
Generating XML Structure Using
Examples and Constraints

Sara Cohen
The Selim and Rachel Benin School of Engineering and Computer Science

The Hebrew University of Jerusalem
Edmund J. Safra Campus, Jerusalem 91094, Israel

sara@cs.huji.ac.il

ABSTRACT
This paper presents a framework for automatically generating

structural XML documents. The user provides a target DTD and

an example of an XML document, called a Generate-XML-By-

Example Document, or a GxBE document, for short. GxBE docu-

ments use a natural declarative syntax, which includes XPath ex-

pressions and the function count. Using GxBE documents, users

can express important global and local characteristics for the de-

sired target documents, and can require satisfaction of XPath ex-

pressions from a given workload. This paper explores the problem

of efficiently generating a document that satisfies a given DTD

and GxBE document.

1. INTRODUCTION
Testing is one of most the critical steps of application de-

velopment. This is certainly correct in the industry, where
testing ensures the quality of the end software. It is also cor-
rect in academia, where thorough testing can ensure that the
proposed solution has a set of properties (e.g., low runtime,
improved results versus other systems). For database appli-
cations, testing is a challenge both due to the large volume
of input data needed, and due to the intricate constraints
that this data must satisfy.

The problem of finding or generating input databases for
testing is pivotal in the development of database applica-
tions. Although such applications are widespread, it is fre-
quently difficult to find or generate appropriate input for
testing. This is a significant stumbling block in system de-
velopment, since considerable resources must be spent to
generate test data. In addition, the lack of appropriate test
databases is also a bone of contention when studying and
comparing academic results. Being able to compare and
contrast various academic results is clearly important. This
importance has recently been underscored by the experimen-
tal repeatability requirements defined by one of the major
database conferences (SIGMOD 2008).

To be useful, datasets should have at least the properties:
(1) The data structure must conform to the schema of the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

target application.
(2) The datasets should be appropriate for the expected

workload and have expected characteristics. For exam-
ple, if the dataset always returns an empty answer on
expected queries, it will not be very useful. As another
example, we wish to test the application on data with
special properties, e.g., a large branching factor.

(3) The data values should should match the expected data
distribution.

Currently, there are two distinct sources for XML docu-
ments to be used for testing. First, there are several down-

loadable XML datasets that can be found on the web. Such
datasets may be real documents of various types, or XML
benchmarks, e.g., [12, 13, 15]. Downloadable XML datasets
are not always suitable for experimentation and analysis
of a particular application or algorithm. Specifically, these
datasets may not have any of the three specified properties.

Data generators are a second source for datasets. Sev-
eral data generators for relational databases have been de-
veloped, e.g., [4, 5, 8, 11], while only few XML generators
have been developed [1, 2]. Intuitively, an XML generator
is a program that generates XML according to given user
constraints. XML generators provide the user with flexi-
bility in defining the XML documents of choice. However,
their usefulness is determined by the level of expressibility
allowed for the users to define the desired target documents.
Roughly speaking, [1] produces data that does not satisfy
any of the three properties above, since both the structure
and the content of the documents are randomly generated.
As input, the user may only provide parameters that control
the randomness of the result, e.g., the number of levels in
the resulting tree and the minimum and maximum number
of children for a given level.

ToxGene [2] produces data that satisfies Properties 1 and 3.
In [2] constraints are specified locally, within an XML schema.
Rich constraints on the values of generated data can be spec-
ified, such as data distributions. A simple example of a Tox-
Gene definition appears in Figure 1. A data distribution
called c1 is defined, and then is used to define the values
that should appear within elements of type my float.

While ToxGene allows rich definition of the data that
should be produced, the ability to control the structure of
the data defined is very limited (Property 2). All constraints
are written locally in the schema. Hence, global properties
of the document (e.g., satisfaction of a particular query, a
bound on the total document size) cannot be given.

In this paper, we consider an orthogonal problem to that
of ToxGene. In particular, we concern ourselves with the

490

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

<tox-distribution name = ”c1” type = ”exponential”

minInclusive = ”5” maxInclusive = ”100”

mean = ”35” />

<simpleType name = ”my float”>

<restriction base=”float”>

<tox-number tox-distribution = ”c1”>

</restriction>

</simpleType>

Figure 1: A simple ToxGene definition.

problem of building an XML generator that produces XML
with Properties 1 and 2. Thus, the focus is on allowing the
user a rich language for defining the structure of the target
documents. We expect that this work can be combined with
that of ToxGene to derive a system that allows rich control
of both structure and data. However, such a combination is
beyond the scope of this paper.

In our framework, we allow the user to provide a DTD D

(to achieve Property 1) and a Generate-XML-By-Example

Document (GxBE document for short) G (to achieve Prop-
erty 2). A GxBE document is an XML document, with
embedded count constraints, i.e., constraints expressible in
terms of XPath and the aggregation function count.1 These
constraints allow the user to control global properties of the
document, as well as to require that various XPath queries
be satisfied at least (or at most) a specific number of times.
The goal of this work is to efficiently generate a document
satisfying both D and G, if such a document exists.

Example 1.1. Consider a company developing an XML-
based database application for product inventory. A (sim-
plified) schema for this application might have the form:

state ← name, city
1..100

city ← name, store
1..5

store ← address, (email?, homepage)?, product
50..500

product ← name, price, discount?

where lj..k indicates that l must appear at least j, and at
most k, times. To shorten the presentation, we omitted
definition for labels that simply contain text, e.g., name.

The workload of this application might consist of XPath
queries aimed at finding discounted items, checking for avail-
able products in a store, etc. Thus, when testing the ap-
plication, a useful document might containing a store with
many discounted items, one with no discounted items, one
with many products, one with few, etc. Such requirements
can be expressed in a GxBE document. For example, the
GxBE command in Figure 2 can be used to generate a doc-
ument containing at least four stores with many products in
one New York city, and one with no discounted products in
another New York city.

The syntax and semantics of GxBE documents, as well
as an efficient solution for the document generation prob-

1Count-constraints first appeared in [7]. The framework
there was limited, and document generation was not con-
sidered. An algorithm was presented only for constraint
satisfiability. This algorithm is simplistic, and regrettably
contained a mistake which makes it applicable only for an
even more limited constraints.

<state>

<name>New York</name>

<city gxbe = ”count(↓[store][count(↓[product]) ≥ 400]) ≥ 4”/>

<city>

<store gxbe = ”count(⇓[discount]) ≤ 0”/>

</city>

</state>

Figure 2: Example GxBE command.

lem, are the focus of this paper. Our contributions can be
summarized as follows.

- First, we present the language of GxBE documents (Sec-
tion 2). We find these particularly natural for the document
generation problem, since they are “example” XML docu-
ments showing what should be generated, and also contain
global constraints written in an extension of the standard
language XPath.

- Second, we present an efficient algorithm for document
generation (Sections 4 and 5). This algorithm is rather in-
tricate, and involves solving additional subproblems, such
as determining the number of times that a particular XPath
expression can be satisfied in a document. Our algorithm
allows many different satisfying outputs to be generated.

- Third, we present several important extensions to the
language of GxBE documents (Section 6). For each exten-
sion, we show how document generation can still be effi-
ciently achieved, or show that document generation has be-
come intractable.

Due to space limitations, some proofs and subprocedures
are omitted. Intuitive explanations of these omissions are
provided.2

2. FRAMEWORK
In this section we discuss the inputs to our document gen-

erator, namely the languages of count-constraints, GxBE
commands and DTDs. The syntax that we present allows
the more popular XPath operators (i.e., child and descen-
dent axes). In Section 6 we discuss several important ex-
tensions of the language of count-constraints, and show how
these extensions effect the basic algorithms and the com-
plexity analysis.

