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ABSTRACT
When XML documents are modeled as graphs, many re-
search issues arise. In particular, there are many new chal-
lenges in query processing on graph-structured XML doc-
uments because traditional query processing techniques for
tree-structured XML documents cannot be directly applied.
This paper studies the problem of structural queries on graph-
structured XML documents. A hash-based structural join
algorithm, HGJoin, is first proposed to handle reachability
queries on graph-structured XML documents. Then, it is
extended to the algorithms to process structural queries in
form of bipartite graphs. Finally, based on these algorithms,
a strategy to process subgraph queries in form of general
DAGs is proposed. Analysis and experiments show that all
the algorithms have high performance. It is notable that
all the algorithms above can be slightly modified to process
structural queries in form of general graphs.

1. INTRODUCTION
XML has become the de facto standard for information

representation and exchange over the Internet. In many
applications, an XML document needs to be modeled as a
graph more naturally than a tree. For example, the XML
document of the relationship of publications and authors
adapts to graph structure since one paper may have more
than one author and one author may have more than one
paper. A fragment of such information is shown in Fig 1.
Obviously, the graph-structured XML document can be rep-
resented in tree structure by duplicating the element with
more than one incoming paths. But it will result in redun-
dancy. If the information in Fig 1 is represented with a
tree-structured XML document, the element “author” will
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Figure 1: An Example of Graph-structured XML

Among the queries on graph-structured XML documents,
the subgraph queries are widely used. A subgraph query
on graph-structured XML documents (subgraph query for
short) is to retrieve the subgraphs matching the graph in
the query. For instance, a subgraph query on the graph-
structured XML document in Fig 1 is to retrieve the names
of authors with publications both in proceedings and jour-
nals. Another subgraph query on the XML document in
Fig 1 is to retrieve the name of the journal with an author
who published papers in the conference ICDE. Such queries
are difficult to represent with traditional tree-structured queries.

It is a big challenge to process subgraph queries efficiently.
All the four kinds of traditional methods of processing struc-
tural queries on tree-structured XML documents, structural
join based methods[2], holistic Twigjoin based methods[3],
structural index based methods[14, 12] and subsequence match-
ing based methods[23, 19], cannot be used to process sub-
graph queries.

The structural join based methods and the holistic Twigjoin
based methods both depend on the labelling scheme spe-
cially for tree-structured XML documents. The encoding
scheme of the graph-structured XML documents is totally
different from that of the tree-structured XML documents.
As a result, they cannot be used to process subgraph queries.

The structural index based methods of processing struc-
tural queries on tree-structured XML documents require
that the size of the index must be very small. However, the
indices of the graph-structured XML documents are very
large in general. Thus, the structural index based methods
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cannot be used to process the subgraph queries efficiently.
The subsequence matching based methods require that

the tree-structured XML documents and the queries on the
documents must be converted into sequences before query
processing. It is difficult to covert a graph-structured XML
document into a sequence so that it is not easy to pro-
cess subgraph queries using the subsequence matching based
methods.

A few methods has been proposed to process some kinds
of subgraph queries on XML data in form of some special
kinds of graphs. A method, called StackD, is presented in
to [4] to process twig queries on DAG-structured data. It is
a modification of a holistic TwigJoin based method. How-
ever, StackD focuses on tree-structured twig queries and is
not suitable for queries in form of complex graphs. Addi-
tionally, when there are many edges in the graph, StackD
should maintain a very large data structure. In this case,
it needs very huge main memory space, which is not prac-
tical and it becomes inefficient. Another modification of
the holistic TwigJoin-based method is presented in [27] to
process twig queries on graph-structured data. However, it
only works on a kind of special graphs, i.e. st-planar graphs
[11], but not suitable for other graphs. In summary, current
methods cannot process general subgraph queries effectively
or efficiently.

To process general subgraph queries effectively and effi-
ciently, a new method based on labeling scheme [17] is pro-
posed in this paper. The reasons of choosing the labeling
scheme [17] are as following.

• It contains only intervals and identifications (ids). All
intervals and ids are numerical values so that there
is an order on them, which makes query processing
easier.

• It is compatible with the adjacent labeling scheme so
that it can be used to process queries with both reach-
ability and adjacent edges. We will discuss this in
details in Section 6.

• By slightly modification, the labeling scheme can be
used to process graphs with circles.

Our proposed method is designed step by step. First,
a hash-based join algorithm, HGJoin, is proposed for pro-
cessing reachability queries on graph-structured XML. Sec-
ond, the HGJoin algorithm is extended to the IT-HGJoin
and T-HGJoin algorithms to process the reachability queries
with multiple ancestors or multiple descendants. Then, Bi-
HGJoin, the combination of IT-HGJoin and T-HGJoin, is
designed to process queries in form of complete bipartite
graphs. Finally, based on all the above algorithms, the
method for processing subgraph queries in form of DAGs
is proposed.

Without losing generality, this paper will focus on sub-
graph queries in form of DAG with only reachability rela-
tionships on edges for the convenience of discussion. With a
slight modification, the method can be used to process any
general subgraph queries.

The contributions of this paper are as follows:

• Based on the reachability scheme in [17], a family of
hash-based join algorithms is presented as basic oper-
ators of subgraph query processing.

• For structural queries in form of general graphs, an ef-
ficient method is presented. The basic idea is to split
a query into bipartite subqueries each of which can
be processed by some HGJoin algorithm. In order to
find effective splitting strategy, a cost-based query op-
timization strategy is presented with some acceleration
strategies .

• The extensive experimental results show that the pro-
posed algorithms outperform the existing algorithms
and our query splitting strategy is effective and effi-
cient.

The rest of this paper is organized as follows: Section 2
introduces some background knowledge. Section 3 presents
the basic version of HGJoin algorithm for reachability query
with one ancestor and one descendant. Section 4 illustrate
the algorithms for queries in form of bipartite graphs. The
strategy of processing queries in form of general DAGs is
proposed in Section 5. The extensions of our method for the
general subgraph queries are discussed in Section 6. Experi-
mental results and analysis are shown in Section 7. Related
work is discussed in Section 8 and Section 9 concludes this
paper.

2. PRELIMINARIES
In this section, the background and notations used in this

paper are presented.

2.1 Graph-structured XML Data and Queries
With IDREF-ID in an XML document representing ref-

erence relationship, an XML document can be considered
as a tagged directed graph. Elements and attributes in an
XML document is mapped to the nodes in a graph. Directed
nesting relationships and reference relationships in an XML
document is mapped to the edges in a graph. For exam-
ple, an XML document is shown in Fig 2(a) and its graph
structure is shown in Fig 2(b).

In a graph-structured XML document, structural queries
are defined based on the structural relationship between
nodes. In the graph structure G of an XML document, two
nodes a and b satisfy adjacent relationship if and only if an
edge from a to b exists in G; two nodes a and b satisfy reach-
ability relationship if and only if a path from a to b exists
in G. A reachability query a → d is to retrieve all pairs of
nodes (na,nd) in G where na has tag a, nd has tag d and na

and nd satisfy reachabilty relationship in G. For example,
the result of reachability a → e in the graph in Fig 2(b)
includes (a,e1), (a, e2), (a,e3). Adjacent queries can be de-
fined similarly. The combination of multiple reachability or
adjacent relationships forms subgraph queries.

