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ABSTRACT
Data exchange is the process of converting an instance of one schema
into an instance of a different schema according to a given speci-
fication. Recent data exchange systems have largely dealt with the
case where the schemas are given a priori and transformations can
only migrate data from the first schema to an instance of the sec-
ond schema. In particular, the ability to perform data-metadata
translations, transformation in which data is converted into meta-
data or metadata is converted into data, is largely ignored. This
paper provides a systematic study of the data exchange problem
with data-metadata translation capabilities. We describe the prob-
lem, our solution, implementation and experiments. Our solution is
a principled and systematic extension of the existing data exchange
framework; all the way from the constructs required in the visual
interface to specify data-metadata correspondences, which natu-
rally extend the traditional value correspondences, to constructs re-
quired for the mapping language to specify data-metadata transla-
tions, and algorithms required for generating mappings and queries
that perform the exchange.

1. INTRODUCTION
Data exchange is the process of converting an instance of one

schema, called the source schema, into an instance of a different
schema, called the target schema, according to a given specifica-
tion. This is an old problem that has renewed interests in recent
years. Many data exchange related research problems were inves-
tigated in the context where the relation between source and target
instances is described in a high-level declarative formalism called
schema mappings (or mappings) [10, 16]. A language for map-
pings of relational schemas that is widely used in data exchange, as
well as data integration and peer data management systems, is that
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of source-to-target tuple generating dependencies (s-t tgds) [6] or
(Global-and-Local-As-View) GLAV mappings [7, 12]. They have
also been extended to specify the relation of pairs of instances of
nested schemas in [8, 18].

Data exchange systems [9, 13, 14, 21, 22] have been developed
to (semi-) automatically generate the mappings and the transfor-
mation code in the desired language by mapping schema elements
in a visual interface. These frameworks alleviate the need to fully
understand the underlying transformation language (e.g. XQuery)
and language-specific visual editor (e.g. XQuery editor). Further-
more, some of these systems allow the same visual specification of
mapping schema elements to be used to generate a skeleton of the
transformation code in diverse languages (e.g., Java, XSLT).

Past research on data exchange, as well as commercial data ex-
change systems , have largely dealt with the case where the schemas
are given a priori and transformations can only migrate data from
the first instance to an instance of the second schema. In partic-
ular, data-metadata translations are not supported by these sys-
tems. Data-metadata translations are transformations that convert
data/metadata in the source instance or schema to data/metadata in
the target instance or schema. Such capabilities are needed in many
genuine data exchange scenarios that we have encountered, as well
as in data visualization tools, where data are reorganized in differ-
ent ways in order to expose patterns or trends that would be easier
for subsequent data analysis.

A simple example that is commonly used in the relational setting
to motivate and illustrate data-metadata translations is to “flip” the
StockTicker(Time, Company, Price) table so that company names
appear as column names of the resulting table [15]. This is akin to
the pivot operation [23] used in spreadsheets such as Excel. After
a pivot on the company name and a sort on the time column, it
becomes easier to see the variation of a company’s stock prices and
also compare against other companies’ performance throughout the
day (see the table on the right below).

Time Symbol Price
0900 MSFT 27.20
0900 IBM 120.00
0905 MSFT 27.30

Time MSFT IBM
0900 27.20 -
0900 - 120.00
0905 27.30 -

Observe that the second schema cannot be determined a priori
since it depends on the first instance and the defined transformation.
Such schemas are called dynamic output schemas in [11]. Con-
ceivably, one might also wish to unpivot the right table to obtain
the left one. Although operations for data-metadata translations
have been investigated extensively in the relational setting (see, for
instance, [24] for a comprehensive overview of related work), this
subject is relatively unexplored for data exchange systems in which
source or target instances are no longer “flat” relations and the re-
lationship between the schemas is specified with mappings.
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Extending the data exchange framework with data-metadata trans-
lation capabilities for hierarchical or XML instances is a highly
non-trivial task. To understand why, we first need to explain the
data exchange framework of [18], which essentially consists of
three components:
• A visual interface where value correspondences, i.e., the re-

lation between elements of the source and target schema can
be manually specified or (semi-)automatically derived with a
schema matcher. Value correspondences are depicted as lines
between schema element in the visual interface and it provides
an intuitive description of the underlying mappings.

• A mapping generation algorithm that interprets the schemas
and values correspondences into mappings.

• A query generation algorithm that generates a query in some
language (e.g., XQuery) from the mappings that are generated
in the previous step. The generated query implements the spec-
ification according to the mappings and is used to derive the
target instance from a given source instance. (Note that the
framework of [14] is similar and essentially consists of only the
second and third components.)

Adding data-metadata translation capabilities to the existing data
exchange framework requires a careful and systematic extension to
all three components described above. The extension must capture
traditional data exchange as a special case. It is worth pointing out
that the visual interface component described above is not peculiar
to [18] alone. Relationship-based mapping systems [20] consist of
a visual interface in which value correspondences are used to in-
tuitively describe the transformation between a source and target
schema and in addition to [18], commercial mapping systems such
as [13, 21, 22] all fall under this category. Hence, our proposed ex-
tensions to the visual interface could also be applied to these map-
ping systems as well. The difference between mapping systems
such as [13, 21, 22] and [18] is, essentially, the second component
of the data exchange framework described above; these commer-
cial systems do not generate mappings, they generate queries (or
executable code) directly.

Our solution is a principled extension to all the three compo-
nents, from constructs required in the visual interface to depict
data-metadata relationships, new constructs for mappings to de-
scribe data-metadata translations, to a redesign of mapping and
query generation algorithms. A novelty of our work is the ability
to handle data-to-metadata translations with nested dynamic out-
put schemas (ndos). This is a major extension of dynamic output
schemas where, intuitively, multiple parts of the output (nested)
schema may be fully-defined only at runtime and is dependent on
the source instance. Ndos schemas capture relational dynamic out-
put schemas as a special case where there is only one level of nest-
ing and only the number of output columns are dynamic. It also
captures relational output schemas as a special case where there is
only one level of nesting and none of the output columns are dy-
namic.

In what follows, we describe a series of data-metadata transla-
tion examples to exemplify our contributions, and introduce back-
ground and related work. We detail our mapping and query gener-
ation algorithms in Sections 4 and 5, respectively, and describe our
experimental results in Section 6.

2. DATA-METADATA TRANSLATIONS
In this section, we give examples of data/metadata to data/metadata

translations to exemplify our contributions. We start by describing
some background through an example of data-to-data translation.

Source: Rcd
Sales: SetOf Rcd
country
region
style
shipdate
units
price

Target: Rcd
CountrySales: SetOf Rcd

country
Sales: SetOf Rcd
style
shipdate
units
id

for $s in Source.Sales
exists $c in Target.CountrySales, $cs in $c.Sales
where $c.country = $s.country and $cs.style = $s.style and

$cs.shipdate = $s.shipdate and $cs.units = $s.units and
$c.Sales = SK[$s.country]

Sales
country  region  style  shipdate units  price
USA    East     Tee    12/07    11    1200 
USA    East     Elec. 12/07    12    3600
USA    West    Tee    01/08    10    1600
UK      West    Tee    02/08    12    2000

CountrySales
country   Sales
USA style  shipdate units  id

Tee    12/07     11   ID1Elec.  12/07     12   ID2Tee    01/08  10   ID3
country   Sales

UK style  shipdate units  id
Tee   02/08    12    ID4

“For every Sales tuple, map it to a CountrySales tuple where Sales are 
grouped by country in that tuple.”

(a)

(b)

(c)

Figure 1: Data-to-Data Exchange

2.1 Data-to-Data Translation (Data Exchange)
Data-to-data translation corresponds to the traditional data ex-

change where the goal is to materialize a target instance according
to the specified mappings when given a source instance. In data-to-
data translation, the source and target schemas are given a priori.

Figure 1 shows a typical data-to-data translation scenario. Here,
users have mapped the source-side schema entities into some tar-
get side entities, which are depicted as lines in the visual interface.
The lines are called value correspondences. The schemas are rep-
resented using the Nested Relational (NR) Model of [18], where
a relation is modeled as a set of records and relations may be arbi-
trarily nested. In the source schema, Sales is a set of records where
each record has six atomic elements: country, region, style, ship-
date, units, and price. The target is a slight reorganization of the
source. CountrySales is a set of records, where each record has two
labels, country and Sales. Country is associated to an atomic type
(atomic types are not shown in the figure), whereas Sales is a set of
records. The intention is to group Sales records as nested sets by
country, regardless of region.

Formally, a NR schema is a set of labels {R1,...,Rk}, called
roots, where each root is associated with a type τ , defined by the
following grammar: τ ::= String | Int | SetOf τ |Rcd[l1 : τ1, ..., ln :
τn] | Choice[l1 : τ1, ..., ln : τn]. The types String and Int are
atomic types (not shown in Figure 1)1. Rcd and Choice are com-
plex types. A value of type Rcd[l1 : τ1, ..., ln : τn] is a set of
label-value pairs [l1 : a1, ..., ln : an], where a1, ..., an are of types
τ1, ..., τn, respectively. A value of type Choice[l1 : τ1, ..., ln : τn]
is a single label-value pair [lk : ak], where ak is of type τk and
1 ≤ k ≤ n. The labels l1, ..., ln are pairwise distinct. The set type
SetOf τ (where τ is a complex type) is used to model repeatable
elements modulo order.

