
End­to­End Support for Joins in Large­Scale
Publish/Subscribe Systems

∗

Badrish Chandramouli Jun Yang
Department of Computer Science, Duke University, Durham, NC 27708, USA

{badrish,junyang}@cs.duke.edu

ABSTRACT

We address the problem of supporting a large number of select-join

subscriptions for wide-area publish/subscribe. Subscriptions are

joins over different tables, with varying interests expressed as range

selection conditions over table attributes. Naive schemes, such as

computing and sending join results from a server, are inefficient be-

cause they produce redundant data, and are unable to share dissem-

ination costs across subscribers and events. We propose a novel,

scalable scheme that group-processes and disseminates a general

mix of multi-way select-join subscriptions. We also propose a sim-

ple and application-agnostic extension to content-driven networks

(CN), which further improves sharing of dissemination costs. Ex-

perimental evaluations show that our schemes can generate orders

of magnitude lower network traffic at very low processing cost. Our

extension to CN can further reduce traffic by another order of mag-

nitude, with almost no increase in notification latency.

1 Introduction

As computing continues to grow more ubiquitous and personal,

there is an increasing need for customized, real-time data deliv-

ery. Millions of users want personalized information delivered to

their desktops, phones, email and instant messaging clients, etc.

A publish/subscribe system is a middleware for matching events,

which are generated by data sources (publishers), to subscriptions,

which specify the interests of users (subscribers). Traditional pub-

lish/subscribe systems only support stateless subscriptions, defined

as filters over the contents of individual events. However, there

is a pressing demand for efficient support of more complex sub-

scriptions, such as those that correlate data across multiple sources.

These subscriptions are stateful—given an incoming event, the sys-

tem needs information beyond the content of this event itself in

order to determine whether and how it affects these subscriptions.

The relational join operator provides a convenient way to correlate

data across sources, and select-join subscriptions are a common

class of stateful subscriptions, as the following example illustrates.

Example 1. Consider a publish/subscribe system for financial data.

One source of data is basic stock information, represented by a ta-

∗Supported by National Science Foundation Grant IIS-0713498.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24­30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000­0­00000­000­0/00/00.

ble Stocks(Symbol, PER, . . .), where attribute PER records price-
to-earning ratio, a popular measure of stock quality. Another source

is analyst reports, represented by Reviews(Symbol, Rating, . . .).
A stock may receive multiple ratings from different analysts.

A subscriber may be interested in cases where a stock’s rating

and its PER respectively belong to two prescribed ranges—for ex-

ample, good ratings (no less than 6 on a scale of 1 to 10) for stocks
with relatively high PER (between 45 and 70). This subscription,
which we denote byX1, can be expressed as a select-join query:

σPER ∈[45,70]Stocks ⊲⊳Symbol σRating ∈[6,10]Reviews.

This subscription is stateful. Suppose an event comes with PER =
60 for a new stock. This event may or may not cause the subscriber
to be notified, depending on whether the stock has any rating at or

above 6. To determine whether notification is needed, and if yes, to
compute the new join result tuples for notification, we must refer to

the contents of Reviews, which are not part of the event itself.

Challenges Continuing with Example 1, we illustrate the chal-

lenges (and opportunities) that arise in supporting select-join sub-

scriptions for wide-area publish/subscribe. Suppose the current

contents of Stocks and Reviews are as follows. For simplicity,

let us first assume that each incoming Stocks event is an insertion

into Stocks (i.e., Stocks tracks historical information).
Stocks: Symbol PER ...

s1 GOOG 51.7 ...

s2 YHOO 51.2 ...

s3 AMZN 92.8 ...

Reviews: Symbol Rating ...

r1 GOOG 5.5 ...

r2 GOOG 6.0 ...

r3 GOOG 7.1 ...

...

r20 GOOG 9.5 ...

r21 YHOO 7.5 ...

r22 AMZN 7.2 ...

r23 AMZN 7.8 ...

Given a Stocks event, a naive approach is to compute, for each

subscription, any change to the result of the select-join query, as in

incremental view maintenance [13]. If this change is not empty, we

say that the subscription is affected by this event, and we send the

change to the subscriber in a notification message. For subscription

X1 in Example 1, computing the change requires joining the new

Stocks tuple with Reviews. For example, on an event inserting

a new GOOG tuple s4 = 〈GOOG, 52.1, . . .〉, we would send X1

a message containing s4r2, s4r3, . . . , s4r20, which is the subset of

{s4} ⊲⊳ Reviews satisfying the selection conditions of X1.

The first obvious problem is that of large server output size. The

server has to enumerate potentially many output tuples. This prob-

lem slows down processing, increases server load, and in turn ag-

gravates notification latency. Upon closer examination, this prob-

lem is caused by three sources of redundancy:

• Result representation redundancy. Within each notification

message, the newly inserted tuple is repeated many times, once

for each joining tuple. For example, the notification for X1

when s4 is inserted repeats s4’s content 19 times.

434

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

• Current-content redundancy. This redundancy arises when

some information in the notification can be inferred from the

current subscription content. In many application scenarios, it

is reasonable to assume that a subscription client maintains the

current subscription content. Thus, information that can be in-

ferred from this content need not be included in the notification

message. For example, because of s1, X1’s subscription con-

tent should already contain r2, . . . , r20 prior to the insertion of

s4; there is no need to send these joining Reviews tuples again.

The naive approach does not take advantage of this option.

• Inter-event redundancy: This redundancy arises when some in-

formation in the notification message cannot be recovered from

the current subscription content, but nevertheless has been pre-

viously transmitted to the subscriber due to an earlier event. For

example, suppose that Stocks maintains only a window of re-

cent history. A sequence of new Stocks events for GOOG drop

its PER to lower than 45, and the older GOOG tuples, s1 and s4,

have been expired (i.e., deleted) from Stocks. At this point, the

joining Reviews tuples r2, . . . , r20 are no longer in X1’s con-

tent. However, a future event may raise GOOG’s PER to above

45 again, and bring back these joining Reviews tuples. Ideally,

we would like to avoid resending these tuples to X1 if possible.

Another serious problem of the naive approach is the lack of

sharing of dissemination costs across subscribers. A large-scale

publish/subscribe system may have millions of subscribers, and

many of them may be interested in similar join results. For ex-

ample, another subscription X2 may be interested in a PER range

of [50, 80] and a rating range of [7, 10], which are different from

but overlap with those of X1. For insertion of s4, changes to X1

and X2 are nearly identical—both contain s4r3, . . . , s4r20, and the

only difference is that X2 should additionally get s4r2. When no-

tifying multiple subscriptions, we wish to avoid inter-subscription

redundancy, which increases not only the overall communication

cost, but also server stress and notification latency.

There is even more opportunity in improving efficiency by iden-

tifying and avoiding re-dissemination redundancy, which is a gen-

eralization of current-content, inter-event, and inter-subscription

redundancies. For example, suppose that a third subscription, X3,

is interested in the PER range of [80, 100] and the same rating range

as X1. Thus, r22 and r23 (reviews for AMZN) are in X3. Later

on, if AMZN’s PER becomes 55, X1 should receive r22 and r23.

Suppose that X1 and X3 share some portion of their network dis-

semination paths; it would be nice if we could avoid resending the

same contents through the shared path. This optimization enables

cost sharing across both events and subscriptions.

The solution to these problems is challenging. 1) Compressing

individual notification messages can avoid result representation re-

dundancy, but is ineffective at removing other redundancies. 2) We

can remove current-content redundancy at the server by checking

the content of each outgoing notification against the current sub-

scription content. However, the overhead is high, and it is diffi-

cult to scale to a large number of unique subscriptions. 3) Inter-

subscription redundancy can be overcome by employing an effi-

cient dissemination network, popular in wide-area publish/subscribe

systems. This network consists of a set of nodes (sometimes called

brokers) over the Internet, each responsible for a subset of the sub-

scriptions. These nodes forward events to each other based on

downstream subscription interests. Each event traverses down a

tree of nodes spanning all affected subscribers. However, tradi-

tional publish/subscribe systems do not directly support stateful

subscriptions such as joins, and their stateless nature makes it dif-

ficult to implement state- and history-based optimizations, such as

avoiding current-content and inter-event redundancies. 4) No exist-

ing solutions or simple extensions (discussed in Section 2) are able

to avoid all types of redundancies. Furthermore, these solutions do

not mesh well with each other, so it is unclear how to combine them

to simultaneously avoid redundancies of different types.

Design for Practicality Besides the challenges above, there are

important practical considerations. In this paper, we make a con-

scious decision not to over-complicate the design of dissemination

networks for publish/subscribe, e.g., by augmenting nodes in these

networks with hard application state or application-specific pro-

cessing logic. While complex, stateful networks may be appro-

priate in certain scenarios, we argue that they are best avoided in

loosely-coupled wide-area systems, because adding such state and

logic significantly increases system complexity, complicates failure

and consistency issues, and creates deployment hurdles. Instead,

we want to reuse common, off-the-shelf network substrates for dis-

semination because at large scales, such substrates are more robust

and less likely to face deployment and maintenance problems.

Contributions We provide a complete solution to supporting a

large number of select-join subscriptions in a publish/subscribe sys-

tem. Our goals are to reduce and/or bound bandwidth consumption,

notification delay, and server processing costs. Instead of design-

ing a complex dissemination network, we base our solution on a

simple, well-established type of dissemination substrates, which

we termed content-driven networks (CN) [6]. We develop novel

server-side processing algorithms and application-agnostic exten-

sions to stateless CN to support stateful select-joins and to improve

efficiency. More specifically, our contributions include:

• In Section 3.1, we propose a method to eliminate result repre-

sentation and current-content redundancies by rewriting select-

join subscriptions into select-semijoins. We demonstrate how

these subscriptions can be efficiently processed at the server.

• In Section 3.2, we show how to further use reformulation to

eliminate inter-subscription redundancy and enable the use of

CN. The novel reformulation scheme is computationally effi-

cient, and significantly reduces network traffic.

• In Section 5, we propose a simple and novel extension to CN,

called CN∗, which further improves efficiency by reducing inter-

event and, more generally, re-dissemination redundancies.

• Our solution is general. We show how to handle a generic mix

of multi-way select-joins (Section 4). Our solution can also be

extended to multi-attribute equijoin and range-selection condi-

tions; see Appendix C for details.

• We have conducted comprehensive experimental evaluation of

our solution and its competitors. We measure the performance

of server-side processing and dissemination in a simulated wide-

area network. Results show orders-of-magnitude improvement

for several relevant metrics. We also include examinations of

multi-way select-joins and the effectiveness of CN∗.

Some of our contributions have applications beyond joins. Inter-

estingly, even for simple selection subscriptions, if events contain

bulky payloads (e.g., a PNG image attribute in Stocks containing

the company logo, or a text attribute in Review carrying the analyst

report), it would be more efficient to treat selections as select-joins

and apply our schemes; see Appendix I for details.

CN∗, the extension to CN, is also a contribution in its own right,

as it can be applied to any type of subscription to improve efficiency

by optimizing the transfer of payloads. Again, this extension has

been designed with practicality in mind—it is application-agnostic,

free of hard state, and incrementally deployable, i.e., CN∗ nodes

(with the extension) can coexist with regular CN nodes in the same

network, and bring commensurate improvement in efficiency.

435

2 Preliminaries

A publish/subscribe system is responsible for delivering data gen-

erated by publishers to interested subscribers, whose interests over

data are defined as subscriptions. In large-scale, wide-area pub-

lish/subscribe system, the number of subscriptions is typically high,

and subscribers can be located all over the network. Traditional

publish/subscribe systems assume that events follow some schema,

and subscriptions are filters over individual events (e.g., PER ∈
[45, 70] for a Stocks event).

In this paper, however, we use a publish/subscribe model that

supports more powerful database-style subscriptions. We assume

that a central server maintains a database. Events from publishers

arrive at the server and are treated as modifications (inserts, deletes,

and updates) to the database. A subscription is a query Q over the

database. Suppose an incoming event changes the database state

from D to D′. If Q(D′) 6= Q(D), and we say that the subscrip-

tion Q is affected by the event; the task of the system is to deliver

a notification message to Q’s subscriber, such that Q(D′) can be

computed from Q(D) and the content of this notification message.

More details about our system architecture can be found in [7].

2.1 Dissemination Network

To enable efficient notification delivery, we employ a dissemina-

tion network, like most wide-area publish/subscribe systems (as

discussed in Section 1). Each node in the network is responsible for

a subset of the subscriptions, and the nodes collectively forward no-

tification messages among themselves and to the subscribers. The

last hop of notification delivery, from a node to an affected sub-

scription assigned to it, is handled by a message dispatcher running

at the node, which can use any delivery mechanism suitable to the

subscription client, e.g., IP unicast, email, or instant message.

A popular technique for building the dissemination network is to

use a content-driven network (CN), a term coined by [6] to refer

to a class of overlay networks for data dissemination. CN has a

clean and simple dissemination interface. Each message contains a

list of attribute-value pairs. A subscription is a filter over individ-

ual messages, defined as a predicate involving message attributes.

CN efficiently routes each message to all matching subscriptions

registered in the network.

Many off-the-shelf overlay networks implement the CN inter-

face. One example is content-based network (CBN) [4], which

allows subscriptions to be arbitrary boolean predicates. Another

example of CN is Meghdoot [14], based on a structured overlay

called content-addressable network (CAN) [24]. In Meghdoot, a

message contains d numeric attributes and each subscription is an

orthogonal range predicate in the d-dimensional space. While this

subscription language is more restrictive than CBN, it nevertheless

conforms to the CN interface. More details on different examples

of CN can be found in Appendix A. In this paper, we simply treat

CN as a black-box delivery mechanism.

