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ABSTRACT
We study selectivity estimation techniques for set similarity
queries. A wide variety of similarity measures for sets have
been proposed in the past. In this work we concentrate on
the class of weighted similarity measures (e.g., TF/IDF and
BM25 cosine similarity and variants) and design selectivity
estimators based on a priori constructed samples. First, we
study the pitfalls associated with straightforward applica-
tions of random sampling, and argue that care needs to be
taken in how the samples are constructed; uniform random
sampling yields very low accuracy, while query sensitive real-
time sampling is more expensive than exact solutions (both
in CPU and I/O cost). We show how to build robust sam-
ples a priori, based on existing synopses for distinct value
estimation. We prove the accuracy of our technique the-
oretically, and verify its performance experimentally. Our
algorithm is orders of magnitude faster than exact solutions
and has very small space overhead.

1. INTRODUCTION
Data collections often have inconsistencies that arise due

to a variety of reasons, such as typographic mistakes, for-
matting conventions, data transformation errors and more.
Consistent or clean data are of high monetary significance
for business practices; it is desirable to be able to identify
and resolve such inconsistencies efficiently. For that purpose,
various string similarity operators have been proposed in the
past [2, 4, 5, 13, 30]. The main idea behind such operators
is to view operands as sets of tokens and evaluate the sim-
ilarity of the operand sets. If the similarity is high enough
the operand pair is flagged as being of interest (e.g., poten-
tial duplicate). Furthermore, set similarity operators can
also be used to evaluate similarity of set-valued attributes
in general (e.g., in an Object Relational DBMS). The bulk of
algorithm development in this area has concentrated on the
efficient execution of join and selection operations. Hence, it
is of interest to be able to efficiently and accurately evaluate
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the selectivity of such similarity operations for the purpose
of query optimization [25, 27]. In this work we concentrate
on selectivity estimation for set similarity selection queries.

Let I be a predefined set similarity measure. Given a
query q, the goal of set similarity selection queries is to
identify all sets with score greater than some user defined
threshold τ . The goal of selectivity estimation is to estimate
the number of such sets in the database. Formally, given a
query q and a collection of sets D, estimate the size of the
answer set {s ∈ D|I(q, s) ≥ τ}. A large number of similar-
ity measures have been proposed in the past (Jaccard, edit
distance, cosine similarity, etc.). It has been demonstrated
that no single similarity function is best across all applica-
tion domains [9, 29]. For our purposes we will concentrate
only on well known and largely deployed weighted similarity
measures (e.g., TF/IDF cosine similarity). Efficiently evalu-
ating such similarity measures is accomplished by means
of specialized inverted indexes on the distinct tokens con-
tained in the input sets (inverted indexes are built either
in the form of relational tables using existing DBMS tech-
nology or as auxiliary files stored on secondary storage [15,
30]). Our goal is to design selectivity estimation techniques
that exploit these specialized inverted indexes to provide ro-
bust estimation at minimal computational cost and storage
overhead.

A simplistic approach for performing selectivity estima-
tion is to take a random sample of the input sets, evaluate
the similarity of the given query with the sampled sets and
scale up the result. A better approach would be to use a ran-
dom sample taken only with respect to the input sets that
contain at least one token in common with the query, since
only those sets have similarity greater than zero. We show
that the former has very low accuracy for arbitrary queries,
while the latter is more expensive than exact solutions (both
in terms of CPU and I/O cost). We propose a new selec-
tivity estimation technique, based on existing synopses for
distinct value estimation, that builds samples a priori but
is nevertheless able to provide very accurate estimates, very
fast, for arbitrary queries. In addition, the new estimator
can be updated very efficiently, under arbitrary updates, in
contrast with the straightforward alternatives.