In [18], mappings are generated from the visual specification
with a mapping generation algorithm. For example, the visual spec-
ification of Figure 1(a) will be interpreted into the mapping expres-
sion that is written in a query-like notation shown on Figure 1(b).

1We use only String and Int as explicit examples of atomic types.
Our implementation supports more than String and Int.
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Source: Rcd
SalesByCountries: SetOf Rcd
month
USA
UK 
Italy

Target: Rcd
Sales: SetOf Rcd
month
country
units                         

for $s in Source.SalesByCountries, $c in {“USA”, “UK”, “Italy”}
exists $t in Target.Sales
where $t.month = $s.month and $t.country = $c and $t.units = $s.($c)

SalesByCountries
month   USA     UK   Italy
Jan     120   223   89
Feb      83   168   56

Sales
month  country  units
Jan      USA     120
Jan       UK      223
Jan      Italy      89
Feb      USA      83
Feb       UK     168
Feb      Italy     56

<<countries>>
label
value

“For every SalesByCountries tuple, map it to a Sales tuple where 
Sales are listed by month and country names.”

(a)

(b)

(c)

Figure 2: Metadata-to-Data Exchange

The mapping language is essentially a for . . . where . . . exists
. . . where . . . clause. Intuitively, the for clause binds variables to
tuples in the source, and the first where clause describes the source
constraints that are to be satisfied by the source tuples declared in
the for clause (e.g., filter or join conditions)2. The exists clause
describes the tuples that are expected in the target, and the second
where clause describes the target constraints that are to be satisfied
by the target tuples as well as the content of these target tuples.

The mapping in Figure 1 states that for every Sales record in
the source instance that binds to $s, a record is created in the
CountrySales relation together with a nested set Sales. For exam-
ple, when $s binds to the first tuple in Sales, a record in Coun-
trySales must exists whose country value is “USA” and Sales value
is a record (style=“Tee”, shipdate=“12/07”, units=“11”, id=ID1”).
Since the value of id label is not specified, a null “ID1” is created as
its value. Records in Target.Sales are grouped by country, which is
specified by the grouping expression “$c.Sales = SK[$s.country]”.
The term SK[$s.country] is essentially the identifier of the nested
set $c.Sales in the target. For the current record that is bound
to $s, the identifier of $c.Sales in the target is SK[USA]. When
$s binds to the second tuple in Source.Sales, an additional record
(style=“Elec.”, shipdate=“12/07”, units=“11”, id=“ID2”) with the
same Sales set identifier, SK[USA], must exist in the target. Given
a source instance shown on the bottom-left of Figure 1, a target
instance that satisfies the mapping is shown on the bottom-right.
Such mappings are called as basic mappings.

Although mappings describe what is expected of a target in-
stance, they are not used to materialize a target instance in the data
exchange framework of [18]. Instead, a query is generated from
the mappings, and the generated query is used to perform the data
exchange.

2.2 Metadata-to-Data Translation
An example of metadata-to-data translation is shown in Figure 2.

This example is similar to that of unpivoting the second relation
into the first in the StockTicker example described in Section 1.
Like data-to-data translations, both the source and target schemas
are given a priori in metadata-to-data translations. The goal of the
exchange in Figure 2 is to tabulate, for every month and country,

2The example in Figure 1(b) does not use the first where clause.

the number of units sold. Hence, the mapping has to specify that
the element names, “USA”, “UK” and “Italy”, in the source schema
are to be translated into data in the target instance.
Placeholders in the source schema Our visual interface allows the
specification of metadata-to-data transformations by first selecting
the set of element names (i.e., metadata) of interest in the source.
In Figure 2, “USA”, “UK” and “Italy” are selected and grouped to-
gether under the placeholder 〈〈countries〉〉, shown in the middle of
the visual specification in Figure 2. The placeholder 〈〈countries〉〉
exposes two attributes, label and value, which are shown under-
neath 〈〈countries〉〉. Intuitively, the contents of label correspond to
an element of the set {“USA”, “UK” and “Italy”}, while the con-
tents of value correspond to value of the corresponding label (e.g.,
the value of “USA”, “UK”, or “Italy” in a record of the set Sales-
ByCountries). To specify metadata-to-data transformation, a value
correspondence is used to associate a label in the source schema
to an element in the target schema. In this case, the label under
〈〈countries〉〉 in the source schema is associated with country in the
target schema. Intuitively, this specifies that the element names
“USA”, “UK” and “Italy” will become values of the country ele-
ment in the target instance. It is worth remarking that label under
〈〈countries〉〉 essentially turns metadata into data, thus allowing tra-
ditional value correspondences to be used to specify metadata-to-
data translations. Another value correspondence, which associates
value to units, will migrate the sales of the corresponding coun-
tries to units in the target. A placeholder is an elegant extension to
the visual interface. Without placeholders, different types of lines
will need to be introduced on the visual interface to denote differ-
ent types of intended translations. We believe placeholders provide
an intuitive descriptions of the intended translation with minimal
extensions to the visual interface without cluttering the visual in-
terface with different types of lines. As we shall see in Section 2.3,
a similar idea is used to represent data-to-metadata translations.

The precise mapping that describes this transformation is shown
on Figure 2(b). The mapping states that for every combination of a
tuple, denoted by $s, in SalesByCountries and an element $c in the
set {“USA”, “UK”, “Italy”}, generate a tuple in Sales in the target
with the values as specified in the where clause of the mapping.
Observe that the record projection operation $s.($c) depends of the
value that $c is currently bound to. For example, if $c is bound
to the value “USA”, then $s.($c) has the same effect as writing
$s.USA. Such a construct for projecting records “dynamically” is
actually not needed for metadata-to-data translations. Indeed, the
same transformation could be achieved by writing the following
mapping:

for $s in Source.SalesByCountries
exists $t1 in Target.Sales, $t2 in Target.Sales, $t3 in Target.Sales
where $t1.month = $s.month and $t2.month = $s.month and

$t3.month = $s.month and
$t1.country = “USA” and $t2.country = “UK” and
$t3.country = “Italy” and
$t1.units = $s.USA and $t2.units = $s.UK and
$t3.units = $s.Italy

The above mapping states that for every tuple $s in SalesBy-
Countries, there exists three tuples $t1, $t2 and $t3 in Sales, one
for each country “USA”, “UK” and “Italy”, with the appropriate
values for month, country and units.

Since our placeholders are used strictly to pivot metadata into
data values, we can only use them in the source schema during
metadata-to-data translations. Our current implementation allows
placeholders to be created for element names at the same level of
nesting and of the same type. For example, a placeholder could
be created for “USA”, “UK” and “Italy” because they belong to
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the same record and have the same atomic type, say Int. If “USA”
occurs in some other record or, if “USA” is a complex type while
“UK” and “Italy” are atomic types, then it is not possible to cre-
ate a placeholder for these elements. Although it is conceivable to
allow placeholders for the latter case by generating different map-
pings according to types of elements in the placeholder, we do not
elaborate on that option here.

Just as in the relational metadata-to-data translations where SQL
does not need to be extended to handle metadata-to-data transla-
tions [25], the existing mapping language does not need to be ex-
tended to handle metadata-to-data translations as well. As a mat-
ter of fact, in Section 4 we will discuss how mapping expressions
containing our placeholders are re-written into the notation used in
Figure 2. In contrast, the situation is rather different with data-to-
metadata translations, which we shall describe in the next section.

2.3 Data-to-Metadata Translation
To illustrate data exchange with data-to-metadata translation, we

first revisit the example that was described in Section 1. The map-
ping below illustrates the exchange where the source schema is a
set of records with three attributes (time, symbol and price) and
the target is a set of records with a time attribute and a dynamic
element, shown as a label and value pair. Schemas with dynamic
elements are called nested dynamic output schemas (ndos).

Source: Rcd
StockTicker: SetOf Rcd

time
symbol
price

Target: Rcd
Stockquotes: SetOf Rcd

time
label
value

Nested Dynamic Output Schema (ndos) A ndos schema is simi-
lar to an NR schema except that it can contain dynamic elements.
Like NR schemas, a ndos schema is a set of labels {R1,...,Rk},
called roots, where each root is associated with a type τ , defined
by the following grammar: τ ::= String | Int | SetOf τ | Rcd[l1 :
τ1, ..., lm : τm, $d : τ ] | Choice[l1 : τ1, ..., lm : τm, $d : τ ].
Observe that the grammar is very similar to that defined for a NR
schema except that Rcd and Choice types can each contain a dy-
namic element, denoted by $d. A dynamic element has type τ
which may contain dynamic elements within. Intuitively, a dy-
namic element may be instantiated to one or more element names at
runtime (i.e., during the exchange process). If $d is instantiated to
values p1, ..., pn at runtime, then all values of p1, ..., pn must have
the same type τ . Ndos schemas can only be defined in the target.
Note that they are different from source schemas with placeholders.
Dynamic elements are not placeholders since they do not represent
a set of element names that exists in the schema but rather, they are
intended to represent element names that are only determined at
runtime. Our implementation supports the specification of multiple
dynamic elements within a record or choice type although we do
not elaborate on this possibility here.

