% or 1% selectivity factors; when returning 66% of the 
columns at 10% selectivity, and with 25% of the columns at 50% 
selectivity.  For the row store, the number of columns returned 
does not have an observable effect on the response time. As with 
Narrow-E, the elapsed time for the row store is dominated by its 
disk I/O component and the selectivity factor of the query; the 
CPU graph (not shown) is similar to Figure 3. 
 
Overall, the graphs of Figure 5 and Figure 2 are very similar, 
however, the row store does not compress as well (and hence 
takes longer to scan), so there is a shift in the crossover points 
between the two systems.  Because the slopes of the column store 
lines are not very steep, how well the row store compresses is a 
critical component in determining its performance relative to that 
of the column store. It should also be noted that many more 
columns are being returned than with the narrow table Narrow-E.  
If fewer than twelve columns are needed, the row store is always 
slower than the column store for this configuration. 
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Figure 5.  Elapsed time for Wide-E at various selectivity 
factors. 

 
Figure 6.  Elapsed time for Narrow-U with various selectivity 
factors. 
 
6.5 Effect of Column Cardinality 
Figure 6 presents the elapsed times for the experiments with 
Narrow-U.  Like Narrow-E, this table has ten columns, but the 
values in each column are drawn uniformly and at random from a 
range of 1 to 100,000,000.   The average compressed size of each 
tuple is 34 bytes, double that of the tuples in Narrow-E.  The 
larger table and column sizes result in a significant increase in the 
response times that we measured for the two systems due to the 
additional I/O operations performed. The crossover points of the 
two systems are very similar to those for the wider and shorter 
table discussed in the previous section (see Figure 5). 
 
6.6 Additional Predicates 
The previous results have shown that the selectivity of the 
predicate can have a substantial effect on the relative performance 
of the row store and column store.   We next consider how adding 
additional predicates affects the relative performance of the two 
systems by considering queries with three predicates (instead of 
one) and with selectivity factors of 0.1% and 10%.  Table 
Narrow-E was used for these tests and the results are presented in 
Figure 7. 
 

For each selectivity, we ran two sets of experiments.  In the first 
set of experiments, the first, second, and third columns (x% left 3 
preds) are used as the predicate columns (Figure 7 (top)). In the 
second, the columns for the three predicates were selected at 
random (x% random 3 preds) (Figure 7 (bottom)).  The “C-x% 1 
pred” results are taken from the experiments presented in Figure 
2.  Since the “1 predicate” point only uses one column, there is a 
predicate only on that column.  For graph clarity, the row results 
are only shown for the 10% selectivity factor with one predicate, 
since it is representative of the other results.   
 
We elected to draw predicates both from randomly selected 
columns and from the left three columns because we expected that  
the response time when the left hand columns were used would be 
better than when randomly selected columns were used.  Since the 
table is sorted1 on these columns, the runs in the left-most 
columns are longer.  Hence, they compress better than the other 
columns.  Our results verify that hypothesis. Our results also 
indicate that additional predicates can significantly affect the 
relative performance of the two systems.  For instance, the 10% 
selectivity crossover is at five columns for the one-predicate case, 
but shifts to two columns when there are three predicates.  The 
results are less stark for the 0.1% selectivity case since it requires 
so much less computation to begin with, but it still shifts the 
crossover from eight columns to seven. 
 
These three-predicates results represent a worst-case scenario, as 
the selectivity is evenly divided between the columns.  The results 
would be closer to the one predicate case if the first predicate had 
been highly selective.  Thus, “real” workload results would 
probably fall somewhere in between the two points.  However, the 
fact remains that increasing the number of predicates can have a 
significant impact on the performance of a column store. 
  
6.7 Effect of “Wider” Attributes 
We examine the impact of wider attributes by studying a table 
with ten 20-byte attributes.  No compression was used for either 
the column store or the row store as we wanted to simulate the 
worst-case scenario for both systems.   For  this configuration, I/O 
is the dominant factor in the response times of both systems. 
Thus, the elapsed time of the column store is only slightly 
affected by the different selectivity factors, as can be seen in 
Figure 8.   
 
To put this table’s size in perspective, each width of column of 
this table is about the same as the compressed tuples in the 
Narrow-E table, and is about three times the size of the tuples in 
the Narrow-S table.  Each tuple is twice as big as the compressed 
tuples in the Wide-E table. 
 