Section 2 presents essential background on set similarity
retrieval. Section 3 discusses the straightforward solutions.
Section 4 presents our proposed solution. Section 5 com-
pares the properties of these alternatives approaches. Sec-
tion 6 presents a thorough experimental evaluation. Section
7 discusses related work. Section 8 concludes the paper.
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2. BACKGROUND
In this section we provide some necessary background on

TF/IDF similarity and specialized indexes [18] for answering
TF/IDF based selection queries. For illustration purposes,
consider strings decomposed into words as our operand sets.
For example, let strings s1 =“Main St., Main” and s2 =
“Main St., Maine” be mapped into token multi-sets {‘Main’,
‘St.’, ‘Main’} and {‘Main’, ‘St.’, ‘Maine’}. The two multi-
sets share two tokens in common. Clearly, the larger the in-
tersection of the two multi-sets, the larger the potential sim-
ilarity. Tokens that appear very frequently in the database
(like ‘Main’ or ‘St.’) carry small information content, whereas
rare tokens (like ‘Maine’) are more important semantically.
Hence, the more important a token is, the larger the role it
should play in overall similarity. For that reason, weighted
similarity measures (for example TF/IDF) use the Inverse
Document Frequency (idf) as token weights. The idf of a
token is the inverse of the total number of times that this
token appears in the data collection. In addition, weighted
measures also use a Term Frequency (tf) component, i.e.,
each token is also weighted with respect to the total number
of times it appears in the multi-set. In the rest, we concen-
trate on TF/IDF for simplicity, but our discussions can be
extended to other measures as well (for example BM25 [4]).

Formally, consider a collection of sets D (e.g., a collection
of strings where each string has been decomposed into q-
grams, words, etc.), where every set consists of a number of
elements from universe U ; Let set s = {t1, . . . , tn}, ti ∈ U .
Every ti is assigned an idf weight computed as follows: Let
N(ti) be the total number of sets containing token ti and N
be the total number of sets in D. Then:

idf(ti) = log2 (1 + N/N(ti)).

Denote the term frequency of token ti in set s by tf(ti, s).
The normalized length of set s is computed as:

len(s) =

sX
ti∈s

tf(ti, s)2 · idf(ti)2.

The length normalized TF/IDF similarity of sets q and s is:

I(q, s) =
X

ti∈q∩s

tf(ti, s) · tf(ti, q) · idf(ti)
2

len(s) · len(q)
. (1)

Length normalization restricts similarity in the interval [0, 1].
If q = s, the TF/IDF score is equal to 1. Otherwise, as the
number of common tokens grows the score becomes larger.
Nevertheless, the contribution of every common token to the
score is dampened as the length divergence between the two
sets grows.

Typical set similarity selection algorithms evaluate queries
using some form of inverted indexes built on the tokens in
U . It is easy to show that Equation (1) obeys monotonic-
ity, which enables the evaluation of similarity queries using
TA/NRA style algorithms using the inverted index [30, 18].
Denote with w(ti, s) the partial weight contribution of token
ti ∈ s, to I(q, s), for arbitrary q. That is (refer to Equation
(1)):

w(ti, s) =
tf(ti, s) · idf(ti)

len(s)
. (2)

Now, construct one inverted list per token ti ∈ U , that con-
sists of one pair 〈s, w(ti, s)〉 per set s containing ti (see Fig-
ure 1). Denote the list corresponding to token ti by ~ti. Let
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Figure 1: Inverted lists sorted by decreasing token
contribution in the overall score.

query q = {t1, . . . , tn} and length len(q). By directly scan-
ning inverted lists ~t1, . . . ,~tn we can compute I(q, s) for all
s in one pass, and report the ones that exceed threshold
τ . Notice that irrelevant sets (with s ∩ q = ∅) are never
accessed. Alternatively, assume that lists are sorted in de-
creasing w(ti, s) order. Given that TF/IDF is a monotonic
score function, we can now use TA/NRA style algorithms to
compute the scores incrementally, and potentially terminate
before exhaustively reading the lists. For example, the NRA
algorithm reads lists in a round-robin fashion and iteratively
loads the next element from every list starting from the top
(see Figure 1). It maintains an in memory hash table with
one entry per set id read. Each entry contains the aggre-
gated score of the contributions of the lists where this id has
already appeared in. It also contains a bit vector indicat-
ing the lists where this id has not been encountered yet. As
more set ids are read from the lists, scores are completed and
the algorithm reports sets with similarity above the thresh-
old. Special boundary properties enable early termination
of the algorithm when it is deemed that no encountered or
yet unseen candidates can exceed the threshold.

It is clear that computing the exact answer of a query
incurs both an I/O cost for retrieving elements from the in-
verted lists, and the computational cost of keeping the in
memory candidate set up-to-date. Straightforwardly, any
selectivity estimation technique should be orders of magni-
tude faster than exact evaluation, decreasing both I/O and
CPU costs, while at the same time consuming as little extra
space as possible and providing accurate estimates.