The visual specification of the figure above is interpreted into the
following mappings by our mapping generation algorithm:

m : for $s in Source.StockTicker
exists $t in Target.Stockquotes
where $t.time = $s.time and $t.($s.Symbol) = $s.Price

c : for $t1 in Target.Stockquotes, $t2 in Target.Stockquotes, l ∈ dom($t1)
exists $l′in dom($t2)
where l = l′

Mapping m asserts that for every record $s in StockTicker, there
must be a record $t in Stockquotes whose time value is the same as
the time value of $s and there is an attribute in $t named $s.Symbol

whose value is $s.Price. It is worth noting that the term $t.($s.Symbol)
projects on the record $t dynamically. The attribute on which to
project the record $t is $s.Symbol which can only be determined
during the exchange. This is similar to the dynamic projection of
records that was described in Section 2.1. However, unlike the
example in Section 2.1, the ability to dynamically project records
is crucial for data-to-metadata translations. Since the attribute on
which to project the record $t is determined by the source instance,
the mapping cannot be rewritten into one that does not use such
dynamic constructs. The assertions described by the mapping pro-
duce, conceptually, the following data:

Rcd[Time:0900, MSFT:27.20]
Rcd[Time:0900, IBM:120]
Rcd[Time:0905, MSFT:27.30]

Since Stockquotes is a set of records and all records in the same
set must be homogeneous, we obtain the result that is shown in
the Section 1, where each record has three fields, time, MSFT
and IBM. Indeed, the above homogeneity constraint is captured
by the mapping c. This mapping states that all records in Tar-
get.Stockquotes must have the same set of labels.

Our mapping and query generation algorithms can also account
for key constraints. For example, if time is the key of Stockquotes,
then there will be an additional mapping that essentially enforce
that every pair of tuples with the same time value must have the
same MSFT and IBM values. The key constraint is enforced as a
post-processing step on the instance obtained in Section 1. Hence,
there will only be two tuples in the output, corresponding to (0900,
27.20, 120.00) and (0905, 27.30, -) after the post-processing. Note
that inclusion dependencies, such as key/foreign key constraints,
are automatically enforced prior to the post-processing step.

If the desired output is to have three records of possibly hetero-
geneous types as shown above, then one solution is to specify the
dynamic element in Stockquotes as a Choice type. We shall de-
scribe in Sections 4 and 5 how types in an ndos schema are used in
the mapping and query generation process to generate the correct
mapping specification and transformation.

A novelty of our work is that ndos schemas can contain many dy-
namic elements, which may be arbitrarily nested. This is a major
extension to dynamic output schemas of [11] for the relational case.
We illustrate this with the example in Figure 3. The source schema
is identical to that of Figure 1 and the target is a ndos schema.
It contains two dynamic elements (denoted as label1, value1 and
label2, value2, respectively, in the figure), where one is nested
under the other. Target.ByShipdateCountry is a SetOf Choice
types. This means that every tuple in Target.ByShipdateCountry
is a choice between many different label-value pairs. The set of
label-value pairs is determined at runtime, where the labels in the
set are all the shipdates (e.g., 12/07, 01/08, and 02/08 according
to the source instance shown on the bottom-left of the same fig-
ure) and the value associated with each label is a record with a
dynamic element. The set of labels in each record is determined by
the countries in the source instance (e.g., USA, UK) and the value
associated with each label is a set of records of a fixed type (style,
units, price).

The visual specification is interpreted into the mapping shown
on Figure 3(b). The mapping is a constraint that states that for
every Source.Sales tuple $s, there must exists a tuple $t in the
set Target.ByShipdateCountry where a case (or choice) of this tu-
ple has label $s.shipdate and the value is bound to the variable
$u. From the ndos schema, we know that $u is a record. The
term $u.($s.country) states that $u has an attribute $s.country and
from the ndos schema, we know that $u.($s.country) is a set of

263



Source: Rcd
Sales: SetOf Rcd

country
region
style
shipdate
units
price

Target: Rcd
ByShipdateCountry: SetOf Choice

label1value1: Rcd
label2value2: SetOf Rcd

style
units
price                            

“For every Sales tuple, map it to a tuple whose only label is shipdate and value 
is a record that tabulates the set of sales by country.”

for $s in Source.Sales
exists $t in Target.ByShipdateCountry, $u in case $t of $s.shipdate, 

$v in $u.($s.country) 
where $v.style = $s.style and $v.units = $s.units and $v.price = $s.price and

$u.($s.country) = SK[$s.shipdate,$s.country]

(a)

(b)

(c)

<<dates>>

<<countries>>

Sales
country  region  style  shipdate units  price

USA    East     Tee    12/07    11    1200 
USA    East     Elec. 12/07    12    3600
USA    West    Tee    01/08    10    1600
UK      West    Tee    02/08    12    2000

ByShipDateCountry
12/07
USA  

style   units  price
Tee    11    1200   
Elec.   12    3600

01/08
USA

style   units  price
Tee    10    1600

02/08
UK

style   units  price
Tee     12   2000

Target: Rcd
ByShipDateCountry: SetOf Choice

(12/07: Rcd
USA: SetOf Rcd

style, units, price) |
(01/08: Rcd

USA: SetOf Rcd
style, units, price) |

(02/08: Rcd
UK: SetOf Rcd

style, units, price)

Figure 3: Data-to-Metadata Exchange

(style, units, price) records. The mapping also asserts that there ex-
ists a tuple $v in the set of records determined by $u.($s.country)
such that the style, units and price of $v correspond, respectively,
to the style, units and price of $s. The case . . . of construct for
mappings was introduced in [26] to select one choice label among
those available in a choice type. In our example, the term af-
ter of is $s.shipdate, whose value can only be determined at run-
time. In contrast, only label constants are allowed on the right-
hand-side of an of clause in [26]. Finally, the term $u.($s.country)
= SK[$s.shipdate,$s.country] states that every set of (style, units,
price) records is grouped by shipdate and country.

Given these semantics, the tuples in Source.Sales will, concep-
tually, generate the following tuples (we show the types explicitly):

12/07: Rcd[USA: SetOf{ Rcd[style:Tee, units:11, price:1200] } ]
12/07: Rcd[USA: SetOf{ Rcd[style:Elec., units:12, price:3600] } ]
01/08: Rcd[USA: SetOf{ Rcd[style:Tee, units:10, price:1600] } ]
02/08: Rcd[ UK: SetOf{ Rcd[style:Tee, units:12, price:2000] } ]
Since the sets of (style, units, price) records are grouped by ship-

date and country, the set of records underneath 12/07 and USA are
identical and contains both records (Tee, 11, 1200) and (Elec., 12,
3600). The resulting instance and schema is shown in Figure 3(c).

As illustrated by the StockTicker example, the arity of record
types with dynamic elements is determined by the source instance.
As shown with this example, the number of choices in a choice type
with a dynamic element is also determined by the source instance.
To see a combination of record and choice “dynamism” at work,
suppose there is an additional Sale tuple (UK, West, Elec., 12/07,
15, 3390) in the source instance. Then, the following conceptual
tuple is asserted by the mapping:

Target: Rcd
ByShipDateCountry: SetOf Choice

(12/07: Rcd
USA: SetOf Rcd

style, units, price
UK: SetOf Rcd

style, units, price) |
(01/08: Rcd

USA: SetOf Rcd
style, units, price) |

(02/08: Rcd
UK: SetOf Rcd

style, units, price)

ByShipDateCountry
12/07

USA                             UK
style   units  price style   units  price
Tee    11    1200          
Elec.   12    3600

USA                              UK
style   units  price style   units  price

Elec.   15    3390  
01/08

USA
style   units  price
Tee    10    1600

02/08
UK

style   units  price
Tee     12   2000

Figure 4: Target Instance and Schema for Data-to-Metadata
example

12/07: Rcd[UK: SetOf{ Rcd[style:Elec., units:15, price:3390] } ]
The value of “12/07” has type Rcd[UK: SetOf Rcd[style, units,

price]], which is different from the type of the existing label “12/07”
(whose attribute in the record is “USA” instead of “UK”). Since
there can only be one choice with label “12/07”, we obtain the re-
sulting schema and target instance of Figure 4 (right and left, re-
spectively). The resulting target schema has three choices under
ByShipDateCountry (“12/07”, “01/08”, “02/08”), each with a dif-
ferent record type.

2.3.1 Remarks
Several remarks are in order now on the semantics of data-to-

metadata translations.
Data-to-Metadata Translation. As discussed earlier, the target
schema is a ndos schema which may not be fully-defined at compile-
time. This is a major departure from the data-to-data and metadata-
to-data exchange framework where the source and target schemas
are given a priori as part of the input to the exchange problem. In-
stead, in data-to-metadata translation, a source schema and a ndos
(target) schema are part of the input to the exchange system. Just
like the source schema, the ndos schema is provided by the user.
Apart from materializing a target instance, the data-to-metadata ex-
change process also produces a target schema in the NR model that
the target instance conforms to. Formally, given a source schema
S, a ndos target schema Γ, a mapping Σ between S and Γ, and
a source instance I of S, the data-to-metadata exchange problem
is to materialize a pair (J , T) so that T conforms to Γ, J is an
instance of T, and (I, J) satisfies Σ. Intuitively, a NR schema T
conforms to a ndos schema Γ if T is a possible “expansion” of Γ
as a result of replacing the dynamic elements during the exchange.
We give the full definition in Appendix A.
Solutions. Observe that the target schema T and the target in-
stance J that consists of the three tuples as shown in the Section 1,
together with the tuple (1111, 35.99, 10.88), also form a solution to
the StockTicker-Stockquotes data-to-metadata exchange problem.
As a matter of fact, the pair (J ′, T′), where T′ is identical to T
except that there is an additional attribute, say CISCO, and J ′ is
identical to J except that it has an additional column for all four
tuples in J with the value “100”, is also a solution. In the presence
of choice types with a dynamic element, solutions can also vary in
the number of choices. For example, one could add an additional
choice with label “03/08” and appropriate type to the target output
schema of Figure 3(c). This new target schema together with the
target instance shown in Figure 3 is also a solution to the exchange
problem shown in the same figure. The semantics behind our con-
struction of a solution to the data-to-metadata exchange problem is
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based on an analysis of the assertions given by the mappings and in-
put schemas, much like the chase procedure used in [8]. We believe
that query generates the most natural solution amongst all possible
solutions. A formal justification of this semantics is an interesting
problem on its own and part of our future work.

