
Out-of-Order Processing: A New Architecture for High-
Performance Stream Systems

Jin Li
¶
, Kristin Tufte

¶
, Vladislav Shkapenyuk

§
, Vassilis Papadimos

¶
,

Theodore Johnson
§
, David Maier

¶

¶
Computer Science Department

§
AT&T Labs – Research

 Portland State University Florham Park, NJ 07932

 Portland, OR, 97201 {vshkap, johnsont}@research.att.com

 {jinli, tufte, vpapad, maier}@cs.pdx.edu

ABSTRACT

Many stream-processing systems enforce an order on data streams
during query evaluation to help unblock blocking operators and
purge state from stateful operators. Such in-order processing
(IOP) systems not only must enforce order on input streams, but
also require that query operators preserve order. This order-
preserving requirement constrains the implementation of stream
systems and incurs significant performance penalties, particularly
for memory consumption. Especially for high-performance, poten-
tially distributed stream systems, the cost of enforcing order can
be prohibitive. We introduce a new architecture for stream sys-
tems, out-of-order processing (OOP), that avoids ordering con-
straints. The OOP architecture frees stream systems from the bur-
den of order maintenance by using explicit stream progress indi-
cators, such as punctuation or heartbeats, to unblock and purge
operators. We describe the implementation of OOP
stream systems and discuss the benefits of this architecture in
depth. For example, the OOP approach has proven useful for
smoothing workload bursts caused by expensive end-of-window
operations, which can overwhelm internal communication paths
in IOP approaches. We have implemented OOP in two stream
systems, Gigascope and NiagaraST. Our experimental study
shows that the OOP approach can significantly outperform IOP in
a number of aspects, including memory, throughput and latency.

1. INTRODUCTION
Current stream-processing systems commonly require that input
streams arrive in order, or enforce order on their input streams,
and further require that stream query operators maintain order
 [1] [2] [7] [9] [12] [13]. We refer to such order-dependent stream
systems as having in-order-processing (IOP) architectures. In this
paper, we introduce a new, more flexible, out-of-order-processing
(OOP) architecture. We have implemented OOP in two stream

systems, Gigascope [7] and NiagaraST, and our experimental

study has shown significant performance improvements in both
systems—for example, reducing memory use by 50% under rea-
sonable circumstances.

The fundamental challenge in processing stream queries is that the
input streams are potentially unbounded. Blocking operators need
to produce output and the resource usage of stateful operators
should not grow without bound under continuous input. Coping
with these requirements requires information about stream pro-
gress, including progress of both input and inter-operator streams.
The essential drawback of IOP is that it confuses a logical prop-
erty, stream progress, with a physical stream property, stream
order. IOP systems rely on the physical order of streams to implic-
itly provide information on stream progress. This confusion leads
to extra burdens and added constraints on stream-system imple-
mentations, in addition to significant performance penalties. “Ab-
normalities” that arise naturally in stream systems, such as out-of-
order tuples, highly selective predicates, and lulls, require special
mechanisms in IOP systems because relying on stream order to
communicate stream progress requires ordered streams that pro-
duce continual output. In addition, enforcing order on incoming
and intermediate (inter-operator) streams significantly limits the
implementation and optimization options in IOP systems; tech-
niques requiring out-of-order processing [3] [31] cannot be ap-
plied in IOP systems. Finally, IOP architectures do not scale well
in distributed or parallel computing environments in which the
input data of a query operator may come from nodes in different
locations with heterogeneous computing power and transmission
delays.

OOP is a new architecture that explicitly provides stream progress
to operators and thus separates stream progress from physical
stream-arrival properties. This separation allows more flexible
implementations of query operators and leads to more efficient
evaluation of stream queries. Figure 1 shows a comparison of the
memory usage in Gigascope for OOP and IOP evaluations of a
tumbling-window count query over the union of two input

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Database Endowment. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special permissions
from the publisher, ACM.
VLDB ’08, August 24-30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

M
em

o
ry

 U
sa

g
e

(M
B

)

Arrival-time Skew (seconds)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

IOP

OOP

Figure 1. Memory usage for OOP and IOP on a window count

query over the union of two streams, for varying skew.

274

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Union

Window Count

range: 1 min, slide: 1 min

WA: ts

Union

Main1 Control Main2

Figure 2. Query plan for query Q1

streams, one of which arrives late. The rate of each input stream is
110,000 IP packets per second. The range of the tumbling window
is 10 seconds. As Figure 1 shows, as the delay of the late stream
increases from 1 second to 40 seconds, the memory usage for IOP
evaluation increases significantly. The memory usage for OOP
evaluation starts below that of IOP and grows slowly as skew
increases. At a 40-second delay, OOP requires only 30% of the
memory that IOP requires. OOP uses less memory because the
IOP union must buffer the earlier stream to enforce order on the
union’s output, while the OOP union can pass tuples through
immediately, because its output goes to an order-agnostic win-
dow-aggregate operator.

Techniques exist for handling disorder on an operator level, in-
cluding WID [16], which we proposed previously, and the win-
dow aggregation and join implementations proposed by Hwang et
al. [11]. Both techniques require punctuation. A punctuation is a
special tuple embedded in a data stream that indicates the end of a
subset of the stream [29]. Also, Aurora uses slack to handle disor-
der [1]. Slack allows an operator to deduce stream progress based
on stream arrival. We believe that disorder is best handled at a
system level. Disorder may occur even when input streams are
ordered due to time skew between input streams, operator-induced
disorder [13] and multiple processing paths. In such cases, query
operators may not be able to effectively infer stream progress
themselves: The progress information may be most effectively
provided by other operators—particularly operators at the edge of
the query plan or operators that themselves induce disorder. In
contrast to existing techniques, OOP handles disorder in the con-
text of an entire query. OOP detects stream progress and requires
query operators to propagate progress information throughout the
query plan. Our OOP architecture can support high-volume,
(near) real-time stream processing with high throughput and low
memory usage, as demonstrated by our experimental results.

OOP is not difficult to implement and lends itself to incremental
implementation. Based on our experience with Gigascope and
NiagaraST, we argue that the implementation overhead of OOP is
very low. Although OOP requires a mechanism to explicitly
communicate stream progress, such mechanisms are already pre-
sent in real-world stream systems, often for handling stream lulls.
For example, Gigascope has punctuation-carrying heartbeats to
unblock merge and to purge the state of join during stream lulls
 [17]; StreamBase supports heartbeats [27] to handle lulls; and
NiagaraST [29] and CAPE [24] support punctuation to exploit
data-stream semantics for unblocking operators and purging state.
With such a mechanism in place, converting a stream system to
OOP is not difficult. We extended Gigascope to support OOP
with one person-month of effort.

Our contributions: We introduce the OOP architecture for stream
systems. We first present a new data model for streams, and then
discuss OOP implementation, including operator implementa-
tions, propagation of stream progress, and workload smoothing
for processing high-volume data streams. We also demonstrate the
benefits of OOP by performance experiments in two systems. We
have implemented OOP in NiagaraST, an extension of the Niag-
ara [21] net data management system to support stream process-
ing, and in Gigascope [7], developed at AT&T to monitor traffic
in their backbone networks. We find that with OOP, the memory
overhead of aggregation queries under reasonable conditions is
significantly reduced; that the throughput of such queries is sig-

nificantly increased, especially for high-volume data streams; and
that the memory usage of join queries is reduced in certain condi-
tions.

The rest of the paper is organized as follows. Section 2 presents
an example comparing OOP to the existing stream query evalua-
tion approaches. Section 3 presents our data model for streams
and discusses detection and communication of stream progress.
Section 4 discusses relevant prior work. Section 5 describes the
OOP architecture, including punctuation generation and query
operators in our OOP systems. Section 6 covers workload
smoothing in high-performance OOP systems. Section 7 discusses
fine-granularity punctuation. Experimental results are presented in
Section 8 and we conclude in Section 9.

2. An Example
Before presenting the OOP architecture in detail, we briefly exam-
ine the evaluation of a query, Q1, based on a network-monitoring
scenario described by the Gigascope team [17].

 Q1: SELECT count (*)
 FROM Control union Main1 union Main2
 [RANGE 1 minute, SLIDE 1 minute, WA ts]

Q1 monitors streams of network packets arriving on three separate
links and computes the number of packets received over a tum-
bling window of one minute defined on window attribute (WA) ts.
Tuples from each stream have the same (simplified) schema of
<srcIP, srcPort, destIP, destPort, len, ts>. Packets from each link
arrive in order of the timestamp attribute ts. Control is a low-
volume link; Main1 and Main2 are high-volume links, and might
not be synchronized with respect to their timestamp attributes. We
note that streams with widely varying volumes and delays are
common in applications such as network-traffic monitoring, fi-
nancial data processing, and intelligent transportation systems.
Figure 2 shows a logical query plan for Q1. The essential re-
quirement for Q1 is that the Window Count operator knows when
it has received all tuples for each window.