2.1 Syntax of Count Constraints
GxBE commands are written using count-constraints. A

count-constraint c is a numerical constraint over an XPath

expression p, of the form:

c ::= count(p) ≥ k,

p ::= ↓ | ⇓ | p/p | p[l1, . . . , lj] | p[c]

where k is a nonnegative number, and li is a label. Intu-
itively, ↓ and ⇓, are, respectively, the child and descendent-
or-self axes. We use / to denote the concatenation operator.
The qualifier [l1, . . . , ln] constrains the label of the target
element. The count-constraint qualifier [count(p) ≥ k] (i.e.,
[c]) constrains the number of nodes that satisfy p, relative
to the context node. Note that if k = 1, then this has the
same meaning as a standard nested XPath qualifier.

In Section 6 we will extend the language to allow the op-
erator “≤”, as well as horizontal axes (i.e., sibling axes).

2See also extended version available at http://www.cs.
huji.ac.il/~sara/xmlgen.ps.

491

1

c

b

d

ddcc

b

d

c

b e

d d d

b5 e
7

21 22

8

14 15

r

a
2 3

6

12d

a4

19

13

20

c

11109

17 1816

Figure 3: XML Document X1.

Intuitively, a count-constraint which does not have any
nested count-constraints is simply a requirement that a cer-
tain XPath expression be satisfied a number of times. Em-
bedding of count-constraints allows user requirements to be
more expressive, in that the number of occurrences of sub-
portions of the XPath expressions may also be bounded from
below. This is demonstrated in the following example.

Example 2.1. Consider the following:

c1 = count(⇓) ≥ 1000

c2 = count(⇓/↓[a][count(↓[b]) ≥ 5]) ≥ 10

c3 = count(⇓[b]/⇓[b, c]/↓[d]) ≥ 5

Intuitively, c1 states that there are at least 1000 nodes in the
document. c2 requires that there be at least 10 a descendents
that have at least 5 b children. Finally, c3 requires that there
be at least 5 d descendents that are children of b or c, that
is, in turn, a descendent of b.

2.2 Syntax of GxBE Commands
We use count constraints to specify the properties of in-

terest, that the generated document should satisfy. The
user may be interested in several such properties. In addi-
tion, he may also have specific requirements for the output
document that can be written explicitly (i.e., by explicitly
writing fragments of the target document). Both count con-
straints and explicit constraints may be combined together
in an XML document, to form a GxBE command . We start
by formally defining XML documents, and then we define
GxBE commands.

XML documents (or documents for short) are rooted, or-
dered, labeled trees. We will use X to denote documents,
and n, n′, etc., to denote nodes. We use lab(n) to denote
the label of n and r(X) to denote the root of X. We write
(n, n′) to denote an edge from n to n′ and we write n ≺ n′

if n appears before n′ in an in-order traversal of X. To sim-
plify the presentation, our documents have only elements
(and not attributes).

An example of an XML document appears in Figure 3.
Only structure, and no data values, is present, since the fo-
cus of this paper in on the structure of generated documents.
The nodes are numbered for easy reference.

A GxBE command G is an XML document, in which each
node n is associated with a (possibly empty) set of count
constraints C(n). Technically, these count constraints are
written within an XML document as a comma-delimited
list of values for the attribute gxbe of a node n. (As before,
to simplify the presentation, we assume that only gxbe at-
tributes, and no other attributes, may appear in a GxBE
command.)

count(↓[c]/⇓[d]) ≥ 2

count(⇓[b]/⇓[b, c]/↓[d]) ≥ 5

b e

r

a

Figure 4: GxBE command G1.

An example of a GxBE command appeared in Exam-
ple 1.1. A different example, this time in tree form, appears
in Figure 4. The GxBE document G1 from Figure 4 will
be used as a running example in this paper. (Note that G1

is rather contrived, but this was necessary so that it could
be used to demonstrate many different aspects of our algo-
rithm.) Intuitively, G1 makes the following requirements on
the target document: (1) The root of the document should
be labeled r. (2) The root should contain at least one child
labeled a. (3) There should be at least 5 d descendents that
are children of a b or c, that are, in turn, descendents of a b,
which are descendents of the a child. (3) In addition, the a

child should also have at least the children b and e, in this
order. (4) The b child should have at least 2 d descendents
that are reachable via c children.

2.3 Semantics of GxBE Commands
In this section, we formally state when a document satis-

fies a GxBE command. To this end, we first discuss satis-
faction of XPath expressions and count constraints.

Let X be an document, let n be a node in X and let p be
an XPath expression. We say that X satisfies p at n if and
only if there is a node n′ such that X |= p(n, n′), defined
inductively, in terms of the structure of p, as follows.

• p =“↓”: n′ is any child of n

• p =“⇓”: n′ is either n, or is a descendent of n

• p =“p1/p2”: there is a node n′′ such that a X |=
p1(n, n′′) and X |= p2(n

′′, n′)

• p =“p1[l1, . . . , lj]”: X |= p1(n, n′) and, in addition,
lab(n′) ∈ {l1, . . . , lj}

• p =“p1[count(p2) ≥ k]”: X |= p1(n, n′) and, in addi-
tion,

˛

˛{n′′ | X |= p2(n
′, n′′)}

˛

˛ ≥ k.

Let n be a node in X and p be an XPath expression. Given
a count constraint c = count(p) ≥ k, we say that X satisfies

c at n, written X |= c(n), if
˛

˛{n′ | X |= p(n, n′)}
˛

˛ ≥ k.

Example 2.2. Consider count(↓) ≥ 3. This count con-
straint requires a branching factor of at least 3 and is satis-
fied by Nodes 1, 4 and 9 in X1 (Figure 3), since they each
have at least 3 children.

As a more complex example, consider Node 4 in X1. This
node satisfies c3 = count(⇓[b]/⇓[b, c]/↓[d]) ≥ 5 (from Ex-
ample 2.1), since Node 4 has 6 descendents n′ (namely,
Nodes 19, 20, 21, 16, 22 and 18) such that we have X1 |=
⇓[b]/⇓[b, c]/↓[d](4, n′). (We use 4 as a notation for the node
numbered 4 in X1.)

492

Finally, consider a GxBE command G. We say that X

satisfies G, written X |= G, if there is a generation mapping

µ from the nodes of G to the nodes of X such that:
• µ maps root to root: µ(r(G)) = r(X);
• µ preserves labels: lab(n) = lab(µ(n)), for all n;
• µ preserves edges: if (n, n′) is an edge in G, then

(µ(n), µ(n′)) is an edge in X;
• µ preserves order: if n ≺ n′ in G, then µ(n) ≺ µ(n′)

in X;
• µ ensures satisfaction of constraints: if n is a node in

G and c ∈ C(n), then X |= c(µ(n)).

Example 2.3. Document X1 satisfies G1. To see this
observe that the following mapping is a generation mapping:
µ(r) = 1, µ(a) = 4, µ(b) = 9, µ(e) = 11. (We use r, a, etc.,
to indicate the node in G1 labeled r, a, etc.)

Remark 1. The simplest type of GxBE command is an

XML document, without count constraints. Such a com-

mand is an example of desired output, and the result of doc-

ument generation will be an arbitrary document (conforming

to the given DTD) that contains the GxBE command.

2.4 DTDs
In addition to supplying a GxBE command, the user also

supplies a DTD, which states the desired schema of the tar-
get document. To be consistent with our presentation, we
consider DTDs without attributes. Our DTDs are more ex-
pressive than standard DTDs in that we allow labels to be
associated with a minimum and maximum number of occur-
rences.

A DTD D is a set of labels L, each of which is associated
with an element description. Formally, an element descrip-
tion has the form

e ::= S | l
j..k | e, e | e|e | e? | e∗ | empty

We use S to denote a string value, i.e., PCDATA, and l

to denote a label in L. We use lj..k to indicate that l must
appear at least j times and at most k times. Note that k can
be ∞, in which case the number of times that l appears in
unbounded. When j = k = 1, we will omit the superscripts.
The “,” operator as in e1, e2 requires that e1 appears, and
then e2 appears afterwards. The “|” operator is used to
denote exclusive disjunction, i.e., e1|e2 requires that either
e1 or e2 (but not both) appears. We use e1? and e2∗ to
denote that e1 may appear at most one time, and that e2

can appear any number of times. Finally, empty defines an
empty element with no children.