We detail an interesting metadata-to-metadata translation exam-
ple in Appendix B.

3. MAD MAPPINGS
In Section 2, we have informally described the constructs that

are needed for mappings that specify data-metadata translations.
We call such mappings, MAD mappings (short for MetadatA-Data
mappings). The precise syntax of MAD mappings (MM) is de-
scribed next.

for $x1 in g1, . . . , $xn in gn

where ρ($x1, . . . , $xn)
exists $y1 in h1, . . . , $ym in hm

where υ($x1, . . . , $xn, $y1, . . . $ym) and MM1and . . . and MMk

Each gi in the for clause is an expression that either has a SetOf
τ type or a τ type under the label l from the Choice [..., l : τ , ...].
In the former case, the variable $xi will bind to an element in the
set while in the latter case, $xi will bind to the value of the choice
under label l. More precisely, gi is an expression of the form:
E ::= S | $x |E.L | case E of L | 〈〈d〉〉 | {V1, . . . , Vz} | dom($x)

L ::= l | (E)

where $x is a variable, S is a schema root (e.g., Source in the source
schema of Figure 1(a)) and E.L represents a projection of record
E on label L. The case E of L expression represents the selec-
tion of label L under the choice type E. The label L is either a
simple label or an expression. The latter case allows one to model
dynamic projections or dynamic elements under Choice types (e.g.,
see Figure 3(b)). The expression 〈〈d〉〉 is a placeholder as described
in Section 2.2. As we shall discuss in the next section, placehold-
ers can always be rewritten as a set of literal values {V1, . . . , Vz}.
However, we have introduced placeholders in MAD mappings in
order to directly model the visual specification of grouping multi-
ple schema elements (e.g., see 〈〈countries〉〉 in Figure 2(a)) in our
mapping generation algorithm. The expression dom($x) denotes
the set of labels in the domain of a record $x. Naturally, a variable
$x that is used in an expression gi needs to be declared prior to
its use, i.e., among x1, ..., xi−1 or in the for clause of some outer
mapping, in order for the mapping to be well-formed.

The expressions ρ($x1, . . ., $xn) and υ($x1, . . ., $xn, $y1, . . .
$ym) are boolean expressions over the variables $x1, ..., $xn and
$x1, ..., $xn, $y1, ..., $ym respectively. As illustrated in Section
2, the expression in υ can also includes grouping conditions. The
hi expressions in the exists clause are similar to gis except that a
〈〈d〉〉 expression in hi represents a dynamic element, and not place-
holders. Finally, MAD mappings can be nested. Just like nested
mappings in [8], nested MAD mappings are not arbitrarily nested.
The for clause of a MAD mapping can only extend expressions
bound to variables defined in the for clause of its parent mapping.
Similarly, the exists clause can only extend expressions bound to
variables defined in the exists clause of an ancestor mapping. Note
that MAD mappings captures nested mappings of [8] as a special
case.

4. MAD MAPPING GENERATION
In this section, we describe how MAD mappings are generated

when given a source schema S, a target ndos schema Γ, and a set of

value correspondences that connect elements of the two schemas.
This problem is first explored in Clio [18] for the case when Γ is an
NR schema T and no placeholders are allowed in the source or tar-
get schema. Here, we extend the mapping generation algorithm of
Clio to generate MAD mappings that support data-metadata trans-
lations.

The method by which data-metadata translations are specified
in our visual interface is similar to Clio’s. A source and a target
schema are loaded into the visual interface and are rendered as two
trees of elements and attributes, and are shown side-by-side on the
screen. Users enter value correspondences by drawing lines be-
tween schema elements. After this, the value correspondences can
be refined with transformation functions that define how source val-
ues are to be converted to target values. As value correspondences
are entered, the mapping generation algorithm of Clio incremen-
tally creates the mapping expressions that capture the transforma-
tion semantics implied by the visual specification.

There are, however, significant differences between Clio’s visual
interface and our visual interface. First, users can create placehold-
ers in the source and target schema. (e.g., see Figure 2(a)). Second,
users can load ndos schemas on the target side of our visual inter-
face and further edit it. Third, users can add value correspondences
that connect placeholders or schema elements in the source schema
with placeholders, dynamic elements, or schema elements in the
target schema.

4.1 Generation of Basic Mappings
A general mapping generation algorithm that produces basic map-

pings was first described in [18] and subsequently refined in [8] to
produce mappings that can be nested within another. In what fol-
lows, we describe briefly the basic mapping generation algorithm
of [18]. Step 1. Tableaux: The generation of basic mappings
starts by compiling the source and target schemas into a set of
source and target tableaux. Let X = 〈x1, . . . , xn〉 be a sequence
of variables over expressions g1, . . . , gn of set or choice type. A
tableaux is an expression of the form

T ::= {$x1 ∈ g1, . . . , $xn ∈ gn; E}
where E is a (possibly empty) conjunction of equalities over the val-
ues bounded to the variables in X . Informally, a a tableau capture a
relationship or “concept” represented in the schema. Obvious rela-
tionship such as all atomic attributes under a SetOf Rcd or SetOf
Choice type, form “basic” tableaux. Basic tableaux are enhanced
by chasing either the constraints (e.g., referential constraints) that
exist in the schema or the structural constraints in the schema (e.g.,
parent-child relationship).

For example, we can derive two basic tableaux from the target
schema of Figure 1(a): {$x1 ∈ CountrySales} and {$x1 ∈ Coun-
trySales.Sales}. Since CountrySales.Sales is nested under Coun-
trySales, we obtain two tableaux after chasing: {$x1 ∈ Country-
Sales} and {$x1 ∈ CountrySales, $x2 ∈ $x1.Sales}. As another
example, suppose we have a relational schema that contains two
tables, Department and Employee, and a referential constraint from
Employee into Department. In this case, there are two trivial tableaux,
{$x1 ∈ Department} and {$x1 ∈ Employee}. After chasing over
the constraint, the resulting tableaux are {$x1 ∈ Department} and
{$x1 ∈ Department, $x2 ∈ Employee; $x1.did=$x2.did}. Ob-
serve that the Employee tableau is not in the final list because there
cannot be Employee tuples without a related Department tuple, ac-
cording to the referential constraint.

The output of the tableaux generation step is thus a set of source
tableaux {s1, ..., sn} and a set of target tableaux {t1, ..., tm}.
Step 2. Skeletons: Next, a n × m matrix of skeletons is con-
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structed for the set of source tableaux {s1, ..., sn} and the set of
target tableaux {t1, ..., tm}. Conceptually, each entry (i, j) in the
matrix is a skeleton of a potential mapping. This means that every
entry provides some information towards the creation of a basic
mapping. Specifically, the skeleton at (i, j) represents the mapping
between source tuples of the form of the tableau si and target tuples
of the form of the tableau tj . Once the skeletons are created, the
mapping system is ready to accept value correspondences.

Observe that both the creation of tableaux and skeletons occurs
during the loading of schemas. As long as the schemas do not
change after being loaded, there is not need to recompute its tableaux
or update the skeleton matrix.
Step 3. Creating Basic Mappings: For each value correspon-
dence that is given by a user (or discovered using a schema match-
ing method [19]), the source side of the correspondence is matched
against one or more source tableaux while the target side is matched
to one or more target tableaux. For every pair of matched source
and target tableaux, we add the value correspondence to the skele-
ton and mark the skeleton as “active”.

The next step involves an analysis of possible relationships (sub-
sumed or implied by) among all “active” skeletons. Through this
relationship, we avoid the generation of redundant mappings. We
omit the details of how and when skeletons are considered sub-
sumed or implied by another, which are explained in [8, 18].

Any active skeleton that is not implied or subsumed by another,
is reported as a mapping. The construction of a mapping from an
active skeleton is relatively straightforward: essentially, the source
tableau expression becomes the for clause and the first where clauses
of the mapping. The target tableau becomes the exists and second
where clause. Finally, the value correspondences that are associ-
ated with the skeleton are added to the second where clause.

4.2 Generation of MAD mappings
We are now ready to explain how MAD mappings are generated

from our visual specification that consists of a source schema, a
target ndos schema, and value correspondences between the two.
Step 1. Tableaux: We start by compiling the given schemas into
source and target tableaux. This step is similar to Step 1 of the basic
mapping generation algorithm, except that our representation of a
tableau is more elaborate and takes into account placeholders and
dynamic elements:

T ′ ::= {$x1 ∈ g1, . . . , $xt ∈ gt; $xt+1 := gt+1, . . . ; E}
The “assignments” at the end of our tableau representation are only
generated when placeholders or dynamic elements appear in the
schema. In our subsequent discussions, we uniformly denote place-
holders and dynamic elements with 〈〈D〉〉.