A subgraph query is a tagged directed graph Q={V , E,
tag, rel}, where V is the node set of Q; E is the edge set of Q;
the function tag : V → TAG is the tag function (TAG is the
set of tags); the function rel : E → AXIS shows the struc-
tural relationships between the nodes in the query (AXIS is
the set of relationships between nodes; PC ∈ AXIS repre-
sents adjacent relationship; AD ∈ AXIS represents reacha-
bility relationship). The directed graph (V ,E) is called the
query graph. If ab ∈ E and rel(ab) = PC, then ab is called
an adjacent edge. If ab ∈ E and rel(ab) = AD, then ab is
called a reachability edge. In V , the nodes without incom-
ing edges are called sources and the nodes without outgoing
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< a id="a1 >
< b id="b1" >
< d id="d1" f="f1"/ >
< d id="d2" >
< f id="f1"/ >
</d>
<d id="d3" f="f1" c="c1"/ >
< /b >
< c id="c1" >
< e id="e1" d="d1" d="d2" d="d3"/ >
< e id="e2" d="d1" d="d2" d="d3"/ >
< e id="e3" d="d1" d="d2" d="d3"/ >
< /c >
< /a >

(a) An XML Fragment (b) The Graph of Fig 2(a)

a1

b1 c1

d1 d2 d3 e1 e2 e3

f10, [0,0]

1,[0,1] 2, [2,2]
[0,0]

3, [0,7] 6, [0,7]5, [0,7]4, [0,7]

7, [0,7]8, [0,8]

9, [0,9]

(c) The Reachability code of Fig 2(a)

Figure 2: An Example of Graph-structured XML
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Figure 3: Example Queries

edges are called sinks. For simplicity, a subgraph query is
represented as Q = (V, E).

The result of a subgraph query Q = {VQ, EQ} on a graph
G = {VG, EG} is RG,Q = {g = (Vg, Eg)|Vg ⊂ VG and
∃bijective map fg : Vg → VQ and ∃injective map pg : Vg →
VG satisfying ∀n ∈ Vg, tag(n) = tag(fg(n)) = tag(pg(n));
∀e = (n1, n2) ∈ Eg, pg(n1), pg(n2) satisfy the relationship
rel(f(n1), f(n2))}.

For example, Fig 3(b) shows a subgraph query, in which
a single line represents an adjacent edge and a double line
represents a reachability edge. The result of such a query
on the graph shown in Fig 2(b) is the graph in Fig 3(c).

2.2 Reachability Labelling Scheme
The labelling scheme for a graph-structured XML docu-

ment is to judge the reachability relationship between any
two nodes in an XML document without retrieving other
information, such that subgraph queries can be processed
efficiently. The labelling scheme used in this paper is an
extension [24] of that in [17].

The reachability labelling scheme can be generated in the
following steps:

• Each strongly connected component in G is contracted
to one node to convert G to a DAG D.

• An optimum tree covering T of the DAG D is found.
A depth-first traversal from the root of T accesses all

nodes to generate the post-order of each node. Note
that during the traversal, when a node nC generated
from a strongly connected component C ⊂ G is ac-
cessed, if the post order of last accessed node is pc,
then pc + 1, pc + 2, · · · , pc + |Vc| are assigned to nC

(where VC is the set of nodes in C). Then, each node
n ∈ T is assigned a number id and an interval [x,id],
where id is the post order of n; x is the smallest post
order of descendants of n in T .

• All the nodes in D are traversed in the reversed topo-
logical order. When a node n is reached, the interval
sets of n’s children in D are copied to that of n. In-
tersected intervals in the interval set of n are merged.

• ∀n ∈ C, its interval set is that of nC ; its id is one of
the ids of nC . Each node in C has a different id.

When such steps are finished, each node n in G is assigned
a number n.id and a set of intervals In. In [24], it is proved
that a node a reaches a node b if and only if b.id belongs
to some interval of Ia. For example, the labelling scheme of
the graph in Fig 2(b) is shown in Fig 2(c). Since the id of
f1 is in the interval [0,0] of d2, it can be judged that d2 and
f1 satisfy reachability relationship.

In order to retrieve pairs of nodes satisfying a reachability
query based on reachability labelling scheme, the following
storage strategy is applied. For each tag t ∈ TAG of an
XML document, two lists, t.Alist and t.Dlist, are stored.
Nt is the set of nodes with tag t. t.Dlist is the list of the
elements in set {n.id|n ∈ Nt} sorted incrementally. t.Alist
is the elements in set {(val, n.id)|n ∈ Nt, [x, y] ∈ In, val =
x or val = y} sorted by the first item.

From the third step of encoding, for each node n, In has
no overlapping intervals. Therefore, tag(n).Alist has the
following property which is the base of the algorithms in the
following sections.

Proposition 1. For a node n, all the elements in tag(n).
Alist with the second item equals to n.id form an ordered
list (vali1 , n.id), (vali2 , n.id), · · · , (valik , n.id). In such an
ordered list, l ≤ s ≤ u ≤ r ≤ v ≤ k do not exist such that
both [valis , valir ] and [valiu , valiv ] belong to In.

Additionally, in order to judge whether all the intervals of
one node has been processed, for each node n, a tuple (null,
id) is inserted next to the last tuple of tag(n).Alist with the
second item equals to n.id, where null represents empty.

To process the queries with predicates and build-in func-
tions, as the preprocessing step, the labelling schemes are
filtered with the predicates and build-in functions before the
processing of subgraph query.

In order to analyze the complexity of algorithms in this
paper, N = maxt∈TAG|{n ∈ Vg|tag(n) = t}|. The set of the
second items of all elements in Alist is IDAlist. Obviously,
for each Alist and Dlist, |IDAlist| ≤ N , |Dlist| ≤ N .

3. HASH-BASED JOIN ALGORITHM FOR
GRAPH-STRUCTURED XML (HGJOIN)

In this section, a hash-based join algorithm is presented
to process reachability queries in form of a → d on graph-
structured XML data based on the reachability labelling
scheme.
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Algorithm 1 HGJoin

a=Alist.begin
d=Dlist.begin
while a 6= Alist.end AND d 6= Dlist.end do

if vala ≤ idd then
if ida /∈ H then

H.insert(ida)
a = a.nextNode

else if vala < idd then
H.delete(ida)
a = a.nextNode

else
for ∀id ∈ H do

append (id, idd) to OutputList
d=d.nextNode;

else
for ∀id ∈ H do

append (id, idd) to OutputList
d=d.nextNode;

a
a11

a22
a23

(a12)

b (b11)

c
(c21)

c11 (c12)

b12

(b21)

d

(c32)

c13

(d11) d12

(d21)

e e1 e2

(d31)

e3

c22

(a21)

(b31)

(a31)

(b41)

a32

c31

(a41)

(b51)