3. STRAIGHTFORWARD SOLUTIONS
In this section we present some straightforward solutions

for selectivity estimation of set similarity selection queries,
and identify the pitfalls. First, we introduce some useful
notation. Let query q = {t1, . . . , tn}. Let q∪ = ~t1 ∪ . . . ∪ ~tn,
the multi-set union of set ids contained in the inverted lists
(where every id might be associated with multiple partial
weights). Denote with |x| the number of elements in multi-
set x, and |x|d the distinct number of elements in multi-set
x.

3.1 A Priori Computed Samples
Consider a uniform random sample S, drawn from all s ∈

D. A selectivity estimate is computed as:

A = |AS | ·
|D|
|S| , (3)

where AS = {s ∈ S : I(q, s) ≥ τ} (i.e., the number of query
answers contained in the sample). Notice that in order to
compute the similarity score I(q, s) for all s ∈ S, we need to
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store in the sample the actual sets instead of their associated
ids, which increases the space budget of the sample signifi-
cantly. The fact that the sample needs to contain the actual
sets is a huge drawback in terms of the real space used ver-
sus the effective size of the sample. As the sample becomes
larger (to increase estimation accuracy), query evaluation
becomes more expensive and hence benefits over exact algo-
rithms become slimmer. Random sampling provides stan-
dard guarantees on the error of the estimated frequencies
(more details appear in Section 4.2).

Another approach is to independently draw and store one
uniform random sample per inverted list. Let list ~ti (contain-
ing 〈s, w(ti, s)〉 pairs) and denote with t̃i a random sample
drawn from ~ti. Given query q, we compute one estimate per
sample t̃i and report as answer the median, max, average or
any other robust estimator. The independent estimate from
each sample is computed as:

A = |At̃i
| · |

~ti|
|t̃i|

. (4)

Here we assume again that the actual sets are stored in
the samples, in order to efficiently compute the answer size
At̃i

. Hence, the total size of the sampled lists is equiva-
lent to the size of simple random sampling. Moreover, this
approach assumes independence across lists and ignores im-
portant correlations that possibly exist between the tokens,
hence it will not work better than simple random sampling
in practice.

It would be tempting to compute the sample union q̃∪ =
t̃1∪ . . .∪ t̃n, given query q, of list samples to solve this prob-
lem, but this would produce a biased sample, since there
might be duplicate set ids among the sampled lists. Elimi-
nating duplicates does not help because it would necessitate
the computation of quantity |q∪|d (the distinct number of
set ids in the union of the query lists), in order to scale
up the result. The cost of computing |q∪|d is prohibitive,
since it is larger than the cost of running exact algorithms
(e.g., TA/NRA). Also, this approach is not using the partial
weight information contained in the lists, since it is comput-
ing exact scores by storing the actual sets in the samples.

Finally, building samples a priori introduces another im-
portant aspect to this problem — that of efficiently handling
updates. Even though random samples can be maintained
efficiently in the presence of insertions, maintenance in the
presence of deletions is expensive (an adversarial sequence of
updates can result in an empty sample). Ideally, maintain-
ing the uniformity of the samples would require resampling
a given list every time an element is deleted.

3.2 Dynamically Computed Samples
A promising approach for solving the problem would be

to construct a query sensitive sample in real time from the
lists in q only. In order to dynamically construct a sam-
ple without having to exhaustively read the inverted lists
(which would outweigh the benefit of estimation), the obvi-
ous choice is to use reservoir sampling [33].

Consider the following straightforward algorithm. Prede-
fine a reservoir size S (e.g., equal to 5% of |q∪|, which is the
size of the set that the exact solutions are working with) and
use reservoir sampling to dynamically build a uniform ran-
dom sample from q∪. Reservoir sampling starts by sequen-
tially reading elements from the first list. Once the reservoir
is full, it skips over a group of set ids using random seeks

that follow a geometric distribution of jumps (the algorithm
reduces unnecessary processing of elements that would not
be sampled in the first place, by skipping over elements of
the input [33]). Then, it reads the next id and randomly
evicts an entry from the reservoir in order to make space
for the newly sampled id. The process continues until all
lists have been exhausted. The problem with this algorithm
is that since lists might contain duplicate ids, the resulting
reservoir is not a uniform random sample. (Reservoir sam-
pling can be used only for sampling without replacement.)
Hence, producing an unbiased estimate from this sample is
not possible, and no theoretical guarantees can be provided
for the estimation accuracy of this technique.