For every 〈〈D〉〉, we find the set P(D) of all tableaux that include
the context element of 〈〈D〉〉. The context element of 〈〈D〉〉 is the
record or choice in the schema in which 〈〈D〉〉 occurs. For example,
SalesByCountry is the context element of 〈〈countries〉〉 in the source
schema of Figure 2(a). Next, we extend each tableaux p ∈ P(D)
by adding two path expressions corresponding to: (a) the metadata
label of 〈〈D〉〉, and (b) the value label of 〈〈D〉〉. Specifically, let $x be
the variable that ranges over the context elements of 〈〈D〉〉. We first
add to p an expression “$l ∈ 〈〈D〉〉” to represent an iteration over
all the metadata values in 〈〈D〉〉3. After this, we examine the type of
the values under the labels in 〈〈D〉〉. If the values are a set type, we
add to p an expression “$x′ ∈ $x.($l)”. The new variable $x′ will
range over the elements in the set represented by $x.($l). (If the

3Recall that 〈〈D〉〉 denotes a set of (label, value) pairs. The expres-
sion “$l ∈ 〈〈D〉〉” ranges $l over the labels of 〈〈D〉〉.

values are a choice type, we add “$x′ ∈ case $x of ($l)”.) Other-
wise, if the values under labels in 〈〈D〉〉 is a non-repeating type (e.g.,
record or atomic), we add an assignment: “$x′ := $x.($l)”. In
other words, x′ is assigned the value (record or atomic value) under
the current metadata label $l. As an example, the source schema
of Figure 2(a) will be compiled into a single source tableau {$x0∈
Source.SalesByCountries, $x1∈〈〈countries〉〉; $x2 := $x0.($x1) }
Step 2. Skeletons: The generation of skeletons proceeds in the
same manner as described in the previous section. A skeleton of a
potential mapping is created for every possible pair of source and
target tableau.
Step 3. Creating MAD Mappings: At this stage, the value corre-
spondences need to be matched against the tableaux in order to fac-
tor them into the appropriate skeletons. To explain how we match,
consider the first two value correspondences in Figure 1(a), which
are represented internally by a pair of sequence of labels.
Source.Sales.country→ Target.CountrySales.country
Source.Sales.style→ Target.CountrySales.Sales.style

In order to compare the above path expressions with expressions
in the tableaux, each variable binding in a tableau expression is
first expanded into an absolute path. For example, recall that a
target tableau for Figure 1(a) is {$y0 ∈ Target.CountrySales, y1 ∈
$y0.Sales}. The absolute path of y1 is Target.CountrySales.Sales.

For each value correspondence, the path on the left (resp. right)
(called correspondence path) is matched against absolute paths of
source (resp. target) tableaux. A correspondence path p1 is said
to match an absolute path p2 if p2 is a prefix of p1. Observe that
a match of the left and right correspondence paths of a value cor-
respondence into a source and target tableau corresponds to a se-
lection of a skeleton in the matrix. After a match has been found,
we then replace the longest possible suffix of the correspondence
path with a variable in the tableau. For example, the right corre-
spondence path of the second value correspondence above matches
against the absolute path of the tableau {$y0 ∈ Target.CountrySales,
y1 ∈ $y0.Sales}. The expression “$y1.style” is generated as a re-
sult. The left correspondence of the same value correspondence
is matched against the only source tableau { $x ∈ Source.Sales }
and the expression “$x.style” is generated. The result of matching
a value correspondence to a source and target tableau is an equal-
ity expression (e.g., “$x.style = $y1.style”) which is added to the
corresponding skeleton in the matrix.

Matching correspondences paths in the presence of dynamic el-
ements or placeholders to tableaux proceeds in a similar manner.
Our translation of value correspondences, that starts or ends at place-
holders or dynamic elements, into path expressions is slightly dif-
ferent in order to faciliate the subsequent matching process. When
a value correspondence starts or ends with the label part of a place-
holder, the element name corresponding to this label is the name
of the placeholder (i.e., 〈〈D〉〉). If a value correspondence starts or
ends with the value part of a placeholder, the element name corre-
sponding to this value is “&〈〈D〉〉”, where 〈〈D〉〉 is the name of the
placeholder and &〈〈D〉〉 represents the value part of 〈〈D〉〉.

We explain the complete MAD mapping generation process through
two examples next. More details about the mapping generation al-
gorithm are presented in Appendix C.

4.2.1 Examples
Consider the example in Figure 2. When the schemas are loaded,

the system creates one source tableau, {$x1 ∈ Source.SalesBy-
Country}, and one target tableau {$y1 ∈ Target.Sales}. This re-
sults in only one mapping skeleton.

Now the user creates the source placeholder 〈〈countries〉〉. In-
ternally, our system replaces the three selected source labels with a
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new element, named 〈〈countries〉〉 and whose type is SetOf Record[
label: String, value: String]. This change in the schema triggers a
recompilation of the source tableau into: {$x1 ∈ Source.SalesBy-
Country, $x2 ∈ 〈〈countries〉〉; $x3 := $x1.($x2)} A new skeleton
using this new source tableau is thus created.

The user then enters the three value correspondences of Figure 2.
Of particular interests to this discussion are the value correspon-
dences that map the placeholder 〈〈countries〉〉:

Source.SalesByCountries.〈〈countries〉〉 → Target.Sales.country
Source.SalesByCountries.&〈〈countries〉〉 → Target.Sales.units

These two value correspondences match the new source tableau
and the only target tableau. Hence, the expressions $x2 = $y1.country
and $x3 = $y1.units are compiled into the skeleton. Since $x3 is
an assignment in the source tableau, we rewrite the second corre-
spondence as $x1.($x2) = $y1.units and can redact the $x3 as-
signment from the mapping.

The following MAD mapping is constructed from that skeleton,
using its source and target tableaux and the matched value corre-
spondences:

(a) for $x1 in Source.SalesByCountry, $x2 ∈ 〈〈countries〉〉
exists $y1 in Target.Sales
where $y1.month = $x1.month and

$y1.country = $x2 and $y1.units = $x1.($x2)

As a final rewrite, we replace the 〈〈countries〉〉 placeholder in the for
clause with the set of labels wrapped by the placeholder, to capture
the actual label values in the mapping expression. The resulting
mapping is exactly the one illustrated in Figure 2(b).

Next, consider the more complex example of Figure 3. Here
there is only one source tableau and one dynamic target tableau.
After the value correspondences are entered, the system emits the
following MAD mapping:

(b) for $x1 in Source.Sales
exists $y1 in Target.ByShipdateCountry,

$y2 in 〈〈dates〉〉, $y3 in case $y1of $y2,
$y4 in 〈〈countries〉〉, $y5 in $y3.($y4)

where $y2 = $x1.shipdate and $y4 = $x1.country and
$y5.style = $x1.style and $y5.units = $x1.units and
$y5.price = $x1.price

We rewrite this expression by first replacing all usages of $y2 and
$y4 in the exists clause with their assignment from the where
clause. Since these assignments are redundant after the replace-
ments, they are redacted from the where clause. Further, since all
uses of $y2 and $y4 were removed from the where clause, their
declarations in the exists clause are also redundant and, therefore,
removed. The resulting MAD mapping is reduced to the mapping
expression presented below:

(c) for $x1 in Source.Sales
exists $y1 in Target.ByShipdateCountry,

$y3 in case $y1of $x1.shipdate,
$y5 in $y3.($x1.country)

where $y5.style = $x1.style and $y5.units = $x1.units and
$y5.price = $x1.price

Observe that this mapping differs from the one in Figure 3(b)
in that the grouping condition “$u.($s.country)=SK[$s.shipdate,
$s.country]” is missing here. We assume that the user has explicitly
added the grouping function in Figure 3(b), after the value corre-
spondences are entered (i.e., after the mapping above is obtained).
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Figure 5: The architecture of the two-phase query generation.

5. QUERY GENERATION
Mappings have an executable semantics that can be expressed

in many different data manipulation languages. In this section, we
describe how queries are generated from MAD mappings (and the
associated source and target schemas) to translate a source instance
into a target instance according to the semantics of the MAD map-
pings. Previous works [8, 18] have described algorithms for gen-
erating queries from (data-to-data) mappings. Here, we generalize
those algorithms to MAD mappings, which include constructs for
data-metadata transformations. If the visual specification involves
a target ndos schema, the MAD mappings that are generated from
our mapping generation algorithm (described in Section 4) include
constructs for specifying data-to-metadata translations. In this case,
our algorithm is also able to generate a query that outputs a target
schema which conforms to the ndos schema, when executed against
a source instance.

In order to distinguish between the two types of queries gen-
erated by our algorithm, we call the first type of queries which
generates a target instance, instance queries, and the second type
of queries which generates a target schema, schema queries. Fig-
ure 5 shows where the different kind of queries are used in MAD.
Queries Q1, Q2, and Q4 represent our instance queries, and Q3

represent the schema queries. As will discuss shortly, Q2 and Q3

work form the data produced by the first query Q1.

5.1 Instance Query Generation
Our instance query generation algorithm produces a query script

that, conceptually, constructs the target instance with a two-phase
process. In the first phase, source data is “shredded” into views
that form a relational representation of the target schema (Q1 in
Figure 5). The second phase restructures the data in the relational
views to conform to the actual target schema (Q2). We now de-
scribe these two stages in details.