While the simplicity of CN’s network interface enables efficient

and scalable implementations, subscriptions directly supported by

CN are limited to selections over event tables. Thus, CN cannot be

directly used for stateful subscriptions such as select-joins, whose

processing requires information beyond individual messages.

2.2 Select­Join Subscriptions

In this paper, we consider subscriptions expressed as orthogonal

range selections over natural joins (select-joins for short). These

subscriptions constitute a significant portion of workloads in prac-

tice. The database schema can be modeled as an undirected join

graph, which may contain cycles. Nodes in this graph represent

tables, and edges represent possible joins between tables. Each

select-join subscription corresponds to a connected subgraph of the

join graph, which we refer to as the join signature of the subscrip-

tion. In addition to the join conditions implied by the join signature,

each subscription can specify a local selection for each table, in the

form of an orthogonal range condition. In general, such a condition

can involve multiple attributes, constrained by different ranges. In

this paper, we assume that subscriptions return all attributes in the

result (i.e., no projections), and there are no self-joins.

We will start with the scenario, formalized in the example be-

low, where all subscriptions have the same binary join signature

but possibly different single-attribute range selections for each ta-

ble. In Section 4, we show how to extend our solution to a general

mix of multi-way joins. The extension to multi-attribute join and

selection conditions is discussed in Appendix C.

Example 2 (Binary Select-Joins). LetX = {X1, X2, . . .} be a set
of subscriptions over tables R(A, B, PR) and S(B, C, PS). B is

the join attribute, A and C are local selection attributes, and PR

and PS represent all remaining attributes in the respective tables,

which we call the payload attributes. EachXi is defined by query
“

σA∈IA

i

R
”

⊲⊳B

“

σC∈IC

i

S
”

,

where IA
i = [alow

i , a
high
i] and IC

i = [clow
i , c

high
i] specify the ranges

of Xi’s local selection conditions on R.A and S.C, respectively.

Note that Example 1 fits this scenario.

2.3 Strawman Solutions

Select-join subscriptions cannot be handled directly by CN. We

now present several strawman solutions: The first one does not use

CN, while the others leverage CN in straightforward ways.

Enumeration of Unicast Notifications (Enum-J) Given an in-

coming event, one option is to process all subscriptions at the server,

compute a notification message for each affected subscription, and

unicast this message to the corresponding subscriber. A notifica-

tion message contains the relational difference between new and

old subscription contents, which, in the case of an insertion event, is

the result of the select-join evaluated over the inserted tuple and the

joining tables. Many processing techniques have been developed,

e.g., NiagaraCQ [10] in the context of continuous query systems.

This scheme corresponds to the naive approach introduced in

Section 1. Enum-J suffers from large server output size and lack of

sharing of dissemination costs. These problems make the approach

difficult to scale to a large number of subscriptions.

Relaxation into Single-Table Selections for CN (Rel-Sel) An

n-way select-join subscription can be “relaxed” into n selection

subscriptions, one for each joining table. In Example 2, Xi can

be relaxed into two subscriptions, σA∈IA

i

R and σC∈IC

i

S. All re-

sulting selection subscriptions can then be directly handled by CN
(Section 2.1). R and S events are directly injected into CN, which

then routes each event to all matching selection subscriptions. The

subscription client maintains the contents of selection subscrip-

tions, and joins them to compute the original subscription.

Rel-Sel avoids result representation redundancy, and its use of

CN alleviates inter-subscription redundancy. Rel-Sel may seem to

avoid re-dissemination redundancy as well, but it is only because

Rel-Sel may transmit far more data than necessary. Client for Xi in

fact receives enough data to be able to maintain the cross product

σA∈IA

i

R × σC∈IC

i

S, even though only the join is necessary. Los-

ing the filtering power of join conditions can result in much higher

traffic due to transmission of unnecessary content to subscribers.

Reformulation as Selections over Join for CN (Ref-J/Ref-J+)

Reformulation [5] is a method for supporting stateful subscriptions

436

over the stateless CN dissemination interface. On a high level, re-

formulation works as follows. Instead of injecting an event directly

into CN, the server reformulates it into one or more messages with

attribute-value pairs carrying additional information computed by

the server. On the other hand, each subscription is reformulated as

a filter over the reformulated messages. CN automatically routes

reformulated messages to matching filters (reformulated subscrip-

tions). The reformulated messages, computed by the server with

full access to the database and subscription definitions, carry the

state necessary for processing the otherwise stateful subscriptions.

We can use a simple reformulation scheme, which we call Ref-J,

to support all select-joins with the same join signature. Given an

incoming event, the server computes the change to the result of the

natural join corresponding to the join signature (with no selections).

This change is represented by a set of join result tuples. In the case

of an insertion event, for example, these are the result of joining

the inserted tuple with the other tables. Then, each join result tu-

ple is injected into CN as a message. Each select-join subscription,

on the other hand, is reformulated into a filter over join result mes-

sages according to the subscription’s local selection conditions. For

instance, in Example 2, the reformulated messages have the format

〈A, B, C, PR, PS〉, while each subscription Xi is simply reformulated

into the filter A ∈ IA
i ∧ C ∈ IC

i .

Again, CN helps us avoid inter-subscription redundancy. How-

ever, result representation redundancy still remains; the content of

the incoming event is repeated in every reformulated message that

the event generates. Also, Ref-J does not avoid current-content, or

more generally, inter-event and re-dissemination redundancies.

Another inefficiency with Ref-J, caused by delayed application

of selections (in CN instead of at the server), is that Ref-J may

send join result tuples that are not interesting to any subscriptions.

This problem can be solved by checking each outgoing join result

tuple to ensure that at least one subscription would be interested in

it. However, this extension, which we call Ref-J+, increases server

processing cost, and still inherits all other problems of Ref-J.

3 Binary Select­Joins

We now present our solutions for the scenario described in Exam-

ple 2, where all subscriptions are binary select-joins between R and

S. We will show how to generalize our techniques to multi-way

joins in Section 4. As a first step, in Section 3.1, we ignore the dis-

semination aspect, and focus on how to efficiently compute, at the

server, the minimal information to send to each subscription for ev-

ery event. Next, in Section 3.2, we show how to retool the solution

in Section 3.1 to further leverage CN for efficient dissemination.

3.1 Enum-SJ: Towards a Semijoin Approach

We saw in Section 1 that two important sources of inefficiency are

result representation and current-content redundancies. It turns out

that both can be eliminated by decomposing a select-join subscrip-

tion Xi = σA∈IA

i

R ⊲⊳B σC∈IC

i

S into two select-semijoins:

XR
i = σA∈IA

i

R ⋉B σC∈IC

i

S, and XS
i = σC∈IC

i

S ⋉B σA∈IA

i

R.

We call them R-semijoin and S-semijoin respectively. Semijoins

are a well-known method in distributed databases [3] for reducing

communication when joining across different machines. A semi-

join R ⋉ S can be regarded as a generalized filter on R, which

returns only those R tuples that join with at least one S tuple.

The insertion of a tuple tR = 〈a, b, pr〉 into table R can affect

both R-semijoin and S-semijoin subscriptions. First, the server

has to send tR to every R-semijoin XR
i where a ∈ IA

i and there

exists at least one joining S tuple 〈b, c, ps〉 such that c ∈ IB
i . We

call these subscriptions tR-affected, or simply (when clear from

the context), affected R-semijoins. Second, for each S tuple tS =
〈b, c, ps〉 that joins with tR, the server has to send tS to every S-

semijoin XS
i where a ∈ IA

i , c ∈ IC
i , and XS

i does not already

contain tS (i.e., before tR is inserted into R, tS 6∈ σC∈IC

i

S ⋉B

σA∈IA

i

R). We call these subscriptions (tR-)affected S-semijoins.

The client for subscription Xi maintains the contents of both XR
i

and XS
i . Upon receiving notifications to XR

i or XS
i , it updates the

result of XR
i ⊲⊳ XS

i , which is equivalent to the original Xi.

As a concrete example, consider the subscription X1 in Exam-

ple 1 and the tables showing the current contents of Stocks and

Reviews in Section 1. Upon the insertion of a new Stocks tuple

s4 = 〈GOOG, 52.1, . . .〉, recall that the naive approach (Enum-J)

needs to send s4r2, s4r3, . . . , s4r20 to X1. With the decompo-

sition, however, we only need to send s4 to XStocks
1 . Note how

semijoin avoids the multiplicity caused by join, thereby eliminat-

ing result representation redundancy; only one copy of s4 is sent

no matter how many joining Reviews tuples there are. Further-

more, note that nothing needs to be sent to XReviews
1 , because the

Reviews tuples that join with s4 and satisfy X1’s selection condi-

tion on rating, namely r2, . . . , r20, are already in XReviews
1 . Hence,

current-content redundancy is also avoided. This example high-

lights the fact that having an affected R-semijoin does not imply

the corresponding S-semijoin is affected as well.

It is not trivial to compute the changes to a large number of

select-semijoin subscriptions, since every subscription has differ-

ent selection conditions. It is especially tricky to decide which

S-semijoins need to receive a joining S tuple, because the deci-

sion involves testing whether they already contain the tuple. The

remainder of this section is devoted to the details of scalable main-

tenance of R-semijoins and S-semijoins on an insertion into table

R. Insertion into S is symmetric; updates and deletions involve

straightforward extensions, which we omit for brevity.

Once the changes are computed, we assume (for now) that the

server unicasts them to each subscription. We call this scheme

Enum-SJ. We will see how to use CN to avoid inter-subscription

redundancy and further reduce output size in Section 3.2.

3.1.1 Computing Changes to R­Semijoins

On an insertion tR = 〈a, b, pr〉 into R, we need to identify all

affected R-semijoins. Several techniques exist in the continuous

query processing literature, e.g. NiagaraCQ [10]. For example,

we can first find all subscriptions whose local selection conditions

on R.A are satisfied by tR, which can be done efficiently with an

interval tree indexing all IA
i intervals. For each such subscription

Xi, we then probe a composite-key B-tree index on S(B, C) to

determine whether there exists at least one S tuple with B = b and

C ∈ IC
i ; if yes, the subscription is affected. The problem with this

approach is that its running time is linear in the number of subscrip-

tions whose selection conditions on R.A are satisfied, which can be

much higher than the actual number of affected subscriptions.

Processing with Stabbing-Set Index (SSI) We base our solution

on an algorithm from [1], which is especially suited to our setting

because it exploits the clustering among local selection ranges for

efficient processing. In publish/subscribe systems, we expect a fair

degree of clustering among subscription ranges because users often

share similar interests.

The algorithm is based on a stabbing-set index (SSI), which par-

titions the set of subscriptions X into τ clustersX (1), . . . ,X (τ) ac-

cording to their IC
i ’s, i.e., their local selection ranges on S.C. All

subscriptions in the k-th cluster X (k) must have their IC
i ’s stabbed

by a common point p(k), called the cluster anchor. With clustering

of user interests, we should be able to partition X into a relatively

smaller number of clusters (i.e., τ ≪ |X |). Efficient algorithms

437

Figure 1: Processing Enum-SJ using SSI for cluster X (k).

have been developed in [1] to maintain the partitions such that τ

is close to the minimum possible. Figure 1 illustrates the set of

subscriptions in cluster X (k) in the space S.C × R.A, where each

subscription Xi is represented as a rectangle IC
i × IA

i . The rectan-

gles in each cluster are indexed by a 2-d R-tree.

On the insertion of tR = 〈a, b, pr〉 into R, we perform the fol-

lowing steps for each cluster X (k). First, by looking up (b, p(k)) in

the B-tree index on S(B, C), we can find the two joining S tuples

with S.C values (say x1 and x2) that are the closest possible to p(k)

on each side of p(k). Figure 1 illustrates this step. Next, we probe

the R-tree index for X (k) to find those subscriptions in X (k) that

contain at least one of the points (x1, a) and (x2, a).

For each cluster, this procedure returns exactly all affected R-

semijoins within the cluster. To see why, note that we can represent

tuples in {tR}⊲⊳S as points in the S.C×R.A space, and all of them

must lie on the horizontal line R.A = a. An R-semijoin is affected

iff its rectangle contains at least one of these points. Therefore, any

affected subscription in X (k) must necessarily contain (p(k), a);

for it to contain a tuple in {tR} ⊲⊳ S, it must further contain at least

one of (x1, a) and (x2, a).

Complexity The space required for auxiliary data structures is

O(|X | + |S|), i.e., linear in the number of subscriptions and the

size of the database. Let kR be the number of affected R-semijoins.

Let g = O(
p

max1≤k≤τ |X (k)|) denote the cost of a lookup in an

R-tree indexing all subscriptions in a cluster (excluding the cost

component that is linear in the output size of the lookup). The

running time is O(τ (log |S| + g) + kR). Let hR be the size of

one R tuple. The output size, as measured by the total size of all

notification messages, is O(kRhR).

3.1.2 Computing Changes to S­Semijoins

Given an insertion tR = 〈a, b, pr〉 into R, we need to send a joining

S tuple tS to an S-semijoin XS
i iff tS is exposed to XS

i , i.e., tS

should be in XS
i after the insertion but currently is not. It may seem

that we need to examine the content of the S-semijoin to determine

whether tS is exposed to it. Interestingly, we show that exposure

testing is not as hard as it seems—a single index lookup suffices.

Theorem 1 (Exposure Test). Given an insertion tR into R, let

• a−(tR) = max{t.A | t ∈ R ∧ t.B = tR.B ∧ t.A ≤ tR.A},
or −∞ if the input tomax is empty; and

• a+(tR) = min{t.A | t ∈ R ∧ t.B = tR.B ∧ t.A ≥ tR.A}, or
+∞ if the input tomin is empty.