Moreover, in order to scale up the result correctly, it is es-
sential to know |q∪|d (the domain size). Exactly computing
this quantity is impractical, since it is costlier than running
exact algorithms. An alternative is to estimate this quan-
tity. One could use the sample itself to estimate the distinct
union size. Albeit, uniform sampling is a notoriously bad
distinct value estimator (e.g., see [10]), and hence cannot
be used productively. Another option is to maintain one
distinct value estimation synopsis per list ~ti (e.g., FM [14]
or KMV [6] sketches). However, specialized synopses oc-
cupy space proportional to the sample in order to provide
estimates of comparable accuracy, and hence incur a large
space cost, which offsets one of the benefits of dynamically
computing the samples.

Finally, computing the number of answers AS contained
in a sample created dynamically needs further attention.
Since elements of the input have been skipped, any dynami-
cally constructed sample is not guaranteed to contain all the
partial weight information w(ti, s) per sampled set s needed
for reconstructing score I(q, s). Straightforwardly, the only
possible way to compute exact scores is to retrieve the actual
sets or store the sets in the samples. Clearly, retrievals incur
additional random I/Os, while storing the actual sets in the
sample, reduces the effective sample size for a fixed reservoir
S (we illustrate this point in the experimental evaluation in
Section 6). Furthermore, Haas et al. [17] showed that the
cost of sampling with random accesses is greater than that
of a sequential scan of the data for sampling rates greater
than 2% under certain assumptions.

To summarize, there are three pitfalls associated with dy-
namically constructed samples in this setting. First, since
the scores of the elements cannot be reconstructed using the
sample a large number of random accesses need to be per-
formed to fetch actual sets. Alternatively, the actual sets
need to be stored in the sample, which decreases the effec-
tive size of the sample. Second, additional random seeks
for skipping over the input need to be performed. Third,
estimating the distinct size of arbitrary list unions requires
maintaining separate distinct value estimation synopses of
considerable size.

Our focus in the rest of the paper will be to build a priori
random samples that circumvent all the pitfalls encountered
above. We will design a technique that:

• Builds uniform samples from arbitrary combinations
of inverted lists.

• Eliminates the need to store the actual sets in the sam-
ple, and computes scores efficiently.

• Eliminates the need of maintaining special distinct value
estimation synopses.
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• Provides unbiased estimates with small variance, out-
performing alternatives.

• Handles updates gracefully, at a minimal cost, which
is a departure from existing work on selectivity esti-
mation using sampling.

4. HASHED SAMPLES

4.1 Construction, Querying and Updating
Using one sample for all queries is not robust in terms of

space budget used versus effective sample size, as shown in
the previous section. Also, since the sample is not focused
for the specific query at hand, estimates are expected to
have large variance. On the other hand, constructing one
sample per list allows us to combine arbitrary list samples
into a more focused, query specific sample that is expected
to yield results of much lower variance.

Assume that we are given a predetermined space bud-
get S. Clearly, there are two important aspects in utilizing
the available budget efficiently when constructing individ-
ual samples per list. First, we need to leverage the par-
tial weights contained in the inverted lists correctly in order
to avoid storing actual sets in the samples, in contrast to
the simple random sampling method. Second, we need to
avoid maintaining separate distinct value estimation syn-
opses, since these will further limit the available budget.

The first observation suggests that drawing independent
samples from every list is not a viable option. Instead, we
need to guarantee that if a set id is sampled in one list, it
will be consistently sampled in all other lists that it appears
in. Let query q = {t1, . . . , tn}, and let t̃1, . . . , t̃n be pre-
computed samples of inverted lists ~t1, . . . ,~tn (where each
sample contains pairs 〈s, w(ti, s)〉). We would like to guar-
antee that given the union of samples q̃∪ = t̃1 ∪ . . . ∪ t̃n

and an arbitrary set id s ∈ q̃∪, all relevant partial weights
w(ti, s) for computing I(q, s) are already included in q̃∪. At
the same time, it is important to guarantee that q̃∪ is a uni-
form random sample of the lists in q (for arbitrary q), in
order to be able to provide unbiased estimates.