The instance query generation algorithm takes as input the com-
piled source and target schemas and the mapping skeletons that
were used to produce the MAD mappings. Recall that a mapping
skeleton contains a pair of a source and a target tableau, and a set
of compiled value correspondences.

Our first step is to find a suitable ”shredding” of the target schema.
All the information needed to construct these views is in the map-
ping expression and the target schema. In particular, the exists
clause of the mapping dictates the part of the target schema being
generated. We start by breaking each mapping into one or more
“single-headed” mappings; we create one single-headed mapping
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let ByShipdateCountry := 
for s in Sales
return [ datesID = SK1[s.shipdate, s.country, s.style, s.units, s.price] ], 
«dates» := 
for s in Sales
return [ setID = SK1[s.shipdate, s.country, s.style, s.units, s.price],

label = s.shipdate, 
value = SK2[s.shipdate, s.country, s.style, s.units, s.price],
countriesID = SK2[s.shipdate, s.country, s.style, s.units, s.price] ],

«countries» := 
for s in Sales
return [ setID = SK2[s.shipdate, s.country, s.style, s.units, s.price],

label = s.country, value = SK3[s.shipdate, s.country],
SetOfRecords1_ID = SK3[s.shipdate, s.country] ],

SetOfRecords1 := 
for s in Sales
return [ setID = SK3[s.shipdate, s.country], 

style = s.style, units = s.units, price = s.price ]

Figure 6: First-phase query (Q1)

for each variable in the exists clause of the mapping bounded to
a set type or a dynamic expression. Each single-headed mapping
defines how to populate a region of the target instance and is used
to define a target view. To maintain the parent-child relationship
between these views, we compute a parent “setID” for each tuple
in a view. This setID tells us under which tuple (or tuples) on the
parent view each tuple on a child view belongs to.

The setID are actually computed by “Skolemizing” each variable
in the exists clause of the mapping4. The Skolemization replaces
each variable in the exists clause with a Skolem function that de-
pends on all the source columns appear in the where clause.

For example, consider the mapping labeled (b) in Section 2 (the
mapping we compute internally for the example in Figure 3). The
exists clause of the mapping defines four set type or dynamic ex-
pressions. Thus, we construct the following views of the target
instance:

ByShipdateCountry ( DatesID )
〈〈 dates 〉〉 ( setID, label, value, CountriesID )

〈〈 countries 〉〉 ( setID, label, value, SetOfRecords 1ID )
SetOfRecord 1 ( setID, style, units, price )

Every view contains the atomic elements that are directly nested
under the set type it represents. A view that represents a set type
that is not top-level has a generated setID column that contains
the defined Skolem function. Observe that Skolem functions are
essentially set identifiers which can be used to reconstruct data in
the views according to the structure of the target schema by join-
ing on the appropriate ID fields. For example, the set identifier
for 〈〈countries〉〉 is SK[$s.shipdate, $s.country, $s.style, $s.units,
$s.price] and the set identifier for SetOfRecords 1 is SK[$s.shipdate,
$s.country]. The latter is obtained directly from the mapping since
it is defined by the user in Figure 3(b).

Figure 6 depicts the generated queries that define each view.
These queries are constructed using the source tableau and the value
correspondences from the skeleton that produced the mapping. No-
tice that in more complex mappings, multiple mappings can con-
tribute data to the same target element. The query generation algo-
rithm can detect such cases and create a union of queries that are
generated from all mappings contributing data to the same target
element.

The next step is to create a query that constructs the actual tar-
get instance using the views. The generation algorithm visits the
target schema. At each set element, it figures which view produces
data that belongs in this set. A query that iterates over the view

4We can also use only the key columns, if available.

Target = for b in ByShipdateCountry
return [

for s in «dates»
where s.setID = b.datesID

return [
s.label = for c in «countries»

where c.setID = s.countriesID
return [

c.label = for r in SetOfRecord_1
where r.setID = c.SetOfRecord_1
return [ style = r.style,

units = r.units
price = r.price ] ] ] ]

Figure 7: Second-phase query (Q2)

is created and the appropriate values are copied into each produced
target tuple. To reconstruct the structure of the target schema, views
are joined on the appropriate fields. For example, SetOfRecord 1
is joined with 〈〈countries〉〉 on setID and SetOfRecords ID fields in
order to nest all (style, units, price) records under the appropriate
〈〈countries〉〉 element. The query that produces the nested data is in
Figure 7. Notice how the label values of the dynamic elements (s
and c) become the set names in the target instance.

While there are simpler and more efficient query strategies that
work for a large class of examples, it is not possible to apply them
in general settings. This two-phase generation strategy allows us to
support user-defined grouping in target schemas with nested sets.
Also, it allows us to implement grouping over target languages that
do not natively support group-by operations (e.g., XQuery 1.0).

5.2 Schema Query Generation
We can also generate a schema query (Q3) when the target schema

is a ndos. Continuing with our example, we produce the following
query:
Schema = Target: Rcd

ByShipdateCountry: SetOf Choice
let dates :=  distinct-values («dates».label)
for d in dates
where valid(d)
return [

d: Rcd
let cIDs := distinct-values («dates»[.label=d].CountriesID)
for ci in cIDs
return [

let countries :=  distinct-values («countries»[.setID=ci].label)
for c in countries
where valid(c)
return [

c: SetOf Rcd
style, units, price ] ] ]

The schema query follows the structure of the ndos schema closely.
Explicit schema elements, those that are statically defined in the
ndos, appear in the query as-is (e.g., Target and ByShipdateCoun-
try). Dynamic elements, on the other hand, are replaced with a sub-
query that retrieves the label data from the appropriate relational
view computed by Q1. Notice that we use distinct-value() when
creating the dynamic target labels. This avoids the invalid gener-
ation of duplicate labels under the same Record or Choice type.
Also, we call a user-defined function valid() to make sure we only
use valid strings as labels in the resulting schema. Many schema
models do not support numbers, certain special characters, or may
have length restrictions on their metadata labels. used in the target
as metadata.

5.3 Post-processing
We have an additional module that generates post-processing

scripts that execute over the data produced by the instance query.
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Post-processing is needed when there is a need to enforce the ho-
mogeneity (or relational) constraint, or a key constraint.

An example where both the homogeneity and key constraints are
used is the StockTicker-Stockquotes example (described in Sec-
tion 2.3 with the homogeneity constraint labeled c). The trans-
formation that implements the homogeneity constraint is a rela-
tively straightforward rewriting where an important function is in-
troduced to implement the dom operator.

In our implementation, it is possible to generate a post-processing
script that enforces both homogeneity and key constraints simulta-
neously. The script that does this for the StockTicker-Stockquotes
example is shown below:

Target’ = let times := Target.Stockquotes.time,
attributes := dom (Target.Stockquotes)

for t in times
return [

Stockquotes= let elements := Target.Stockquotes[time=t]
for a in attributes
return [

if is-not-in (a, elements)
then a = null         
else a = elements.a ] ]

The query above first defines two sets. The first set times is the
set of all values under the key attribute time. The second set at-
tributes is the set of all the attributes names in the target instance
Stockquotes. For each key value in times, all tuples in the target
instance with this key value are collected under a third set called
elements. At this point, the query iterates over all attribute names
in attributes. For each attribute a in attributes, it checks whether
there is a tuple t in elements with attribute a. If yes, the output tuple
will contain attribute a with value as determined by t.a. Otherwise,
the value is null. It is possible that there is more than one tuple in
elements with different a values. In this case, a conflict occurs and
no target instance can be constructed.

5.4 Implementation Remarks
In our current prototype implementation, we produce instance

and schema queries in XQuery. It is worth pointing out that XQuery,
as well as other XML query languages such as XSLT, support query-
ing of XML data and metadata, and the construction of XML data
and metadata.

In contrast, relational query languages such as SQL do not al-
low us to uniformly query data and metadata. Even though many
RDBMS store catalog information as relations and allow users to
access it using SQL, the catalog schema varies from vendor-to-
vendor. Furthermore, to update or create catalog information, we
would need to use DDL scripts (not SQL). Languages that allow
one to uniformly manipulate relational data-metadata do exists (e.g.,
SchemaSQL [11] and FISQL [25]). It is possible, for e.g., to imple-
ment our relational data-metadata translations as FISQL queries.

6. EXPERIMENTS
We conducted a number of experiments to understand the per-

formance of the queries generated from MAD mappings and com-
pared them with those produced by existing schema mappings tools.
Our prototype is implemented entirely in Java and all the experi-
ments were performed on a PC-compatible machine, with a single
1.4GHz P4 CPU and 760MB RAM, running Windows XP (SP2)
and JRE 1.5.0. The prototype generates XQuery scripts from the
mappings and we used the Saxon-B 9.05 engine to run them. Each
experiment was repeated three times, and the average of the three

5http://saxon.sourceforge.net/
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Figure 8: Impact of MAD mappings for Metadata-to-Data ex-
change.

trials is reported. Datasets were generated using ToXgene6.