We first describe two possible query evaluation plans for Q1 us-
ing previously-proposed techniques before presenting the OOP
evaluation of Q1. Option 1: Union preserves order, and Window
Count relies on an ordered input stream to determine when to
close windows. Option 2: Union does not preserves order, and
Window Count handles disorder using slack.

In Option 1, the logical Union operators are implemented with
order-preserving Merge operators, which combine ordered inputs
and guarantee an ordered output, but may require extra space and
processing time. For
example, during lulls
on the Control link,
the Merge operators
have to buffer all tu-
ples that arrive on the
high-volume Main
links. Also, if there is
skew on timestamp
between the links, due
to, say, variable trans-
mission delays, the
Merge operators will
have to buffer tuples to

275

synchronize the links. The exact amount of buffer space that the
Merge operators require depends on the arrival pattern of the in-
put streams, the duration of lulls, the packet rates on the three
links, and their timestamp skew, but there is no a priori upper
bound. In addition to the memory overhead, buffering increases
tuple latency.

Option 2 uses slack to cope with disorder. With slack, query op-
erators accommodate tuples that arrive late during a grace period
s, specified as a time interval or a number of tuples, and discard
tuples that are delayed more than s. Although slack allows the
aggregate operator to cope with disordered input, the aggregate
operator still relies on the arrival order of the input stream to de-
duce stream progress. In this option, the Union operators do not
need buffering, but the system must determine the slack parameter
for Window Count. Unless the time skew of the input streams is
known and fixed, it is difficult, if not impossible, to set slack for
the Window Count operator so that it precisely captures the disor-
der of the unioned input streams. Tuples will be dropped if the
slack parameter s is too small, while a latency penalty will be
incurred if s is too large.

In contrast, with the OOP approach, query operators do not need
to enforce order nor deduce stream progress on an operator-by-
operator basis. Rather, we need to conjure up and pass on appro-
priate progress indicators on ts such as punctuations. Consider an
OOP evaluation of Q1 using WID [16]: Union passes tuples
through without preserving order, and produces punctuation for
use by the Window Count operator based on input-stream punc-
tuations. Inserting punctuation into the input streams is easy, as
they are ordered. WID maintains a partial aggregate for each win-
dow and relies on punctuation to close windows. The only state
that the OOP approach needs to maintain for Q1 is the partial
aggregates, thus the required space is much less than for Option 1.
Compared to Option 2, no tuples will be dropped and latency will
be minimal, without any a priori bounds on stream skew.

Consider now a slightly more complex query in which the Union
below the Window Count in Q1 is replaced with a Band Join.
Band Join naturally produces a disordered output stream [13], so
the slack parameter needed by Window Count is related to both
input time skew and join processing. To our knowledge, no one
has presented a comprehensive method for calculating the appro-
priate slack parameter on an operator’s output stream from the
slack of its input streams. The Gigascope team previously tried
using slack to propagate stream progress, but switched to punctua-
tion, as they found propagating slack through complex queries to
be complicated and error prone. In OOP, the input operators can
deduce progress information from the ordered input streams and
insert that progress information into the streams (as punctuation in
our implementation); Join receives that progress information and
propagates it at the appropriate time to the next operator—
Window Count in this example. Join may use knowledge of its
state and implementation to determine when to propagate punc-
tuation. We argue that a global mechanism for detecting and
propagating stream progress is required. The OOP architecture
proposed in this paper is built upon such a global mechanism,
thus freeing query operators from maintaining stream order and
avoiding the associated cost.

3. STREAM PROGRESS
In this section, we formally define a stream model, progressing

streams, for OOP stream systems, and discuss mechanisms for
detecting and propagating stream progress.

3.1 The Progressing-Stream Model
Previous work on data streams commonly models a stream as an
unbounded sequence of data items arriving in order of some time-
stamp-like attribute. However, disorder naturally occurs in real-
world stream systems. A few examples:

1. Items arriving over a network from a remote origin may
have taken different paths with different delays.

2. In a parallel or distributed system, a data stream may be a
combination of several sub-streams from different nodes.
The merged stream can be disordered if there are different
processing or transmission delays associated with those
nodes.

3. Some data streams have multiple timestamp attributes with
different orders. For example, NetFlow [22] records from a
router might arrive in order of “flow end” time, but are
disordered on “flow start” time. Some queries may window
on “flow end” and others on “flow start.”

4. Even when data streams arrive in order, some query
operators, such as band join, can introduce disorder in
intermediate results.

Obviously, one can try to reorder a stream on the relevant attrib-
ute with some kind of buffered sort operator (such as BSort [1]).
However, it is often hard to obtain a priori time or space bounds
on disorder. The key observation behind the OOP approach is that
total order on an attribute is not required to unblock blocking
operators and purge state from stateful operators. Rather, we only
need the weaker notion that there is “progress” on some attribute
A: The value of A in a stream always eventually exceeds any fixed
value v.

To make this notion more precise, we first define the low-water

mark (lwm) for an attribute A of stream S on every prefix Sn of
length n:

}|.min{),,(nSStAtASnlwm −∈= (Eq. 1)

That is, lwm(n, S, A) is the smallest value for A that occurs after
prefix Sn of stream S.

Definition: Stream S is progressing on attribute A if for every
value v in the domain of A, there exist an n such that lwm(n, S, A)
> v. When this condition holds, we say A is a progressing

attribute for S, and that S is a progressing stream.

The crux of our approach is observing that any operator that can
be unblocked and purged using an ordered attribute can also be
handled with a progressing attribute, as long as we can detect and
communicate stream progress. Note that progressing attributes
exist in Examples 1-4 above. (In Example 3, both timestamp
attributes are progressing)

3.2 Detecting and Propagating Stream

Progress
Both IOP and OOP systems need to detect the progress of input
streams. IOP needs to detect progress to enforce stream order, and

276

OOP needs to detect progress to bound the low-water mark. Any
information that IOP systems use to enforce order on input
streams can be used in OOP systems to bound the progress of
input streams. Examples of such information include knowledge
that an input stream is ordered, or limitations on the amount of

delay expected or allowed (e.g., slack [1]), or time skew and

transmission delay of data sources, as used by Widom et al. [25]
in heartbeat generation.

A key difference between IOP and OOP architectures is how they
communicate stream progress through query plan. In IOP systems,
every query operator needs to rely on the order of its input
stream(s) to deduce stream progress. In OOP systems, each query
operator must produce progress information for its result stream
so that all query operators receive explicit progress information
and do not have to deduce stream progress from observations of
their input stream(s). Punctuation is used by both NiagaraST and
Gigascope to conveniently express and propagate stream progress.
Punctuation is a general mechanism that has been proposed to
help unblock blocking operators and purge state from stateful
operators over data streams [8] [9] [14]. In this paper, we assume
linear punctuation. Linear punctuation is defined on the progress-
ing attribute, and the punctuating values are monotonic. For ex-
ample, the punctuation p(*, *, *, *, *, 12:00:00AM) indicates the
current stream low-water mark is at least 12:00:00AM, which
means all packets with ts attribute value smaller than 12:00:00AM
have arrived.

Discussion: Although we choose a data-driven mechanism,
punctuation, to propagate stream progress, OOP can also work
with other non-data-driven mechanisms, such as operators
periodically polling their input operators for progress bounds, or
having a global scheduler track operator progress.

4. PRIOR WORK
We review implementations of stream aggregate and join
operators previously proposed in the literature.

4.1 Window Aggregation Implementations
Many implementations of windowed aggregation rely on ordered
input to determine the completion of both tumbling (disjoint) and
sliding (overlapping) windows. When processing a window,
tumbling-window aggregation simply maintains a partial
aggregate. A common implementation of sliding-window
aggregation, which we term the buffered implementation, will
buffer each tuple until it does not belong to any future window. At
the completion of a window, the aggregate is computed over the
buffered tuples and then the expired tuples are purged from the
buffer. WID [16] is an order-agnostic implementation of windowed ag-
gregation. It assumes that punctuation signals the completion of
windows. WID uses a Bucket operator to tag each input tuple with
the set of window-ids for windows to which the tuple belongs.
The aggregate operator then uses window-id as an additional
grouping attribute and incrementally maintains partial aggregates
for each group in a hash table. When a punctuation arrives, the
aggregate operator outputs aggregates matching the punctuation
and purges them from the hash table. Hwang et al. [11] describe
punctuation-assuming implementations of window aggregation,
which are used to achieve replication transparency for high-
availability stream systems. Our OOP architecture aims to support
high-volume, (near) real-time stream processing such as required

by Gigascope, which supports multi-gigabit-per-second stream
rates. The order-agnostic operators of Hwang et al. [11] are rela-
tively heavy weight, and are designed for latency reduction in a
low-throughput system. This difference is reflected in the experi-
ments, as the implementation of Hwang et al. processes tens of
packets per second, while one of our implementations processes
in excess of 800,000 packets per second.