Figure 4: Example data

Based on the storage strategy, suppose Alist = tag(a).Alist
and Dlist = tag(d).Dlist. Intuitively, for any idj ∈ Dlist, if
two tuples in Alist, (x, idi) and (y,idi), satisfy x ≤ idi ≤ y
and [x, y] is an interval of the labelling scheme of some node,
then (idi, idj) belongs to the result set. Proposition 1 as-
sures that the query can be processed with scanning Alist
and Dlist alternately only once. During the scan, a hash
table H is used to store ids of nodes satisfying the condition
that for each node n, the start point x of some interval in
In has been scanned while corresponding end point y is not
met. Proportion 1 shows that before such y is met, none of
the start points of other intervals in In will be met. When a
corresponding y is met, n.id will be removed from H. The
step is shown as following. At first, cursors a and d are as-
signed to Alist and Dlist, respectively. During the scan of
Alist, if the current tuple (vala,ida) satisfies vala ≤ idd and
ida ∈ H, it means that the end position of some interval is
met and such an interval is impossible to contain idd. Since
the elements in Dlist is in incremental order, and such an
interval is impossible to contain other unscanned elements
in Dlist. So ida is removed from H and a is updated. If
vala = ida and ida ∈ H or vala > idd, it means that idd is
contained in some interval with vala as the end point. In
such an instance, partial results are outputted and the scan
is switched to Dlist. During the scan of Dlist, if idd < vala,
or vala = ida and ida ∈ H, then based on the properties
of elements in H, for ∀id ∈ H, (id, idd) is outputted and
d is updated; if idd > vala, or vala = idd but ida /∈ H, it
means that vala is possibly the start position of an inter-
val containing idd and the scan is switched to Alist. The
pseudo-code of HGJoin is shown in Algorithm 1.

b c d

e

(a)

b c d

a

(b)

Figure 5: Query Examples

Example 1. In Fig 4, we give the intuition of Alist and
Dlist, where a, b, c, d and e are tags. The elements with
tag a are a1, a2, a3 and a4. Each interval of ai is repre-
sented by a line segment and denoted by aij. The start point
of the line segment is the start position of the interval and
the end point of the line segment is the end position of the
interval. The position of element id in the interval is repre-
sented by a circle. For example, a1.id is in the end position
of interval a12 and a2.id is in the middle of the interval a21;
other symbols have the same meanings. For a reachablity
query a → b, corresponding Alist has an ordered list with
first items sorted in form of (the end point) of aij, ai.id
and Dlist={b1.id, b3.id, b2.id}. After Alist and Dlist scanned
with HGJoin algorithm, the outputted result is (a1.id, b1.id),
(a1.id, b3.id), (a2.id, b3.id), (a1.id, b2.id) in order.

Complexity Analysis The time cost of HGJoin algo-
rithm has three parts, the cost of operations of H, the cost
of disk I/O and the cost of result outputting. The time

cost is Cost = |Alist|
2

· (costI + costD) + |result| · costout +

( |Alist|·|entryA|
|B| + |Dlist|·|entryD|

|B| )·costI/O with each item cor-

responding to each part, where the cost of insertion and dele-
tion of H once are costI and costD, respectively, |entryA|
and |entryD| are the sizes of each tuple in Alist and Dlist,
respectively, B is the size of a disk block, costI/O is the
cost of accessing each disk block and costout is the cost of
outputting one tuple.

The space cost of HGJoin algorithm is the space cost of
the hash table H. Therefore, the space complexity is the
largest size of H during the algorithm. In the worst case, all
the elements in IDAlist are in H. Therefore, the space cost
of HGJoin is no more than N .

4. EXTENSIONS OF HGJOIN
HGJoin can be extended to process some special cases of

subgraph queries. For a subgraph query Q=(V , E, tag, rel),
if V = Vs

⋃{d}, d /∈ Vs, and E = {(a, d)|a ∈ Vs}, then Q is
an IT-query. If V = a

⋃
Vs, a /∈ Vs, and E = {(a, d)|d ∈ Vs},

then Q is a T-query. In this section, we will present two
extensions of HGJoin algorithm, IT-HGJoin and T-HGJoin
to process IT-query and T-query, respectively.

4.1 Algorithm for IT-queries
In this section, HGJoin is extended to process IT-queries.

For an IT-query Q, suppose its sources are a1, · · · , ak and
its sink is d. Let Alisti = tag(ai).Alist, Dlist = tag(d).Dlist,
i ∈ 1, 2, · · · , k. Similar as HGJoin algorithm, IT-HGJoin al-
gorithm scans Alist1, · · · , Alistk and Dlist alternatively
once and obtains the results of an IT-query. During the
scan, a hash table Hi is assigned to each Alisti, the func-
tion of which is the same as H in HGJoin algorithm. In the
algorithm, cursors l1, l2, · · · , lk point to the current scanned
position of Alist1, Alist2, · · · , Alistk, respectively. A cursor
l points to the current scanned position of Dlist. The algo-
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Algorithm 2 IT-HGJoin
for i = 1 to k do do

ai = Alisti.begin
d = Dlist.begin
while ai 6= Alisti.end do

for i=1 to k do
while valai

< idd do
if idai

∈ Hi then
Hi.insert(idai

)
else

Hi.delete(idai
)

ai = ai.next
while valai

= vald AND idai
/∈ Hi do

Hi.insert(idai
)

ai = ai.next
if none of the hash tables are not empty then

OutputList
⋃

= OutputTuples(H1, · · · , Hk, idd)
for each ai do

while valai
= vald AND idai

∈ Hi do
Hi.delete(idai

)
ai = ai.next

d = d.next

rithm scans Alist1, Alist2, · · · , Alistk in turn. idlis in pairs
(valli , idli) satisfying valli ≤ idl and idli /∈ Hi are inserted
to Hi and idlis in pairs (valli , idli) satisfying valli ≤ idl and
idli ∈ Hi are removed from Hi. After Alistk is processed,
the scan is switched to Dlist. Such processing is similar as
the Dlist scan in HGJoin algorithm. At that time, the node
corresponding to each id in any Hi is an ancestor of the node
corresponding to idl. If any of Hi is not empty, it means that
with its ancestors, the node with idl matches the descendent
in the query. Such subgraphs are outputted as partial re-
sults. Since each tuple in H1 ×H2 × · · · × Hk corresponds
to each group of different ancestors of idl, all the tuples in
H1×H2×· · ·×Hk×{idl} should be outputted. In the step
of result output, function OutputTuples(H1,· · · , Hk, idd) is
invoked. After such partial results are outputted, the scan
is switched to Alist1, · · · , Alistk. IT-HGJoin algorithm is
shown in Algorithm 2.

In the implementation of IT-HGJoin algorithm, the size of
|H1×H2×· · ·×Hk| may be very large. In order to store par-
tial results efficiently, latency processing strategy is applied.
That is, H1, · · · , Hk and corresponding idl are stored re-
spectively. The Cartesian production is not performed until
such partial result will be used.