In both definitions, R refers to the state of R before the insertion.

Consider any tS ∈ S that joins with tR (i.e., tS.B = tR.B): tS is

exposed toXS
i iff tS.C ∈ IC

i and tR.A ∈ IA
i ⊂ [a−(tR), a+(tR)].

Proof. (Sketch) If tR.A 6∈ IA
i , XS

i is clearly not affected by the

insertion. Let tR.A ∈ IA
i . There are two cases: 1) If IA

i 6⊂
[a−(tR), a+(tR)], it must contain one of a−(tR) and a+(tR). Ei-

ther way, there already exists t′R ∈ R with t′R.A ∈ IA and t′R.B =
tR.B, such that any S tuple that should be in XS

i due to inser-

tion of tR must already be in XS
i because of t′R. 2) If IA

i ⊂

[a−(tR), a+(tR)], there is no other t′R ∈ R with t′R.A ∈ IA and

t′R.B = tR.B. Therefore, any S tuple that should be in XS
i due to

insertion of tR must not be in XS
i currently.

Applying Theorem 1, we can compute changes to S-semijoins as

follows. First, we compute a−(tR) and a+(tR), which can be done

efficiently by looking up (b, a) in the B-tree index on R(B,A).

Next, we process each subscription cluster X k in turn, in the same

loop where we compute affected R-semijoins (Section 3.1.1). For

each affected R-semijoin XR
i , if IA

i ⊂ [a−(tR), a+(tR)], the cor-

responding S-semijoin XS
i is also affected, and its change includes

the set of S tuples with S.B = b and S.C ∈ IC
i , which can be eas-

ily found in a B-tree index on S(B, C). As an optimization, we

do not need to repeat this lookup from the B-tree root for every af-

fected S-semijoin. Instead, we use a single lookup of (b, p(k)) for

each cluster; to find S tuples with S.B = b and S.C ∈ IC
i for Xi

in this cluster, we simply traverse the B-tree leaves towards left and

right starting from this point.

Complexity The total space requirement (including auxiliary data

structures in Section 3.1.1) is O(|X | + |R| + |S|), i.e., linear in

the number of subscriptions and the size of the database. Let s

be the number of S tuples that join with tR. Recall that kR de-

notes the number of affected R-semijoins. Let kS (≤ kR) de-

note the number of (tR-)affected S-semijoins (i.e., those with at

least one exposed joining S tuple), and let s̄′ (≤ s) be the average

number of joining S tuples exposed to each affected S-semijoin.

The running time, combined with the algorithm in Section 3.1.1, is

O(log |R|+ τ (log |S|+g)+kR +kS s̄′). The output size, as mea-

sured by the total size of all notification messages for S-semijoins,

is O(kS s̄′hS), where hS is the size of one S tuple.

3.2 Ref-SJ: Scalable Dissemination

Enum-SJ suffers from inter-subscription redundancy because it uni-

casts notifications to each subscription. In this section, we present

Ref-SJ, which uses novel reformulation techniques to leverage CN
for sharing dissemination costs. The overall approach is to have the

server reformulate each incoming event into CN messages carrying

additional information computed by the server, such that the oth-

erwise stateful subscriptions can be reformulated accordingly into

stateless filters supported by CN. Assume as before that we insert

an R tuple tR = 〈a, b, pr〉.

3.2.1 Reformulating R­Semijoins

We need to send tR to the set of affected R-semijoins efficiently.

Can we characterize this set succinctly without enumerating the set

membership? The answer is yes. To illustrate, let us map each R-

semijoin XR
i with IC

i = [clow
i , c

high
i] to a point (clow

i , c
high
i) in a

2-d space, as shown in Figure 2 (a).

Consider just the subset of R-semijoins whose IA
i ranges contain

a; we call these the (tR-)selected R-semijoins. Obviously, every

affected R-semijoin must first be selected. Among the selected R-

semijoins, it turns out that the affected ones can be separated from

the unaffected ones by a skyline, as stated by Theorem 2 below.

Definition 1. A skyline (viewing from northwest) in 2-d is specified
by a set of skyline points {(x1, y1), (x2, y2), . . .} with the property
that no point lies to the northwest of another point; i.e., there exist

no i, j such that xi ≤ xj and yi ≥ yj . The subspace covered by

this skyline is the union of northwest quadrants of all skyline points,

i.e., {(x, y) | ∃i : x ≤ xi ∧ y ≥ yi}.

Theorem 2 (Descriptive Skyline). There exists a skyline (viewing

from northwest) L such that 1) every tR-selected R-semijoin in the

subspace covered by L is tR-affected, and 2) every R-semijoin not

438

Figure 2: Descriptive skylines. Figure 3: Multi-way decomposition.

in this subspace is not tR-affected. We call a skyline satisfying

these properties a descriptive skyline.

Proof. (Sketch) Let P be the (duplicate-free) set of points corre-

sponding to all affected R-semijoins. Let P ′ be a subset of P , such

that p ∈ P ′ iff p does not lie to the northwest of any other point

in P . The skyline specified by P ′ satisfies both properties. 1) If

a selected R-semijoin XR
i is covered by the skyline, it must lie to

the northwest of some affected R-semijoin XR
j , which implies that

IC
i ⊇ IC

j . Therefore, any joining S tuple that satisfies XR
j ’s se-

lection condition must satisfy XR
i ’s too. Hence, XR

i must also be

affected. 2) This property follows from the construction of P ′.

For example, Figure 2 (a) shows one such skyline with 7 skyline

points (as constructed by the proof of Theorem 2). Using Theo-

rem 2, our approach is to first compute a descriptive skyline at the

server, given tR = 〈a, b, pR〉. Suppose this skyline has kL points

(x1, y1), . . . , (xkL
, ykL

). We reformulate tR into the message:

〈A:a, B:b, PR:pr, X1:x1, Y1:y1, . . . , XkL
:xkL

, YkL
:ykL

〉.
Accordingly, an R-semijoin is reformulated as a filter over this

message, which now can directly be handled by stateless CN:

A ∈ IA
i ∧ (∃j : [Xj , Yj] ⊆ IC

i).
Compared with the approach in Section 3.1.1, which sends out

kR unicast messages with a total size of O(kRhR), this approach

sends out a single CN message with size O(hR + kL), where kL,

the number of points in the descriptive skyline, can be potentially

much smaller than kR, the number of points covered by the skyline.

Note that in general there can be many possible descriptive sky-

lines. We now examine several techniques for computing one. Sev-

eral factors influence our choice. We want to: 1) compute the sky-

line efficiently; 2) reduce the number of skyline points, because

it affects the reformulated message size; 3) reduce the area of the

subspace covered by the skyline, because a larger area may cause

slightly higher dissemination costs for some CN implementations.

Minimum-Area Skyline (Ref-SJ-Sub) This is the skyline con-

structed in the proof of Theorem 2. While it minimizes the area, it

may still have a large number of points. Furthermore, computing

this skyline requires additional O(kR log kR) time after identifying

all kR points, which is not very desirable.

Joining-Tuple Skyline (Ref-SJ-Tup) Suppose there are s join-

ing S tuples, with S.C values c1, . . . , cs. Interestingly, the skyline

with points (c1, c1), . . . , (cs, cs) is also a descriptive skyline, as il-

lustrated by Figure 2 (b). While very easy to compute, the number

of skyline points may be large and can even exceed kR.

Cluster-Based Skyline (Ref-SJ-Clu) Here, as in Section 3.1.1,

we again leverage the SSI to exploit the clustering among subscrip-

tion ranges. We start with an empty point set P . For each cluster

X (k), we look for the two joining S tuples with S.C values (say

x1 and x2) that are the closest possible to p(k) on each side of p(k).

They can be found by looking up (b, p(k)) in the B-tree index on

S(B, C). We add (x1, x1) and (x2, x2) to P . Intuitively, the set

of affected R-semijoins in this cluster is exactly the set of selected

R-semijoins in this cluster that lie to the northwest of (x1, x1) or

(x2, x2). The justification (omitted for brevity) follows the same

line of reasoning as the SSI-based algorithm in Section 3.1.1.

When all clusters have been processed, the point set P specifies

a descriptive skyline with up to 2τ points, as illustrated by Fig-

ure 2(c). This descriptive skyline can be quite succinct for work-

loads that exhibit a high degree of subscription clustering. The

running time of the algorithm is O(τ log |S|).

Improved Cluster-Based Skyline (Ref-SJ-Clu+) The skyline

of Ref-SJ-Clu can be further compressed. Let (q1, q1), . . . , (qn, qn)
be a contiguous subsequence of skyline points, sorted from south-

west to northeast. Consider the sawtooth region between the sky-

line and the diagonal line segment from (q1, q1) to (qn, qn). If this

sawtooth region contains no R-semijoin that is both selected and

unaffected, we can replace the subsequence of skyline points by a

single point (qn, q1) and obtain a simpler descriptive skyline, as

illustrated by Figure 2 (d).

This improvement, which we call Ref-SJ-Clu+, can be realized

algorithmically as follows. We generate the Ref-SJ-Clu skyline

points in order, by processing clusters in the increasing order of

their anchors. During this process, we check, for each pair of con-

secutive skyline points (qj , qj) and (qj+1, qj+1), whether the trian-

gle they form together with (qj , qj+1) is disposable, i.e., contains

no R-semijoin that is both selected and unaffected. Once we iden-

tify a maximal consecutive sequence of at least two disposable tri-

angles, we can replace the corresponding skyline points by a single

one. We can locate all disposable triangles using at most τ R-tree

lookups (see Appendix B for details). The number of Ref-SJ-Clu+

skyline points is still 2τ in the worst case, but in practice we find the

number to be much lower. Although the algorithm by itself is more

costly than Ref-SJ-Clu, it can be combined with the algorithm for

computing reformulated messages for S-semijoins (Section 3.2.2)

without increasing the overall asymptotic complexity.

Finally, we note that even Ref-SJ-Clu+ may not find a descrip-

tive skyline with the minimum number of points. It is possible to

find such a skyline, but the running time would become O(k2
R).

We leave a more detailed investigation of this alternative as future

work, since our experiments show that Ref-SJ-Clu+ works well in

practice and offers very good compression at low cost.

3.2.2 Reformulating S­Semijoins

Given an insertion tR, our overall strategy is to first find the set of

S tuples that are exposed to at least one S-semijoin; for each such

S tuple, we create a CN message containing its content plus some

additional information so that CN can route it to the exact set of

S-semijoins to which it is exposed.

The algorithm proceeds as follows. Given tR = 〈a, b, pr〉, we

first compute a−(tR) and a+(tR) by looking up (b, a) in the B-tree

index on R(B,A), as in Section 3.1.2. Next, we compute I, the

union of IC
i ranges of all affected S-semijoins, by iterating through

subscription clusters. For each clusterX (k), we find the affected R-

semijoins using two R-tree lookups, as in Section 3.1.1. For every

affected R-semijoin XR
i with IA

i ⊂ [a−(tR), a+(tR)], we add its

IC
i range to I. During this process, we maintain I as a sequence

of maximal, non-overlapping ranges. Finally, for each range I in

439

I, we retrieve all S tuples with S.B = b and S.C ∈ I , using a

B-tree index on S(B, C). For each retrieved S tuple tS , we inject

the following reformulated CN message:

〈B:b, C:tS.C, PS:tS.ps, A:a,A−:a−(tR), A+:a+(tR)〉.
An S-semijoin is reformulated as a simple filter over this message:

A ∈ IA
i ⊂ [A−, A+] ∧ C ∈ IC

i .

For one incoming event, the number of notification messages is s′,

the number of S tuples exposed to at least one affected S-semijoin.

The total message size is O(s′hS). The running time of the algo-

rithm is O(log |R|+τ (log |S|+g)+kR log kS +kS log |S|+s′).

3.2.3 Recap and Comparison with Enum-SJ

To recap, Ref-SJ operates as follows. When a select-join subscrip-

tion is created, it is decomposed into R- and S-semijoins, which

are then reformulated into message filters (as described in Sec-

tions 3.2.1 and 3.2.2, respectively) and registered in the CN.

Given an incoming insertion tR into R, the server generates a

message containing tR together with the descriptive skyline (Sec-

tion 3.2.1). When injected into CN, this message is automatically

routed by CN to reach all affected R-semijoins. Also, the server

generates a series of messages, one for each S tuple that is ex-

posed to least one S-semijoin (Section 3.2.2). Every message is

augmented with tR.A, a−(tR), and a+(tR), and is automatically

routed by CN to reach any affected S-semijoin that it is exposed to.

Compared with Enum-SJ, not only does Ref-SJ leverage CN for

efficient dissemination, but Ref-SJ also makes it possible to speed

up server processing. Intuitively, the complexity of Enum-SJ, as

any method that enumerates all affected subscriptions, is funda-

mentally lower-bounded by the number of affected subscriptions.

Reformulation-based approaches, on the other hand, only need to

generate a description of this set, which can be much more concise.

4 Multi­Way Select­Joins

We now consider how to handle a general mix of select-join sub-

scriptions over multiple tables. Recall from Section 2 that we repre-

sent the schema as a join graph, and each select-join has a signature

corresponding to a connected subgraph of the join graph.

Our approach decomposes each n-way select-join over n input

tables into n binary select-semijoins (exactly one for each input ta-

ble). The select-semijoin for input table R is the semijoin of R

with one of the neighboring input tables of R (say S) in the join

signature, i.e., σpR
R ⋉B σpS

S, where B is the common join at-

tribute, pR and pS refer to the selection conditions on R and S

in the original subscription. We call this binary select-semijoin an

RS-semijoin; here, RS denotes the form of the semijoin, where R

is called the base table and S is called the filtering table. For exam-

ple, the five-way select-join whose signature is shown in Figure 3

might be decomposed into 5 semijoins: RS , SU , T S , US , and V U .