Sub-aggregation techniques can improve the evaluation of sliding-
window aggregation, such as our paned-window aggregation
technique [15] and sub-aggregation techniques for shared execu-
tion of multiple queries proposed by Arasu and Widom [4] and
Krishnamurthy et al. [20].

4.2 Sliding-Window Join Implementations
Sliding-window join is discussed extensively in the literature. Q2
below is an example of a sliding-window join, defined on an
attribute, ts, with a 3-minute window on the first input and a 2-
minute window on the second input. This join specifies that a
tuple, l, from the first input, joins with tuples with ts value greater
than (l.ts – 2 min) and smaller than (l.ts + 3 min) from the second
input, when the IP addresses match.

 Q2: SELECT *
 FROM Main1 [WA ts, RANGE 3 min],
 Main2 [WA ts, RANGE 2 min]
 WHERE Main1.srcIP = Main2.destIP;

Many previous implementations of sliding-window join assume
that windows are defined on arrival time [9] [10] [13] [18] [26], or
that the join’s input streams arrive in order and are synchronized
on a shared timestamp attribute. Such implementations may de-
liver incorrect results when these assumptions are not met. Ob-
serve that these assumptions imply that tuples from both streams
have a “global order” – the timestamp of a new tuple is guaran-
teed to be no smaller than the timestamps of tuples that have al-
ready arrived on both input streams. Based on this assumption, a
window join implementation needs to store only tuples in the
latest window of each input stream. When a new tuple arrives,
join can purge state based on the timestamp of the new tuple. For
example, when the Join operator of Q2 receives a new tuple, t,
from Main1, it purges Main2 tuples with ts value smaller than t.ts
– 2 min. Then, t is compared with stored tuples of Main2, and
composite tuples of t and the matching tuples are produced, and
then t is stored. Hammad et al. [13] propose sliding-window im-
plementations that support ordered input streams, but with poten-
tial arrival-time skew and analyze the implementation’s average
response. Hwang et al. [11] describe a punctuation-assuming win-
dow join implementation. Ding et al. [8] [9] propose join algo-
rithms leveraging punctuation on data attributes (instead of the
progressing attribute) to purge state more efficiently.

5. OOP ARCHITECTURE
We have implemented the OOP architecture twice, once starting
from Gigascope and once from Niagara. We added OOP to an
existing version of Gigascope, which is an operational IOP
system. With Niagara, we extended the publicly-available version
of Niagara to an OOP stream processing system, called
NiagaraST. In this section, we present the OOP architecture.

277

5.1 Punctuation Generation
Gigascope generates punctuation in a timer-driven fashion [17].
In a low-level sub-query, a timer callback function fires every
second (in wall-clock time), and a punctuation that carries a pro-
gressing attribute value indicating the stream low-water mark is
inserted into the input stream. This mechanism assumes that Gi-
gascope’s input streams are ordered. Query operators propagate
punctuation. Every time an operator receives punctuation from its
input stream, it produces a punctuation for its output stream.
Timer-driven punctuation also serves to detect operator failure
and monitor query latency.

NiagaraST generates punctuation in a data-driven fashion. In the
absence of external punctuation provided by a data source, Niaga-
raST inserts punctuation into the data stream based on observation
of the progressing attribute and data stream semantics as dis-
cussed in Section 3.2. As a simple example, if a data stream is
known to be ordered, NiagaraST inserts punctuation when it ob-
serves that the value of the progressing attribute has changed by a
predefined amount.

5.2 Aggregation
We briefly summarize the aggregation semantics allowed by
stream systems, and then discuss aggregation implementation in
OOP systems and the benefits of OOP for aggregate queries. See
detailed algorithm in the appendix.

Aggregation Semantics: Stream systems often place restrictions
on the types of aggregation queries allowed to ensure that queries
can progress. Stream systems may allow only aggregations that
can potentially be unblocked. Informally, this condition translates
to the requirement that each group in an aggregation must
eventually be complete, even though the input stream is
unbounded. We formalize this restriction as follows: Aggregations
in stream queries must have a grouping condition that includes a
progressing attribute. Window aggregation is an aggregation with
a special grouping condition on the progressing attribute that
maps each tuple to one or more groups, which ensures the
condition above is satisfied.

Order-agnostic Aggregation Implementations: WID is an or-
der-agnostic implementation for both time-based (e.g., a window
of “5 seconds”) and row-based (e.g., a window of “100 tuples”)
window aggregation. For a row-based window, unlike a time-
based window, it makes a difference if the 100 tuples are counted
on the original input stream or on the stream presented to the
aggregate operator. The latter stream could have fewer items and
they could be in a different order. In NiagaraST, the system tags
each input tuple explicitly with its sequence number (seq-num) as
presented to the system, and inserts punctuation on the seq-num
attribute of input tuples. WID uses seq-num as the progressing
attribute for row-based window aggregation. (We believe that
defining row-based windows by the number of tuples presented at
the operator, which some stream systems seem to implement, is
problematic, because it can give different answers for different
query executions.) The aggregate operator produces a punctuation
for each window after it outputs all groups in the window. Hwang
et al. [11] also describe an order-agnostic, punctuation-assuming
implementation of window aggregation for time-based window
aggregation, but their implementation requires ordered input for
row-based window aggregation.

Benefits of OOP for Aggregate Queries: Even for queries with a
single, ordered input stream, disorder may occur in intermediate
streams. For example, if an input stream is split and processed
through different sub-queries (such as might be needed for net-
work-protocol simulation), the union of the sub-query results may
be disordered due to different
sub-query processing delays.
Figure 3 shows such an ex-
ample: The input is split ac-
cording to an inexpensive
predicate A; tuples not satis-
fying A are put through an
expensive predicate B before
being merged with the stream
of tuples satisfying A; the
result is fed to a window
count aggregate.

The non-OOP alternatives for
this query are similar to those
in Section 2. Either the Merge
operator can enforce order and pay the associated memory and
latency costs, or the Window Count operator can use slack. In
contrast, in OOP, stream progress information (punctuation) is
inserted into the streams as they arrive and is propagated through
the selections and Merge, thus providing Window Count precise
progress information. In this example, using slack amounts to
trying to infer information that the system already knows.

In OOP, Merge is implemented as a non-blocking, non-buffering
union. In addition, tuples are incrementally reduced into partial
aggregates by the Window Count operator. In general, maintain-
ing partial aggregates is much less expensive than buffering tuples
and keeps tuple-processing delay minimal. Figure 1 in the Intro-
duction and Figure 13 in Section 8 show the memory benefit of
OOP for aggregation queries under similar scenarios.

5.3 Join
We first discuss the semantics of join in our OOP systems, and
then present our stream-join algorithm, and discuss the benefits of
OOP for join queries.

Join Semantics: Stream systems allow only joins whose state
cannot grow indefinitely. The join condition must ensure that a
tuple of one input only joins with a bounded range of tuples from
the other input. Specifically, a join in a stream query must have an
equality or band predicate between progressing attributes of its
two inputs. Placing previously proposed join implementations in
this context, we note that tumbling-window join is a join with an
equality predicate on (a function of) progressing attributes and
sliding-window join can be seen as an alternative way of
expressing a band join.

Stream-join implementations select the timestamp attribute(s) in
the output in various ways. Each input stream has (at least) one
timestamp attribute, which we call S0.ts, and S1.ts for input
streams S0 and S1, respectively. Some implementations specify
that one or the other of S0.ts and S1.ts be the timestamp of join
result; other implementations use max(S0.ts, S1.ts). A traditional
relational join would include both timestamps in the result, which
is our semantics. Both S0.ts, and S1.ts are attributes of the join
result and subsequent operators can use S0.ts, S1.ts, both S0.ts and
S1.ts (e.g., the pair (S0.ts, S1.ts)), or a function of S0.ts and S1.ts

Window Count

Merge

$

σB

A ¬ A

$$$

Figure 3. Enforcing order on

intermediate results

278

(e.g., max(S0.ts, S1.ts) or min(S0.ts, S1.ts)) as a progressing attrib-
ute. Since we need not enforce any particular order, we can allow
subsequent operators the flexibility in selecting a progressing
attribute; as we discuss later, we can tailor punctuation to the
particular choice of progressing attribute.

Order-Agnostic Join Implementation: We propose an order-
agnostic join algorithm, OOP-Join, with a band predicate on the
progressing attribute. OOP-Join places no restrictions on the order
or synchronization of its inputs, but assumes punctuation on the
progressing attribute(s). Figure 4 shows the algorithm. The input
streams are S0 and S1, the progressing attribute is ts for both, and

the band predicate is (S0.ts – RANGE0) ≤ S1.ts ≤ (S0.ts +
RANGE1). For ease of presentation, we ignore join predicates on
other data attributes.

Figure 4: OOP-Join.