Complexities Analysis Obviously, the worst space com-
plexity is kN . Similar as the analysis of HGJoin, the time

complexity Cost =
∑ |Alisti|

2
· (costI + costO) + |result| ·

costout + (
∑ |Alisti|·|entryA|

|B| + |Dlist|·|entryD|
|B| ) · costI/O

4.2 Algorithm for T-queries
In this section, an algorithm for processing T-queries is

presented. In a T-query Q, the source is a and sinks are
d1,· · · , dk. Let Alist=tag(a).Alist, Dlisti=tag(di).Dlist,
i ∈ {1, 2, · · · , k}. Since in Q, the source a has multiples de-
scendants d1, · · · dk and in the reachability labelling scheme,
all the nodes with tags tag(d1), · · · tag(dk) do not belong to
the same interval of a node with tag(a), in order to obtain
the result of Q, all results of reachability query a → di where
i ∈ {1, · · · , k} should be obtained and the join operation is
performed on such intermediate results.

HGJoin can be applied to process reachability queries a →
di. For the interest of efficiency, the k way scans of HGJoin
algorithm are combined. That is, during the scans on Alist,
Dlist1, · · · , Dlistk are processed together. Such that all

intermediate results can be obtained by scanning all lists
only once. In order to make a join operation efficient, a hash
table IHTi is assigned to each Dlisti. When a bucket in
some IHTi is full, the intermediate results in such a bucket
are sorted based on the first items (the id value of the node
matching a) and written out to the disk.

When the intermediate results are obtained, all tuples in
form of (id, id1) ∈ IHT1, · · · , (id, idk)IHTk are joined to
generate a tuple, (id, id1, ·, idk), the partial result of IT-
query. Obviously, the cost of join operation increases fast
with |IHTi|. In order to reduce the cost of join, the size of
IHTi should be decreased during join.

The strategy in T-Join algorithm is that during the scan of
Alist, when the end sign (null,id) (see Section 2.2) is met, it
means that the following steps of the scan will not generate
intermediate result in form of (id, ∗). Therefore, the join
operation can be performed on current IHT1,· · · ,IHTk to
generate all results in form of (id, id1, · · · , idk). Then the
tuples with form (id, ∗) are deleted from IHT1,· · · ,IHTk

and corresponding disk blocks are merged.
Even though the above strategy can minimize the size of

|IHTi| during join operation, frequent join operations will
make an algorithm inefficient. Additionally, after each join
operation, the number of disk blocks to be merged is very
limited. In order to make it more efficient, the “join la-
tency” strategy is applied in T-HGJoin algorithm. That is,
during T-HGJoin algorithm, an ancestor table A with fixed
size is maintained. During the scan of Alist, when end sign
(null,id) is met, id is inserted to A. When A is full or the
scan of Alist is finished, the join operation is performed on
current IHT1, · · · , IHTk to generate partial query results
with form (id,∗,· · · ,∗) where id is the id of any element in
A. Then intermediate results with form (id,∗) are deleted
and for each bucket in any IHTi, mergable disk blocks are
merged.

In order to reduce the space cost of partial results storage,
the latency processing strategy similar as IT-HGJoin can
also be applied.

Example 2. The processing of the T-query in Fig 5(b)
on the data in Fig 4 is considered. For easy discussion, sup-
pose that each bucket can only contain two tuples and each
IHT uses hash function hash(x)=x mod 2. It means that
each IHT has only two buckets. The size of ancestor ta-
ble A is 2. When T-HGJoin algorithm accesses tuple (null,
a1.id), generated intermediate results are shown in Fig 6(a).
a1.id is inserted to A. At that time, A is not full, so the
join operation is not performed. When the tuple (null,a3.id)
is scanned, the intermediate results are shown in Fig 6(b).
a3.id is inserted to A and A is full, so the join operation
is performed on the intermediate results with only a1 and
a3 and results (a1, b1, c2, d2), (a1, b2, c2, d2) and (a1, b3,
c2, d2) are generated. After join, all intermediate results in
IHTs related to a1 and a3 are deleted. Current intermediate
result is shown as Fig 6(c).

Complexities Analysis The time cost of T-HGJoin in-
cludes 4 parts, the cost of operations on H, the disk I/O
cost of accessing Alist and all Dlists, the cost of processing
intermediate results and the cost of outputting final results.
In the worst case, since each element in Alist is the ances-
tor of any element in each Dlisti, |IHTi| ≤ N2. Therefore,

the worst time cost of T-HGJoin is Cost = |Alist|
2

· (costI +

costO)+( |Alist|·|entryA|
|B| +

∑ |Dlisti|·|entryD|
|B| )·costI/O+(k·N2 ·
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Figure 6: Intermediate Results in different Steps of Example 2

costI +2 ·k · ( |entryIHT |·N2

|B| −nb) ·costI/O +[( |entryIHT |·N2

|B|·nb
−

1) + (N2

nb
)k · costjoin] · N) + |resultF | · costout, each item

of which corresponds the cost of each part. The cost anal-
ysis of the former two and last parts is similar as that of
HGJoin. In the third item, costjoin is the cost of generating
one output tuple.

The main memory cost of T-HGJoin algorithm includes
the space for the hash table H during the scan of Alist and
main memory used to store intermediate results in IHTi.
With the symbols discussed above, the main memory space
cost of T-HGJoin is N + k · nb · |B| in the worst case.

4.3 Algorithm for Bipartite Queries
In this section, the processing algorithm for bipartite sub-

graph queries is presented. At first, the algorithm for the
bipartite subgraph queries in a special case that all descen-
dants share the same ancestor (CBi for brief) is presented
and then that of bipartite subgraph queries is presented.
Suppose that the sources of a CBi query are a1, · · · , am

and the sources are d1,· · · , dn. Let Alisti=tag(ai).Alist,
Dlistj=tag(dj).Dlist, i ∈ {1, · · · , m}, j ∈ {1, · · · , n}. In the
algorithm, cursors l1, · · · , lm points to the current scanned
position of Alist1, · · · , Alistm, respectively. t1, · · · , tn

points to the current scanned positions of Dlist1, · · · , Dlistn,
respectively.

Similar as IT-HGJoin, the algorithm assigns a hash table
Hi for each source ai. Similar as T-HGJoin, the algorithm
assigns a hash table IHTj for the intermediate results cor-
responding to each sink dj .

Bi-HGJoin algorithm includes two alternative steps. In
the first step, similar as IT-HGJoin, the algorithm scans
Alist1,· · · , Alistm in turn and inserts idli in the pair (valli ,
idli) satisfying valli ≤ min(idtj ) (1 ≤ j ≤ n) and idli /∈ Hi

to Hi. When Alistm is processed, the algorithm switches to
process the Dlistj with the smallest idtj . If the hash tables
H1,· · · ,Hm is not empty, each tuple (h1, · · · , hm, idtj )∈
H1 × · · · ×Hm × {idtj} is inserted to the bucket with hash
value hash(h1, , · · · , hm) of IHTj . The second step is sim-
ilar as the join of intermediate results in T-HGJoin. When
in each Alisti, the end sign (null, hi) of hi is met, where
1 ≤ i ≤ m, the combination of ancestor (h1, · · · , hm) is in-
serted into the ancestor table A. When A is full or all scans
on Alists have been finished, for each combination (h1, · · · ,
hm) in A, the buckets with hash value hash(h1, · · · , hm) in
IHT1,· · · , IHTn are joined to generate partial query result
with form (h1, · · · , hm, id1, · · · , idn). Then correspond-
ing intermediate results are deleted and disk blocks in such
buckets are merged. When the join operation is finished,
the first step resumes. The above steps are repeated until
all elements in any Alisti have been scanned.