Note that there are three choices of filtering table for base table S,

corresponding to the three edges incident to S.

Instead of the original multi-way select-join subscription, the

subscription client would maintain the decomposed binary select-

semijoins, and simply join them together to reconstruct the content

of the original subscription. Note that the client does not need to

apply additional selections, because the semijoins carry all applica-

ble local selections from the original subscription.

Using the techniques from Section 3, we process the decom-

posed binary select-semijoins in groups, where each group contains

all binary select-semijoins of the same form.

Optimizing Decomposition Given a set of multi-way select-joins

(with different signatures in general), we are faced with the fol-

lowing optimization problem. How should we decompose each of

these multi-way select-joins such that the resulting groups of bi-

nary select-semijoin are least expensive to process? We refer to the

decomposition decisions we make on the given set of select-joins

collectively as a decomposition for this set.

For some intuition, suppose we want to choose a binary select-

semijoin for a base table R in a multi-way select-join. Consider the

implications of choosing a particular filtering table S. 1) On the in-

sertion of tuple tR into table R, tR has to be sent to all tR-affected

RS-semijoins. The associated cost depends on the probability of

insertion into table tR and the expected number of tR-affected RS-

semijoins. Intuitively, we want to choose a “selective” filtering ta-

ble S that is expected to lead to fewer tR-affected RS-semijoins.

2) On insertion of a tuple tS into table S, each of the joining R tu-

ples needs to be sent to all RS-semijoins to which it is exposed. The

associated cost depends on the probability of insertion into table tS ,

the expected number of joining R tuples, and the expected number

of tS-affected RS-semijoins. Intuitively, we again prefer to choose

a “selective” neighbor S whose updates impact RS-semijoins mini-

mally. Note that choosing RS-semijoin does not imply a preference

for choosing SR-semijoin, i.e., the choice of filtering table for each

base table need not be reciprocal.

We cost a decomposition as follows. The total cost is the sum

over all resulting semijoin groups. A semijoin group (say RS)

contains all decomposed binary select-semijoins of the same form

(RS-semijoins). The cost of the RS group is the number of RS-

semijoins assigned to the group times a per-semijoin cost c(RS).

We propose two techniques for estimating the per-semijoin cost for

a group: One is based on periodic simulation of samples of sub-

scriptions and events, and the other one is based on a simple para-

metric cost model (see Appendix D for details).

Given a set of multi-way select-joins whose signatures are drawn

from a join graph, we use a greedy algorithm to find the decompo-

sition with the lowest cost. We repeat the following for each node

R in the join graph. We find the neighbor S with the lowest c(RS),

and choose RS-semijoins for all subscriptions involving both R

and S. If there is any subscription involving R for which we have

not yet chosen a semijoin for R, we repeat the process using the

neighbor S′ with the next lowest per-semijoin cost c(RS′

). Af-

ter a choice for base table R has been made for all subscriptions

involving R, we move on to another node in the join graph.

Under the assumptions of our cost function, it is easy to see that

this greedy algorithm finds the optimal decomposition (see Ap-

pendix E for a proof). In Section 6, we shall see that optimization

based on the simple parametric cost model gives good results.

Complexity Let e denote the number of edges in the join graph.

The time complexity of the greedy algorithm is O(e(log e+ |X |)),

dominated by outputting the result decomposition. The part of the

running time attributed to decision making is only O(e log e).

The total space required by all our auxiliary data structures is

O(n̄ |X |+
P

i
ei |Ti|), where n̄ is the average number of tables in

a multi-way join, and ei is the number of edges incident to Ti in the

join graph. Basically, each n-way select-join contributes n binary

select-semijoins. For each group of binary select-semijoins, we

need two SSIs—one for each of the two local selection attributes.

An SSI (including R-trees for its clusters) takes space linear in the

number of semijoins in the group. Therefore, the total space taken

by SSIs is O(n̄ |X |). In addition, for each table, we need one

composite-key B-tree for each of its join attributes (in combina-

tion with the local selection attribute). These B-trees together take

O(
P

i
ei |Ti|) space.

Alternative Approaches There are a number of other approaches

to handling multi-way select-joins, such as Rel-Sel and Ref-J (Sec-

tion 2.3), as well as a non-trivial extension of the semijoin approach

440

Figure 4: Payload dissemination using CN∗.

to longer select-semijoins of the form R ⋉ (S ⊲⊳ T ⊲⊳ · · ·). In

particular, it may seem that this last alternative, with its greater

filtering power, could be better than our approach of using only

binary select-semijoins, because with only binary select-semijoins

we might send tuples participating in a local binary select-join but

not the original multi-way query. However, the alternatives have

problems that make them less attractive than our approach; we re-

fer the interested readers to Appendix F for details.

5 Reducing Re­Dissemination Redundancy

The techniques in Sections 3 and 4 avoid result representation,

current-content, and inter-subscription redundancies, which cover

a significant portion of network cost. However, they cannot com-

pletely avoid re-dissemination redundancy across events and sub-

scriptions. In Example 1, a deletion from Stocks could remove

the joining reviews from X1’s current content. A future update that

brings them back into X1 would cause the reviews to be sent again

from the server. More generally, the bits delivered to a node are not

available for reuse for a future event, because CN is stateless by de-

sign. This problem is exacerbated when tables have large payloads,

such as inline text, video, etc.

The re-dissemination problem is not specific to join subscrip-

tions, but is universal for any subscriptions requesting events with

non-negligible payload. Hence, we opt for a general, CN-based so-

lution that attempts to avoid retransmitting the same payload through

the same link (between any two CN nodes). At the same time, we

aim to maintain the clean, stateless interface of CN, and avoid in-

troducing hard state or complex processing in the nodes.

One straightforward solution to the problem is caching. The idea

is to assign each payload a unique reference, and push messages

with the reference, but not the payload, to subscriptions. Upon re-

ceiving the message, a subscription client sends a request to the

server for the payload with the reference. The request and its reply

are routed over an overlay network that implements caching, so as

to serve future requests before they reach the server. Unfortunately,

this scheme fundamentally changes the push-style dissemination of

publish/subscribe to pull (for payloads), which may not be accept-

able to some applications. Moreover, cache misses add consider-

able latency, and new payloads will always result in initial cache

misses, potentially causing a high amount of additional pull traffic.

Overview of CN∗ We now present our solution called CN∗. In

order to avoid sending the payload over a link multiple times, we

extend CN to maintain a payload directory and a payload repos-

itory at each node. The server assigns a unique ID for each pay-

load (e.g., using a content hash). The payload repository essen-

tially caches payloads along the push path. The payload directory

remembers whether a particular payload has been sent through an

outgoing link. Briefly, we avoid re-dissemination as follows: If

a payload has been sent over an outgoing link, the node replaces

the payload with just the payload ID, and sends this “lighter” ver-

sion of the message instead; otherwise, the message is sent with the

payload. The node responsible for a subscription will replace any

payload ID in the message with the actual payload before finally

forwarding the message to the subscription client.

Consider the example in Figure 4. On the first event, subscrip-

tions X1 and X2, both interested in this event, receive the same

payload through CN∗ (Figure 4 left). Later, if the same payload is

needed again by X1 and X2 due to another event (which joins with

the same tuple as the first event), CN∗ will send the message with-

out the payload (Figure 4 center). Finally, if another event causes a

third subscription X3 to need the same payload, CN∗ will transmit

the payload only along those links that have not sent it previously;

other links will transmit without the payload (Figure 4 right).

One important feature of CN∗ is that both payload directory and

repository in a CN∗ node are soft state whose size can be capped.

We do not assume that each CN∗ node can remember the entire

transmission history. Soft state also aids in failure handling, be-

cause we do not have to recover any state related to the payload.

Operational Details A standard CN message, which is a list of

attribute-value pairs, is augmented with three attributes with special

meanings to CN∗. 1) PayloadAttrs specify which attributes in the

message collectively form the payload. 2) ID is a unique identifier

for the content of the payload in this message. 3) Source records

the last encountered CN∗ node along the dissemination path, which

may have a copy of the payload in its cache. If no such CN∗ node

exists (e.g., when the message just enters the CN∗), Source is set

to the IP address of the server, which is ultimately responsible for

supplying the content of the payload when necessary.

At each CN∗ node, the payload directory entries have the form

[ID, Bitmap]. Bitmap is a bitmap with one bit for each outgo-

ing link, which records whether a payload has been previously

sent over that link. The payload repository entries have the form

[ID, Payload], where Payload stores the actual payload content.

Both the directory and the repository are indexed on ID to support

quick access to a particular entry.

Assume for now that entries in the directory and repository are

never purged. The server first injects the original message with the

three additional attributes into CN∗. Upon receiving a message m,

each CN∗ node checks its directory to see if an entry for m.ID is

present. If not, it creates a new directory entry with m.ID and an

empty bitmap. It also adds the content of the payload, if available

in m, to its payload repository. Link matching is then done just

as in regular CN, to determine the set of outgoing links to which

the incoming message needs to be forwarded. For each matching

link, if the same payload was previously sent over that link (in-

dicated by a 1 in the directory entry bitmap), the node sends the

message without the payload (by removing values for attributes in

m.PayloadAttrs). Otherwise, the node sends the message with the

payload (reconstructed from the local repository if necessary), and

sets the appropriate bit in the directory entry bitmap to 1. In ei-

ther case, a node that has the payload in its repository always sets

Source to its own address before forwarding the message.

Directory and Repository Maintenance To limit space usage,

CN∗ may need to purge entries from the repository and/or direc-

tory. The choice of which entry to purge is analogous to a cache

replacement policy; we use a least-recently-used (LRU) scheme.

Further, if a directory entry is 1 for all outgoing links, it is okay to

purge the entry from the repository. We next discuss the handling

of purged repository and directory entries separately.

Handling Purged Repository Entries: Assume that a message m

without the payload arrives at node n, but there is no repository

entry for the payload at n (because it has been purged). If n needs

to send the payload along some outgoing link or to a subscription

client, n must first obtain the payload by contacting m.Source with

m.ID. In this case, the increase in notification latency for subscrip-

tions in n’s subtree is the roundtrip time between n and m.Source.

441

Method Delivery Technique Comment

Select CN/CN∗ Rel-Sel Inject events in CN/CN∗ w/o joining (Sec. 2.3)

Select-

Join

Unicast Enum-J Compute join results for each sub (Sec. 2.3)

CN/CN∗ Ref-J, -J+ Inject join results in CN/CN∗ (Sec.2.3)

Select-

Semijoin

Unicast Enum-SJ Compute semijoins for each sub (Sec. 3.1)

CN/CN∗ Ref-SJ Inject semijoin results in CN/CN∗ (Sec. 3.2); four

flavors: -Sub, -Tup, -Clu, -Clu+

Table 1: Summary of solutions.

Note that if m.Source has dropped the entry in the interim period,

n can directly contact the server as a fallback mechanism.

Handling Purged Directory Entries: When n receives a message

whose payload ID corresponds to a directory entry purged earlier,

n simply assumes that all bitmap entries are 0 (as if the payload is

new). Thus, with purging of directory entries, n may send the same

payload again along a link. However, note that the directory occu-

pies very little space (a 512kB directory can hold tens of thousands

of entries), so the chance of purging a useful directory entry is very

low in practice, and re-dissemination can be usually avoided.

Remarks By design, CN∗ nodes can co-exist with regular CN
nodes. This feature facilitates incremental deployment of CN∗,

consistent with our goal of practicality. Regular CN nodes sim-

ply forward the messages they receive without interpreting the ad-

ditional attributes special to CN∗. A CN∗ node always sends the

payload if its next hop is a CN node (we have a simple and efficient

technique for testing this case, described in Appendix H).

CN∗ differs from traditional caching in two important ways. First,

traditional caching applies to values of identifiable objects, and

hence must deal with coherency issues when values change. In con-

trast, CN∗ caches just values (of payloads), which identify them-

selves; each different value is a separate cacheable payload that is

immutable by definition. Hence, CN∗ need not worry about cache

updates. Second, a straightforward caching solution would gener-

ate lots of initial cache misses for any new payload, adding con-

siderable notification latency. In contrast, CN∗ preserves the push-

style dissemination of publish/subscribe. Dissemination of a new

payload through CN∗ involves no misses and is identical in com-

munication pattern to dissemination through regular CN.

6 Evaluation

Server Setup We have implemented all our novel schemes: Enum-
SJ, Ref-SJ-Sub, Ref-SJ-Tup, Ref-SJ-Clu, and Ref-SJ-Clu+. For

comparison, we have also implemented Enum-J, Rel-Sel, Ref-J,

and Ref-J+. Table 1 summarizes the techniques for quick refer-

ence. Enum-J uses SSI [1] for computing select-join results. We

support tuple inserts, deletes, and updates. The implementation

writes its output to local disk at ˜70 Mbps speed, which is roughly

similar to a dedicated OC1 (˜52 Mbps) connection to the Inter-

net. We use main-memory data structures for optimal performance,

though it should be easy to replace them with standard I/O-efficient

versions if needed. The experiments are performed on a set of dual-

core Intel Xeon 2.0GHz machines running Linux kernel 2.6.18.

Network Setup We evaluate network performance by implement-

ing a simulator for large-scale networks. The simulator generates

application-level routing traces that can then be analyzed using

link-level simulation, which uses a 20,000-node topology produced

by INET [9], a generator of Internet-like network topologies. A

subset of 1000 nodes form the overlay dissemination network. In

this paper, we focus only on measurements between these 1000
overlay nodes, because we have observed that IP-level costs gener-

ally follow similar trends as node-level costs.