Given a label l, we will use e(l) to denote the element
description of l. We will also use the notation l ← e to
indicate that e is the element description of l. Satisfaction
of an document X with respect to a DTD D is defined in
the obvious way, i.e., (1) all the nodes in X must be labeled
with labels from L and (2) the children of each node must
satisfy the element description of its label.

There are DTDs for which no finite satisfying documents
exist. For example, this is the case if the DTD contains the
element description e(r) = r. Without loss of generality,
we will not consider such DTDs in this paper. We note that
such unsatisfiable DTDs can be recognized in linear time [3].

We are interested in two special types of DTDs. A DTD
is disjunction-free if it does not use the operator |. A DTD
is nonrecursive if all satisfying documents have bounded
depth.

Example 2.4. The DTD D, for labels L = {r, a, b, c, d, e}
appears below.

r ← (a|b)∗ c ← d

a ← b
0..4

, c
0..2

, e d ← S

b ← c
0..3

, d? e ← S

Observe that D is nonrecursive, but is not disjunction-free.
Let D1 be the adaption of D in which the definition of r is
replaced with the following definition: r ← (a?, b?)∗. The
DTD D1 is disjunction-free.

The document X1 satisfies both D and D1.

2.5 Graph Representation of a DTD
For our algorithms later on, it is useful to model a DTD

as a graph, consisting of a Glushkov automaton for each
element definition, and edges connecting these automata.
We discuss this modeling.

In the following, we assume that D is a DTD over the la-
bels L and l ∈ L. There is a well-known process to transform
a regular expression, such as e(l), into a Glushkov automa-
ton [6]. We discuss this process briefly here.

We start by annotating the labels appearing in e(l) so
that the same label will not appear twice in the element
description. Formally, we use ê(l) to denote the annotated

version of e(l) in which the k-th label g is replaced with gk
l .

As an example, consider the DTD D1 from Example 2.4.
Then e(r) is (a?, b?)∗ and ê(r) is (a1

r?, b
2
r?)∗.

The language of ê(l) no longer consists of words over the

labels in L. We use L̂l to denote the labels appearing in
the annotated version of e(l), i.e., in ê(l). For example,

L̂r = {a1
r, b

2
r}.

The Glushkov automaton for l, denoted A(l), contains the

states {q0
l }∪ L̂l,

3 where q0
l is the starting state of A(l). The

edges in A(l) are defined as follows:

• There is an edge from q0
l to each state gk

l such that
there is a word in the language over L̂l that satisfies
ê(l) and starts with gk

l .

• There is an edge from a state gk
l to a state h

j
l if there

is a word in the language over L̂l that satisfies ê(l) and
contains the sequence of letters gk

l , h
j
l .

A state gk
l is a final state if there is a word in the lan-

guage over L̂l that ends with the letter gk
l . Unlike standard

Glushkov automata, we weight the self-loops in our automa-
tons. When such a self-loop results from a definition of the
type lj..k, we weight the self-loop with k. Other self-loops
are weighted with ∞. Intuitively, the weight corresponds to
the number of legal consecutive traversals of the loop.

Example 2.5. The Glushkov automata for each of the la-
bels in D1 appear in Figure 5. For the meantime, the dotted
arrows should be ignored—they will be discussed later.

Note how optional elements (i.e., elements which may also
not appear) create additional edges, e.g, the edge from q0

a

to c2
a in A(a). Note also how stars give rise to cycles in

the automaton, e.g., the cycle between a1
r and b2

r in A(r).
Finally, the automatons have self-cycles, e.g., that of b1

a,

3We do not make a notational distinction between the labels
in L̂l and the states in A(l), since such a distinction would
be cumbersome.

493

d-edge

final state

b-edge

Legend

q0
r a1

r b2
r

q0
b c1

b

q0
c d1

c q0
d q0

e

A(r)

A(a)

A(b)

A(c)

q0
a b1

a c2
a e3

a

4 2

∞ ∞

d2
b

3

A(d) A(e)

Figure 5: The DTD graph for D1. Only some of the

d-edges have been drawn, to avoid clutter.

which arises from the definition b0..4. Observe that this loop
has weight 4.

The final states of each automaton are circled. For exam-
ple, in A(r) all states are final states, and in A(a) only e3

a

is a final state.

We now define the DTD graph G(D) which contains, as
nodes, all states that may appear in the Glushkov automa-
ton of any of the element descriptions, along with some
auxiliary nodes. Formally, the nodes of G(D) are L̂ =
S

l∈L L̂l ∪ {l1⊥}. Note that l1⊥ is used to simulate an up-
per level definition in which l is the only element allowed.
This corresponds to the outermost nesting level of an XML
document.

We now define the edges of G(D). Consider two states gi
l

and h
j

l′
in L̂. There are two distinct ways in which these

states may be connected:

• h
j

l′
is a breadth-child (or b-child for short) of gi

l if l′ = l

and there is an edge in A(l) from gi
l to h

j

l′
. In other

words, b-edges are exactly those edges appearing in
the automata, i.e., legal transitions when traversing
an XML document breadth-wise.

• h
j

l′
is a depth-child (or d-child for short) of gi

l if l′ = g,

i.e., if h
j

l′
is any state in A(g). Intuitively, our d-edges

simply correspond to legal transitions when traversing
an XML document depth-wise.

In Figure 5 b-edges are drawn as solid arrows and d-edges
are dotted arrows. Only some of the d-edges appear, to
avoid cluttering the figure.

Example 2.6. Consider G(D1), appearing in Figure 5.
Observe that a1

r and b2
r are both b-children of q0

r . Observe
also that all states in A(a) are d-children of a1

r.

We will refer to nodes in G(D) as states, and use α, β

to denote states. If α represents the state gi
l , then we will

use lab(α) to denote g. Thus, for example, if α is c2
a, then

lab(α) = c.

A Glushkov automaton is unique in that there is no need
to explicitly write a label on any of the edges. An edge
from α to β is implicitly labeled with lab(β). We say that a
Glushkov automaton is deterministic if does not contain two
b-edges (α, β) and (α, γ) such that lab(β) = lab(γ). Legal
DTDs must be 1-unambiguous. It is well known that this im-
plies that element descriptions have deterministic Glushkov
automatons (that are of size linear in the size of the ex-
pressions and can be efficiently generated). This is not an
assumption that we make but rather an actual existing re-
quirement of DTDs.

3. PROBLEMS OF INTEREST
We now formally define our main problem of interest,

called the document generation problem. In the following,
we use X |= (G, D) to indicate that X satisfies both G and
D.

Problem 1 (Doc. Generation). Let D be a DTD and

let G be a GxBE command. Generate a document X such

that X |= (G, D), if such a document exists. Otherwise,

output that G and D are mutually unsatisfiable.

To solve the document generation problem, one needs to
create a single document satisfying the constraints. We will
discuss some variations of this problem later on, such as find-
ing a bounded-sized document or generating several docu-
ment satisfying G and D. However, we will soon see that
even the problem of creating a single document satisfying G

and D is already nontrivial.
Our goal is not only to generate a satisfying document X,

but more precisely, we would like to generate X efficiently.
Unfortunately, we cannot use polynomial time as a yardstick
of efficiency, since X may be exponential in the size of G and
D, and thus, simply outputting X may take exponential
time. To see why, consider the GxBE command G:

<r gxbe=”count(⇓) ≥ 1000”/>

Any document X satisfying G will be exponentially larger
than G, since it will contain at least 1000 nodes (and G

uses the number 1000 in binary notation). Even if the num-
bers in the GxBE command were written in unary notation,
X might still be exponential in the size of the input. In
particular, this may hold since D can concisely describe a
document that is of exponential size, e.g., if D is defined as:

r ← a1, a1 an−1 ← an, an

a1 ← a2, a2 an ← S

. . .