Such algorithm cannot process general bipartite subgraph

b c

e f
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a b c d

e f g
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Figure 7: An Example for Complex Bipartite Query

queries. Since sinks may have different sources, it is diffi-
cult to find a hash function to assure effective execution of a
join operation. Intuitively, such a problem can be processed
with following steps. Based on the cost model presented in
Section 5.1, a query is split to some CBi subqueries. Then
Bi-HGJoin is invoked to process CBi subqueries to obtain
intermediate results. At last, intermediate results are joined
together to obtain final query results. For example, the bi-
partite subgraph query shown in Fig 7(b) can be split to
CBi subqueries in Fig 7(c) and Fig 7(d). When intermedi-
ate results are obtained, the equal join is performed on f
elements to obtain final results.

5. DAG SUBGRAPH QUERY EVALUATION
In this section, we present a hash-based evaluation strat-

egy for structural queries in form of DAGs.
The direct processing of a general DAG subgraph query

requires not only large main memory space but also large
disk space. The efficiency is affected. Hence the strategy
presented in this section does not process general subgraph
queries directly but also splits a DAG subgraph query to
some CBi-queries. Each CBi subquery is processed to obtain
intermediate results. Then, join operations are executed to
obtain final results. Such join is performed with sort-merge
algorithms. For example, to process the query in Fig 8(a),
it is split to the subquerires: q11 in Fig 8(b), q12 in Fig 8(c)
and reachability query c → e. Then labelling schemes with
tags tag(b) and tag(c) are filtered with intermediate results
of q11. Then subquery q12 is processed on filtered labelling
schemes to obtain intermediate results. The reachability
query is processed on filtered data to obtain intermediate
results. At last, the join operation is performed on such
three groups of intermediate results to obtain final results.

Obviously, the key of the above strategy is how to split
the query and construct the query plan. A query plan
can be modelled as a DAG D=(V , E), where each node
in V represents an operation (possible operations includes
HGJoin, IT-HGJoin, T-HGJoin and Bi-HGJoin, Filter and
sort-merge operations). The results of the operation in ar-
row tail is the input of operation in arrow head. For ex-
ample, in Fig 8(d), T − HGJoin{(a,b),(a,c)} represents that
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Figure 8: Example of Query Plan

T-HGJoin algorithm is performed on the labelling schemes
with tag tag(a), tag(b) and tab(c). Filterc represents that
the labelling schemes with tag tag(c) are filtered to elimi-
nate the labelling schemes which are not in the intermediate
results of T−HGJoin{(a,b),(a,c)}. Other operations have the
same meanings.

At first, we design the cost model. Then query plan gener-
ation algorithm and query optimization accelerate strategy
are presented.

5.1 The Cost Model
The query plan of a subgraph query has multiple choices.

In order to generate an efficient query plan, a query opti-
mizer is required. As the base of the query optimization,
the cost model is presented in this section. For each oper-
ation in the query plan, its cost has two parts, execution
time and required main memory. The former represents the
execution efficiency of query plan and the latter is the main
memory space which is required during query plan execu-
tion. The estimation of the cost of sort-merge join operation
has been studied extensively and the time cost of HGJoin
and IT-HGJoin can be estimated as the time complexity in
Section 3 and Section 4.1, respectively. This section focuses
on the cost model of T-HGJoin and Bi-HGJoin.

The cost model of T-HGJoin is similar as time analy-
sis in Section 4.2. With intermediate size estimation tech-
niques[15, 16], for ∀a ∈ IDAlist and ∀i ∈ {1, 2, , k}, Pa,i, the
number of tuples related to a in the intermediate results of
join operation of Alist and Dlisti, can be estimated. Ad-
ditionally, such technique can be used to estimate Sa,i, the
number of disk blocks of the intermediate results related to
a in IHTi at the time when (null,a) is met in Alist. There-
fore, intermediate results related to a can be estimated as
Sa =

∑
i∈1,..,k Sa,i. When intermediate results related to a

are joined, Sa,1,· · · ,Sa,k times of disk blocks distributed in
IHT1, · · · , IHTk are required to be accessed with Nest loop
method, respectively. In such step, the number of disk
blocks to be accessed is estimated as NLa =

∑
i∈1,..,k Sa,i.

Based on such estimations, the time cost of T-HGJoin is es-

timated as Cost = |Alist|
2

·(costI +costO)+( |Alist|·|entryA|
|B| +

∑ |Dlisti|·|entryD|
|B| )·costI/O+costI ·

∑k
i=1 selectivity(A, Di)+

2 ·∑a∈IDAlist
Sa · costI/O +

∑
a∈A NLa + |resultF | · costout,

where sel(A, Di) is the result number of join on A and Di.
The estimation of Bi-HGJoin is similar as T-HGJoin. The

number of intermediate result generation with the join on
Alist1, · · · , Alistm and Dlist is denoted by sel(A1, · · · ,
Am, Di). The number of intermediate results related to the
combination of nodes a1, · · · , am(ai ∈ IDAlisti is denoted
by Sa1··· ,am . The number of disk blocks for joining inter-
mediate results with a1,· · · , am is denoted by NLa1,··· ,am .
The estimation of these parameters is similar as those of T-
HGJoin. The time of Bi-HGJoin operation can be estimated

as Cost =
∑ |Alisti|

2
· (costI + costO) + (

∑ |Alist|·|entryA|
|B| +

∑ |Dlisti|·|entryD|
|B| )·costI/O+costI ·

∑n
i=1 sel(A1, · · · , Am, Di)+

2·∑ai∈Ai
Sa1,···am ·costI/O+

∑
ai∈Aji

NLa1,··· ,am+|resultF |·
costout.

The main memory required by an operation includes fixed
main memory and alterable main memory. The fixed main
memory is the buffer for the intermediate result. The size of
such part equals to a fixed value fixed mm. The alterable
part is the main memory of the hash tables corresponding to
Alists during query processing. The size of such part is lin-
ear with the maximum number of ancestors of descendants
during query processing. ancestord represents the number of
ancestors in Alist(s) of d ∈ Dlist. |entryH | is the size of data
element in hash table H. The space cost of the operation is
costmm = fixedmm + maxd∈Dlist(|ancestord|) · |entryH |.

5.2 Algorithms for Query Plan Generation
In this section, the process of query execution is repre-

sented by state graph and then optimal query plan is gener-
ated as the shortest path generation algorithm on the state
graph.

Suppose (VQ,EQ) is the query graph of a subgraph query
Q (m=|EQ|). The directed graph G∗ = (VG∗, EG∗) is the
state graph of the subgraph query Q, where VG∗ = {g|g =
(Vg, Eg) and Eg ⊂ EQ}. There is a directed edge from g ∈
VG∗ to g′ ∈ VG∗ if and only if a subquery Qgg′ = (Vgg′ , Egg′)
belonging to one of reachability query, T-query, IT-query
and CBi-query exists with Eg − Egg′ = Eg′ . The node in
G∗ representing the query graph (VQ, EQ) is called the start
state of G∗, denoted by g0. The node (VQ, φ) in G∗ is called
end state of G∗, denoted by gm. Other elements in VG∗ are
called intermediate states of G∗.