The vanilla CN we have implemented is based on CAN [24],

which uses a semantic space for routing (Appendix A). A similar

CN has been used in other systems, e.g., [14, 5]. We also implement

and report results using our CN∗ extension.

EvaluationMetrics We track both server- and network-side met-

rics. At the server, we measure the average processing time per

event, including both server processing cost and the output of mes-

sages to be injected into CN. On the network side, we track: 1) Net-

work traffic per event, which measures the total number of bytes

transferred between overlay nodes. 2) Number of overlay hops

per event, which measures the total number of messages sent be-

tween overlay nodes. 3) Node stress per event, which measures

the communication load on an overlay node. In this paper, we re-

port stress in terms of the total amount of traffic originating from a

node. 4) Hop latency, which measures the number of overlay hops

it takes for a notification message to reach a subscription. Hop la-

tency roughly corresponds to subscription notification latency, as-

suming uniform network delays between nodes.

Workload For binary select-joins R ⊲⊳ S (see Example 2), we

generate synthetic subscriptions as follows. Let N(µ, σ) represent

a normal distribution with mean µ and standard deviation σ. Refer

to Table 2 for a summary of parameters. We use normal distribu-

tions to generate the centers of subscription ranges over R.A and

S.C. The range centers are located in either low or high portions of

event space, to model corresponding user interests. Range widths

are derived using normal distributions as well (see Table 2).

We experiment with synthetic and real event workloads. The

synthetic event workloads use 100 unique values of the join at-

tribute. The number of S tuples for each join attribute value follows

a truncated Zipf distribution with parameter 0.8. R tuples are in-

serted for each unique join attribute value, and 70% of R insertions

produce at least one join result.1 The total number of R tuples in

the database is kept constant by deleting older tuples when neces-

sary. We also experiment with a real event workload based on stock

data from Yahoo! Finance (see Section 6.1 for details). Finally, the

workloads for our mix of multi-way select-join subscriptions (gen-

eral and star schema) are described in Section 6.3.

Repeatability To verify repeatability across runs, we perform

each experiment multiple (up to 10) times, by varying the random

seed for the event workload. We found the variation across runs to

be minimal—for more than 90% of data points, the 95% confidence

interval falls within ±7% of the respective mean. Given the signif-

icant difference (often orders of magnitude) across the approaches

being compared, we plot only the mean value across runs.

6.1 Binary Select­Joins, Unmodified CN

We first examine the benefits of our new schemes, without the

added benefits of CN∗. Even without CN∗, our techniques can eas-

ily outperform simpler ones. Unless otherwise indicated, these ex-

periments use 100k subscriptions, with R and S tables having 16k

and 5.1k tuples respectively. Each tuple has 100 bytes of payload.

Varying Number of Subscriptions In this set of experiments,

we test scalability by varying the number of subscriptions from

100k to 1 million, and measure average costs per event (over 59k

events). Note that the y-axis is logarithmic for all results.

The results for server processing time are shown in Figure 5. We

see that Enum-J is the worst. Even with very efficient process-

ing techniques, the output size dominates and makes this technique

perform badly. Enum-SJ is better as it avoids result representation

and current-content redundancies, but it still suffers from redun-

dant output across subscriptions. Reformulation-based techniques

are generally more efficient since they avoid enumerating affected

subscriptions. The simple reformulations (Ref-J and Ref-J+) are

1We have derived this parameter from examining our real stock
event workload for the fraction of stocks having at least one rating.

442

10
-4

10
-3

10
-2

10
-1

 100 200 300 400 500 600 700 800 900 1000

A
v
g
.
p
ro

ce
ss

in
g
 t

im
e

p
er

 e
v
en

t
(s

ec
s)

Number of subscriptions (x 1000)

Enum-J
Enum-SJ

Ref-J
Ref-J

+

Ref-SJ-Sub
Ref-SJ-Tup
Ref-SJ-Clu

Ref-SJ-Clu
+

Figure 5: Processing time; increasing num-

ber of subscriptions.

10
3

10
4

10
5

10
6

10
7

 100 200 300 400 500 600 700 800 900 1000

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Number of subscriptions (x 1000)

Enum-J
Enum-SJ

Ref-J
Ref-J

+

Rel-Sel
Ref-SJ-Sub
Ref-SJ-Tup
Ref-SJ-Clu

Ref-SJ-Clu
+

Figure 6: Network traffic; increasing num-

ber of subscriptions.

10
3

10
4

10
5

10
6

 5 10 15 20 25 30

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Database size (# R tuples x 1000)

Figure 7: Network traffic; increasing

database size.

parameter value

domain of attributes [0, 100k]
number of subscriptions 100k–1M

R.A range centers N(30k/70k, 10k)
R.A range widths N(20k, 5k)
S.C range centers N(15k/85k, 6k)
S.C range widths N(6k, 5k)
number of events 44k–74k

number of R tuples in DB 1k–31k
N1 N(25k/75k, 3k)

distribution of R.A N(N1, 8k)
number of S tuples in DB 100–10100

N2 N(50k, 10k)
distribution of S.C N(N2, 3k)

Table 2: Summary of parameters.

subs. 100k 300k 500k
Enum-J 484.8 1464.0 2461.5
Enum-SJ 27.3 82.0 137.6

Ref-J+ 13.4 14.3 14.6
Rel-Sel 0.86 0.95 0.88

Ref-SJ-Clu+ 0.38 0.38 0.39

Table 3: Average server stress (kB).

subs. 100k 300k 500k
Ref-SJ-Sub 73.12 99.54 111.84
Ref-SJ-Tup 312.78 305.88 302.85
Ref-SJ-Clu 29.59 38.15 42.87

Ref-SJ-Clu+ 16.88 21.96 24.68

Table 4: Average description size (bytes).

10
-5

10
-4

10
-3

10
-2

10
-1

 20 40 60 80 100

A
v
g
.

p
ro

ce
ss

in
g

 t
im

e
p

er
 e

v
en

t
(s

ec
s)

Relative Join Output Rate

Enum-J
Enum-SJ

Ref-J
Ref-J

+

Ref-SJ-Clu
+

Figure 8: Processing time; increasing rela-

tive join output rate (RJOR).

quite fast, with Ref-J+ being worse as it needs more processing

to skip unnecessary join results. Semijoin reformulations (Ref-SJ-
Sub, Ref-SJ-Tup, Ref-SJ-Clu, Ref-SJ-Clu+) are fast as well. Ref-
SJ-Sub is slower as it has to compute a skyline of affected subscrip-

tions for each event. The compression techniques of Ref-SJ-Clu
and Ref-SJ-Clu+ create insignificant overhead above Ref-SJ-Tup.

Network traffic (Figure 6) for Enum-J is extremely high as ex-

pected. Enum-SJ is better, but degrades quickly with the number

of subscriptions because of inefficient unicasting. Reformulation-

based techniques are able to drastically reduce communication cost

by leveraging CN. The simple reformulations (Ref-J and Ref-J+),

while better than Enum-J, still incur unnecessary traffic due to re-

sult representation and current-content redundancies. Relaxation

(Rel-Sel) is slightly better, but at the expense of disseminating and

adding irrelevant state at subscriptions. Our four semijoin refor-

mulations avoid unnecessary dissemination and share costs across

subscriptions. Ref-SJ-Clu+ incurs the lowest traffic overall, giv-

ing at least an order of magnitude improvement over the strawman

solutions. We also measured the number of overlay hops per event

(Appendix J), and found that our semijoin reformulation techniques

are at least an order of magnitude better than other schemes.

Table 3 compares the node stress at the server across various

techniques, with Ref-SJ-Clu+ representing the four semijoin re-

formulation techniques. As expected, Ref-SJ-Clu+ generates the

lowest stress, while enumeration-based techniques consume orders

of magnitude more outgoing bandwidth at the server. From Table 4,

we see that the descriptive skylines generated by Ref-SJ-Clu+ are

the most compact (with fewest number of points), beating more

naive skylines (Ref-SJ-Sub and Ref-SJ-Tup) by a wide margin.

Varying Database Size We now examine the effect of increasing

the number of R tuples in the database (older tuples are deleted as

new ones are inserted, to keep the table size constant). Figure 7

shows the average network traffic. Other factors being equal, a

smaller database implies that a new R tuple is likely to cause more

subscriptions to need the joining S tuples, because it is less likely

that a subscription already has a different R tuple with the same

join attribute value. Hence, without CN∗, semijoin reformulations

degrade slightly in performance at low database sizes. However,

they are still able to easily outperform the other approaches.

Varying Relative Join Output Rate Relative join output rate

(RJOR) is the average number of join result tuples generated for

each inserted event. Like join selectivity, RJOR can impact the

performance of some algorithms. Figure 8 shows the server pro-

cessing cost for increasing RJOR. We control RJOR by varying the

number of tuples in table S. We see that Ref-J is very good at

low RJOR, but quickly degrades due to output size. Ref-SJ-Clu+

scales well with increasing RJOR. Figure 9 shows the network traf-

fic for increasing RJOR. Again, semijoin reformulations schemes

are clearly superior. The simple Ref-SJ-Tup degrades due to in-

creasing S table size, but the other semijoin reformulations do well

even at high RJOR. Although Ref-J and Ref-J+ are good at low

RJOR (due to lower result representation redundancy), they quickly

degrade with increasing RJOR. Ref-SJ-Clu+ is usually more than

an order of magnitude better than the strawman techniques.

Results of Real Workload We gather real data from Yahoo! Fi-

nance to model Example 1. We obtain historical price-to-earning

ratios (PER) of 100 random stocks, for a period of 7 months. The

PER values are mapped to the range [0, 100k] for use with our sub-

scription workload. Stock ratings (ranging from 1 to 5) are also

gathered, mapped, and perturbed using a normal distribution to de-

rive 2300 unique stock ratings from the original set of 460 ratings.

Subscription traces are the same as before. Figure 10 shows net-

work traffic, as we increase the number of subscriptions. Enum-J
and Enum-SJ are very expensive as expected, and degrade with

number of subscriptions. Ref-J+ performs better than before be-

cause the RJOR is lower (around 23). Still, Ref-SJ-Clu+ is at least

an order of magnitude better than the other schemes.

Other Experiments We have also experimented with varying

payload sizes and subscription overlap, and evaluated how the “last

hop” of dissemination (from overlay nodes to clients) affects our

techniques. See Appendix J for details. Briefly, we confirm the in-

tuition that the savings offered by our schemes over strawman so-

443

10
2

10
3

10
4

10
5

10
6

 20 40 60 80 100

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Relative Join Output Rate

Enum-J
Enum-SJ

Ref-J
Ref-J

+

Rel-Sel

Ref-SJ-Sub
Ref-SJ-Tup
Ref-SJ-Clu

Ref-SJ-Clu
+

Figure 9: Network traffic; increasing rela-

tive join output rate (RJOR).

10
3

10
4

10
5

10
6

10
7

10
8

 100 200 300 400 500 600 700 800 900 1000

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Number of subscriptions (x 1000)

Enum-J
Enum-SJ

Ref-J
+

Rel-Sel
Ref-SJ-Clu

+

Figure 10: Network traffic; real event

workload.

10
4

10
5

10
6

 0 500 1000 1500 2000 2500 3000

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Repository size (# entries)

Rel-Sel (CN)

Ref-J
+
 (CN)

Ref-J
+
 (CN

*
)

Ref-SJ-Clu
+
 (CN)

Ref-SJ-Clu
+
 (CN

*
)

Figure 11: Network traffic; increasing

repository size.

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 500 1000 1500 2000 2500 3000

A
v
g
.
h
o
p
 l

at
en

cy
 (

#
 h

o
p
s)

Repository size (# entries)

Rel-Sel (CN
*
)

Ref-J
+
 (CN

*
)

Ref-SJ-Clu
+
 (CN

*
)

Figure 12: Hop latency; increasing reposi-

tory size.

2.6x10
3

2.7x10
3

2.8x10
3

2.9x10
3

3.0x10
3

3.1x10
3

3.2x10
3

3.3x10
3

3.4x10
3

1 2 3 4 5 6

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Different semi-join decomposition alternatives

Chosen

Figure 13: Network traffic; multi-way join

mix, general schema.

�
�
�
�

�
�
�
�With fact table payload

Without fact table payload

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

103

104

105

106

107

Enum-J Rel-Sel Ref-J Ref-SJ-Clu+A
v
g
.

n
et

w
o
rk

tr
a
ffi

c
p
er

ev
en

t
(b

y
te

s)

Figure 14: Network traffic; multi-way join

mix, star schema.

lutions increase with payload size as well as subscription overlap.

Moreover, the consideration of “last hop” strengthens the conclu-

sion on the superiority of our techniques.

6.2 Results of Adding CN∗

We now examine the additional performance benefits of using CN∗,

which can reduce re-dissemination redundancy. We only show Ref-
SJ-Clu+ and Ref-J+ (with and without CN∗) since these perform

the best among their respective variants. We also show Rel-Sel for

comparison. Enum-J and Enum-SJ do not use CN or CN∗.

Effect on Traffic We set the payload directory to be 512kB, and

vary the repository from 0 to 3100 entries. R and S tuples carry

1000-byte payloads. The size of R is kept low (500) to ensure that

the cost of Ref-SJ-Clu+ is significant. Figure 11 shows network

traffic. CN∗ reduces re-dissemination redundancy for Ref-SJ-Clu+

and Ref-J+, even with small repositories. Ref-J+ benefits more as

it disseminates more unnecessary data, leaving more room for CN∗

to improve. Ref-SJ-Clu+ is better overall. Even with 0 repository

size, the directory reduces cost by having only nodes with affected

subscriptions pull data from the server. Further, a repository of just

400 entries reduces server stress (not shown in this figure) by a

factor of 7 for Ref-J+ (3 for Ref-SJ-Clu+) compared with CN.