6.1 Metadata-to-Data
We use the simple mapping in Figure 2 to test the performance

of the generated instance queries. This simple mapping, with one
placeholder, allows to clearly study the effect of varying the num-
ber of labels assigned to the placeholder. We compare the perfor-
mance of three XQuery scripts. The first one was generated using
a traditional schema mappings and the query generation algorithm
in [18]. For each label value in the source, a separate query over the
source data is generated by [18] and the resulting target instance is
the union of the result of all those queries. The second query script
is our two-phase instance query. The third query script is an opti-
mized version of our instance query. If we only use source place-
holders, we know at compile-time the values of the source labels
that will appear as data in the target. When this happens, we can
remove the iteration over the labels in the source and directly write
as many return clauses as needed to handle each value.

We ran the queries and increased the input file sizes, from 69
KB to 110 MB, and a number of distinct labels from 3 to 600.
The generated Input data varied from 600 to 10,000 distinct tuples.
Figure 8 shows the query execution time for the three queries when
the input had 10,000 tuples (the results using smaller input sized
showed the same behavior).

The chart shows that classical mapping queries are outperformed
by MAD mapping queries by an order of magnitude, while the op-
timized queries are faster by two orders of magnitude. Again, the
example in Figure 2 presents minimal manipulation of data, but ef-
fectively shows that one dynamic element in the mapping is enough
to generate better queries than existing solutions for mapping and
query generation. The graph also shows the effect of increasing the
number of distinct labels encoded in the placeholder. Even with
only 3 distinct labels in the placeholder, the optimized query is
faster than the union of traditional mapping queries: translating
10,000 tuples it took 1 second vs 2.5 seconds. Notice that when the
number of distinct labels mapped from the source are more than
a dozen, a scenario not unusual when using data exported from
spreadsheets, the traditional mapping queries take minutes to hours
to complete. Our optimized queries can take less than two minutes
to complete the same task.

6.2 Data-to-Metadata
To understand the performance of instance queries for data-to-

6http://www.cs.toronto.edu/tox/toxgene
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Figure 9: Data exchange and post processing performance.

metadata mappings, we used the simple StockTicker - Stockquotes
example from Section 2.3. In this example, the target schema used
a single ndos construct. To compare our instance queries with those
produced by a data-data mapping tools, we manually constructed
a concrete version of the target schema (with increasing numbers
of distinct symbol labels). Given n such labels, we created n
simple mappings, one per target label, and produced n data-to-data
mappings. The result is the union of the result of these queries.
The manually created data-to-data mappings performed as well as
our data-to-metadata instance query. Notice, however, that using
MAD we were able to express the same result with only three value
correspondences.

We now discuss the performance of the queries we use to do
post-processing into homogeneous records and merging data using
special Skolem values. In this set of experiments, we used source
instances with increasing number of StockTicker elements (from
720 to 120,000 tuples), and a domain of 12 distinct values for the
symbol attribute. We generated from 60 to 10,000 different time
values, and each time value is repeated in the source in combina-
tion with each possible symbol. We left a fraction (10%) of time
values with less than 12 tuples to test the performance of the post-
processing queries that make the records homogeneous. The gen-
erated input files range in sizes from 58 KB to 100 MB.

Figures 9 and 10 show the results for two sets of queries, iden-
tified as (1) and (2). The set (1) includes the instance queries (Q1

and Q2 in Figure 5 and labeled “Data exchange” in Figure 9), and
two post-processing queries (Q4): one that makes the target record
homogeneous (labeled “Make hom”), and another that merges the
homogeneous tuples when they share the same key value (labeled
“Make hom.+merge”). Set (2) contains the same set of queries as
(1) except that the instance queries use a user-defined Skolem func-
tion that groups the dynamic content by the value of time. The
instance queries in (1) use a default Skolem function that depends
on the values of time and symbol.

Figure 9 shows the execution time of the queries in the two test
sets as the number of input tuples increase. We first note that
the instance query using the default Skolem function (“Data ex-
change”) takes more time to complete than the instance query that
uses the more refined, user entered, Skolem function (“Data ex-
change w/Merge”). This is expected, since, in the second phase,
the data exchange with merge compute only 1 join for each key
value, while the simple data exchange computes a join for each pair
of (time, symbol) values. It is also interesting to point out that the
scripts to make the record homogeneous are extremely fast for both
sets, while the merging of the tuple produced by the data exchange
is expensive since a self join over the output data is required.
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Figure 10: Performance of MAD mappings for Data-to-
Metadata exchange.

Figure 10 compares the total execution times of sets (1) and (2).
The time includes the query to generate the target instance and the
needed time to make the record homogeneous and merge the re-
sult. The results show that optimized queries are faster than default
queries by an order of magnitude. Notice that queries in set (1)
took more than two minutes to process 12,000 tuples, while the
optimized queries in set (2) needed less than 25 seconds.

7. RELATED WORK
To the best of our knowledge, there are no mapping or exchange

systems that support data-metadata translations between hierarchi-
cal schemas, except for HePToX [3]. Research prototypes, such as
[9, 14], and commercial mapping systems, such as [5, 13, 21, 22],
fully support only data-to-data translations. Some tools [13, 21] do
have partial support for metadata-to-data transformations, exposing
XQuery or XSLT functions to query node names. However, these
tools do not offer constructs equivalent to our placeholder and users
need to create a separate mapping for each metadata value that is
transformed into data (as illustrated in Section 2.2).

In contrast to the XML setting, data exchange between rela-
tional schemas that also support data-metadata translations have
been studied extensively. (See [24] for a comprehensive overview
of related work.) Perhaps the most notable work on data-metadata
translations in the relational setting are SchemaSQL [11] and, more
recently, FIRA / FISQL [24, 25]. [15] demonstrated the practi-
cal importance of extending traditional query languages with data-
metadata by illustrating some real data integration scenarios involv-
ing legacy systems and publishing.

Our MAD mapping language is similar to SchemaSQL. Schema-
SQL allows terms of the form “relation → x” in the FROM clause
of an SQL query. This means x ranges over the attributes of rela-
tion. This is similar to our concept of placeholders, where one can
group all attributes of relation under a placeholder, say 〈〈allAttrs〉〉,
and range a variable $x over elements in 〈〈allAttrs〉〉 by stating
“$x in 〈〈allAttrs〉〉” in the for clause of a MAD mapping. Alter-
natively, one can also write “$x in dom(relation)” to range $x
over all attributes of relation or, write “$x in {A1, ..., An}”, where
the attributes A1, ..., An of relation are stated explicitly. One can
also define dynamic output schemas through a view definition in
SchemaSQL. For example, the following SchemaSQL view defini-
tion translates StockTicker to Stockquotes (as described in
Section 1). The variable D is essentially a dynamic element that
binds to the value symbol in tuple s and this value is “lifted” to
become an attribute of the output schema.

create view DB::Stockquotes(time, D) as
select s.time, s.price
from Source::StockTicker s, s.symbol D
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This view definition is similar to the MAD mappings m and c
that was described in Section 2.3. (Recall that the mapping m de-
scribes the data-to-metadata translation and c is used to enforce the
homogeneity/relational model.) A major difference, however, is
that the SchemaSQL query above produces only two tuples in the
output where tuples are merged based on time. On the other hand,
mappings m and c will generate queries that produce three tuples
as shown in Section 1. It is only in the presence of an additional
key constraint on time that two tuples will be produced.

FISQL is a successor of SchemaSQL that allows more general
relational data-metadata translations. In particular, while Schema-
SQL allows only one column of data to be translated into meta-
data in one query, FISQL has no such restriction. In contrast to
SchemaSQL which is may be non-deterministic in the set of output
tuples it produces due to the implicit merge semantics, FISQL does
not merge output tuples implicitly. MAD mappings are similar to
FISQL in this aspect. However, unlike FISQL which has an equiv-
alent algebra called FIRA, we do not have an equivalent algebra
for MAD mappings. Recall, however, that the purpose of MAD is
to automatically generate mapping expressions that encode these
data-metadata transformation starting from simple lines. In Sec-
tions 5 we described how the generated mappings are translated
into a query. If our source and target schemas are relational, we
could translate those queries into SchemaSQL or FISQL.

HePToX [3, 4] is a P2P XML database system that uses a frame-
work that has components that are similar to the first two compo-
nents of data exchange, as described in Section 1. A peer joins
a network by drawing lines between the peer Document Type De-
scriptor (DTD) and some existing DTDs in the network. The visual
specification is then compiled into mappings that are expressed as
Datalog-like rules. Hence, these two components of HePToX are
similar to the visual interface and, respectively, mapping generation
components of the data exchange framework. Although HePToX’s
Datalog-like language, TreeLog, can describe data-to-metadata and
metadata-to-data translations, HePToX does not allow target dy-
namic elements. I.e., neither HePToX’s GUI nor its mapping gen-
eration algorithm support nested dynamic output schemas.

Lastly, the problem of generating a target schema using map-
pings from a source schema (i.e., metadata-to-metadata transla-
tions) is also known as schema translation [17]. The ModelGen
operator of Model Management [2] (see Section 3.2 of [1] for a
survey of ModelGen work) relies on a library of pre-defined trans-
formations (or rules) that convert the source schema into a target
schema. Alternatively, [17] uses mappings between meta-meta-
models to transform metadata. None of these approaches, however,
allow for data-to-metadata transformations.