6.8 Materialized Views 
There is, of course, an intermediate form between row stores and 
column stores: materialized views.  We implemented two sets of 
materialized views for the Narrow-E table.  One set groups the ten 
attributes into five pairs: columns 1&2, 3&4, 5&6, 7&8, 9&10; 
the other groups the attributes into two groups of five: columns 1-
5 and 6-10.  We modified the column scanner to return an array of 
values instead of one value.    Only  columns used in the query are  

                                                
1 A major to minor sort is performed on the entire table from the 
left most column to the right most column. 
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Figure 7.  Three predicates on left-most columns (top) or 
random columns (bottom). 
 
decoded.  If more than one materialized view is needed, they are 
stitched together using the same mechanisms used to stitch 
columns together. 
 
The benefit of materialized views depends greatly on the amount 
of correlation between columns exhibited by the query workload. 
Commercial products often provide guidance in forming views for 
row stores, and for column stores, Vertica has a Database  
Designer to aid in selecting which projections and sort orders 
would provide the best overall performance for a query workload 
[20].  However, since we are using a random query generator, we 
cannot rely on these automatic designers.  Instead, we created the 
views, and then varied the correlation between the columns in 
randomly-generated workloads to find the benefit. 
 
We looked at four different amounts of column correlation for 
each set of materialized views: 100%, 75%, 50% and none 
(independent).  For the set of views where there are two views of 
five columns each, the query generator was set up so that one 
column was picked at random.  Then, when there are five or fewer 
columns used, there is a Correlation% chance that there is only 
one view needed.  For the set of five views of two columns each, 
first one column is drawn at random.  Then, there is a 
Correlation% chance that the other column from that view is 
used.  If the correlation test fails, the second column from that 
view is not used for that query, unless all five of the views are 
used and more columns are needed, and another column is 
randomly drawn.  All columns are drawn without replacement.  In  

 
Figure 8.  Elapsed time for String with various selectivity 
factors. 
 
the “none” correlation case, all columns are drawn independently 
and at random, as in the earlier experiments. 
 
Figure 9 provides the results for having two groups of five (left) 
or five groups of two (right) materialized views on the Narrow-E 
table.  The queries have 1% selectivity, which is a selectivity 
where the column store’s performance dominates.  The row and 
column store results are those from earlier sections.  We gathered 
materialized view results for returning up to six, then ten columns.  
We took more data points since the results are not smooth lines – 
they have stair-step performance due to the correlations between 
the columns.  Error bars of plus one standard deviation are 
included for the random and 50% correlation cases, while minus 
error bars are included for correlations of 75% and 100%.  Only 
one side is included for clarity.  When the correlation between 
columns is high, the performance is similar to that of joining 
multiple small row stores.  When there is no correlation between 
columns, the materialized views do not provide a large benefit for 
row stores compared to column stores, since multiple views must 
be joined, and reconstructing those tuples can be costly.   In fact, 
the materialized views with five columns only outperform the row 
stores when three or fewer columns are returned, assuming no 
correlation.  If more than five columns are used, the row store 
should be used due to the cost of stitching the two views together.  
Without correlation, the two column views outperform the row 
store when five or fewer columns are returned.  However, with 
more correlation, the materialized views provide comparable 
performance to, and can occasionally beat, the column stores. 
 
With the cost of storage essentially free, materialized views can 
easily be included with a row store, which can help the relative 
performance of the row store.  The materialized views will also be 
affected by the selectivity of the query, in proportion to the 
number of columns in the view.  
 
6.9 Joins 
Finally, we also examined joins with different selectivities to see 
to what extent constructing result tuples interacts with executing 
the join (e.g., there may be more instruction cache misses due to 
switching between scanning and reconstructing tuples and 
performing the join).  These experiments used a hybrid hash join 
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Figure 9.  Materialized views for the Narrow-E table.  The left figure presents the results for two materialized views with five 
columns in each view.  The right figure presents the results for five materialized views with two columns each. 
 

  
Figure 10.  The left graph presents results for joining two two-column tables in a column store and row store.  The x-axis labels 
give the storage paradigm and the scan selectivities.  The right graph presents the results for joining two four-column tables. 
 
[17] with enough pages allocated to ensure the inner table fits in 
memory.  The two tables used in the join have either two columns 
or four columns accessed.  The two-column case’s SQL would be: 
 
SELECT temp1.column2, temp2.column5  
FROM temp1, temp2 
WHERE temp1.column9 = temp2.column9 AND 
temp1.column2>=x AND temp2.column5>=y; 
 
Temp1 and Temp2 are both table Narrow-E for the row store.  For 
the column store, Temp1 is column 2 and column 9 from Narrow-
E; Temp2 is column 5 and column 9. For the four-column case, 
table Temp1 also includes columns 1 and 3, and table Temp2 also 
includes columns 7 and 10.  Column 9 was chosen as the join 
attribute since each value occurs a small number of times within 
the table, and the number of tuples passing a join increases as a 
square of the number of duplicate matching join attribute values. 
The other columns were chosen at random so there would be no 
overlap in Temp1 and Temp2, besides column 9.  
 