Effect on Hop Latency Figure 12 shows the average hop latency

across all subscriptions and events. The size of R is very low (200)

to penalize Ref-SJ-Clu+. We see that even at low repository sizes,

the potential extra roundtrip does not increase the hop latency by

much. Again, Ref-SJ-Clu+ is impacted minimally at low directory

sizes because it relies less on CN∗ to perform well. Note also that

Rel-Sel has a higher hop latency, since a message needs to reach

many more subscribers dispersed across many nodes.

6.3 Multi­Way Select­Joins

We use a join graph with tables R, S, T , and U , with S in the

center connecting the other three tables. We experiment with a mix

of 50k R ⊲⊳ S, 50k R ⊲⊳ S ⊲⊳ T , 50k R ⊲⊳ S ⊲⊳ T ⊲⊳ U , and 20k

S ⊲⊳ T ⊲⊳ U queries (all with selections). Subscriptions and events

are generated using normal distributions as before.

General Schema Here, R, S, T , and U have 10, 70, 70, and

30 tuples per unique join attribute value, respectively. Enum-J
and Ref-J are found to be prohibitively expensive due to the large

number of join results for the multi-way joins. Rel-Sel is found

to generate 23kB traffic per event, around 9 times worse than the

optimal Ref-SJ-Clu+ semijoin decomposition. In Figure 13, we

compare the costs of six different random decompositions (without

CN∗). For the three semijoin groups with S as the base table, our

cost model orders their per-semijoin costs as: c(SR) > c(SU) >

c(ST). The corresponding greedy decomposition (rightmost bar)

is optimal and gives around 20% lower traffic than the worst one.

Star Schema Star schemas are common in practice, and their ref-

erential integrity constraints lead to very small RJOR. In particular,

each fact table insertion produces exactly one join result. For such

“easy” joins, one might expect the strawman solutions to perform

as well. This experiment, however, shows that our techniques still

have a significant advantage. We consider the same join graph as

before, where S is now a fact table with 25,000 tuples and the oth-

ers are dimension tables with 1000 tuples each. Dimension table

tuples have 100-byte payloads. Figure 14 shows the results. When

the fact table has no payload, Ref-SJ-Clu+ is 5, 9, and 127 times

better than Rel-Sel, Ref-J, and Enum-J respectively, because it dis-

seminates the bulky dimension table tuples only when needed. Ref-
J has to send out complete join results. The advantage is less when

the fact table has equal payload (100 bytes) because it diminishes

the relative advantage (all schemes have to send the bulky S tuples

for each S insertion). Yet we find that Ref-SJ-Clu+ outperforms

other techniques by a wide margin (even without CN∗).

7 Related Work

ContinuousQuery Systems Continuous query systems (e.g., [21,

10, 15]) can be regarded as a form of publish/subscribe, where con-

tinuous queries over streams correspond to our subscriptions. Nia-

garaCQ [10] supports select-join processing at a server. CACQ [22]

444

group-processes filters, and supports dynamic reordering of joins

and filters. PSoup [8] exploits set-oriented processing on joins

with arbitrary join conditions. These systems correspond to Enum-
J: They ignore the dissemination aspect and do not jointly op-

timize processing and dissemination. Consequently, they cannot

avoid the redundancies intrinsic to producing traditional join re-

sults. Cayuga [15] supports queries joining two XML streams, but

their schemes also ignore dissemination and are optimized for value

joins over XML. We focus on relational select-joins, support multi-

way joins, and consider both processing and dissemination.

Publish/Subscribe Systems Several publish/subscribe systems

have made the subscription language more powerful (e.g., [11, 19,

5, 6, 12].). SMILE [19] supports SQL queries, while PADRES [12]

supports subscriptions that can express correlations across events.

These systems add application-specific logic and state into the net-

work and do not optimize for group-processing or disseminating

select-join subscriptions with varying selection predicates. They

operate similarly to Ref-J, and can reduce only inter-subscription

redundancy. We process queries efficiently, reduce all types of re-

dundancies, and use a simple CN interface for efficient dissemina-

tion. Our techniques can be employed by these systems to handle

a large number of multi-way select-join queries efficiently. In ear-

lier work [5, 6], we have used reformulation to support complex

queries over CN. However, [5] focuses on range aggregation, while

[6] tackles subscriptions with value-based notification conditions.

Distributed Joins Distributed join processing systems, which dis-

tribute state across overlay nodes, correspond to Rel-Sel if selects

are applied first. PIER [16] supports SQL queries (including joins)

over DHTs, but targets one-time queries and does not optimize for

multiple subscriptions. Idreos et al. [18] support two-way joins

over overlay networks by re-indexing queries and routing tuples

to them. This can incur high overhead because each query may be

replicated for every unique join attribute value, and selects are done

only as post-processing. Ahmad et al. [2] tackle distributed joins,

but they focus on network locality and data locality issues, with

the objective of reducing delay. These systems add complexity by

designing new distributed schemes with application-specific logic

and state in the network. We optimize processing and dissemina-

tion of a mix of multi-way select-join queries, and use the simple,

stateless, off-the-shelf CN interface, making our novel techniques

easy to deploy and manage, yet ensuring very high efficiency.

Other Related Work Semijoins have been employed by many

systems [3, 25] to reduce communication in distributed databases.

Work on view maintenance (e.g., [20, 17, 23]) also considers joins.

However, they do not address the problem of simultaneously sup-

porting a large number of select-joins. Moreover, like Enum-SJ,

they do not reduce redundancies across queries and updates.

8 Conclusions

A publish/subscribe system needs to optimize both subscription

processing and result dissemination, particularly for complex sub-

scriptions such as select-joins. To develop an end-to-end solu-

tion to support a large mix of multi-way select-joins, we iden-

tified several key redundancies in traditional techniques, and re-

duced these redundancies using novel semijoin-based reformula-

tion schemes. The schemes are easy to deploy and maintain, yet en-

sure very high efficiency. We also proposed an extension (CN∗) to

content-driven networks, which further reduces redundancy in dis-

seminating bulky payloads. Extensive experiments on real and syn-

thetic workloads validated the benefit of our schemes, and demon-

strated orders-of-magnitude improvement over standard techniques

for both server and network metrics.

References

[1] P. K. Agarwal, J. Xie, J. Yang, and H. Yu. Scalable continuous

query processing by tracking hotspots. In VLDB, 2006.

[2] Y. Ahmad, U. Cetintemel, J. Jannotti, and A. Zgolinski. Lo-

cality aware networked join evaluation. In NetDB, 2005.

[3] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and

J. J. B. Rothnie. Query processing in a system for distributed

databases (SDD-1). ACM TODS, 1981.

[4] A. Carzaniga and A. L. Wolf. Content-based networking: A

new communication infrastructure. In NSF Workshop on an

Infrastructure for Mobile and Wireless Systems, 2001.

[5] B. Chandramouli, J. Xie, and J. Yang. On the

database/network interface in large-scale publish/subscribe

systems. In SIGMOD, 2006.

[6] B. Chandramouli, J. M. Phillips, and J. Yang. Value-based no-

tification conditions in large-scale publish/subscribe systems.

In VLDB, 2007.

[7] B. Chandramouli, J. Yang, P. K. Agarwal, A. Yu, and

Y. Zheng. ProSem: Scalable wide-area publish/subscribe. In

SIGMOD, 2008.

[8] S. Chandrasekaran and M. J. Franklin. Psoup: a system for

streaming queries over streaming data. VLDB J., 2003.

[9] H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Will-

inger. Towards Capturing Representative AS-Level Internet

Topologies. In SIGMETRICS, 2002.

[10] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A

scalable continuous query system for internet databases. In

SIGMOD, 2000.

[11] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-

scale XML dissemination service. In VLDB, 2004.

[12] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. The

PADRES distributed publish/subscribe system. In FIW, 2005.

[13] A. Gupta and I. Mumick, editors. Materialized Views: Tech-

niques, Implementations, and Applications. MIT Press, 1999.

[14] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Megh-

doot: Content-based publish/subscribe over P2P networks. In

Middleware, 2004.

[15] M. Hong et al. Massively multi-query join processing in

publish/subscribe systems. In SIGMOD, 2007.

[16] R. Huebsch et al. Querying the internet with PIER. In VLDB,

2003.

[17] N. Huyn. Speeding up view maintenance using cheap filters

at the warehouse. In ICDE, 2000.

[18] S. Idreos, C. Tryfonopoulos, and M. Koubarakis. Distributed

evaluation of continuous equi-join queries over large struc-

tured overlay networks. In ICDE, 2006.

[19] Y. Jin and R. Strom. Relational subscription middleware for

internet-scale publish-subscribe. In DEBS, 2003.

[20] B. Liu and E. Rundensteiner. Cost-driven general join view

maintenance over distributed data sources. In ICDE, 2005.

[21] L. Liu, C. Pu, and W. Tang. Continual queries for internet

scale event-driven information delivery. TKDE, 1999.

[22] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continu-

ously adaptive continuous queries over streams. In SIGMOD,

2002.

[23] D. Quass, A. Gupta, I. Mumick, and J. Widom. Making views

self-maintainable for data warehousing. In PDIS, 1996.

[24] S. Ratnasamy et al. A scalable content addressable network.

In SIGCOMM, 2001.

[25] K. Stocker, D. Kossmann, R. Braumandi, and A. Kemper.

Integrating semi-join-reducers into state-of-the-art query pro-

cessors. In ICDE, 2001.

445

APPENDIX

A Additional Background on CN

Refer to our introduction to content-driven networks (CN)2 in Sec-

tion 2.1. Many structured and unstructured overlay networks can

be classified as CN. We next describe several instances of CN with

varying degrees of expressiveness in the predicates they support.

The appropriate choice of CN may depend on convenience and the

desired level of expressiveness (application-dependent).

Content-Based Networks Content-based networks (CBN) [4] are

perhaps the most general incarnation of CN. They support mes-

sages with arbitrary attributes and destinations with interests ex-

pressed as arbitrary boolean predicates involving message attributes.

There are many systems that use content-based networking for dis-

semination, e.g., SIENA [26], Gryphon [34], REBECA [33], Her-

mes [36], PADRES [12], JEDI [31], XNet [28], etc. Hence, a CBN

is easy to adopt in a large-scale system.

A content-based network can accept messages to be forwarded

to a set of matching destinations. A message is a set of attributes

following some schema. For example, a message M with a schema

that includes Symbol and Price as two attributes, might look like

〈Symbol: “GOOG”, Price: 550, . . .〉. Destinations, on the other

hand, are predicates over the message attributes. For example, a

destination may be expressed as (Symbol = “GOOG”)∧(Price ∈
[500, 600]). Notice that the message M matches this destination,

and therefore M would be delivered to this destination.

Operational Details: The network is responsible for delivering

every message to all matching destinations. Message delivery is

performed in a multi-hop manner over an overlay network. Deliv-

ery consists of two phases. The first phase is the establishment of

flow paths through the network, by creating local forwarding tables

at each node. A forwarding table is used to decide which outgoing

links a given message should be sent over, and this matching pro-

cess of a message at a node is the second phase. Taken together, the

forwarding performed at the nodes causes messages to be routed

through the network, until they reach all the affected destinations.

A CBN uses sophisticated techniques [26, 34] to build concise for-

warding tables at the nodes, and to perform forwarding efficiently.

Figure 15 shows the routing of a message using forwarding tables,

for 4 subscriptions with predicates on an attribute X.

Content-Addressable Networks Another example of CN, which

supports less expressive subscriptions, is a content-addressable net-

work (CAN) [24]. A CAN is a decentralized structured overlay net-

work that uses a logical d-dimensional Cartesian coordinate space

that is partitioned across all participating peers. Each peer is re-

sponsible for a subspace in the form of a hypercube, called a zone.

Each zone has knowledge of only its immediate neighbors, and can

route messages only to them. Routing from a source point to a des-

tination point in the CAN space is carried out in multiple hops until

the destination is reached.

We can use a CAN to build a structured stateless dissemination

layer for a publish/subscribe system. Assume that each subscrip-

tion is mapped as a point in the CAN space. For example, sub-

scriptions with k range selection predicates (over k attributes) can

be indexed as a point in a 2k-dimensional CAN as follows. Each

range selection predicate is mapped to two dimensions in the CAN

space, one for the low end of the range and the other for the high

2Terms such as content-based routing, content-based networking,
and semantic multicast capture similar concepts. We choose not
to use these terms because they are often associated with specific
projects and systems, e.g., [26, 35]; we want to capture a broader
class of systems with different designs and varying degrees of ex-
pressiveness.

end of the range. Figure 16 illustrates a 2-d CAN. Note that in gen-

eral, a subscription could be mapped as a point in d-dimensional

CAN space based on the values of any d subscription-specific pa-

rameters (not necessarily range predicates).

The CAN space is partitioned into rectangular zones, each with a

zone owner—an overlay network node responsible for all the sub-

scriptions in its zone. Partitioning of the CAN space into zones can

use load balancing criteria [14]; for example, the number of sub-

scriptions residing in the zone and the number of events handled

by the zone. We inject a message into CN with additional state

that can be interpreted as defining an arbitrary complex region in

CAN space that we wish to cover. Every subscription lying within

the region is considered affected by the message. CAN routing can

easily be adapted to reach all zones within a specified region. For

example, Meghdoot [14] is a publish/subscribe system that uses a

CAN-based CN, but supports only stateless subscriptions with sim-

ple range predicates.