Note that in this algorithm, new tuples do not always need to be
stored: As the ProcessTuple() function shows, if the ts value of a
new tuple is smaller than the low-water mark bound of the other

input minus RANGE, it can be processed on the fly and discarded,
because all the tuples with which it needs to join have already
arrived. The amount of state that join needs to maintain depends
on input stream progress. In general, the progress of the left input
indicates which tuples from the right input can be purged, and
vice versa. The algorithm for join with an equality predicate on
progressing attributes is similar, but simpler.

As shown in the ProducePunctuation() function, OOP-Join pro-
duces distinct punctuation for S0.ts and S1.ts, which we term indi-

vidual punctuation. Individual punctuation indicates the progress
of the join result on either S0.ts or S1.ts, and allows a subsequent
operator to deduce stream progress even if its progressing attrib-
ute involves both S0.ts and S1.ts, or a function of them. For exam-
ple, if the operator’s progressing attribute is max (S0.ts, S1.ts), the
subsequent operator can progress to s when it receives punctua-
tion for s from both S0 and S1. However, as we will explain in
Section 7, providing the progress of the join result on (S0.ts, S1.ts)
pairs may allow subsequent operators to produce results sooner.

Benefits of OOP for Join queries: In OOP systems, join opera-
tors may often have a smaller footprint and are able to produce
results with less delay. In the following we elaborate the benefits
of OOP-Join in more detail.

In OOP systems, late tuples do not delay the processing of “on
time” tuples. In particular, join may process and then purge on-
time tuples at the earliest possible moment, thus reducing latency
and memory usage. Consider a join query with a band predicate,

S0.ts – 2 ≤ S1.ts ≤ S0.ts + 2. Assume S0 and S1 are approximately
synchronized, which means that—ignoring delayed tuples—tuples
from S0 and S1 with the same ts value arrive at about the same
time. Assume that input stream S0 may potentially contain a small
fraction of tuples that are delayed by at most 5 minutes, and input
stream S1 arrives ordered. Figures 5(a) and 5(b) show the IOP and
OOP evaluations of the band-join query. With IOP, due to poten-
tially delayed tuples in S0, the Sort operator needs to buffer up to
5 minutes of S0 tuples, and the join maintains 7 minutes of S1
tuples (2 minutes due to the band predicate and 5 minutes due to
the delayed S0 tuples). Note that the Join operator can process S0
tuples on the fly and does not need to maintain any state for S0.
(S0 tuples arrive 5 minutes behind S1 tuples at the join and hence
all matching S1 tuples are available when each S0 tuple arrives.)
With OOP, there is no sort operator, and tuples from S0 are main-
tained by the Join operator. In Figure 5(b), the join maintains 5
minutes of S1 tuples, similar to IOP, but needs only maintain 2
minutes of S0 tuples, because most S1 tuples arrive on time and
thus punctuation from S1 can purge S0 tuples regularly without

State Maintained:

b0, b1: bounds on the low-water mark of left and right in-
put, respectively; initialized to –infinity;
M0, M1: tuple sets maintained on left and right input, re-

spectively; initialized to ∅;

Join(x)

let Si be the input stream to which x belongs;
if x is a tuple ProcessTuple(x, Si);
else if x is a punctuation ProcessPunctuation(x, Si);

ProcessTuple(t, Si)

join t with matching tuples in M1-i ;

if t.ts ≥ b1-i – RANGEi

 add t to Mi ;

ProcessPunctuation(p, Si)

bi = p.ts;

∀k in M1-i

 if k.ts < p.ts – RANGE1-i
 purge k;
ProducePunctuation(p, Si);

ProducePunctuation(p, Si)

output a punctuation for S1-i.ts with value

min(bi – RANGE1-i, b1-i);

output a punctuation for Si.ts with value

min(b1-i – RANGEi, bi);

7 min. of data for S1
 2 min. of data for S0

7 min. of data for S1

S0.ts-2 ≤ S1.ts ≤ S0.ts+2

S0 S1

Figure 5(b). OOP evaluation of a band join

(maximum allowed delay in S0 is 5 min-

Join

5 min. of data for S0

Sort

S0.ts-2 ≤ S1.ts ≤ S0.ts+2

S0 S1

Figure 5(a). IOP evaluation of a band join

(maximum allowed delay in S0 is 5 min-

Join

S1

0 1 2 3 4 5 6 7 8

6
 5

 4
 3

 2
 1

 0

IOP buffering

Figure 6. Output buffering in IOP

band join (output ordered on S0.ts)

S0

279

delay. Overall, the OOP evaluation of the join query maintains 3
minutes fewer of S0 tuples, and produces most join results earlier

than the IOP evaluation. Figure 12 in Section 8 shows the mem-

ory benefits of OOP in this case.

In OOP systems, band join does not need to enforce order on its
result, and thus has a reduced memory footprint and lower latency
than an IOP join that must enforce output order. The double
cross-hatched area in Figure 6 illustrates the amount of buffering
required to order the output of an IOP band join with a band

predicate S0.ts – 3 ≤ S1.ts ≤ S0.ts + 2 on S0.ts, assuming that input
streams S0 and S1 are approximately synchronized, and assuming
the join result needs to be ordered on S0.ts. As the figure shows,
when both S0 and S1 progress to time 6, the join needs to buffer
results produced by S0 tuples with ts values between 4 and 6. In
general, the required buffering for ordering join output in IOP
systems increases with the band size of the join predicate. (The
exact amount of buffering is determined by the desired output
order, the band predicate, the data rate of the input streams, and
the arrival-time skew of the input streams.) In OOP systems, join
results can be released on the fly, without any delay or buffering,
and processed immediately by a subsequent operator. Figure 11 in
Section 8 shows the benefit of OOP in terms of memory, latency
and CPU for this case.

5.4 Other Operators
We briefly summarize the implementation of other query
operators in our OOP systems. Except for the Input operator,
query operators in OOP assume their input streams are
punctuated; they do not need to enforce or maintain order, but
they do need to propagate punctuation.

Input: Input operators in OOP systems need to periodically insert
punctuation on the progressing attribute into the input stream. In
contrast, input operators in IOP systems might buffer and sort the
input stream. Ordering a potentially disordered input stream and
inserting punctuation into it require the same knowledge about
input stream arrival properties.

Select, Apply, Project: The basic pipelined implementations of
Select, Project and Apply work for both the IOP and OOP
approaches. The processing of punctuations in the OOP
implementations is similar to tuple processing.

Dupelim: Duplicate elimination (Dupelim) naturally preserves
order; the issue is when state can be purged. The IOP
implementation of Dupelim can remove state whenever the
ordering attribute advances. The OOP implementation of Dupelim
must rely on punctuation to purge its state; punctuation is passed
through as received.

Union: In an IOP system, Union must buffer one input during a
lull or delay on the other input to assure ordered output. In OOP
systems, the (bag) Union operator can pass through input tuples
immediately and needs to maintain no tuple state. To produce
output punctuation, the Union operator in OOP systems needs to
remember input punctuation from each input stream. Assuming
linear punctuation, it only needs to remember the last punctuation
on each input. When Union receives a punctuation, p, from one
input, it produces a punctuation with value min(p.ts, p΄.ts), where
p΄ is the last punctuation on the other input stream. See the
detailed algorithm in appendix.

5.5 Discussion
OOP is a more scalable architecture, especially in distributed or
parallel environments, where the input data for a query operator
may come from different processors, or even different machines
far removed from one another. An issue with IOP in such an
environment is that operators can block due to network
congestion and routing problems at a single node. For example, a
TCP connection might break and need to be re-instantiated. These
network problems can cause a significant delay and even hang an
IOP system. In addition, even when the network is reliable,
enforcing order on data coming from multiple processors may
incur prohibitive memory and latency costs.

OOP is also a more permissive architecture. It can accommodate
operator implementations that require out-of-order processing.
For example, to improve throughput, stream systems may want to
process tuples out of order. Avnur and Hellerstein propose an
adaptive query processing mechanism, called Eddies, that dy-
namically routes tuples to query operators based on operator load
 [3]. To improve interactive query performance, Franklin et al.
 [23] [31] propose algorithms that re-order tuples based on their
importance. Also, OOP can utilize order-sensitive operator im-
plementations, by first sorting the input. (Punctuation can unblock
sort.) Further, OOP enables interesting optimizations. In tradi-
tional database systems, one logical operator may have multiple
physical implementations and the system may choose among them
based on the properties of input relations, OOP systems can simi-
larly choose among different physical implementations of logical
query operators based on properties of input streams. For exam-
ple, for window aggregation, out-of-order tuples delay the com-
pletion of windows in which they participate, and thus increase
the number of “open windows” in the operator state. Thus, in
situations where the number of tuples per window is small and the
size of partial aggregates is large, the memory cost of WID may
exceed that of the buffered implementation. In such situations, a
buffered implementation that processes windows sequentially may
be preferable, although it incurs more delay for enforcing tuple
order and computing aggregates.