Any document satisfying this DTD will contain 2i occur-
rences of each node ai.

To overcome this problem, we will adopt input-output
complexity. In other words, our aim is to develop a system
that returns a document that satisfies both the DTD and
the GxBE command in polynomial time in the size of the
input and the output.

When measuring the size of the input, we use an adapta-
tion of data complexity [14]. In particular, we allow DTDs
and GxBE commands to be of arbitrary size. However, we
assume that each count constraint in a GxBE command is
of bounded size. Note that there may be arbitrarily many
count constraints. Note also that we do not assume a bound

494

on the size of the numbers within the count constraints, but
rather only on the number of axes. Since we expect count-
constraints in a GxBE command to correspond to queries in
a workload, assuming boundedness on the constraint size is
a natural adaption of the commonly made assumption that
queries are small, and thus, bounded.

Unfortunately, even with respect to the complexity class
of interest (i.e., input-output complexity, with bounded-size
count constraints), the document generation problem may
be intractable. This stems from the fact that document
generation is strictly harder than the following satisfiabil-

ity problem, which is often difficult in itself. (Note that for
satisfiability, we always consider the measure of input com-
plexity, since the output is only a single bit.)

Problem 2 (Doc. Satisfiability). Let D be a DTD

and let G be a GxBE command. Determine whether there

exists a document X such that X |= (G, D).

It is possible for G and D to be contradictory, e.g., if
G requires the presence of some label or path not allowed
(enough times) by D. Before looking for an efficient solution
to the document generation problem, we must rule out cer-
tain combinations of DTDs and GxBE commands for which
satisfiability is intractable, even when all count constraints
are of bounded depth.

Theorem 3.1 shows that satisfiability is intractable, even
for very restricted count constraints, if the DTD may contain
disjunctions.

Theorem 3.1. The satisfiability problem is NP-hard for

nonrecursive disjunctive DTDs and GxBE commands, even

if the GxBE command does not use the operator ⇓. If the

DTD does not contain any stars (“∗”), then the satisfiability

problem is NP-complete.

Due to Theorem 3.1, we will only consider DTDs without
disjunctions hereafter.

Remark 2. Discarding all DTDs which contain disjunc-

tions may seem a bit harsh. Therefore, we note here that

there is a common form of disjunction that can easily be

eliminated from a DTD, to yield a DTD without disjunction

(and thus, which can be used for document generation). This

is the case for disjunction of the form (l1| · · · |lk)∗ which may

be equivalently rewritten as (l1?, . . . , lk?)∗, without changing

the set of satisfying documents.

For example, D from Example 2.4 contains this form of

disjunction, and is changed to D1, as in the above rule.

Anecdotally, the DTDs of the DBLP and RSS also contain

only disjunction of this form.

4. DOCUMENT GENERATION
In this section we show how to solve the document gener-

ation problem, when the DTD is disjunction-free. For this
purpose, we present the algorithm Generate(G, D, n) (Fig-
ure 6). Note that Generate uses several sub-procedures
that are introduced later on, and thus, will become clearer
afterwards. However, we present here an intuitive explana-
tion of Generate before drilling down to the details.

The procedure Generate considers each node n of G, in
an in-order ordering. A document X1 is created (Lines 1–4)
that satisfies all count-constraints associated with n. Then,

Generate(G, D, n)

1 X1 ← MakeNode(lab(n))
2 foreach count(p) ≥ k ∈ C(n)
3 do X ← GenSatCon((NF(lab(n), {p}), D, lab(n)1⊥, k)
4 X1 ← Merge(X1, X, D)
5 X2 ← MakeNode(lab(n))
6 (l1, . . . , lm; φ) ← GenSatWord(D, n)
7 for i ← 1 to m

8 do if li is not in the image of φ

9 then X ← GenArbitraryDoc(D, li)
10 else X ← Generate(G, D, nφ−1(i))
11 AddNextChild(X2, X)
12 return Merge(X1, X2, D)

Figure 6: Algorithm for document generation.

a document X2 is created (Lines 5–11) that satisfies the con-
straints implied by the children of n is created. Finally, X1

and X2 are merged (Line 12) to derive a document that sat-
isfies both the constraints of n, and the constraints defined
by the children of n. To generate a document satisfying G

and D, Generate should be called with G, D and the root
of G.

Now, we review Generate with a bit more detail.

Generating a Document Satisfyingc(n) (Lines 1–4).
Any document satisfying the constraints of n, must be rooted
at the label lab(n). We create a node with this label us-
ing MakeNode(lab(n)). Next, we iterate over each count-
constraint c associated with n, and create a document satis-
fying c, by calling the procedure GenSatCon. These doc-
uments are merged together using the procedure Merge.
The procedures GenSatCon and Merge are rather intri-
cate and are discussed in detail later on.

Generating a Document Satisfying the Children ofn

(Lines 5–11).Once again, we start by creating a node with
the label lab(n). Next, we would like to create a series of
labels in the language defined by e(lab(n)) that will allow
us to satisfy all children of n.

Let n1 ≺ · · · ≺ nk be the children of n. The procedure
GenSatWord(D, n) returns a series of labels l1, . . . , lm,
along with a mapping φ : {1, . . . , k} → {1, . . . , m} that sat-
isfies several conditions:

• l1, . . . , lm is a word in the language e(lab(n));

• φ is injective;

• φ is consistent with respect to labels, φ maps each i to
a label equal to lab(ni);

• φ is nondecreasing, i.e., if i < j then φ(i) < φ(j).

Intuitively, the first requirement ensures that l1, . . . , lm is
in the language defined by the DTD, and the remaining
requirements ensure that there will be a generation mapping
µ from the nodes of the GxBE command to those of the
generated document, as required.

Due to lack of space, we do not provide all details of
GenSatWord. However, it is not difficult to implement
this procedure. To see why, let L be the set of all labels in
D. Let L| be the disjunction of all labels in L. Consider
the regular language defined by the intersection of e(lab(n))

495

21

c

b

d d

c

d

c

e

d

c d

c

d

cb

a

dc

b b e

d

b
8

14

a4

20

11109

18

ddc

b

d

c

b e

d d

b

22

8

14

a4

19

13

20

c

11109

17 1816

(a) (b)

(c)

c

d

15

Figure 7: Documents created during Generate.

and

(L|)∗, lab(n1), (L|)∗, . . . , (L|)∗, lab(nk), (L|) ∗ .

Any word in this intersection is an appropriate return value
for GenSatWord.

Finally, we iterate over the labels li returned by the pro-
cedure GenSatWord. If li does not correspond to a child
of n, then we generate an arbitrary document rooted at li,
satisfying D, by calling GenArbitraryDoc.4 Otherwise,
by recursively calling the procedure Generate, we generate
a document satisfying the node nφ−1(i) in G (Line 10). In
both cases, these documents are added as children to X2,
using the procedure AddNextChild.

Remark 3. The procedure Generate will work properly

and efficiently only if the pair G, D are satisfiable. Thus,

this must be checked before calling Generate.5

Remark 4. GenSatWord and GenArbitraryDoc can

be implemented in various ways, as long as they return ap-

propriate output. Thus, these algorithms add an element

of nondeterminism to Generate. We will see later that

GenSatCon (which generates documents satisfying a con-

straint) is also nondeterministic, in a fashion. The non-

determinism in our algorithms is useful since it allows us

to generate possibly many different documents satisfying the

given GxBE command and DTD. For example, if the al-

gorithm GenArbitraryDoc creates a random document,

then calling Generate several times will yield new docu-

ments satisfying the inputs.