This leads to the following observation. We need a prop-
erty stronger than choosing samples uniformly at random.
We need a procedure that picks samples consistently. This
can be accomplished as follows: Impose a random permuta-
tion on the domain of set ids D, and choose from every list
a consistent subset of the permuted ids. Choose a family of
universal hash functions H and randomly pick a hash func-
tion h : D → P [8]. The values h(s1), . . . , h(s|D|) will appear
to be a sequence of i.i.d. samples from the discrete uniform
distribution over D [1]. The hash function, in an empir-
ical sense that suffices for applications, imposes a random
permutation of the elements in D.

We create the random samples as follows. Randomly
choose hash function h ∈ H. For simplicity, let hash func-
tion h distribute values in the interval [1, 100]. Choose a
value x ∈ [1, 100], and sample from every list ~ti ∈ U all set
ids s with hash value h(s) ≤ x. Given that the hash func-
tion is distributing ids uniformly in interval [1, 100], this
approach will approximately result in an x% sample of list
~ti and, naturally, in an x% overall sample of the inverted
lists. Given the total size of the inverted lists and budget S,
we can deduce a maximum value x easily, in order to meet
our budget. We call this algorithm Hashed Sampling (HS).

Algorithm 1: CS (sample construction algorithm).

Input : Lists t1, . . . , t|U|, Hash function
h ∈ H : N → [1, 100], Sample size x%

Output: Sampled lists t̃1, . . . , t̃|U|
forall 1 ≤ i ≤ |U| do

forall p = 〈s, w(ti, s)〉 ∈ ~ti s.t. h(s) ≤ x do
Insert p in t̃i

end

end

t1

. . .

. . .

. . .

. . .

. . .

..
.

1 1 1

0 1 1 0

0 0

0 0 11

0

0

0

0

1

s3s2 s4

..
.

s1 sm

1 2 3 4 5 m

1

..
.

s5

0

1

t
1

t
2

t
n

h(s4) = 1, h(sm) = 2, . . .

1 1

0

1 0

..
.

s4 s3s2s1

..
.

0

1

0

1

0 1

0 1

1

1

s9

011

sm

..
.

0

1 1

tn

t2

. . .

Figure 2: Top: The original universe ~t1∪. . .∪~tn. Bot-
tom: A random permutation using hash function h.
Any prefix of set ids in the permutation, is equiva-
lent to a uniform random sample from ~t1 ∪ . . . ∪ ~tn.
The extra information within the columns of the ma-
trix, provides only the necessary partial weights for
computing the scores.

Denote with hi the maximum hash value contained in t̃i.
Notice that a given sample t̃i might not necessarily contain
a set id with hash value x. Nevertheless, it is guaranteed by
construction that list ~ti did not contain any id s s.t. hi <
h(s) ≤ x, and hence we can safely assume that hi = x = hm

for all ~ti. Hence, we can construct the sample union q̃∪
directly to be the union of all sampled ids. The procedure
appears as Algorithm 1.

We can estimate the selectivity of q = {t1, . . . , tn} as fol-
lows. Construct the sample union q̃∪ = t̃1 ∪ . . . ∪ t̃n. The
estimate from the sample is:

A = |Aq̃∪ | ·
|q∪|d
|q̃∪|d

. (5)

By construction of the sampled lists, it is guaranteed that
for every sampled id s ∈ q̃∪, all partial weights w(ti, s) in
lists ~t1, . . . ,~tn are present in q̃∪, and thus the scores I(q, s)
can be computed directly from the sample. In addition, due
to the properties of the random permutation imposed by
the hash function, q̃∪ is a uniform random sample of the
distinct union ~t1 ∪ . . . ∪ ~tn. An example is shown in Figure
2. Every prefix of a random permutation of the conceptual
binary matrix that represents universe D and membership
of set ids in inverted lists ~ti, is a random sample over D.

Up to this point, we have constructed a uniform random
sample, we can compute the score of all sampled sets with
the query, and we know the size of the sample union. The
final piece of the puzzle is to estimate the distinct number
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Algorithm 2: HS (selectivity estimation algorithm).