Expressiveness: If subscriptions are mapped to the CAN space

based on their range predicates, a hypercube region in a CAN space

of d dimensions can express a conjunction of d predicates, where

each predicate specifies either 1) containment of a subscription’s

range predicate within a specified range, or 2) containment of a

specified range within a subscription’s range predicate. For exam-

ple, a CN message 〈. . . ,UL X: a, UL Y: b, LR X: c, LR Y: c〉 may

be interpreted as a rectangular region (in 2-d CAN) with upper-left

coordinate (a, b) and lower-right coordinate (c, c), shown shaded

in Figure 16. This description identifies every subscription whose

range predicate 1) is contained within the range [a, b], and 2) con-

tains the range [c, c]. Equivalently, in a CBN we could rewrite every

subscription Xi with range predicate [lowi, highi] as the predicate

([lowi, highi] ⊆ [UL X, UL Y]) ∧ ([LR X, LR Y] ⊆ [lowi, highi]).

Note that unlike a CBN, a CAN-based CN cannot support arbitrary

predicates, including keyword matches and user-defined functions.

OtherCN Instances Many other networks fall under the CN um-

brella, including multicast networks (e.g., [27, 35]) and distributed

indexes such as prefix hash trees [29], P-trees [30], SD-Rtrees [32],

etc. However, these mechanisms have limited expressiveness. For

example, a multicast network supporting multiple multicast groups

can be viewed as CN because messages carry a group ID attribute.

Destination interests, implied by group memberships, can be re-

garded as message predicates that select particular group IDs. A

distributed 1-d range search index (e.g., [29]) is also an instance

of CN, because we can regard a node responsible for data item s

as interested in all range search messages satisfying the predicate

(S L ≤ s) ∧ (s ≤ S R), where S L and S R are the two message

attributes denoting the left and right endpoints of the search range.

B Disposable Triangles in Ref-SJ-Clu+

Refer to the discussion on the improved cluster-based skyline (Ref-
SJ-Clu+) in Section 3.2.1. We can locate all disposable triangles

using at most τ R-tree lookups. Specifically, we check whether a

triangle between a pair of consecutive skyline points (qj , qj) and

(qj+1, qj+1) is disposable as follows.

If there is no cluster anchor between qj and qj+1, the triangle

cannot contain any subscription at all (otherwise this subscription

would not belong to any cluster); therefore, the triangle is obviously

disposable.

Suppose there are one or more cluster anchors between qj and

qj+1. For each such cluster anchor p(k), we look up (p(k), a) in

the cluster R-tree. For each tR-selected R-semijoin returned by

the lookup, we check if that semijoin is also tR-affected, by test-

ing whether it contains either (qj , a) or (qj+1, a). As soon as we

446

Figure 15: Using a content-based network

for publish/subscribe.

Figure 16: Using a content-addressable

network for publish/subscribe.

10
1

10
2

10
3

10
4

 100 200 300 400 500 600 700 800 900 1000

A
v
g
.
#
 n

et
w

o
rk

 h
o
p
s

p
er

 e
v
en

t

Number of subscriptions (x 1000)

Enum-J/SJ
Ref-J

Ref-J
+

Rel-Sel
Ref-SJ-* (all)

Figure 17: Network hops; increasing num-

ber of subscriptions.

encounter a semijoin that is not tR-affected, we can terminate the

process immediately for that triangle, and declare that triangle to be

not disposable. Otherwise, the triangle is reported as disposable.

Because of the above termination condition, for each group, we

examine at most one semijoin that is not tR-affected; all other semi-

joins we examine are tR-affected. Therefore, the total running time

for locating all disposable triangles is O(τg+kR), where kR is the

total number of tR-affected semijoins.

C Multi­Attribute Conditions

Multi-attribute equijoin conditions are straightforward to handle, as

we can conceptually treat the set of join attributes as a single com-

posite attribute. Consider the binary join between tables R and S

with join attributes (B1, . . . , Bm). The only change to our algo-

rithms is to use B-trees indexing composite keys (B1, . . . , Bm, A)
and (B1, . . . , Bm, C), instead of (B,A) and (B, C) respectively.

Now, suppose the local selection conditions on R and S are con-

junctions of dR and dS range conditions, respectively. Consider

the case of inserting an R tuple tR (the case of inserting an S tuple

is symmetric). We extend our semijoin reformulation techniques in

Section 3 as follows. A subscription is a hypercube with dR + dS

dimensions, one for each local selection attribute. The joining S

tuples can be mapped as a set of points JS in a dS-dimensional

space, which we call the S-space, whose dimensions correspond to

the local selection attributes of S.

HandlingR-Semijoins The reformulation scheme is the same as

before, but the descriptive skyline is in a 2dS-dimensional space

instead of a 2-dimensional space. For each local selection attribute

of S, there are two dimensions in this space that correspond to

the two endpoints of a range over this attribute. We call this 2dS-

dimensional space the S2-space.

Finding a descriptive skyline becomes more complicated in the

S2-space. The joining-tuple skyline (Section 3.2) can be directly

derived from JS—each point (c1, . . . , cdS
) of JS in the S-space is

converted into a skyline point in the S2-space by simply repeating

each coordinate twice, i.e., (c1, c1, . . . , cdS
, cdS

).

We next describe how to derive the cluster-based skyline. First,

we introduce the concept of a skyline envelope.

Definition 2 (Skyline Envelope). Sky(X , z), the skyline envelope

of point z with respect to a set of points X , is the set of all points
Y ⊆ X such that for each point y ∈ Y , no point in X lies within
the minimum hypercube containing both points z and y.

For each cluster of subscriptions whose local selections on S

are satisfied by a common cluster anchor p = (c1, . . . , cdS
), we

compute Sky(JS, p), i.e., the skyline envelope of p with respect

to the joining S tuples in the S-space. Then, for each point in the

skyline envelope, we convert this point from the S-space to the S2-

space, again by simply repeating each coordinate twice. The final

cluster-based skyline consists of all such points in the S2-space,

obtained from the skyline envelopes of all subscription clusters.

Handling S-Semijoins For each joining S tuple tS , consider

the set of previously joining R tuples JR as points in the dR-

dimensional R-space (defined analogously as the S-space). We

compute Sky(JR, tS), i.e., the skyline envelope of tS with respect

to JR in the R-space. The points in this skyline envelope are in-

cluded in the reformulated message for tS . Each subscription is

reformulated to require that its selection conditions are satisfied by

tS and tR, and that its selection conditions on R are satisfied by

none of the points in the skyline envelope. The latter condition en-

sures that we do not notify subscriptions whose current contents

already contain tS due to joining with some other selected R tuple.

Discussion While the extension described above is very aggres-

sive in trying to minimize the amount of data to be disseminated,

it may be less desirable in practice due to difficulties with high-

dimensional indexing and skyline computation, as well as large

descriptive skylines and lower degrees of user-interest clustering

expected in higher dimensions. Similar to practices in traditional

databases, one solution to tackle the problem of higher dimensions

is to choose one selection attribute (per table) for group processing

and dissemination. The remaining selection conditions are applied

by subscribers in a post-processing step. We leave the study of

how to choose the best single selection attribute as future work.

D Estimating Per­Semijoin Cost

As briefly discussed in Section 4, we propose two methods for es-

timating the per-semijoin cost for a semijoin group in a decompo-

sition of a set of multi-way select-joins.

Periodic Simulation We use a random sample of subscriptions

and events, and simulate processing and dissemination for each

possible group. We let each group RS include all RS-semijoins

available for choice (only for the purpose of estimation—such as-

signments do not collectively form a valid decomposition). The

per-group cost obtained from simulation is divided by the size of

the group to give a per-semijoin cost for this group. This approach

is general and can adapt to the actual subscription and event work-

loads, but simulation incurs overhead.

Parametric CostModel To keep model complexity low, we make

a number of assumptions and simplifications. Consider the select-

semijoin σpR
R ⋉B σpS

S, with the CAN-style CN introduced in

Appendix A. Assume that 1) subscriptions are uniformly distributed

in terms of their range selection predicates, and 2) the events’ lo-

cal selection attribute values are uniformly distributed over their

respective domains.

With a binary join, the CAN space is four-dimensional. Two

dimensions correspond to the left and right endpoints of R.A se-

lection ranges. We call the projection of the CAN space onto these

447

two dimensions the R2-space. The remaining two dimensions of

the CAN space correspond to the left and right endpoints of S.C

selection ranges, and we call this space the S2-space.

All subscriptions lie in what we call the routing area of the CAN

space, which is the product of its projections onto the R2-space and

the S2-space. The projection of the routing area onto the R2-space

(S2-space) is the area to the upper-left of the diagonal of the R2-

space (S2-space, respectively). We assume that the routing area is

divided by a uniform grid into zones, each of which hosts approxi-

mately the same number of subscriptions. The cost of disseminat-

ing a message to a region depends on the number of zones covered

during routing, and hence is roughly proportional to the fraction of

the routing area covered by the region.

Our cost model uses the following parameters: pR, probability

that a given event is an insertion into table R; pS , probability that a

given event is an insertion into table S; jR, expected number of R

tuples having the same join attribute value; jS , expected number of

S tuples having the same join attribute value.

The cost of the select-semijoin has two components:

• Cost due to insertion intoR. On an insertion tR into R, consider

first the projection of the affected region onto the R2-space. The

ratio of the area of the affected region to that of the routing

area, in R2-space, is at least 0 (when tR.A is one of the two

extreme values of its domain) and at most 1
2

(when tR.A is right

in the middle of its domain). Assuming that tR.A is uniformly

distributed, the expected ratio is (
R 1

0
(1 − x)x dx)/ 1

2
= 1

3
.

Next, consider the projection of the affected region onto the S2-

space. The ratio of the area of the affected region to that of

the routing area, in S2-space, is at most
jS

jS+1
, achieved when

the joining S tuples’ local selection attribute values divides its

domain into jS +1 equal intervals. Assuming that the jS values

are drawn uniformly, the expected ratio turns out to be
jS

jS+2
,

which can be calculated by

1 −

R

· · ·
R

G
(
PjS

i=1 x2
i + (1 −

PjS

i=1 xi)
2) dxjS

· · · dx1
R

· · ·
R

G
dxjS

· · · dx1
,

where G is the volume {(x1, . . . , xjS
) | x1, . . . , xjS

≥ 0 ∧
PjS

i=1 xi ≤ 1}.

• Cost due to insertion into S. On an insertion tS into S, we

need to send jR messages, one for each joining R tuple. Con-

sider the message for a joining R tuple tR. In the R2-space,

the expected ratio of the area of the affected region to that of

the routing area is 1
3

as before. In the S2-space, the affected

region is characterized by a rectangle cornered at (tS.C, tS .C)
and (c−(tS.C), c+(tS.C)), where c− and c+ are defined anal-

ogously as a− and a+ in Section 3. Suppose there were jS

existing S tuples with the same join attribute value as tS . Their

C values divide a unit-size domain into jS + 1 intervals with

lengths x1, . . . , xjS
, and xjS+1 = 1 −

PjS

i=1 xi. The new

insertion falls into the i-th interval with probability xi; when

that happens, the expected area of the affected region in the S2-

space is
R xi

0
(xi − x)x dx = x2

i /6. Overall, in the S2-space,

the expected ratio of the area of the affected region to that of the

routing area turns out to be 2
(jS+2)(jS+3)

, computed by

R

· · ·
R

G
(
PjS

i=1 x3
i /6 + (1 −

PjS

i=1 xi)
3/6) dxjS

· · · dx1
R

· · ·
R

G
dxjS

· · · dx1
:

1

2
,

where G is the volume {(x1, . . . , xjS
) | x1, . . . , xjS

≥ 0 ∧
PjS

i=1 xi ≤ 1}.

Since insertions into R and S occur with probabilities pR and pS

respectively, the expected total cost is

α · pR ·
1

3
·

jS

jS + 2
+ β · pS · jR ·

1

3
·

2

(jS + 2)(jS + 3)
,

where α and β are constants.

E Optimality of Greedy Decomposition for

Multi­Way Select­Joins

The greedy decomposition in Section 4 gives the optimal choice

under our cost model. We prove this claim using a cut-and-paste

argument as follows. If some table R were to select a binary semi-

join RS-semijoin with a per-semijoin cost c1, where c1 is not the

minimum, i.e., c1 is greater than the per-semijoin cost c2 of some

other binary semijoin (say RT -semijoin) for R, then by selecting

RT -semijoin with per-semijoin cost c2 instead of RS-semijoin for

table R, we would be able to reduce the total cost of the decom-

position by (c1 − c2), thus proving that the original choice of RS-

semijoin (with cost c1) was suboptimal.

F Alternatives for Multi­Way Select­Joins

Relaxation Each query over d tables can be relaxed into d selec-

tion queries, similar to Rel-Sel (Section 2.3). However, this scheme

may suffer from excessive notifications due to the relaxation.

Simple Join Reformulation On any insertion, we can derive and

disseminate all the join tuples produced as a result of the insertion,

similar to Ref-J and Ref-J+ in Section 2.3. However, the prob-

lem of unnecessary data is exacerbated because each insertion into

some table would generate all the new joining result tuples (along

with the payload for each joining relation in a result tuple). This

overhead could be quite large in case many tuples satisfy the join

conditions. Furthermore, if there are multiple subscription signa-

tures involving the table of insertion, join results need to be gener-

ated separately for every signature. When signatures overlap (e.g.,

R ⊲⊳ S ⊲⊳ T1 and R ⊲⊳ S ⊲⊳ T2), additional redundancy can arise

across results for different signatures.