Example 4.1. Consider the GxBE command G1, and the
DTD D1. Suppose that we call Generate with the node in
G1 labeled a. In the first part of the algorithm (Lines 1–4),
a document will be create that satisfies the count constraint
count(⇓[b]/⇓[b, c]/↓[d]) ≥ 5. There are many different docu-
ments that can be created. See Figure 7 (a) and (b) for two
examples of such documents.

In the second part of the algorithm (Lines 5–11), we must
create a word in the language of e(a) that has the labels b

and e, in that order. This is because the node labeled a in G1

4This algorithm is very easy to implement. The details of
this algorithm are omitted due to lack of space.
5We omit the details on how to check satisfiability, since the
basic procedure is very similar to that needed for document
generation.

has exactly the children b and then e. There are many words
that in the language of e(a) that satisfy this requirement,
such as be, bbbe, bce, etc. Suppose, for the sake of this
example, that GenSatWord returns bbbe. The procedure
GenSatWord also returns a mapping φ that demonstrates
how the children of a in G1 are associated with bbbe. There
are three different possible mappings in this case, i.e., the
node b in G1 may be associated with any of the three b-s in
the word. Suppose that φ associates the b from G1 with the
second b in bbbe, and φ associates the e in G1 with the e in
bbbe.

Now, during the loop of Line 7, i iterates from 1 to 4 (the
length of bbbe). When i = 1, an arbitrary document rooted
at b is returned, since the first b is not in the image of φ.
When i = 2, a recursive call will be made with Generate
to generate a document satisfying all constraints of b in G1,
since the second b was in the image of φ. When i = 3,
another arbitrary document rooted at b will be created. Fi-
nally, when i = 4, the procedure Generate will be called
again for the node e in G1. Thus, at the end of the second
part of the algorithm, the document in Figure 7 (c) may
have been generated.

Finally, the documents created in the first two stages of
the algorithm will be merged. If Figure 7 (a) and Figure 7 (c)
were generated in the first and second stages, respectively,
the result will be the subtree rooted at Node 4 of X1 (Fig-
ure 3).

Note that the document X1 can itself be produced by
Generate, when called with the root of G1. This partic-
ular document would be returned if (1) the subtree rooted
at Node 4 is produced to satisfy the a node of G1 (in the
first stage of the algorithm), (2) the word aba, with map-
ping φ that maps the a of G1 to the third a in aba is pro-
duced (in the second stage of the algorithm) and (3) the
subtrees rooted at Nodes 2 and 3 are returned by calls to
GenArbitraryDoc.

It can be shown that the algorithm Generate has the
following properties.

Theorem 4.2. Given a disjunction-free DTD D and a

GxBE command G, Generate returns a document X such

that X |= (D, G) (if one such document exists) in polyno-

mial time in the size of the input and output, if each count

constraint in G is of bounded size. Moreover, any document

X with the above properties can be returned by Generate,

if the appropriate choices are made.

The proof of Theorem 4.2 is omitted. However, the intuition
behind its correctness will be discussed below, and in the
following section.

The two most difficult aspects of Generate that must
still be clarified are:

• Issue 1: How are documents merged, i.e., how does the
Merge procedure (Lines 4 and 12) work? Note merg-
ing is nontrivial since we must ensure that the resulting
document still satisfies the DTD and constraints.

• Issue 2: How can we generate a document that satisfies
a given constraint, i.e., how is the procedure GenSat-
Con of Line 3 actually implemented?

The first issue is addressed briefly below. The second issue
is quite intricate, and is the subject of the next section.

496

Merging Documents.Given documents X1 and X2, and
a DTD D, the procedure Merge(X1, X2, D) returns a doc-
ument X such that

• X satisfies D;

• X contains X1 and X2. In particular, it is possible to
remove subtrees from X to derive X1 (or X2).

For example, as discussed above, the subtree rooted at Node 4
of X1, is a merge of Figure 7 (a) and Figure 7 (c).

The count constraints considered thus far are monotonic.
Intuitively, this means that if c is satisfied by the root of X1,
then it is satisfied by the root of any document containing X1

(and rooted at the same node as X1). Thus, after merging
documents X1 and X2, we derive a document that satisfies
all constraints satisfied by X1 or X2.

Due to space limitations, we do not give all details of the
procedure Merge. However, there are two questions that
immediately arise in regard to Merge that we answer.

• Does there always exist a document X containing X1

and X2 that conforms to D? Note first that the doc-
ument X must be rooted at the same label as X1 and
X2. Thus, such a document can exist only if X1 and
X2 have the same label at their roots. This is indeed
the only case in which Merge is called.

Given that X1 and X2 have the same label at their
roots, the answer to our question is positive, since D is
disjunction-free. Disjunction-free regular expressions
have the property that given two words in a language,
it is always possible to find a third word in the language
that contains both words.

Note that if D had disjunctions, then there may very
well not be a result for merge, e.g., if D had the ele-
ment definition r ← a|b, then it would not be possible
to merge two documents, one containing a and one
containing b.

• How do we find a document X that contains X1 and

X2? Having established that such a document exists,
we still must be able to find X. In our case, this is
not difficult, due to the fact that all element defini-
tions correspond to deterministic Glushkov automata
(as discussed above). A deterministic Glushkov au-
tomaton is unique in the following manner. Let X1

be a document. Then, there is a unique state α ∈ L̂
that corresponds to each node n ∈ X. This state can
easily be found. The ability to find such states allows
Merge to be defined in a fashion that is very similar
to a standard algorithm for merging sorted lists.

5. GENERATING A DOCUMENT SATISFY-
ING A COUNT-CONSTRAINT

We now consider the problem of generating a document
that satisfies a given constraint, i.e., the implementation of
GenSatCon. To simplify the presentation, we assume in
this section that there are no nested count qualifiers and that
the DTD is nonrecursive. Both restrictions can be lifted, as
discussed at the end of this section. To further simplify the
presentation, we will assume without loss of generality that
each axis has exactly one set of labels as a qualifier, i.e., that
our count-constraints have the form

count(A1[L1]/A2[L2]/ · · · /An[Ln]) ≥ k

GenSatCon(P, D, α, k)

1 if ǫ ∈ P

2 then k ← k − 1
3 if k ≤ 0
4 then return GenArbitraryDoc(D, lab(α))
5 X ← MakeNode(lab(α))
6 Choose a legal path β1, . . . , βm in A(lab(α)) and

numbers k1, . . . , km such that:
(1) 0 ≤ ki ≤ MaxSat(D, lab(βi), NFC(lab(βi), P)),
(2)

Pm

i=1 ki = k

7 for i ← 1 to m

8 do X ′ ← GenSatCon(NFC(lab(βi), P), D, βi, ki)
9 AddNextChild(X, X ′)

10 return X

Figure 8: An algorithm that generates a document

satisfying a constraint count(p) ≥ k. Should be called

with GenSatCon(NF(l, {p}), D, l1⊥, k).

where Ai ∈ {↓,⇓} and Li is a set of labels.6

To ease our notation, given an XPath expression p =
A1[L1]/A2[L2]/ · · · /An[Ln], we will use Prefix(p) to denote
A1[L1] and Suffix(p) to denote A2[L2]/ · · · /An[Ln]. For the
special case that n = 1, we write Suffix(p) = ǫ, where ǫ is a
special symbol denoting the empty path.

The procedure GenSatCon appears in Figure 8. The goal
of this procedure is to create a document, rooted at a speci-
fied label, that satisfies a given XPath expression a specified
number of times. For reasons that will become clearer later,
GenSatCon is defined in a more general fashion, and does
not get a single XPath expression p, but rather a set P of
XPath expressions. The goal is to create a document that
has at least a given number of nodes, each of which satisfies
at least one p ∈ P .