6. WORKLOAD SMOOTHING
Workload smoothing is critical for systems dealing with high-
volume streams in (near) real time. For such systems, workload
bursts may overload the system, delay data processing, and lead to
loss of input data or obsolete query results. An important reason
for us to consider using OOP in Gigascope is that OOP is useful
for workload smoothing. Workload bursts can occur either on
input or intermediate streams, caused either by input data bursts
or blocking operators that are periodically unblocked,
respectively. For example, when a window ends, window
aggregation needs to scan the hash table of partial aggregates to
produce results and purge completed items, and outer join needs
to locate and output tuples that were not matched. Here we focus
on smoothing intermediate workload bursts created by the
unblocking of blocking operators.

In the following, we first present a workload smoothing mecha-
nism, slow-flush, originally implemented in the IOP version of
Gigascope [17]. Similar workload-smoothing mechanisms are also
used in other network traffic monitoring systems [19]. We then
discuss the issues with IOP in applying slow-flush and workload
smoothing in our implementation of OOP in Gigascope. We start

280

with a short review of window aggregation implementation in
Gigascope.

Aggregation in Gigascope: Gigascope has a two-level architec-
ture typical of high-performance, potentially distributed, data-
monitoring systems [7], where the low level is used for data re-
duction and must be lightweight, and the high level handles more
complex processing. A low-level sub-query processes network
packets from a fixed-size ring buffer. Low-level and high-level
queries may run in different processes or even on different ma-
chines. Gigascope supports only tumbling-window aggregation
natively. An aggregation query is split into a low-level sub-
aggregation and a high-level aggregation that rolls up sub-
aggregates. To ensure the low-level sub-aggregation is fast, it uses
a fixed-size hash table to maintain aggregates for different groups.
On hash-table collision, the existing aggregate in the hash table is
output to accommodate the new aggregate. At the end of a win-
dow, the low-level query flushes the hash table and outputs all
aggregates in it. However, if the number of groups is large, flush-
ing the hash table causes a workload burst, during which time the
ring buffer can overflow and lose packets.

Slow-flush mechanism: Gigascope uses slow-flush to smooth
workload bursts at window boundaries in low-level aggregation.
With slow-flush, when a window completes, the low-level sub-

query gradually outputs aggregates of the previous window while
processing new packets, instead of flushing all aggregates from
the hash table at once. Figure 7 outlines Gigascope’s IOP imple-
mentation of slow flush.

The status table indicates the content of each hash entry—whether
a hash entry is empty, contains a partial aggregate for the new
window, or a completed aggregate for an old window. As the
ProcessTuple function shows, on hash-table collision, if the exist-
ing aggregate belongs to an old window, it is output and the slot is
used for the new aggregate. However, a problem occurs if the
existing aggregate belongs to the new window. Because low-level
aggregation must preserve output order, it has to first flush all the
aggregates of old windows before it can output the existing collid-
ing aggregate1. Therefore, because slow-flush must satisfy the
order requirement, it may not effectively smooth out the output of
the low-level aggregates, especially when the number of groups is
large. Hash-table flushing creates a burst during which incoming
tuples cannot be processed, limiting the maximum stream rate
supported by IOP, as discussed in Section 8.1 and illustrated in
Figure 9.

Workload Smoothing in OOP: OOP Gigascope has two ways to
smooth workload, slow-flush and lazy-flush. In contrast to IOP
with slow-flush, OOP (with either lazy-flush or slow-flush) may
permit much higher throughput. The most important benefit of
OOP in terms of workload smoothing is that, as it has no order
requirement, the low-level aggregation does not need to flush all
partial aggregates from the previous window when collision of
two aggregates from the new window occurs. In general, slow-
flush intentionally increases result latency to smooth out the
workload. However, the latency that IOP can use to smooth out
the workload is very limited, due to its order-maintenance re-
quirement. In contrast, OOP systems can improve workload
smoothing and thus achieve better throughput by allowing more
delay (as long as the desired upper bound on latency is guaran-
teed). In detail, suppose the desired maximum latency is m win-
dows. OOP can address workload smoothing in two ways. First, it
may use lazy-flush, which simply relies on hash-table collisions to
naturally flush old aggregates, but with a check that aggregates are
flushed with a maximum delay of m windows. Alternatively, OOP
can explicitly use slow-flush. OOP with slow-flush outputs one
old aggregate every i new packets, and guarantees a maximum
result delay of m windows. Both i and m are tunable parameters of
the low-level sub-aggregation. As we show in Section 8.1 (Figure
9), both OOP with lazy-flush and OOP with slow-flush achieve
better throughput than IOP with slow-flush when there is a large
number of groups.

7. FINER-GRANULARITY PUNCTUATION
We introduce a new type of punctuation—joint punctuation—
which may reduce delay in operators consuming join output. Con-
sider query, Q3, which counts established TCP connections per
time period from link S0 to link S1. SYN packets from S0 are
matched with SYN_ACK packets from S1 and the result is
grouped on the timestamps from S0 and S1. The result is connec-

1 The working Gigascope actually uses a better replacement policy—if the

existing aggregate belongs to the new window, ProcessTuple also
checks the next hash entry to see whether it can accommodate the new
aggregate without flushing all old aggregates.

State:
ht: a fixed-size hash table of (partial) aggregates;
status: a table indicating the content for each hash table
entry: new, old, or empty;

Init:
flush_finished = true;
flush_pos = 0;
Init entries of status as empty;

SlowFlush():
if (status[flush_pos] == old)
 output the existing aggregate in ht[flush_pos];
 status[flush_pos] = empty;
 flush_pos++;
 if (flush_pos > ht.size)
 flush_finish = true;

ProcessTuple(t):
if t indicates the start of a new window
 if (!flush_finish)
 flush entries in ht marked old; mark them empty;
 flush_finish = false;
 flush_pos = 0;
if (!flush_finish)
 SlowFlush();
key = hashkey (t);
if status[key] == empty or old
 if status[key] == old
 output the existing aggregate in ht[key];
 init an aggregate with t in ht[key]; mark it new;
if status[key] == new
 if t belongs to the existing group
 update the existing aggregate with t
 else
 flush entries in ht marked as old;
 output the existing aggregate in ht[key];
 init an aggregate with t in ht[key]; mark it new;

Figure 7: Low-level aggregation with slow-flush.

281

tion counts for timestamp pairs (S0.ts, S1.ts). For the purpose of
discussion, we assume timestamps are rounded to the nearest
second. To limit the space required by join and reduce spurious
matches, a band predicate that limits the difference between S0.ts
and S1.ts is added to the join.

 Q3: SELECT S0.ts, S1.ts, count(*)
 FROM S0 [WA ts, RANGE 2 min],
 S1 [WA ts, RANGE 2 min]
 WHERE S0.destIP = S1.srcIP AND S0.destPort =S1.srcPort

 AND S0.flag = SYN and S1.flag = SYN_ACK
 AND S0.ts < S1.ts

 GROUP BY S0.ts, S1.ts;

Q3 can be evaluated with a band join that feeds a count operator
that groups on S0.ts and S1.ts. We discuss the effects of different
types of punctuation on the output of count. Consider the aggre-
gate group in the Count operator with S1.ts=1 and S0.ts=0. Count
can output the result for this group when it knows one of two
things: all tuples with S1.ts=1 have been received; or all tuples
with S1.ts=1 and S0.ts=0 have been received. The time at which
count outputs the result for this group is directly dependent on
what punctuation join produces and when. More specifically,
count can output this group when it receives either of the follow-
ing two punctuations: (*,1) or (2,1). Recall that we call punctua-
tion such as (*,1) individual punctuation as it punctuates only one
of the two ts attributes; we call punctuation of the second form
(2,1) joint punctuation as it punctuates S0.ts and S1.ts together.

Join derives its output punctuation based on its predicate and
input punctuation state. In this example, the individual
punctuation is dependent on the band predicate; (*,1) can be
produced when input punctuation on S1.ts with value (3) is
received (the band is 2 minutes long). However, the joint
punctuation (2,1) can be produced when input punctuation (2) on
S1.ts and (1) on S2.ts are both received. Joint punctuation is
independent of band size, and therefore can be produced earlier
than individual punctuation. This difference may be significant for
joins where band size is large relative to timestamp step, as may
be the case in Q3. Figures 8(a) and (b) illustrate the progress information
communicated by joint and individual punctuation. In Figure 8,
the x- and y-axes are labeled with punctuations on ts values of S0
and S1, respectively; the solid lines indicate the region of
timestamps that satisfy the band predicate. Number pairs represent
output punctuation and dotted lines outline the coverage of each
output punctuation. Observe that joint punctuations have smaller
coverage, but can be output sooner.