However, if the join is very selective (i.e., the number of result

tuples generated due to an event is small), then this solution may be

viable. Using CN∗ for routing can somewhat mitigate the problem

of repeated dissemination of payload.

Fully Extending Two-Way toMulti-Way Joins We can directly

extend the reformulation procedure for binary select-joins in Sec-

tion 3 to consider longer semijoins instead of binary semijoins. We

briefly outline the approach below, and point out why it may not

work as well as our binary decomposition approach in Section 4.

We can group-process all join queries having the same join sig-

nature; let Q denote the corresponding join graph. For each table

R ∈ Q, removing R from Q would in general result in a set of (mu-

tually disjoint) connected subgraphs which we call the remainder

graphs of R; we denote this set by R̄. We define the RR̄-semijoin

as a semijoin of the form R ⋉ (×T ∈R̄ ⊲⊳T∈T T), with local se-

lection conditions attached to appropriate tables. Before we outline

an approach for handling RR̄-semijoins, we introduce the notion

of an induced projected partial join:

Definition 3 (Induced Projected Partial Join). A tR-induced pro-

jected T -partial join, where T is a connected subgraph of the join
graph Q and tR is a tuple from a table R connected to T in Q,
is the natural join over T and {tR}, with no selection predicates
applied, followed by a projection over the local selection attributes

in T . The result tuples of a tR-induced projected T -partial join
can be regarded as points in a |T |-dimensional space called the
T -space.

448

Insertion intoR On the insertion of a tuple tR into table R, the

reformulation for an RR̄-semijoin is a conjunction of predicates,

one for each remainder subgraph T ∈ R̄. The predicate for each

T is similar to that derived for R-semijoins in the multi-attribute

selection case (Appendix C), with the difference that the descriptive

skyline (in the T 2-space) in this case is computed for the result

tuples of the tR-induced projected T -partial join.

Insertion into S Here, S can belong to any one of the remain-

der subgraphs of R. Consider the set of all R tuples that join (di-

rectly or indirectly) with the insertion tS . For each such joining R

tuple, say tR, we generate a message as follows:

• For each remainder subgraph T not containing S, we include

in the message a descriptive skyline for the result tuples of the

tR-induced projected T -partial join (just like the case of in-

serting tR described above). Correspondingly, the reformulated

subscription includes a condition that ensures that subscription

contains at least one point of the descriptive skyline.

• For the remainder subgraph TS containing S, consider JTS
, the

set of old result tuples of the tR-induced projected TS-partial

join, prior to the insertion of tS . We compute the cluster-based

descriptive skyline for all new result tuples of the tR-induced

projected TS-partial join (i.e., those involving tS). Note that

points in this cluster-based descriptive skyline are in the T 2
S -

space, but by construction of the cluster-based descriptive sky-

line, they have same coordinates in each pair of dimensions (left

and right endpoints) that correspond to the same dimension in

the TS-space. Therefore, we can “collapse” these points into

a set of points P in the TS-space by removing one dimension

from each pair. For each point in P , we compute the skyline

envelope of the point with respect to JTS
. We include both P

as well as the skyline envelope points for each point in P in

the reformulated message for tR. Correspondingly, the refor-

mulated subscription includes a condition that ensures that the

subscription contains at least one point in P but none of its sky-

line envelope points.

Finally, the reformulated subscription also checks that tR satisfies

its local selection condition on R.

Discussion With the full-extension approach, the RR̄-semijoins

carry all conditions in the original queries, so every tuple in these

semijoins participates in the final result of the original queries. In

contrast, our binary decomposition approach in Section 4 does not

offer this guarantee. On the other hand, as with the case of the

multi-attribute extension in Appendix C, the higher dimensions

pose practical issues. The reformulated messages are larger and

the reformulated subscriptions contain more complex (though still

stateless) predicates. Processing efficiency also suffers. Although

binary semijoins lose some filtering power, they are simple to im-

plement and efficient in practice. Furthermore, breaking queries up

into binary semijoins creates more opportunities for group process-

ing and dissemination, while the full-extension approach may end

up with many more groups and fewer semijoins per groups.

G Forwarding Algorithm for CN∗

Refer to Section 5. Algorithm 1 shows the CN∗ forwarding proce-

dure for an incoming message m. For simplicity of presentation,

we assume that there is only one attribute (Payload) in Payload-
Attrs. In line 3, QUERY retrieves the payload directory and repos-

itory entries (represented together as X) for m.ID (a new direc-

tory entry is created if necessary). If the payload is present in the

incoming message m, QUERY also adds the payload to the pay-

load repository. Line 4 identifies the matching outgoing network

interfaces just as in CN. In lines 7–11, we check the directory en-

try bitmap (X.Bitmap) for each affected interface. If the payload

was previously sent over that interface, the node strips the pay-

load from the message (line 8). Otherwise, if m does not already

contain the payload, GETPAYLOAD (line 10) retrieves the payload

(X.Payload) from the payload repository at the closest provider

source (m.Source) or the server (in the worst case). The retrieved

payload is added to the message (line 11). If the repository con-

tains the payload, line 12 updates the Source field in the outgoing

message to the machine’s network address. Finally, the message is

disseminated along the outgoing link (line 13).

Algorithm 1: Forwarding algorithm for CN∗.

FORWARD(messagem) begin1

p← ∅ ; // placeholder for payload2

X ← QUERY(m) ; // query the directory and repository3

H ← GETMATCHES(m) ; // get the matching interfaces4

foreach interface i inH do5

m′ ← m;6

ifX.Bitmap[i] = 1 then7

m′.Payload← ∅ ; // payload sent previously8

else ifm.Payload = ∅ then9

// add payload to message
if p = ∅ then p = GETPAYLOAD(X, m.Source);10

m′.Payload← p;11

ifX.Payload 6= ∅ thenm′.Source← local address;12

DISSEMINATE(m′, i) ; // send message along interface i13

end14

H Co­Existence of CN∗ with Regular CN

Recall from Section 5 that CN∗ nodes can co-exist with regular

CN nodes, which facilitates incremental deployment and adoption.

We have developed an efficient technique for CN∗ to detect that

a next-hop neighbor is a CN node, without adding overhead to the

critical path of dissemination. When a payload is sent along an out-

going link i, the corresponding bit in the payload directory entry is

not immediately set. Instead, it is set only if this node receives

a special acknowledgment from the next hop (indicating that the

next-hop node is a CN∗ node). Thus, in case the next hop is a plain

CN node, the bit would never get set and the payload would always

get sent along that link. The acknowledgment does not delay mes-

sage forwarding at the next hop, and therefore does not increase

notification latency.

I Select with Payload

A stateless selection subscription, supported by traditional pub-

lish/subscribe systems, can benefit from being expressed as a join.

For example, a subscriber may be interested in receiving a news

feed with all detailed product information for products whose rat-

ings fall within some prescribed range. The event schema may look

like (ID, Rating, Photo, . . .), where each event reports the new

rating and includes other relevant information, such as a picture for

the product. The problem with such a stateless subscription is that

new rating event for the same product would have to carry the bulky

Photo (and other attributes) repeatedly, and must be delivered all

the way to interested subscribers. If we represent each subscription

as a select-join over two tables (ID, Rating) and (ID, Photo, . . .),

our techniques can bring two benefits:

• The use of binary semijoin reformulation directly eliminates re-

sult representation and current-content redundancies. In the ex-

ample above, the Photo attribute would not be sent to a sub-

scription if the product’s previous rating was already within the

subscription’s range of interest.

449

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 1 10 100 1000 10000 100000

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Payload size (bytes)

Enum-J
Enum-SJ

Ref-J
Ref-J

+

Rel-Sel
Ref-SJ-Sub
Ref-SJ-Tup
Ref-SJ-Clu

Ref-SJ-Clu
+

Figure 18: Network traffic; increasing pay-

load size.

10
1

10
2

10
3

10
4

10
5

10
6

 0 1000 2000 3000 4000 5000 6000

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Increasing subscription overlap

Enum-J
Enum-SJ

Ref-J
Ref-J

+

Rel-Sel

Ref-SJ-Sub
Ref-SJ-Tup
Ref-SJ-Clu

Ref-SJ-Clu
+

Figure 19: Network traffic; increasing sub-

scription overlap.

10
4

10
5

10
6

R
el

-S
el

R
ef

-J

R
ef

-J
+

E
n
u
m

-J

R
ef

-S
J-

T
u
p

R
ef

-S
J-

S
u
b

R
ef

-S
J-

C
lu

R
ef

-S
J-

C
lu

+

E
n
u
m

-S
J

A
v
g
.
n
et

w
o
rk

 t
ra

ff
ic

 p
er

 e
v
en

t
(b

y
te

s)

Technique

Figure 20: Network traffic; considering

last hop.

• CN∗ can provide further benefits by reducing re-dissemination

redundancy. In the example, assume that the Photo attribute

has been previously delivered to some subscription X1, and

later needs to be delivered to some other subscription X2. Let

X1 and X2 share some common path in the overlay dissemi-

nation network. In this case, the Photo attribute would not be

re-disseminated on the common path if it was retained by CN∗

in some payload repositories.

J Additional Experimental Results

In this section, we report additional experimental results for binary

select-joins on unmodified CN (to augment Section 6.1).

Number of Overlay Hops When Varying Number of Subscrip-

tions In terms of overlay hops (Figure 17), our techniques are at

least an order of magnitude better. All Ref-SJ techniques use the

same number of hops (they differ only in the size of the skyline).

Subscription relaxation (Rel-Sel) does worse due to tuples being

unnecessarily sent to overlay nodes. The enumeration techniques

degrade with increasing number of subscriptions. Ref-J and Ref-
J+ also incur a large number of hops.

Increasing Payload Size We increase the payload size (of both R

and S tuples) from 1 byte to 100kB, and show the effect on network

traffic in Figure 18. Note that the x-axis also uses a logarithmic

scale. As payload size increases, all approaches incur additional

traffic, but the absolute difference in performance is much larger

for larger payloads. With increasing payload size, the differences

between the various semijoin reformulations diminish because pay-

load size dominates over the description.

Increasing Overlap among Subscriptions We increase the ex-

tent of overlap of subscriptions, by reducing the standard deviation

of the distributions from which the R.A and S.C range centers are

drawn (see Table 2). We set the standard deviation for R.A and S.C

ranges to 13000 − 2x and 7500 − x respectively, and vary x from

0 to 6000. Figure 19 shows the network traffic. As we increase

overlap, fewer subscriptions are affected by an update because of

the concentration of interests in narrow regions. Ref-J is unaffected

by overlap since it sends out joining tuples regardless of subscrip-

tions. Ref-J+, which takes subscriptions into account, shows lower

network traffic as the overlap increases, due to fewer affected sub-

scriptions. Enum-J, Enum-SJ, and the Ref-SJ schemes also see

reduced traffic with increasing overlap due to the same reason.

Among the Ref-SJ approaches, the performance improvement is

least for Ref-SJ-Tup since the descriptive skyline is independent

of subscription clustering. Ref-SJ-Sub, Ref-SJ-Clu, and Ref-SJ-
Clu+ converge in performance at high subscription overlap due to

very high amount of clustering. Finally, Rel-Sel actually degrades

in performance with increasing subscription overlap because it does

not take the join into account, and more overlap (clustering) means

that events that fall in the “hot” region of R.A (which many events

do) have to be sent to many subscriptions.

Considering Last Hop We have ignored the “last hop” from an

overlay node to a subscriber because we have focused on the per-

formance of the core publish/subscribe middleware, and the final

delivery mechanism (e.g., unicast, email, IM, etc.) might be differ-

ent for different clients. We now examine the effect of considering

the last hop, assuming direct unicast from overlay nodes to clients.

We assume that the same approach (join, semijoin, or relaxation)

is applied until the end subscriber.3 We see from Figure 20 that

considering the last hop makes semijoin much more attractive than

before. Enum-SJ incurs the lowest total traffic because it avoids the

overlay network completely, at the cost of very high server stress.

Ref-SJ-Clu+ incurs only slightly higher cost, with the important

benefit of sharing dissemination using the overlay network.

Additional References

[26] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and

evaluation of a wide-area event notification service. ACM

Trans. on Computer Systems, 2001.

[27] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.

SCRIBE: A large-scale and decentralized application-level

multicast infrastructure. IEEE JSAC, 2002.

[28] R. Chand and P. A. Felber. A scalable protocol for content-

based routing in overlay networks. In NCA, 2003.

[29] Y. Chawathe et al. A case study in building layered DHT

applications. In SIGCOMM, 2005.

[30] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-

daram. Querying peer-to-peer networks using P-trees. In

WebDB, 2004.

[31] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-

based infrastructure and its application to the development of

the OPSS WFMS. IEEE Trans. Softw. Eng., 2001.

[32] C. du Mouza, W. Litwin, and P. Rigaux. SD-Rtree: A scalable

distributed Rtree. In ICDE, 2007.

[33] G. Mühl. Generic constraints for content-based pub-

lish/subscribe. In CoopIS ’01: Proceedings of the 9th In-

ternational Conference on Cooperative Information Systems,

2001.

[34] L. Opyrchal et al. Exploiting IP multicast in content-based

publish-subscribe systems. In IFIP/ACM International Con-

ference on Distributed systems platforms, 2000.

[35] O. Papaemmanouil and U. Cetintemel. SemCast: Seman-

tic multicast for content-based data dissemination. In ICDE,

2005.

[36] P. R. Pietzuch and J. Bacon. Hermes: A distributed event-

based middleware architecture. In ICDCSW, 2002.

3Hybrid schemes where semijoin or relaxation is applied inside the
overlay network, but precise join results are sent to subscribers, are
also possible but are omitted for simplicity.

450