GenSatCon receives four parameters: a set of XPath
expressions P , a DTD D, a state α in the DTD graph, and
the number of nodes k that should satisfy expressions in
P . When we call GenSatCon from Generate we desire to
create a document rooted at the label lab(n) of a GxBE node
n, satisfying a count constraint count(p) ≥ k. We provide
the initial parameters:

• set of XPath expressions NF(lab(n), {p}): This con-
tains p, and additional XPath expressions, discussed
in detail later;

• the DTD D;

• the state lab(n)1⊥, which is used (as discussed in Sec-
tion 2.5) to simulate an upper level root containing a
node with label l;

• the number k.

Intuitively, the algorithm runs as follows. First, we check
if the empty path ǫ is in P . If so, then the root node created
will certainly satisfy P one time, and we decrease k by 1. If
k ≤ 0, then there is no requirement to satisfy P . Hence, an
arbitrary document can be generated and returned (Line 4).

Otherwise, if k > 0 (Lines 5–10), we must produce a doc-
ument that satisfies expressions in P at least k times. For
this purpose, we start by creating a node with lab(α). This

6The set Li may contain all labels in the DTD, if no stricter
constraint is desired.

497

node will be the root of the document that we create. Next,
we choose the children of the root, by choosing a legal path

in the automaton A(lab(α)). A legal path is any path that
starts at a node that is a neighbor of the starting state,
reaches a final state, and does not traverse any self-loop
more times consecutively, than the number appearing on
the self-loop. Every legal path in A(lab(α)) corresponds to
a word in e(lab(α)) and vice-versa. We will be creating a
subtree for each state βi in the legal path chosen.

Not every legal path will enable us to satisfy P a total of k

times. Thus, we must make sure that the legal path chosen
will allow this. For this purpose, when we choose our legal
path β1, . . . , βm, we also choose numbers k1, . . . , km such
that

Pk

i=1 = k and it is possible to create a subtree rooted
at βi, while satisfying P at least ki times. (Formally, this
is written as ki ≤ MaxSat(D, lab(βi), NFC(lab(βi), P)) and
is discussed in detail below.) Intuitively, the numbers ki

are used to “break up” the value k to determine how the
k satisfying nodes will be distributed among the subtrees
represented by β1, . . . , βm. Then, a recursive call is made
to GenSatCon to create subtrees rooted at the label of βi,
with ki nodes satisfying P .

We now consider the algorithm in more detail. The issues
that must be clarified are as follows:

• Why does GenSatCon receive a set of XPath expres-
sions P , instead of a single XPath expression? Recall
that the goal of GenSatCon is to create a document
satisfying a single XPath expression p at least k times.
Thus, it might not yet be clear why GenSatCon gets
a set of XPath expressions, and which sets exactly are
considered.

• How do we determine the maximum number of times
that an XPath expression can be satisfied by a subtree,
i.e., what is MaxSat(D, lab(βi), NFC(lab(βi), P)), and
how is it calculated?

We discuss each of these issues, in turn, below.

Sets of XPath Expressions.Recall that our goal is to cre-
ate a document, rooted at a label l, that satisfies a count-
constraint count(p) ≥ k. In other words, we desire to create
a document X, rooted at a node r(X), with label l, such that
X contains (at least) k nodes n for which p |= (r(X), n).

Sometimes, satisfying subexpressions of p at a label l im-
mediately imply that p itself is satisfied. For example, con-
sider the XPath expression p = ⇓[b]/⇓[b, c]/↓[d]. In order to
satisfy p in a document rooted at b, one may have a descen-
dent n1 labeled b, with a descendent n2 labeled b or c, with
a child n3 labeled d. Observe that finding descendent nodes
n1 and n2 is not strictly necessary, since the root itself is
labeled b, and therefore the root satisfies the first two steps
of p.

To formalize the above reasoning, we define the l-normal
form of a set of XPath expressions. Given a set P , the
l-normal form of P , denoted NF(l, P), is derived by repeat-
ably applying the following rule while applicable:

If p ∈ P and Prefix(p) = ⇓[L] where l ∈ L,
Then add Suffix(p) to P .

We say that P is in l-normal form if NF(l, P) = P .
For example, NF(b, {⇓[b]/⇓[b, c]/↓[d]}) is the set contain-

ing the three XPath expressions

⇓[b]/⇓[b, c]/↓[d] ⇓[b, c]/↓[d] ↓[d]

As another example, NF(d, {⇓[d, e]}) = {⇓[d, e], ǫ}.
When we first call GenSatCon, to produce a document

rooted at a label l satisfying p at least k times, we provide the
set NF(l, {p}). This is because it is sufficient to satisfy any
XPath expression in NF(l, {p}) at least k times. Formally,
this follows from the following result.

Proposition 5.1. Let X be a document rooted at a node

labeled l and P be a set of XPath expressions. Let n be a

node in X. Then,

∃p ∈ P s.t. p |= (r(X), n) ⇐⇒

∃p ∈ NF(l, P) s.t. p |= (r(X), n)

During the algorithm GenSatCon, we recurse on chil-
dren of the current state. Intuitively, we wish to find k

nodes satisfying P , by generating children and then finding
descendents of these children that will satisfy P . During our
recursion, we must pass to the algorithm the subexpressions
that must be satisfied by children nodes, in order for the
expressions in P to be satisfied by the root. Thus, given a
child label l, we define NFC(l, P) as the set NF(l, S1 ∪ S2)
where

S1 = {p ∈ P | Prefix(p) = ⇓[L]}

S2 = {Suffix(p) | p ∈ P ∧ Prefix(p) = ↓[L] ∧ l ∈ L}

Satisfying any expression in NF(l, S1 ∪ S2) at a child l, will
imply satisfaction of an expression of P at the parent node.
As an optimization step, we remove from NFC(l, P), all path
expressions with prefix ⇓[L] for which l has no d-reachable
descendent in D that is in L, as well as all path expres-
sions with prefix ↓[L] for which l has no d-child in L. These
are path expressions which will never be satisfied by any
descendent of L.

Example 5.2. Consider the set P1 = {⇓[b]/⇓[b, c]/↓[d]}.
For the GxBE G1, we would like to satisfy this constraint
5 times at a node labeled a. For this purpose, we will
have to create children for the a node, and satisfy appro-
priate variations of P1 at each of these children. Recall
that a is defined as b0..4, c0..2, e. Observe that NFC(b, P1) =
{⇓[b, c]/↓[d], ↓[d]}, since we will compute NF(b, P1), i.e.,

{⇓[b]/⇓[b, c]/↓[d], ⇓[b, c]/↓[d], ↓[d]} ,

and then discard the first expression since b has no descen-
dents in D1 that have label b. We also have that NFC(c, P1) =
NFC(e, P1) = ∅.

Let P2 = NFC(b, P1). Observe that NFC(c, P2) = {↓[d]}
and NFC(d, P2) = {ǫ}.

The Value MaxSat.Our algorithm for generation needs
the ability to determine the maximum number of times that
an XPath expression can be satisfied. Formally, let D be a
DTD, l be a label and P be a set of XPath expressions. We
define MaxSat(D, l, P) as follows:

max{CntSatX(r(X), P) | X |= D, l(r(X)) = l} ,

where r(X) is the root of X and

CntSatX(n, P) ::=
˛

˛{n′ |
W

p∈P X |= p(n, n′)}
˛

˛ .

498

MaxSat(D1, e, ∅) = 0

MaxSat(D1, a, {⇓[b]/⇓[b, c]/↓[d]}) = 16

MaxSat(D1, c, {↓[d]}) = 1

MaxSat(D1, b, {⇓[b, c]/↓[d], ↓[d]}) = 4

MaxSat(D1, d, {ǫ}) = 1

MaxSat(D1, c, ∅) = 0

Figure 9: Pictorial representation of computing

MaxSat(D1, a, {⇓[b]/⇓[b, c]/↓[d]}).