8. CONCLUSION
We have presented the problem of data exchange with data-metadata

translation capabilities and presented our solution, implementation
and experiments. We have also introduced the novel concept of
nested dynamic output schemas, which are nested schemas that
may only be partially defined at compile time. Data exchange
with nested dynamic output schemas involves the materialization
of a target instance and additionally, the materialization of a tar-
get schema that conforms to the structure dictated by the nested
dynamic output schema. Our general framework captures rela-
tional data-metadata translations and data-to-data exchange as spe-
cial cases. Our solution is a complete package that covers the entire
mapping design process: we introduce the new (minimal) graphi-
cal constructs to the visual interface for specifying data-metadata
translations, extend the existing schema mapping language to han-
dle data-metadata specifications, and extend the algorithms to gen-

erate the mappings and the corresponding queries that perform the
exchange.
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APPENDIX
A. DEFINITION OF “CONFORMS TO”

A NR schema T with roots T ′1, ..., T
′
k conforms to a ndos schema

Γ with roots R1, ..., Rk if there is a permutation of T ′1, ..., T
′
k into

T1, ..., Tk such that Ti conforms to Ri, 1 ≤ i ≤ k.

1. If R is of String type, then T conforms to R if T is of type
String.

2. If R is of Int type, then T conforms to R if T is of type Int.

3. If R is of Rcd[l1 : τ1, ..., lm : τm, $d : τ ] type, then T
conforms to R if T is of type Rcd[l1 : τ ′1, ..., lm : τ ′m, lm+1 :
τ ′m+1, ..., ln : τ ′n] and τ ′i conforms to τi, 1 ≤ i ≤ m, and
τ ′m+j conforms to τ , 1 ≤ j ≤ n.

4. If R is of Choice[l1 : τ1, ..., lm : τm, $d : τ ] type, then
T conforms to R if T is of type Choice[l1 : τ ′1, ..., lm :
τ ′m, lm+1 : τ ′m+1, ..., ln : τ ′n] and τ ′i conforms to τi, 1 ≤ i ≤
m, and τ ′m+j conforms to τ , 1 ≤ j ≤ n.

B. METADATA-TO-METADATA TRANSLA-
TION EXAMPLE

Unlike data-to-data, metadata-to-data, or data-to-metadata trans-
lations, metadata-to-metadata translations are not as interesting as
they can always be implemented with the traditional data-to-data
translation framework. To see this, consider the example shown
below on the left which, essentially, generates a copy of the source
schema and instance. This is no different from specifying the ex-
change as shown on the bottom right.
Source: Rcd
Sales: SetOf Rcd
month

USA

UK 

Italy

Target: Rcd
Sales: SetOf Rcd
month

label
value<<countries>>

label
value

Source: Rcd
Sales: SetOf Rcd
month
USA

UK 

Italy

Target: Rcd
Sales: SetOf Rcd
month

USA

UK

Italy

However, when combined with other data-metadata constructs,
we can accomplish complicated mappings with just a few lines.
Consider the example in Figure 11. This kind of transformations
are not uncommon in many data exchange situations.

Source: Rcd
properties: SetOf Rcd

property: Rcd
@name
@lang
@date
…
@format
pval

<properties>
...
<property name=“price”

lang=“en-us”
date=“01-01-2008”
... >

<pval>48.15</pval>
...

</properties>

(a)

(b)

<<@attrs>>
label
value

Target: Rcd
properties: SetOf Rcd
label1
value1: Rcd@amount

label2
value2

<<names>>

<<@elems>>

...
<price amount=“48.15”

lang=“en-us”
date=“01-01-2008”
... />  

...

Figure 11: A more complex example

This mapping is expressed with a data-to-meta data combined
with a metadata-to-metadata mapping, whose only (but crucial)

role is to copy the attributes as elements on the target. MAD pro-
duces the following mapping for this specification:

for $x1 in Source.properties, $x2 in 〈〈attrs〉〉
let $x3 := $x1.property.($x2)
exists $y1 in Target.properties, $y2 in 〈〈names〉〉, $y3 in 〈〈elems〉〉
let $y4 := $y1.($y2), $y5 := $y1.($y3)
where$y2 = $x1.property.@name and

$y4.@amount = $x1.property.pval and
$y3 = $x2 and
$y5 = $x3

Replacing x2 with a set of literal values, and rewriting to remove
$x3, and $y2, . . . , $y5, we obtain a simplified mapping expression:

for $x1 in Source.properties, $x2 in {‘@lang’,‘@data’,...,‘@format’}
exists $y1 in Target.properties
where$y1.($x1.property.@name).@amount = $x1.property.pval and

$y1.($x1.property.@name).($x2) = $x1.property.($x2)

C. MAD MAPPING GENERATION
This section uses pseudo-code to summarize the MAD mapping

generation algorithm discussed in Section 4.
Algorithm 1 shows how we prepare the tableaux and skeletons

when dynamic placeholders are present in the source and target
schemas. The main difference between this algorithm and the map-
ping generation algorithm of Clio [18] are steps 3–6 and 15–22.

Algorithm 2 shows how we process value correspondences and
create MAD mappings using the tableaux and skeletons prepared
by Algorithm 1. This procedure is similar to the one used by Clio.
The main differences are that the MAD mapping generation algo-
rithm 1) needs to take into account the let clauses in the tableaux,
and 2) needs to take into account the value correspondences map-
ping labels and values to and from dynamic placeholders. This is
done in steps 20–22.

The optional step 23 in Algorithm 2 uses the rewrite method
described in Algorithm 3 to obtain the simplified MAD mapping
expressions we presented in this paper. The simplification removes
all let clauses by in-lining the assignments in the where clauses.
Any assignment in the where clause to the label part of a tar-
get dynamic placeholder can be moved to a let clause and, thus,
in-lined too. Finally, the set of labels represented by source-side
placeholder replaces the placeholder name in the for clause.
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Algorithm 1 Prepare Mapping Skeletons
Require: a source schema S and a target ndos T .
Ensure: a set of mapping skeletons.

{Compute a set of source tableaux τS .}
1: Visit the schema tree S starting from the root
2: for each set type, choice type, or dynamic placeholder do
3: if visiting a dynamic placeholder 〈〈D〉〉 then
4: Let xi−1 be the variable used in the context tableau ex-

pression.
5: Create a {xi ∈ 〈〈D〉〉} tableau expression.
6: Add xi+1 := xi−1.(xi) to the let clause of the tableau.
7: else
8: if visiting a set or choice type expression gi then
9: Create a {xi ∈ gi} or a {xi ∈ choice giofL} tableau

expression as in Clio [18].
10: end if
11: end if
12: end for

{Compute a set of target tableaux τT .}
13: Visit the schema tree T starting from the root
14: for each set type, choice type, or dynamic placeholder do
15: if visiting a dynamic placeholder 〈〈D〉〉 then
16: Let yi−1 be the variable used in the context tableau ex-

pression.
17: Create a {yi ∈ 〈〈D〉〉} tableau expression.
18: if the type of 〈〈D〉〉.value is a set type then
19: Add xi+1 ∈ xi−1.(xi) to the tableau expression.
20: else
21: Add xi+1 := xi−1.(xi) to the let clause of the tableau.
22: end if
23: else
24: if visiting a set or choice type expression gi then
25: Create a {xi ∈ gi} or a {xi ∈ choice giofL} tableau

expression as in Clio [18].
26: end if
27: end if
28: end for
29: Enhance the source and target tableau by chasing over the

parent-child relationships and foreign key constraints (details
of this step are in [18]).
{Prepare the skeletons.}

30: Create a set of skeletons K = {(ti, tj) | ti ∈ τS , tj ∈ τT }.
31: return τS , τT , K

Algorithm 2 MAD mapping generation
Require: a set of skeletons K and a set of correspondences V
Ensure: a set of MAD mappings M
1: M = ∅;
{For each value correspondence in V }

2: for v ∈ V do
3: {Find all matching skeletons.}
4: for k = (ti, tj) ∈ K do
5: if source(v) matches ti and target(v) matches tj then
6: Add v to the set of correspondences matched to k.
7: Mark k as “active”.
8: end if
9: end for

10: end for
{Remove implied and subsumed mappings}

11: for k = (ti, tj) ∈ K do
12: {The definition of “subsumed” and “implied” is in [8].}
13: if k is “active” and is subsumed or implied by another active

skeleton then
14: Mark k as “inactive”.
15: end if
16: end for

{Emit the mappings}
17: for k = (ti, tj) ∈ K do
18: if k is “active” then
19: m ← a new mapping for skeleton (ti, tj).
20: Add the expressions in ti to the for, let, and where clauses

of m.
21: Add the expressions in tj to the exists, let, and where

clauses of m.
22: Use the value correspondences matched to k to create the

s-t conditions in the last where clause of m.
{An optional simplification of the mappings}

23: m ← rewrite(m)
24: M ← M ∪m
25: end if
26: end for

Algorithm 3 rewrite
Require: a mapping m.
Ensure: a simplified version of m.
1: {Remove the let clauses.}
2: for each let clause of the form x := E in m do
3: Replace occurrences of x with E in the where clause.
4: Remove x := E from the let clause.
5: end for
{Replace the target-side dynamic placeholders.}

6: for each “x in 〈〈D〉〉” in the exists clause of m do
7: Find an expression x = E in the where clause.
8: Remove that expression from the where clause.
9: Remove “x in 〈〈D〉〉” from the exists clause.

10: Replace x with E in the where clause.
11: end for

{Replace the source-side placeholders.}
12: for each “x in 〈〈D〉〉” in the for clause of m do
13: Replace 〈〈D〉〉 with a set of literal values {d1, . . . , dm}.
14: end for
15: return m.
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