Input : Query q = {t1, . . . , tn}, Samples t̃1, . . . , t̃n,
Threshold τ

Output: Estimated number of sets with I(q, s) ≥ τ
Let AS = 0, hm = 0
Compute q̃∪ = t̃1 ∪ . . . ∪ t̃n

forall s ∈ q̃∪ do
If I(q, s) ≥ τ , AS+ = 1
hm = max (hm, h(s))

end
D = |P|(|q̃∪|d − 1)/hm

Return AS · D
|q̃∪|d

of set ids |q∪|d, needed for scaling up the sample result. As
already mentioned, maintaining separate synopses to this
end will consume valuable space budget. The elegance of
the consistent sampling algorithm described above is that
the list samples themselves can be used for estimating the
distinct number of ids in the union of an arbitrary com-
bination of lists with high accuracy and probabilistic error
bounds, by using the K-Minimum Values algorithm (KMV)
proposed in [6]:

Theorem 1. ([6]) Given hash function h : D → P, multi-
set S and letting hr be the r-th smallest hash value in S,
the quantity Dr = |P|(r − 1)/hr is an unbiased estimate
of the distinct number of values in S. Specifically, given
0 < δ < 1, there exist ε dependent on r, s.t. (1 − ε)|S|d ≤
Dr ≤ (1 + ε)|S|d.

Given that our samples contain all existing entries with hash
values up to hm in lists ~t1, . . . ,~tn, we can immediately de-
duce the rank r of hm in the sample union q̃∪, and hence
directly estimate the distinct number of ids in q∪. The com-
plete HS algorithm appears as Algorithm 2.

Notice that this algorithm needs to scan sample q̃∪ in or-
der to estimate |q∪|d, hence the speed up of this technique
is directly proportional to the size of the sample used. For
example, a 1% sample will result in approximately 100 times
speed up with respect to any exact algorithm that examines
a large portion of the inverted lists. Clearly, if we could de-
sign exact algorithms that examine only a small portion of
the inverted index, selectivity estimation based on sampling
would become obsolete. In practice, the fastest known algo-
rithms for TF/IDF examine either 100% of the lists (fast sort
merge joins, based on sorting by ids), or more than 70% of
the lists on average (variants of NRA, based on sorting by
partial weights). More details appear in [18].

Updating the samples is straightforward. For insertions,
we hash the new entry and if the hash value is smaller equal
to x we insert it in the sample. The Hashed Sampling al-
gorithm, contrary to all other approaches that we have dis-
cussed so far, can also handle deletions gracefully. An entry
deleted from a particular list, is simply deleted from the
corresponding list sample, if it exists therein.

4.2 Theoretical Guarantees
Given that the resulting sample union of the random sam-

ples for an arbitrary query is always an x% sample of the
union of the inverted lists of the query, we can give prob-
abilistic error guarantees and space bounds using the VC-
dimension of the problem [32]:

Theorem 2. Let ε, δ > 0. Any random sample of size
O( 1

ε2
ln 1

ε2δ
) will provide an ε-approximate answer to the

problem of selectivity estimation with probability of failure
at most δ.

Proof. The proof for the space bound of the HS tech-
nique is based on the work of Vapnik and Chervonenkis [32].
Some key definitions and concepts are presented next.

Definition 1. ([19]) A range space S is a pair (X, R)
where X is a set and R is a set of subsets of X. Members of
X are called points of S and members of R are called ranges
of S.

Definition 2. ([19]) Let S = (X, R) be a range space
and A ⊆ X be a finite set of elements of S. Then ΠR(A)
denotes the set of all subsets of A that can be obtained by
intersecting A with a range of S, i.e., ΠR(A) = {A ∩ r :

r ∈ R}. If ΠR(A) = 2|A|, then we say that A is shattered by
R. The Vapnik-Chervonenkis dimension of S is the smallest
integer v such that no A ⊆ X of cardinality v+1 is shattered
by R.

Definition 3. ([19]) Let S = (X, R) be a range space
and A ⊆ X a finite subset of elements of S. For any ε ≥ 0
and V ⊆ A, V is an ε-approximation of A (for R) if for all

r ∈ R, | |A∩r|
|A| − |V ∩r|

|V | | ≤ ε.

Theorem 3. ([32]) Let S = (X, R) be a range space of
VC-dimension v, A ⊆ X be a finite set and ε, δ > 0. Then
any random sample V of A formed by at least m indepen-
dent draws from A is an ε-approximation of A for R with
probability at least 1− δ for any m ≥ 16

ε2
(v ln 16v

ε2
+ ln 4

δ
).