8. EXPERIMENTAL EVALUATION
In this section, we present an experimental study of our OOP
implementations in both Gigascope and NiagaraST. Gigascope
focuses on processing high-speed network-traffic streams, and
NiagaraST focuses on flexibility and expressiveness of stream
queries. As discussed before, we converted a version of Gigascope
to OOP and extended the publicly-available version of Niagara
into a full-fledged OOP stream engine; we call the converted
systems OOP-Gigascope and NiagaraST, respectively.

8.1 OOP with Gigascope
The experiments with Gigascope were conducted using network
feeds generated by the RouterTester® traffic generator. Our focus
is to show the memory and throughput benefits of OOP over high-

speed streams. All experiments were conducted on a dual-
processor dual-core Intel(R) Xeon(TM) CPU 2.80GHz processor
with 4 GB of RAM running Linux 2.4.21.

Experiment G1: This experiment shows how OOP can improve
throughput during workload bursts, and uses the following query,
Q4, which computes the number of packets from a network
interface for each (srcIP, destIP) pair for every minute.

Q4: SELECT srcIP, destIP, count(*)
 FROM M [WA ts, RANGE 1 min, SLIDE 1 min]
 GROUP BY srcIP, destIP

We executed Q4 with Gigascope and OOP-Gigascope, varying the
number of groups in the stream and the size of the hash table used
by the low-level sub-aggregation. In addition, we experimented
with two OOP implementations of the low-level sub-
aggregation—slow-flush (sf) and lazy-flush. We measured the
maximum stream rate that Gigascope and OOP-Gigascope could
support, by increasing the stream rate until tuples were dropped.

The number of groups was varied from 66k to 520k; the low-level
hash-table size was dependent on the number of groups. For each
case, we used three hash table sizes: half, equal to, and twice the
number of groups. As discussed in Section 6, OOP may use either
lazy-flush or slow-flush to improve workload smoothing and
thereby throughput. In this experiment, both OOP-Gigascope with
lazy-flush and slow-flush allow an extra delay of two windows to
spread the workload across window boundaries. Further, OOP-
Gigascope with slow-flush explicitly flushes an aggregate for an
old window every 160 incoming packets. In contrast, Gigascope
uses an aggressive slow-flush, explicitly flushing an aggregate
once per incoming packet.

Figure 9 shows the results of this experiment. Therein, OOP and
OOP(sf) represent the OOP implementations of low-level sub-
aggregation without slow-flush (lazy-flush) and with slow-flush,
respectively. Values ½, 1, and 2 indicate the relative size of the
hash table in the sub-aggregation. In addition to measuring the
maximum supported data rate, we also measured CPU utilization.
In general, when the number of groups is small, for example, at
66k, the stream rates that IOP and OOP can support are about the
same; and the CPU utilizations are close to saturation. However,
when the number of groups is large, with a reasonable hash table
size, OOP can support a much higher stream rate than IOP. For
example, at 260k groups, with 540k hash table entries, OOP and
OOP(sf) can support 760k pkts/sec and 800k pkts/sec, respec-
tively, while IOP can only support 400k pkts/sec. However, an
overly large hash table may adversely affect the throughput of the

Figure 8. Individual vs. joint punctuation – for band join

S1.ts

S0.ts

(a) Individual Punctuation (b) Joint Punctuation

(3,3) (3,2)

(2,1)

(1,1)

S1.ts

(1, *)

(*
,

1
)

 (1) (2) (3) ...

(2,2)

 (1) (2) (3) ...

S0.ts

(3)

(2)

(1)

…

…

(3)

(2)

(1)

282

query, especially for the IOP cases. With 520k groups, IOP-2 only
supports a maximum data rate of 350,000 packets per second,
with CPU utilization of 50% and IOP-1 supports only 300,000
packets per second with CPU utilization of 51%. As discussed in
Section 6, when there is a hash-table collision between an incom-
ing packet and an existing aggregate from the current window,
IOP needs to flush all aggregates from the previous window be-
fore any new tuples can be processed. During the hash table flush,
new packets in the ring buffer are not processed and packets will
be dropped if the ring buffer fills. When the number of groups is
large and the data rate is high, an overly large hash table (over a
million entries in our example) causes an increase in the number
of aggregates to be flushed (a larger workload burst), and reduces
the data rate that IOP can support without dropping tuples. The
low CPU utilization for IOP with an overly large hash table is
associated with the low data rates that IOP can support in these
cases. OOP is generally better than IOP, especially for streams
with large numbers of groups, and is less sensitive to the hash
table size.

Experiment G2: This experiment demonstrates the potential
memory-usage benefits of OOP for aggregation queries
monitoring multiple data sources, using the following query, Q5.

Q5: SELECT srcIP, destIP, count(*)
 FROM M1 UNION M2
 [RANGE 1 min, SLIDE 1 min, WA ts]
 GROUP BY srcIP, destIP

The rates of M1 and M2 are both 110k pkts/sec, and the total
number of groups in them is 65,536. We varied the arrival skew of
M1 and M2, and executed Q5 with both Gigascope and OOP-
Gigascope, recording the maximum memory usage. Figure 1 (in
the introduction) shows the results of this experiment. OOP
generally uses less memory than IOP; as arrival skew increases,
the memory usage of OOP remains relatively flat, while that of
IOP increases dramatically.

Experiment G3: This experiment provides a comparison of
memory usage of a tumbling-window join query, Q6, with a win-
dow size of 10 seconds and input from multiple sources. Each
input to the Join operator is a union of two streams: A and B, and
C and D, respectively. The rate of each stream is 10k pack-
ets/second. (In practical stream join queries, the input rates for
join are often rather low, because of prior data reduction by sam-

pling or aggregation.) We varied the arrival skew of A and B, and
C and D, and recorded the maximum memory usage of each query
run. Figure 10 shows the results of this experiment. The number
of tuples that the IOP and OOP approaches need to maintain is the
same. The difference is that in the IOP version, the tuples reside
in input buffers of merge operators; in the OOP version, they are
held in join hash tables. This experiment shows that the structural
overhead of an OOP join in an IOP-oriented system is acceptable.
When the arrival skew is below 20 seconds, the memory overhead
is inconsequential. In the extreme case, the OOP join uses about
20% more memory than the IOP case. Our OOP join implementa-
tion used the hash-table structure of the original IOP join, which
were not optimized for memory overhead.

Q6: SELECT M1.srcIP, M1.destIP, M1.ts
 FROM A UNION B as M1, C UNION D as M2
 WHERE M1.ts/10 = M2.ts/10 and M1.srcIP = M2.destIP and
M1.destIP and M2.srcIP and M1.srcPort = M2.destPort and
M1.destPort = M2.srcPort

8.2 OOP with NiagaraST
Experiments in NiagaraST were conducted on a Dual-Core AMD
Opteron(TM) Processor 2214 with 4GB main memory, running
Ubuntu Linux 2.6.17-10-server, and Sun® Java VM 1.5. We fo-
cus on comparing OOP and IOP in terms of memory usage, exe-
cution time, and latency. We added IOP support to NiagaraST,

Figure 9. Throughput comparison of IOP and OOP for a count query, Q4, in Gigascope

0

100

200

300

400

500

600

700

800

900

IOP-½ IOP-1 IOP-2 OOP-½ OOP-1 OOP-2 OOP (sf)-½ OOP (sf)-1 OOP (sf)-2

D
a
ta

 R
a
te

 (
th

o
u

s
a
n

d
s
 o

f
p

k
ts

/s
e
c
.)

66k

130k

260k

520k

0

50

100

150

200

250

0 20 40 60 80 100 120
Delay (sec)

M
e
m

o
ry

 (
M

B
)

IOP

OOP

Figure 10. Memory usage of a tumbling-window join, Q6,

in Gigascope

283

just for this performance study.

Data Generation: For our experiments, we generated stream
sources with different data volumes and different time skews us-
ing network packet headers from the Passive Measurement and
Analysis project [22]. We generated three streams, two with high
volume (approximately 4000 tuples/second), called M1 and M2,
and one with very low volume, called C. The total data set size is
approximately 135 MB. We simulated time skews among M1,
M2, and C by manipulating the placement of tuples in the data file
used to generate the three streams.

Experiment N1: This experiment compares the memory, execu-
tion time and latency performance of IOP and OOP evaluation of
a query involving a band join, using query Q7. We varied the
band size n of the Join operator, and measured the maximum
memory usage, latency and execution time of the query. In this
experiment, the input streams of the join, M1 and M2, are ordered
and synchronized.

Q7: SELECT count(*)
 [RANGE 1 min, SLIDE 1 min, WA M1.ts]
 FROM M1, M2

 WHERE M1.ts ≥ M2.ts – n and M1.ts ≤ M2.ts + n and
M1.srcIP = M2.destIP and M1.destIP and M2.srcIP and
M1.srcPort = M2.destPort and M1.destPort = M2.srcPort

Figure 11 shows (a) memory usage, (b) latency, and (c) execution
time comparisons between IOP and OOP. Latency is the differ-
ence between the output time of the aggregate and the arrival time
of punctuation from the input streams that covers it. Execution
time reflects the CPU cost, and is the elapsed time of a query run-
ning at full speed over the input data set. The latency and execu-

tion-time numbers are the average of 8 runs. OOP significantly
outperforms IOP on Q7, especially on memory and latency, as
OOP can avoid sorting the output of the band join before aggre-
gating, as discussed in Section 7.1.