Obviously, in G∗, any path g0=gi1 ,gi2 ,· · · , gik = gm (k ≤
m) from g0 to gm corresponds to a processing course of the
query Q. Such course processes subqueries Qgij

gij+1
1 ≤ j<

k) step by step. The query plan describing such course is
generated with following steps. For the first edge in the
path gi1gi2 , an operation OE (where E = Egi1gi2

) is con-

structed based on the operation type O ∈ {HGJoin, T −
HGJoin, IT −HGJoin, Bi−HGJoin} of Qgi1gi2

.
It is supposed that the query plan for g0=gi1 ,gi2 ,· · · ,gij

has been generated and the collection of sets of interme-
diate results is denoted by Bj . The edge gij gij+1 in the
path is considered. At first, based on the operation type
O ∈ {HGJoin, T −HGJoin, IT −HGJoin, Bi−HGJoin}
of Qgij

gij+1
, an operation OE is added to the query plan

(where E = Egi1gi2). Then each node a ∈ Vgi1gi2
is con-

sidered. If some set of intermediate results exists in Bj ,
then an operation Filtera is added to the query plan. An
edge from corresponding intermediate result set is added
to Filtera and another edge from Filtera is added to OE .
Then intermediate results set of OE is added to Bj . At that
time, if there is mergable intermediate results set in Bj , then
an operation sort-merge is added to the query plan and an
edge from corresponding intermediate is added result set to
new added sort-merge operation. At the same time, the un-
merged intermediate results set is deleted from Bj and the
merged intermediate result set is inserted. The above steps
are repeated until no intermediate result sets can be merged.
Let Bj+1 = Bj . The query plan of other edges is generated
until all the edges in the path are considered.

During the generation of a query plan for the path g0 =
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gi1 ,gi2 ,· · · ,gik=gm, a group of operations are added to the
query plan for gij gij+1 . wgij gij+1 , the sum of time cost of
such operation group, and the maximum space cost w are
considered. If w is not larger than available main memory
space, then let the weight of edge gij gij+1 equal to wgij

gij+1 .

Otherwise, such group of operations is infeasible and the
weight of edge gij gij+1 equals to +∞. In such a way, any
edge gg′ in G∗ is unique, since whatever the path to g is, the
collection of sets of intermediate results sets are the same.
Therefore, the operation added to gg′ is the same.

From the above discussion, it can be seen that a path
from g0 to gm in the weighted query graph G∗=(VG∗ ,EG∗)
corresponds to a query plan with the weighted length as
the cost of the query plan. Therefore, the generation of
the optimal query plan is to find the shortest path from g0

to gm in G∗. Such problem can be solved with Dijkstra
algorithm [1]. For the interests of space, details of the al-
gorithm is omitted. From the construction of G∗, it can
be known that |VG∗ | = 2m. Since the time complexity of
Dijkstra algorithm with n nodes in the graph is O(n2), the
time complexity for the generation of the shortest path with
Dijkstra algorithm is O(22m). Note that m is the number of
edges in the query graph, for the graph with smaller graphs
such algorithm is efficient.

5.3 Query Optimization Acceleration
In section 5.2, when the size of G∗ is large, both the time

and space complexity of optimal query plan generation with
Dijkstra algorithm will be very large. In this section, some
acceleration rules are presented.

In the following discussion, the weighted length of the
current shortest path from g0 to g is denoted by wg with
initial value +∞. Once g is reached in the algorithm, wg is
updated. Since Dijkstra algorithm uses Best-first expanding
strategy, when g is chosen to expend, the shortest path from
g0 to g is obtained. Based on such property, the following
rules can be obtained. The former can halt the algorithm
to reduce the run time. The latter will delete the states im-
possibly belonging to the shortest path to reduce the space
cost.

Rule 1 In the Dijkstra algorithm, if the selected state g
equals to gm or wg ≥ wgm , then the current shortest path
from g0 to gm is outputted and the algorithm halts.

Rule 2 In the Dijkstra algorithm, if the selected state is
g and each outgoing edge gg′ of g satisfies wg + wgg′ > wg′

(wgg′ is the weight of the edge gg′), then g is deleted from
the data structure of the Dijkstra algorithm.

Proposition 2. Rule 1 and Rule 2 will not affect the re-
sult of query optimization.

Intuitively, the time cost of executing a complex operation
directly is often smaller than the sum of the time cost of the
series of simple operation split from such operation. For ex-
ample, a CBi-subquery can be split to some T-subqueries
or IT-subqueries, but the sum of the run time of these sub-
queries is often larger than the run time of execution of CBi
directly. Therefore, in the Dijkstra algorithm, the states
with all descendants expanded can be neglected to acceler-
ate query optimization. This is Rule 3.

Rule 3 For current state g and ∃gg′ ∈ EG∗ in Dijkstra
algorithm, if some descendant state of g′ has been inserted
into the data structure, then the expanding of g′ will not be
performed.

For a child state g′ of g, the selectivity of g is defined as the
selectivity of the operations corresponding to the edge gg′.
When the current state g chosen to expand with Dijkstra al-
gorithm has multiple children states, only the children with
higher selectivities are chosen. So that query optimization
will be accelerated. Then we have the following rule.

Rule 4 For each expansion state g in Dijkstra algorithm,
all the children of g are sorted by the selectivities. When
the expansion is performed for C times or all the children
have been processed, the expansion of g is finished.

Even though Rule 3 and Rule 4 will result in non-optimal
query plan. These two rules can reduce the time complexity
of query optimization effectively.

Proposition 3. With Rule 3 and Rule 4, the complexity
of Dijkstra algorithm is O(C · 2m) in the worst case.

6. DISCUSSIONS
In this section, we present the discussions about two vari-

ations to make our query processing method to support sub-
graph queries in form of general graphs. One is how to make
the method to support subgraph query in form of graphs
with circles. The other is how to make the method to sup-
port subgraph queries with adjacent relationships.

6.1 Evaluate Queries with Circles
In this section, we present a strategy to adapt the family

of HGJoin to support subgraph queries with circles. Such
strategy is based on the feature that all reachability labelling
scheme of the nodes in the same strongly connected compo-
nent(SCC for brief) share the same interval sets.

The basic idea is to identify all the SCCs in the nodes
in the graph related to the query with labelling schemes.
An id is assigned to each SCC and such id is also assigned
to the nodes belong to such SCC. All edges in the SCC
in the query are deleted. Each separate part of the query
is processed individually. Then the results of these parts
are joined together with the id of SCC based on the nodes
corresponding to the query nodes in the same SCC.

6.2 Evaluate Queries with Adjacent Edges
Subgraph queries with adjacent edges can be processed in

the algorithms similar to the family of HGJoin.
An adjacent labelling schema is assigned to each node.