Intuitively, MaxSat(D, l, P) is the maximum number of nodes
that can satisfy at least one of the path expressions in P in
any document X that satisfies D and is rooted at l. Since
there may be infinitely many such documents X, there may
be no maximum to the above set, i.e., it may be possible to
satisfy P an arbitrary number of times. In such a case, we
write MaxSat(D, l, P) = ∞. Note that usually

MaxSat(D, l, P) 6=
X

p∈P

MaxSat(D, l, {p}) ,

since the same node may satisfy several XPath expressions,
but it is only counted once in the expression of the left-hand
side.

Example 5.3. Consider the sets

P1 = {⇓[b, c]/↓[d]} P2 = {⇓[b]/⇓[b, c]/↓[d]}

and P3 = P1 ∪ P2.
Suppose we wish to compute MaxSat(D1, a, Pi) for i ≤ 3,

where D1 is from Example 2.4. We have MaxSat(D1, a, P1) =
18. To see this, note that there can be 4 d children of b de-
scendents (since there can be 4 b descendents of a, and each
can have one d child). In addition, there can be 14 d children
of c descendents, since there can be 2 c children for a and
4 × 3 = 12 c descendents of a (and each c can have a single
d). The value of MaxSat(D1, a, P2) is lower, and is only 16,
since c children of a no longer produce d nodes that satisfy
the XPath expression. Finally, MaxSat(D1, a, P3) = 18.

As a final example, observe that MaxSat(D1, r, P3) = ∞
since there may be arbitrarily many d descendents that sat-
isfy the XPath expressions, due to the “∗” in e(r).

Now, computing MaxSat(D, l, P) proceeds as follows. Let
A(l) be the Glushkov automaton for l. Consider a legal path
~β = β1, . . . , βk. Let li be lab(βi). The weight of this path,

denoted w(D, P, ~β), is simply the sum

k
X

i=1

MaxSat(D, li, NFC(li, P)) .

Let Bl be the set of all legal paths in A(l).
The following lemma states that MaxSat(D, l, P) is ex-

actly the maximal weight of any legal path in A(l), if ǫ 6∈ P

and is one more than this value if ǫ ∈ P . (The extra value
of 1 is derived since the root itself is a node satisfying P .)

Lemma 5.4. Let P be a set of XPath expressions in l-

normal form. Let D be a DTD. Then,

MaxSat(D, l, P) =

max {w(D, P, ~β) | ~β ∈ Bl} ǫ 6∈ P

max {w(D, P, ~β) | ~β ∈ Bl} + 1 ǫ ∈ P

Lemma 5.4 provides us with a method to compute the
value MaxSat(D, l, P). In particular, if D is nonrecursive,
then MaxSat(D, l, P) can be computed by reducing to com-
putation at d-child labels. (We discuss the recursive case
at the end of the section.) We note that it is not necessary
to explicitly consider all legal paths, in order to find the
maximum. The largest weight can be found using a sim-
ple graph traversal. Roughly speaking, if there is a state
β which is in a b-cycle with an edge marked ∞ or with
an unmarked edge, for which MaxSat(D, b, NFC(b, P)) ≥ 1,
then MaxSat(D, l, P) = ∞. Otherwise, the path with the
greatest weight can be found by traversing the graph of A(l)
according to the indices of the states. Exact details are omit-
ted due to lack of space.

Example 5.5. Figure 9 presents a pictorial representa-
tion of computing MaxSat(D1, a, {⇓[b]/⇓[b, c]/↓[d]}). The
values are computed by a simple analysis of the legal path
with greatest weight, along with the values at children nodes,
e.g., the value of MaxSat(D1, b, {⇓[b, c]/↓[d], ↓[d]}) is 4, since
the value at c and d are each 1, and b can have 3 c children
and one d child.

There are two important things to note: First, we may
compute the value MaxSat more than one time for the same
label, each time with a different set P . This occurs for
the label c. Second, we may need the same computation
several times during the total evaluation. This occurs with
MaxSat(D1, d, {ǫ}) which is needed twice. We only compute
each value once, by using memoization to avoid repeated
computations.

Throughout the execution of GenSatCon, every XPath
expressions in the argument of MaxSat is always a subex-
pression of the expression p originally appearing in the GxBE
command. In the worst case, we must compute MaxSat for
each subset of subexpressions of p, at each label l. By our
assumption that XPath expressions are of bounded length,
the computation of MaxSat can be performed in polynomial
time.

After explaining all components of GenSatCon, we demon-
strate its execution.

Example 5.6. In our running example, the procedure
GenSatCon will be called for the node a in G1, with the
state a1

⊥, the set of path expressions {⇓[b]/⇓[b, c]/↓[d]}, along
with the value 5. This procedure can return various results,
depending on how the legal path and numbers are chosen in
Line 6 in GenSatCon.

Consider the document in Figure 7 (a). For this document
to be returned, GenSatCon must choose the legal path

b
1
a, b

1
a, b

1
a, e

3
a

in A(a), along with the numbers 1, 2, 2, 0. A recursive call
will be made with each of the four states in the path.

For the first b1
a, the recursive call will be made with the

number 1 and the set of XPath expressions {⇓[b, c]/↓[d], ↓[d]}.
If GenSatCon then chooses the legal path c1

b with number

499

1, we will end up returning the subtree of Node 8 (in Fig-
ure 7 (a)) for the first b1

a. Similar call for the remaining
states in the legal path will allow us to create exactly Fig-
ure 7 (a).

It remains to relax the two assumptions made at the be-
ginning of the section, i.e., that there are no nested count
qualifiers and that the DTD is nonrecursive. We discuss
how computation of MaxSat can proceed if there are nested
count qualifiers and D is recursive. The extensions to Gen-
SatCon to deal with these cases are similar.
• Recursive DTDs: As presented, we compute MaxSat

for a particular label l and set P by recursively computing
MaxSat at child labels l′ of l. However, this may imply
an infinite execution if the DTD is recursive (since two la-
bels may be both ancestors and descendents one of another).
We observe that such infinite execution may occur only if we
are computing MaxSat when P contains only path expres-
sions that begin with ⇓. (Otherwise, the recursive calls must
change P , and shorten the path expressions, and eventually
terminate.)
By careful analysis one can derive that there are two pos-
sible cases. First, it is possible that for all p ∈ P , there is
no way to generate a node satisfying p. Second, it is pos-
sible that there is a p ∈ P for which a descendent can be
generated that satisfies p. In the former case, the value 0
can be immediately returned. In the latter case, due to the
recursiveness of the DTD, we may satisfy p infinitely many
times, and thus ∞ should be returned. By careful prepro-
cessing it is possible to differentiate between these two cases
and immediately return 0 or ∞, as required.
• Nested Count Qualifications: Consider XPath ex-

pressions that contain nested count qualifiers. In this case
MaxSat can be computed in a bottom-up fashion. Specif-
ically, given a nested qualifier [count(p′) ≥ k′] in a path
expression p, we first compute MaxSat(D, l′, NF(l′, {p′})),
for every label l′. Then, we can replace [count(p′)θk′] with
[l1, . . . , lj] where li are the labels for which

MaxSat(D, li, {p
′}) ≥ k

′
,

i.e., the labels for which the nested count qualification was
satisfied. Hence, by recursively computing MaxSat for nested
count qualifiers, we will eventually derive an XPath expres-
sion with no nested count qualifiers.

Using the ideas presented in this section, the following
result can be shown.

Theorem 5.7. Given a disjunction-free DTD D and a

count constraint c, GenSatCon returns a document X sat-

isfying D such that X |= c(r(X)) (if one exists) in poly-

nomial time in the size of the input and output, if c is of

bounded size. Moreover, any document X with the above

properties can be returned by GenSatCon, if the appropri-

ate choices are made.

6. EXTENSIONS
The language of GxBE commands considered thus far al-

lows for XPath expressions with the standard operators ⇓
and ↓, along with the operator ≥. In this section we consider
important extensions to our language and show how these
extensions affect the tractability of document generation.