Experiment N2: This experiment compares memory usage of IOP
and OOP for an equality join on progressing attributes, using
query Q8. One input to the join contains late tuples, which are
simulated by combining M2 with a version of C that is delayed.
Figure 12 shows that with the increase in the delay of the late
tuples, the memory use for OOP increases more slowly than for
IOP. The memory advantage of OOP comes from the Join opera-
tor in OOP purging M2 tuples sooner than in IOP, as discussed in
Section 5.3.

Q8: SELECT M1.srcIP, M1.destIP, M1.ts
 FROM M1, M2 Union C as M3
 WHERE M1.ts = M3.ts and M1.srcIP = M3.destIP and
M1.destIP and M3.srcIP and M1.srcPort = M3.destPort and
M1.destPort = M3.srcPort

Experiment N3: This experiment compares memory usage of IOP
and OOP on a sliding-window aggregate over multiple sources,
using query Q9.

Q9: SELECT count(*) [RANGE 5 min, SLIDE 1 min, WA ts]
 FROM M1 UNION M2 UNION C

We varied the delay of the arrival of C, and measured the maxi-
mum memory usage. Figure 13 shows that the memory usage of
IOP grows significantly as the delay of C increases, while that of
OOP is relative stable. Here, the memory benefit of OOP is due to
OOP aggregation directly reducing tuples into aggregates without

Figure 13. Memory comparison of IOP and OOP for a slid-

ing-window count, Q9, with arrival-time skew of multiple

data sources, in NiagaraST

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10
Arrival-time Skew (sec)

M
e
m

o
ry

 (
M

B
)

IOP

OOP

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10
Delay (sec)

M
e
m

o
ry

 (
M

B
)

IOP

OOP

Figure 12. Memory comparison of IOP and OOP evalua-

tion for a tumbling-window join query, Q8, with late tu-

ples on one input, in NiagaraST

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9

IOP

OOP

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

IOP

OOP

Band Size (sec)

M
em

o
ry

 (
M

B
)

Band Size (sec)

L
a

te
n

cy
 (

se
c)

Band Size (sec)

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

)

(a) (b) (c)
Figure 11. Memory, latency and execution time comparison of IOP and OOP for a band join query, Q7, in NiagaraST

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9

IOP

OOP

284

first buffering and sorting the input.

9. CONCLUSION
Our initial experience with OOP architectures is encouraging. We
have seen improvement over IOP in memory, latency and
throughput under a variety of conditions. The fact that
improvements were seen in two substantially different stream
systems, NiagaraST and Gigascope, suggests that the benefits of
OOP are widely applicable. The implementation overhead for
supporting OOP does not seem severe, realizing that any practical
stream system will need a stream-progress mechanism beyond just
tuple arrival. There are several obvious next steps:

1. We believe we can reduce the memory overhead of several
of our operators in NiagaraST and OOP-Gigascope,
removing most of the differential with order-assuming
implementations.

2. Gigascope supports user-defined aggregates [6]. That
framework will need to be extended to support multiple si-
multaneous windows and correct handling of punctuation.

3. In Section 5.4, we noted that which operator
implementations perform best can depend on data properties
of a stream, such as the number of tuples per group in an
aggregation. However, such properties can change over
time. Hence, we are interested in “hybrid” implementations
that monitor stream properties and adapt between
approaches as appropriate.

10. ACKNOWLEDGMENT
This work was supported by NSF grants IIS-0086002 and IIS-
0612311.

11. REFERENCES
[1] Abadi, D., et al. Aurora: A New Model and Architecture for

Data Stream Management. VLDB Journal 12(2), August
2003.

[2] Arasu, A., Babu, S., Widom, J. The CQL Continuous Query
Language: Semantic Foundations and Query Execution.
VLDB Journal 14(1), March 2005.

[3] Avnur, R., Hellerstein, J. M. Eddies: Continuously Adaptive
Query Processing. SIGMOD 2000.

[4] Arasu, A., Widom, J. Resource Sharing in Continuous
Sliding-window Aggregates. VLDB 2004.

[5] Balazinska, M, Balakrishnan, H., Madden, S., Stonebraker
M. Fault-Tolerance in the Borealis Distributed Stream
Processing System. SIGMOD 2005.

[6] Cormode, G., et al. Holistic UDAFs at Streaming Speeds.
SIGMOD 2004.

[7] Cranor, C., Johnson, T., Spatashek, O. Gigascope: A Stream
Database for Network Applications. SIGMOD 2003.

[8] Ding, L., et al. Joining Punctuated Streams. EDBT 2004.

[9] Ding, L., Rundensteiner, E.A. Evaluating Window Joins over
Punctuated Streams. CIKM 2004.

[10] Golab, L., Ozsu, M. T. Processing Sliding Window multi-
joins in Continuous queries over Data Streams. VLDB 2003.

[11] Hwang, J-H, Cetintemel, U., Zdonik, S. Fast and Highly-
Available Stream Processing over Wide Area Networks.
ICDE 2008.

[12] Hammad, M. et al. Optimizing In-Order Execution of
Continuous Queries over Streamed Sensor Data. SSDBM

2005. [13] Hammad, M., et al. Scheduling for Shared Window Joins
over Data Streams. VLDB 2003.

[14] Li, Hua-Gang, et al. Safety Guarantee of Continuous Join
Queries over Punctuated Data Streams. VLDB 2006.

[15] Jin Li, et al. No Pane, No Gain: Efficient Evaluation of

Sliding-Window Aggregates over Data Streams. SIGMOD

Record 34(1), March 2005.

[16] Jin Li, et al. Semantics and Evaluation Techniques for
Window Aggregates in Data Streams. SIGMOD 2005.

[17] Theodore Johnson, et al. A Heartbeat Mechanism and Its
Application in Gigascope. VLDB 2005.

[18] Kang, J., Naughton, J. F., Viglas, S. Evaluating Window
Joins over Unbounded Streams. ICDE 2003.

[19] Ken Keys, et al. A Robust System for Accurate Real-time
Summaries of Internet Traffic. ACM SIGMETRICS

Performance Evaluation Review 33(1), June 2005.

[20] Krishnamurthy, S., Wu, C., Franklin, M.J. On-the-Fly
Sharing for Streamed Aggregation. SIGMOD 2006.

[21] Naughton, J. et al. The Niagara Internet Query System. IEEE

Data Eng. Bulletin 24(2), June 2001.

[22] Passive Measurement and Analysis Project. San Diego
Supercomputer Center. http://pma.nlanr.net/PMA.

[23] Raman, V., Raman, B., Hellerstein, J. M. Online Dynamic
Reordering for Interactive Data Processing. VLDB 1999.

[24] Rundensteiner, E. A., et al. CAPE: Continuous Query Engine
with Heterogeneous-Grained Adaptivity. VLDB 2004.

[25] Srivastava, U, Widom, J. Flexible Time Management in Data
Stream Systems. PODS 2004.

[26] Srivastava, U, Widom, J. Memory-Limited Execution of
Windowed Stream Joins. VLDB 2004.

[27] StreamSQL. http://www.streamsql.org.

[28] Tucker, P. Punctuated Data Streams. Doctoral Dissertation.
Oregon Health & Science University, Portland, OR, 2005.

[29] Tucker, P., et al. Exploiting Punctuation Semantics in
Continuous Data Streams. IEEE Trans. on Knowledge and

Data Engineering, 15(3), May 2003.

[30] Urhan, T., Franklin, M. J. XJoin: A Reactively-Scheduled
Pipelined Join Operator. IEEE Data Eng. Bull. 23(2), 2000.

[31] Urhan, T. and Franklin, M. J. Dynamic Pipeline Scheduling
for Improving Interactive Query Performance. VLDB 2001.

[32] Viglas, S., Naughton, J. F., Burger, J. Maximizing the
Output Rate of Multi-Way Join Queries over Streaming
Information Sources. VLDB 2003.

285

APPENDIX

A.1. Technical Considerations
In this section, we discuss implementation issues unique to OOP
stream systems.

A.1.1. Punctuation
In OOP systems, punctuation plays a central role—blocking op-
erators rely on punctuation to output results and stateful operators
rely on it to purge state. In this paper, we assume linear punctua-
tion on the progressing attribute and assume that punctuation is
“grammatical”—that is, no tuples violate previously received
punctuation.