The generation of adjacent labelling scheme is that for each
node with postid i, interval [i,i] is assigned to each of its
parents. The benefit of such scheme is that the judgement of
adjacent relationship is same as that of reachability labelling
scheme so that the processing techniques for subgraphs with
only reachability relationships can be applied to evaluate
structural queries with adjacent edges.

If a query node n as an ancestor has both reachability
and adjacent outgoing edges, n should be split to two query
nodes with only reachability and adjacent outgoing edges,
respectively. It is because different intervals are used to
judge reachability and adjacent relationships. Considering
only outgoing edges is because the judgements of reachabil-
ity and adjacent relationship use the same postids. When
the query processing method is applied, for the query node
with reachability outgoing edges, intervals in reachability
scheme are used, while for query node with adjacent out-
going edges, intervals in adjacent scheme are used. The
algorithm is same as the corresponding one in the family of
HGJoin.
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Table 1: Statistics of the XMark Datasets
factor 0.1 0.5 1.0 1.5 2 2.5
Size(M) 11 56 113 170 226 284
#Nodes(K) 175 871 1681 2524 3367 4213
#Edges(K) 206 1024 1988 2985 3982 4981
Num(M) 0.98 4.9 9.71 14.7 19.6 24.7

7. EXPERIMENTAL EVALUATION
In this section, we present the results and analysis of part

of our extensive experiments on the algorithms in this paper.

7.1 Experimental Setup
Experiments were run on Pentium 3GHz with 512M mem-

ory. We implemented all our algorithms in this paper.
The dataset we tested is the XMark benchmark [20]. It

can be modeled as a graph with complicated schema and
circles. Documents are generated with factors 0.1 to 2.5.
Their parameters are shown in Table 1, where Num is the
number of numbers in the labelling scheme in the storage.

In order to evaluate the algorithms on graphs in various
forms, we also use synthetic data generated with 2 param-
eters: the number of nodes with each tag (node number for
brief) n and the probability between nodes with two differ-
ent tags(edge probability for brief) p. The data set generated
in this way is called the random dataset. All the graphs in
the random dataset have 8 tags in order {A, B, C, D, E,
F , G, H}. The graphs in the random dataset may be DAGs
or general graph (GG for brief). For a GG, the probability
between each pair of nodes with any tag is p. For a DAG,
only the probability of an existing edge from a node with
smaller tag to a node with larger tag is p but the probabil-
ity of the edges in inverted direction is 0. We use run time
as the measure of algorithms (RT for brief).

For queries on XMark, we choose two queries for each al-
gorithm, one contains all the nodes not in the circle with
smaller selectivity, the other one contains some nodes in the
circle with larger selectivity. The queries for HGJoin are
XMQS1:text ; emph and XMQS2:person ; bold. Queries
for IT-HGJoin and T-HGJoin are in Fig 9(a), Fig 9(b) and
Fig 9(c), Fig 9(d), respectively. For the comparison with
the algorithm in [4], we also design complex twig queries
XMQW1 and XMQW2 shown in Fig 9(c) and Fig 9(d).
In order to study the performance of query optimization
deeply, we design two complex structured queries XMQC1
and XMQC2 in Fig 9(i) and Fig 9(j), respectively. Since
Bi-HGJoin algorithm is the combination of IT-HGJoin and
T-HGJoin and its features are represented by the experi-
ments of these two algorithms, due to space limitation, the
experimental results specially for Bi-HGJoin are not shown.
In order to make query graphs clear, without confusion, in
the query graphs we use arrows to represent AD relation-
ships. Some of these queries are from real instances while
some of them are synthetic. For example, XMQS1 repre-
sents the query for retrieving the text and the emph part
belonging to it and XMQT1 is to retrieve the text with all
emph, bold and keywors in it.

For queries on the random dataset, since the selectivity is
mainly determined by edge probability, we choose one query
for each algorithm. The query for HGJoin is RQS: A ; E.
Queries for IT-HGJoin and T-HGJoin are in Fig 9(e) and
Fig 9(f). Twig query and complex query are RQW and
RQC, shown in Fig 9(k) and Fig 9(l).

Table 2: The Quality of Query Plan

Query OPT MAX MIN AVG

XMQC1 26923 169797 55641 101715
XMQC2 62720 234640 66953 154243.8

Since the query processing methods for the queries in form
of circle or with adjacent relationships are the extensions of
that for DAG queries, the features of these algorithms are
similar. Due to space limitation, the experimental results of
such queries are not shown in this paper.

7.2 Comparisons
For comparison, we implemented stackD algorithm in [4].

The comparison is performed on 10M XMark data and ran-
dom XML document in form of DAG and general graph with
4096 nodes and edge probability of 0.1, 0.8, 0.4, represent-
ing sparse edges, dense edges and the density of edge be-
tween those two instances. Note that in such case, the edge
probabilities 0.1, 0.4 and 0.8 correspond to the ratio of the
numbers of edges and the numbers of nodes of 250, 922 and
1794. The results are shown in Fig 10 From the results, it
can be seen that the efficiency of our algorithm outperforms
StackD significantly, especially when the density of edges is
large. For random graphs with high edge density, the differ-
ence is the most significant. It has two reasons. The first is
that when the edge of a graph is dense, one interval may be
shared by many nodes; our method can process same inter-
vals of nodes with same tag together while StackD processes
them separately. The second is when nodes have many in-
tervals, stackD has to maintain a very large data structure,
the operations on which is costly.

7.3 The Effectiveness of Query Optimization
To validate the effectiveness of the query optimization, we

check the quality of query plans and the efficiency of query
optimization. In the experiments in this section, we fixed the
available memory to 1M and performed query optimization
on the 50M XMark document.

7.3.1 The Quality of Query Plan
To validate the quality of query plans, we compare the

execution time of the query plan generated by the optimizer
with those of 10 random query plans. The results are shown
in Table 2, where the unit of time is ms and OPT is the exe-
cution time of query plan optimized with rule4 with C = 4.
The maximal, minimal and average run time of 10 randomly
generated query plans are shown in the columns of MAX,
MIN and AVG, respectively. From the results, the query
optimal strategy always avoids the worst query plan and
obtains a better query plan than random plans do.

7.3.2 The Efficiency of Query Optimization
To check the efficiency of query optimization, we compare

the optimization time of XMQC1 and XMQC2 with various
acceleration rules. The result is shown in Table 3, where
timei represents the optimization time of the optimization
with Rulei, respectively. EXE-Time is the run time of query
plan obtained by query optimizer with rule4. Here in rule4,
C is set to be 4. The unit of time is ms. From the results,
it can be seen that our rules can reduce query optimization
time effectively and comparing with query plan execution
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Figure 10: Results of Comparison

Table 3: Efficiency of Query Optimization

Query time1 time2 time3 time4 EXE-Time

XMQC1 47 16 2 1 17328
XMQC2 104968 16109 35 34 62720

time, optimized query optimization time is very small.