6.1 Constraints with “≤”
It is useful for the number of nodes satisfying an XPath

expression to be bounded from above (and not only from
below). In other words, we would like to allow count con-
straints of the form count(p) ≤ k. See Example 1.1, which
demonstrates the usefulness of such constraints.

Unfortunately, it is not always possible to allow “≤” and
remain with a tractable algorithm, as shown in the following
theorem.

Theorem 6.1. The satisfiability problem is NP-hard for

disjunction-free nonrecursive DTDs and GxBE commands

G if G may contain a node which has:

• count constraints with both nested count qualifiers and

≤ or

• count constraints with both ≥ and ≤ (even without

nested count qualifiers).

We say that a GxBE command G is legal if
1. G does not contain a count constraint with both nested

count qualifiers and ≤,
2. every node n in G that contains count constraints with

≤ is a leaf, and
3. there do not exists nodes n, n′ such that n is an ances-

tor of n′ (or n = n′) and n has count-constraints with
≥, while n′ has count-constraints with ≤.

Thus, we can have non-empty constraint sets for two nodes
on the same path only if the constraints use ≥. For example,
the GxBE command of Figure 2 is legal.

For legal GxBE commands, we can show the following
result, by adapting Generate.

Theorem 6.2. Given a disjunction-free DTD D and a

legal GxBE command G, Generate returns a document X

such that X |= (D, G) (if one such document exists) in poly-

nomial time in the size of the input and output, if each count

constraint in G is of bounded size.

The basic idea is that one can create a document satisfy-
ing a count constraint with ≤ by performing the following
two steps. First, compute the minimal version Dmin of D

by removing all subexpressions of the form e∗, e? or l0..k

and replacing all remaining lj..k with lj..j . If the element
description of l is completely removed, then we define e(l)
as empty. We observe that, given a label l, there is a single
document Xmin that satisfies Dmin and is rooted at l, if D is
disjunction-free. This document will be used in the genera-
tion process when we must satisfy a count constraint with
≤. (If Xmin does not satisfy such a count constraint, then
no satisfying document exists.)

Example 6.3. Consider the DTD D from Example 1.1.
The minimal version of D is the DTD

state ← name, city store ← address, product
50..50

city ← name, store product ← name, price

To satisfy the count constraint count(⇓[discount]) ≤ 0 from
Figure 2, we can simply create the single document rooted
at store that satisfies the minimal DTD.

500

6.2 Horizontal Axes
Another extension of interest is to allow horizontal axes

in the XPath expressions. We consider two types of hori-
zontal axes: → and ⇒, which are the immediate-sibling and
following-sibling-or-self axes, respectively.

For →, determining satisfiability is intractable, both for
count constraints with ≥ and with ≤.

Theorem 6.4. The satisfiability problem is NP-hard for

disjunction-free nonrecursive DTDs and legal GxBE com-

mands G, if G contains count constraints using the axis →.

If G contains only ⇒, then it is possible to generate a
document satisfying G by an adaptation of GenConSat.7

This adaptation requires a new implementation of NFC(l, P)
to correctly determine the XPath expressions that must be
satisfied, based on the sibling relationships appearing in P .

6.3 Bounded-Size Satisfiability
A final variation of interest is bounded-size satisfiability ,

i.e., determining satisfiability of D and G when there is a
bound on the size of the document that should be created.

Problem 3 ((θ, k)-Bounded Satisfiability). Let D

be a DTD, G be a GxBE command, k be an integer and

θ ∈ {≤,≥}. Determine whether there exists a document X

such that X |= (G, D) and |X| θ k (where |X| is the number

of nodes in X).

(≤, k)-Bounded satisfiability is useful to obtain a small
output document, which may be helpful during the testing
process since it is likely to be easily understood. On the
other hand, (≥, k)-bounded satisfiability is of particular in-
terest when considering constraints that use the ≤ operator,
since it can determine the existence of large documents sat-
isfying the user constraints. Unfortunately, the following
theorem shows that the interesting cases are intractable.

Theorem 6.5. For GxBE commands containing only ≥
and disjunction-free nonrecursive DTDs, (≤, k)-bounded sat-

isfiability is NP-hard and (≥, k)-bounded satisfiability is poly-

nomial.

For GxBE commands containing only ≤ and disjunction-

free nonrecursive DTDs, (≤, k)-bounded satisfiability is poly-

nomial and (≥, k)-bounded satisfiability is NP-hard.

7. CONCLUSION
We presented a natural and general framework for auto-

matically generating XML documents, that satisfy a DTD as
well as global properties. Our generation algorithm is gen-
eral enough to create any document satisfying a given GxBE
command, and can return many different documents, if the
nondeterministic sub-procedures (e.g., GenArbitraryDoc)
return different values when they are reevaluated. We also
studied several important extensions of the language of GxBE
commands and identified both tractable and intractable cases.

Thus far, the documents created contain only structure,
and no data (aside from data explicitly written in the GxBE
document). As future work, we intend to study adding data

7A syntactic requirement that ⇒ only appears after at least
one ↓ is needed to ensure that our constraints only constrain
data that is within a specifically defined context node.

values (including ID/IDREF values) which satisfy an ex-
pected data distribution. We believe that this can be done
in the spirit of [2], by adding meta-data to the DTD label
definitions. We also plan to implement our algorithms.

Our procedures can produce many documents satisfying
the user constraints (Remark 4). Another interesting prob-
lem is to create a random document satisfying the user con-
straints. Due to the relationship between counting and gen-
eration [9], it is likely that generating a random document
will be possible only if we have the ability to count the num-
ber of distinct documents satisfying a given constraint. This
is an interesting problem for future work.

Finally, we intend to extend our language of DTDs to al-
low arbitrary subexpressions (and not only labels) to have a
minimal and maximal number of occurrences. This involves
some intricacies, e.g., in defining the Glushkov automatons
and in checking that the DTD is 1-unambiguous [10].

8. REFERENCES
[1] A. Aboulnaga, J. Naughton, and C. Zhang.

Generating synthetic complex-structured XML data.
In WebDB, 2001.

[2] D. Barbosa, A. Mendelzon, J. Keenleyside, and
K. Lyons. ToXgene: an extensible template-based
data generator for XML. In WebDB, 2002.

[3] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of dtds. In PODS, 2005.

[4] C. Binnig, D. Kossman, and E. Lo. Testing database
applications. In SIGMOD, 2006.

[5] N. Bruno and S. Chaudhuri. Flexible database
generators. In VLDB, 2005.

[6] P. Caron and D. Ziadi. Characterization of glushkov
automata. Theoretical Computer Science, 233:75–90,
2000.

[7] S. Cohen. Count-constraints for generating XML. In
NGITS, Kibbutz Shefayim, Israel, 2006.

[8] K. Houkjaer, K. Torp, and R. Wind. Simple and
realistic data generation. In VLDB, 2006.

[9] M. Jerrum, L. G. Valiant, and V. V. Vazirani.
Random generation of combinatorial structures from a
uniform distribution. Theoretical Computer Science,
43:169–188, 1986.

[10] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of
regular expressions with numeric occurrence
indicators. Inf. Comput., 205(6):890–916, 2007.

[11] A. Neufeld, G. Moerkotte, and P. C. Lockemann.
Generating consistent test data for a variable set of
general consistency constraints. The VLDB Journal,
2(2):173–213, 1993.

[12] K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and
S. Al-Khalifa. The Michigan benchmark: towards
XML query performance diagnostics. Information

Systems, 31(2):73–97, 206.

[13] A. Schmidt, F. Waas, M. Kersten, M. Carey,
I. Manolescu, and R. Busse. XMark: a benchmark for
XML data management. In VLDB, 2002.

[14] M. Y. Vardi. The complexity of relational query
languages. In STOC, 1982.

[15] B. Yao, M. Özsu, and N. Khandelwal. XBench
benchmark and performance testing of XML DBMSs.
In ICDE, 2004.

501