In order to adapt an IOP system to OOP, we must either add punc-
tuation to the system, or, if the system already supports punctua-
tion, we must extend it to fully support out-of-order processing.
(Some existing IOP systems such as Gigascope support punctua-
tion for handling lulls.) Punctuation can be initiated by timer call-
backs. Assuming an input stream is ordered, the callback function
can insert in the stream a punctuation carrying the largest pro-
gressing attribute value observed so far every time the timer fires.
We call the current value of the progressing attribute data time.
During lulls, the observed data time drifts away from the system
time. When the difference between the data time and system time
is above a predefined threshold, s, the callback function inserts
punctuation to advance the data time to (current system time – s).
Note that group-wise linear punctuation, a simple extension of
linear punctuation, may be useful if groups are significantly un-
synchronized. For example, if a query groups packets by network
protocol, and packets for a certain protocol tend to lag behind
others, having linear punctuation per protocol will allow groups
that finish early to be output early.

One must be careful when adding punctuation to IOP systems, as
punctuation may change the scheduling of tuple processing. For
stream systems that support batch processing (i.e., query operators
are invoked for a “batch” of tuples instead of for each individual
tuple), punctuation should be treated as a high-priority tuple:
Once a punctuation arrives, the in-progress batch should be
considered complete and should be shipped to down-stream
operators. Note that this completion of a batch affects only the
timing of tuple transmission and does not affect result values.
Punctuation delayed by batch processing may delay result
production and thus increase latency, particularly for sparse
streams. Even IOP systems that already support punctuation require non-
trivial effort to extend punctuation to fully support OOP. First,
OOP systems rely on punctuation to make progress, thus the sys-
tem should produce punctuation at a granularity finer than both
the smallest window size and the smallest window slide allowed
in the stream system. The granularity of punctuation used for han-
dling lulls in IOP systems can be much coarser, as it only needs to
guarantee that stream queries make progress during lulls. Second,
timer callbacks for generating punctuation may initiate duplicate
punctuation, if the timer is set at a granularity fine enough to sat-
isfy the smallest window slide. For efficiency, it is desirable to
avoid such duplicates; further, it is also desirable to produce only
punctuation that matches the boundaries of the smallest window
slide currently used in the system. For example, if the smallest
window slide used by queries currently running in the system is 5
seconds, it is desirable to produce punctuation with a 5-second

granularity and no finer. Third, as discussed in Section 7, to pro-

vide stream progress information efficiently, a query operator
should choose what punctuation to produce based on the require-

ments of the operator that consumes its result. Tucker [28] has

proposed a describe operator that provides punctuation appropri-
ate for downstream operators. The describe operator filters out
punctuation that will not help downstream operators and rolls
incoming punctuation up to the appropriate level.

A.1.2. Overhead
In this section, we discuss the memory and computation overhead
involved in supporting OOP.

A.1.2.1. Memory Overhead
Memory-structure overhead needs to be carefully considered in
OOP system implementation. Typically, when memory usage of
OOP and IOP systems is analytically compared, the comparison is
based only on the number of tuples that each approach needs to
retain, and ignores differences in the space overhead of various
data structures. For example, if the input stream of a join operator
potentially contains late tuples, an IOP system may buffer the on-
time tuples in a tuple buffer, while an OOP system may store them
in a hash table, which may be have more space overhead. In gen-
eral, OOP systems tend to have higher space overhead than IOP
system, as they often require more complex data structures. Thus,
in implementing the OOP architecture, it is important to imple-
ment the primary data structures in a space-efficient manner.

A.1.2.2. Punctuation-Processing Overhead
Punctuation processing incurs certain computational overhead
costs. If the punctuation is too fine-grained, it may degrade the
efficiency of the stream system, as it may increase processing time
and consume transmission bandwidth in distributed stream sys-
tems. However, even with punctuation-to-tuple ratios as high as

15%, Tucker [28] observed very limited punctuation-processing

overhead. These results assume that punctuation is grammatical.
Otherwise, query operators (or, at least the input operators) also
need to block any tuples violating punctuation, which indicates
increased computational cost per tuple.

A.2. OOP Operator Implementation
An OOP query-operator implementation typically includes two
primary functions, processTuple() and processPunctuation().
Query operators, especially those that need to enforce output
stream order in IOP systems, can often be implemented more
simply in OOP systems, as they need not maintain output stream
order and thus need not devote resources to order enforcement.
Both Join and especially Union benefit from reduced complexity
in output generation in OOP implementations. The OOP imple-

mentation of Join is presented in Section 5.3. The OOP imple-

mentation of Union is discussed below.

A.2.1. Union
The OOP implementation of Union is shown below in Figure A-1.
As compared to the order-enforcing IOP implementation, the
OOP implementation is light weight in terms of both memory and
latency. The only state that OOP Union maintains is the most
recent punctuation value from each input stream and for the out-
put stream. Group-wise punctuation may require maintaining such

286

Figure A-2. OOP implementation of window aggrega-

tion: the Bucket operator

Figure A-3. OOP implementation of window aggrega-

tion: the Aggregate operator

state for each group. OOP Union passes tuples through immedi-
ately, and it emits punctuation with the min progressing attribute
value observed from both streams (minus duplicates). Since Un-
ion is necessary for stream queries monitoring data from multiple
sources, such as multiple network traffic links, the light weight
implementation can be a great advantage. When an order-
preserving union is used, both memory and delay incurred by
Union can be prohibitive during lulls or in the presence of time
skew.

A.2.2. Window Aggregation
The OOP implementation of window aggregation is more com-
plex than its IOP implementation, as allowing out-of-order tuples
requires managing multiple window extents simultaneously. Our
implementation of window aggregation consists of two query
operators, Bucket and Aggregate. The Bucket operator tags each
input tuple with window-id(s) representing the window extent(s)
to which the tuple belongs. We have formally defined how to map

a tuple to window-ids in our previous paper [16]. There, we de-

fined a function, wids, that maps a tuple to a set of window-ids
based on the window specification of the window aggregation and
the value of the tuple’s windowing attribute. In our implementa-
tion, we use a pair of window-ids to represent the range of win-
dow-ids for each tuple. The basic structure of Bucket implementa-
tion is straight forward as shown in Figure A-2. The processTu-

ple() function implements wids and appends a pair of attributes,
wid_start and wid_end, to each input tuple; the processPunctua-

tion() function applies the same wids to punctuation, appends a
wid_start value and a wild star for wid_end, and output the punc-
tuation. Note that all the complexity of tagging tuples with win-
dow-ids is encapsulated in the wids function. As discussed in our

previous paper [16], the bucket operator does not need to main-

tain any state for the most commonly used, time-based sliding-
window, but does need to maintain certain state for other types of
window such as partitioned window.

An aggregate operator, such as Max, will use the window-id(s)
produced by the bucket operator as an additional grouping attrib-
ute—a tuple belongs to multiple groups if it is tagged with multi-
ple window-ids. An algorithm for such an operator is shown in
Figure A-3. In this algorithm, the hash-table contains partial ag-
gregates. When punctuation arrives, the hash-table must be
scanned in order to output the appropriate aggregate values. An
alternative that avoids a hash-table scan is to output aggregates on

State Maintained:

ht: hashtable maintaining partial window aggregates ;

Aggregate(x)

if x is a tuple
 ProcessTuple(x);
else if x is a punctuation
 ProcessPunctuation(x);

ProcessTuple(t)

for each wid in [t.wid-start, t.wid-end]
 compute hash value, hval, for t with its grouping attrib-
utes and wid;
 update ht[hval] using t;

ProcessPunctuation(p)

scan ht and output any group with wid value equaling
p.wid-start;
output a punctuation with value p.wid-start;

State Maintained:

b0, b1: bounds on the low-water mark of left and right in-
put, respectively; initialized to –infinity;

o: low-water mark of the output stream; initialized to –
infinity;

Union(x)

let Si be the input stream to which x belongs;

if x is a tuple
 ProcessTuple(x, Si);
else if x is a punctuation
 ProcessPunctuation(x, Si);

ProcessTuple(t, Si)

output t;

ProcessPunctuation(p, Si)

bi = p.ts;

if o < min(bi, b1-i)
 output a punctuation with value min(bi, b1-i);
 o = min(bi, b1-i);

State Maintained:

range: window size of the aggregation;
slide: window slide of the aggregation;
wa: windowing attribute used;

Bucket(x)

if x is a tuple
 ProcessTuple(x);
else if x is a punctuation
 ProcessPunctuation(x);

ProcessTuple(t)

(wid-start, wid-end) = wids(t);
append wid-start and wid-end to t as two data attributes;
output t;

ProcessPunctuation(p)

(wid-start, wid-end) = wids(p);
append wid-start and * to p;
output p;

wids(t)

compute wid-start and wid-end based on range, slide, t.wa
return (wid-start, wid-end);

 Figure A-1. OOP implementation of Union.

287

hash-table collisions, similarly to the slow flush mechanism dis-
cussed in Section 6. Although such aggregate implementations are
more complex than their IOP counterparts, these implementations
naturally support out-of-order tuples and do not require earlier
operators to enforce order.

288