7.4 Changing Parameters

7.4.1 Scalability
The scalability experiment is to test the run time with the

document in the same schema but with various size. In our
experiments, for XMark, we change the factor from 0.5 to
2.5 and the results are shown in Fig 11(a) and Fig 11(b).
Run time of Fig 11(a) is in log scale. From the results,
the run time of XMQS1, XMQS2, XMQI1, XMQI2 and
XMQW2 changes almost linearly with the data size. When
data size gets larger, the process times of XMQT1, XMQT2 ,
XMQW1, XMWC1 and XMWC2 increase fast. It is because
major parts of these queries are related to some circle or bi-
partite subgraph in XML data. The results of such part are
as the Cartesian production of related nodes and the number
of results and intermediate results increase in the power of
the number of query nodes. Therefore, the processing time
increases faster than linearly. Since the time complexity is
related to the size of results, it is inherent.

For the random dataset, experiments on DAG were per-
formed. Node number factors are changed with fixed edge
probabilities 0.1. The results are shown in Fig 11(c). Note
that run time and node number axes of Fig 11(c) are in
log scale. For the same reason discussed in the last para-
graph, the query processing time of RQS, RQI, RQT and
RQW increases faster than linearly with node number. The
run time of RQC does not increase significantly with node
number because with query optimizer, RQC is performed
bottom-up and the selectivity of subquery ({E, F , G}, H)
is very small.

As a result, the query processing time increases faster than
linearly only when the size of final results increases faster.

For the random dataset, we performed experiments on
DAGs and changed edge probabilities from 0.1 to 1.0 with
fixed node number 4096. The results are shown in Fig 11(d),
it shows that the run time of RQS, RQI, RQT and RQW
does not change significantly with the number of edges. It
is because when the edges become dense, more intervals are
copied to ancestors and the intervals of all nodes trend to be
the same. Based on our data preprocessing strategy, same
intervals are merged. Therefore, the query processing time
of these queries does not change a lot. RQC is an exception.
When the edge probability changes from 0.2 to 0.3, the run
time changes significantly. It is because RQC is complex
and only when the density of edges reaches a threshold, the
number of results becomes large.

We also performed experiments on general graphs with
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Figure 11: Results of Changing Parameters

edge probabilities fixed to 0.1 and node number varying from
4K to 64K, experiments on general graphs with node number
fixed to 4096 and edge probabilities varying from 0.1 to 1.0.
The run time is small (0ms to 5ms) and does not change
significantly. It is because in such cases, almost all the nodes
in a graph are in the same strongly connected component.
With our data preprocess strategy, their interval sets are the
same and contain just one interval. Due to space limitation,
we do not show the results.

7.4.2 Changing the Form of Queries
In this section, we test the efficiency change of our method

with the forms of queries. All experiments were performed
on a random dataset with node number 4096 and edge prob-
ability 0.1.

We test the query efficiency with the change of the number
of ancestors and descendants in the queries of T-HGJoin
and IT-HGJoin from 1 to 7, respectively. The queries for
IT-HGJoin algorithm use H as the descendant and {A},
{A, B}, · · · , {A, · · · , G} are the ancestor sets, respectively.
The queries for T-HGJoin use A as the ancestor and {B},
{B, C}, · · · , {B, · · · , H} are the ancestor sets, respectively.
The run time axes are both in log scale. We also test the
query efficiency with the change of the length of path query
from 2 to 8. The queries are A → B, A → B → C, · · · ,
A → · · · → H. The results of these three experiments are
shown in Fig 11(e).

From these results, the run time of our algorithm is nearly
linearly to the number of ancestors or descendants. It is
because with the hash sets, all ancestors of one descendant
can be outputted directly from the hash set without useless
comparisons with other nodes.

7.4.3 Changing the Number of Buckets in Hash Table
The number of buckets of the hash table is an important

factor of T-HGJoin. We vary bucket numbers from 16 to
2048. The results of XMQT1 and XMQT2 on 50M XMark
are shown in Fig 11(f). The number of hash buckets has
little effect on the efficiency of XMQT1. It is because nodes
corresponding to the four query nodes are all in the tree-
structure of an XML graph. The coding of each node has
only one interval. So there are only three intervals to process
at the same time. But for XMQT2, the run time is nearly
logarithmic related to the number of bucket. It is because
during the processing of XMQT2, there are many interme-
diate results in the hash table. More buckets will reduce not
only disk I/O but also the cost of sort and join.

8. RELATED WORK
The reachability labelling schemes of a DAG or a graph

include [17, 28, 8] and [5]. A survey of labeling schemes on
DAG is presented in [21].

A 2-hop reachability label is presented in [28]. In [18],
a 2-hop label is used to process the reachability query in
complex XML document collections. [5] presents an ap-
proximate algorithm for the computation of 2-Hop labelling
by finding densest subgraphs. HLSS labelling is presented
in [8]. This labelling strategy obtains (preorder, postorder)
for each node and then computes 2-Hop labelling on remain-
ing edges. The labelling scheme presented in [22] obtains
(preorder, postorder) for each node at first and then com-
putes a transmit closure matrix for remaining edges. With
preorder and postorder, the size of such matrix can be re-
duced. The algorithms in this paper are based on an ex-

488



tended version of the labelling scheme in [17]. It is because
such scheme avoids costly set comparison and matrix look-
ing up and is suitable for the computation of (ancestors,
descendent) pairs from two node sets. Additionally, such la-
belling scheme is compatible with adjacent labelling scheme
so that it is also suitable to process subgraph queries with
both adjacent and reachability relationships.

With efficient coding, XML queries can also be evaluated
on-the-fly using the join-based approaches. Structural join
and twig join are such operators and their efficient evalua-
tion algorithms have been extensively studied [26, 13, 7, 9,
6, 25] [3, 10]. Their basic tool is the labelling schemes that
enable efficient checking of structural relationship of any two
nodes. TwigStack [3] is the best twig join algorithm to an-
swer all twig queries without using additional index. The
idea of these papers can be referenced to process query on
graph. But these algorithms cannot be applied on the la-
belling schemes of a graph directly.

9. CONCLUSIONS AND FURTHER WORK
When XML documents are modeled as graphs, many chal-

lenging research issues arise. In this paper, we consider the
problem of efficient structural query evaluation which is to
match a subgraph in the graph structure of an XML docu-
ment. Based on a reachability labelling scheme, we present
a hash-based structural join algorithm, HGJoin, to handle
reachability queries for graph-structured XML data. As the
extensions of HGJoin, two algorithms are presented to pro-
cess reachability queries with multiple ancestors and single
descendants or single ancestors and multiple descendants,
respectively. As the combination of these two algorithms,
the query processing algorithm for subgraph queries in form
of bipartite graphs is presented. With these algorithms as
basic operators, we present a query processing method for
subgraph queries in form of DAGs. In this paper, we also dis-
cuss how to extend the method to support subgraph queries
in the form of general graphs. Analysis and experiments
show that our algorithms outperform the existing algorithm.

Several issues for further exploration and experimenta-
tion are raised by this work. First, it would be worthwhile
to design efficient index to accelerate the query processing.
Second, how to generate more efficient query plans is an
interesting problem. The last but not the least, the main-
tenance of the labelling scheme is another import topic for
future research. We plan to investigate these directions in
our future work in this area.
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