The variables x and y in the query are varied to return either 10% 
or 100% of the rows for the table, and the query is performed four 
times to get times for scan selectivity factors of 100/100, 100/10, 
10/100 and 10/10.  The number of resulting tuples is 234M, 22M, 
28M and 2.6M, respectively.  
 
We chose to use either two or four columns from the table for a 
variety of reasons. At five or more columns, the likelihood of 
running out of memory increases.  Additionally, row stores 
outperform column stores as more columns are accessed.  On the 

other hand, consistently using just the join attribute for both tables 
was unlikely in real workloads.  Hence, we chose two and four 
columns to get two sets of results without severely impacting the 
column store’s performance. 
 
The inner table is the one with the fewest rows that pass the 
predicate.  This table is scanned first, and its query is generated in 
the same way as the queries used for the results in the previous 
sections.  However, once the tuple has been materialized, instead 
of being discarded, the join attribute is hashed, partitioned and 
inserted into the appropriate bucket page.  After the first scan 
completes, the second scan begins, and probes for joins after the 
tuple has been materialized.  If the bucket is wholly in memory, 
the resulting join tuple(s) is (are) materialized.  If the bucket is not 
in memory, the tuple is written to a page and is processed after the 
scan is complete.  This plan uses an early materialization strategy, 
as per the results of [5]. 
 
Figure 10-left presents the elapsed time for the join for both row 
stores and column stores for the two column tables, with the given 
scan selectivities.  Figure 10-right presents the results for the four 
column tables, but does not include the 100/100 case in the results 
because the inner table does not fit in memory.  Each bar presents 
the elapsed time for the join, and the part of that time it takes to 
just perform the two scans.  The scan results are as expected, and 
the join component of the time is always roughly equivalent 
between the column store and row store.  Thus, the paradigm with 
the smaller scan time will also have the smaller join time, and the 
join time is greatly affected by the number of joined tuples that 
must be materialized. 
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7. DISCUSSION 
To begin the discussion, let us summarize the findings: 
• Read-optimized row stores and column stores compress to 

within a few bits of each other. 
• Regardless of the table size or table type, the selectivity of the 

predicate can substantially change the relative performance of 
row stores and column stores. 

• Row stores perform better compared to column stores when the 
tuple is narrow. 

• Adding predicates increases column store runtimes. 
• Having more qualifying tuples increases column store runtime. 
• Materialized views, which are essentially a hybrid of row stores 

and column stores, can out-perform both row stores and column 
stores, depending on the circumstances, but normally have 
performance somewhere between the two paradigms. 

• Hybrid hash joins with early materialization do not change the 
relative performance of row stores and column stores. 

While [12] reached some of the same conclusions, our results 
further quantify these findings and the extent to which they hold, 
and add some new results. 
 
A rule of thumb is that a column store outperforms a row store 
when I/O is the dominating factor in the response time of a query, 
but a row store can outperform a column store when processing 
time is the dominating constraint.  Our results show that I/O 
becomes less of a factor for row stores with compression, and 
CPU time is more of a factor for column stores in queries with 
more predicates, lower selectivities and more columns referenced. 
 
Row stores on slotted pages will most likely never beat column 
stores for read-optimized workloads since their bandwidth 
requirements are much higher than for even the uncompressed bit-
aligned tables.  However, a read-optimized row store can clearly 
outperform a column store under some conditions.  
 
Row store designers must seriously reconsider two points: 
compression and schema design.  Using aggressive compression 
techniques is critical to reducing the overall scan time for a row 
store.  In addition, our results along with those in [12] clearly 
demonstrate that, for the current generation of CPUs and disk 
drives, 20 bytes is a good average tuple size to aim for.  
 
Additionally, some column store proponents have argued that, 
since column stores compress so much better than row stores, 
storing the data with multiple projections and sort orders is 
feasible and can provide even better speedups [18].  However, we 
have found that columns do not actually compress any better than 
read-optimized rows that employ bit compression and delta 
encoding.  Since it is now feasible to store row stores in multiple 
projections and sort orders without a substantial storage overhead, 
developing techniques for selecting the best materialized views 
(keeping in mind the 20 bytes per view per row target) might 
prove to be beneficial, as our results from Section 6.8 show. 
 
We have shown multiple ways to decrease the I/O requirements of 
a query workload.  If the workload has many low-selectivity 
queries, or multiple predicates per query, the tuples could be even 
larger and still provide roughly the same performance as column 
stores.  However, for workloads comprised of high selectivity 
queries that randomly select just one or two columns from a wide 
table that cannot be vertically partitioned in a non-column-store 
way, row stores cannot compete. 
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