It is very easy to see that a one dimensional range query
has VC-dimension equal to 2 [7]. Since selectivity estima-
tion of thresholded set similarity queries is equivalent to a
one dimensional range counting query, the space bound fol-
lows.

To find the total error of our selectivity estimation tech-
nique we also need to take into account the additive error
from estimating the numerator of the scaling factor in Equa-
tion (5). Hence:

Theorem 4. Let ε, ε′, δ > 0. Any random sample of size
O( 1

ε2
ln 1

ε2δ
), with probability of failure at most δ, in the

worst case will provide answers within (E− ε|q∪|d)(1− ε′) ≤
Ã ≤ (E + ε|q∪|d)(1 + ε′), where E is the exact answer size,

and Ã the final selectivity estimate from HS.

Proof. Theorem 2 suggests that E − ε|q∪|d ≤ A ≤ E +
ε|q∪|d, where E is the exact answer and A the sample esti-

mate. We are further estimating A within (1− ε′)A ≤ Ã ≤
(1+ε′)A, where ε′ is the approximation error from Theorem
1. Combining the errors yields:

(E − ε|q∪|d)(1− ε′) ≤ Ã ≤ (E + ε|q∪|d)(1 + ε′). (6)

It is important to notice here that estimation accuracy de-
pends on two errors: that of estimating the frequency of
query answers from the sample, and that of the K-Minimum
distinct values estimation for scaling the results. Given any
sample size |S|, from Theorem 1 and Theorem 2 we can
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deduce that ε′ � ε. Hence, as the size of the sample in-
creases the error introduced by the distinct value estimation
becomes exceedingly smaller than the error of frequency es-
timation.

Notice that the size of the sample for providing ε, δ guar-
antees for frequency estimation is not dependent on the size
of the input. In practice, due to large hidden constants,
sufficient sample sizes for accurate estimation will be much
smaller than the ones suggested by the worst case bound
given by the exact form of Theorem 2. Straightforwardly,
as dataset sizes increase, the fact that the upper bound is
constant is a very interesting result in sampling theory in
itself. For example, a 5 million entries sample is the largest
needed for providing ε = δ = 0.01 guarantees, irrespective
of the input size. Hence, the theoretical bound with respect
to the frequency estimation error makes sense in practice
for dataset sizes of more than 100 million sets in this case,
but our experiments show that even much smaller samples
provide good accuracy in practice. On the other hand, the
additive error due the estimation accuracy of the distinct
value estimator always depends on the size of the sample
used with respect to the size of the input.

It is interesting to note here that in theory and practice
HS will work well irrespective of the underlying dataset dis-
tribution at hand, since it is a sampling based technique on
what appears to always be a uniform distribution to the HS
algorithm (the uniformity imposed by the hash function).
We do not expect any bad or limit cases to appear in prac-
tice, if a good hash function is used (universal hash functions
or a good heuristics), a fact attested by our empirical eval-
uation on three different datasets.

4.3 Improving accuracy
So far, we have not taken into account the semantic prop-

erties of the TF/IDF similarity for building the inverted list
samples. By definition of idf, lists with small idfs have a
very large size while lists with large idfs have small size.
By taking a fixed x% sample of every list, we are allocating
a much larger absolute space budget to low idf lists, since
those lists are much larger. Low idf tokens result, on av-
erage, to small partial weights w(ti, s) and hence have low
potency in the overall score. Hence, intuitively it appears
that it would make sense to use stratification to divide our
sample space into high and low idf tokens in order to capture
a larger percentage of potent partial weights. The problem
with stratification of inverted lists lies in computing a final
estimate from the sample. Assume that we sample z% of
high idf lists, and y% of low idf lists (z > y). First, we
count the number of answers that exceed the threshold by
using only the high idf lists. We scale up this result using
the z sample. Then, we compute the number of answers
that exceed the threshold by using at least one low idf list.
We scale up this answer using the y sample. Finally, we
add up the results. The drawback of this method is that it
assumes uniformity of answers coming from solely high and
solely low idf lists, which might not be true in general for
all queries. Indeed, stratification did not yield any accuracy
improvements in our empirical evaluation.

Another technique for improving sampling accuracy is
post-stratification. Define a lattice structure that has, con-
ceptually, one node for every combination of lists in query
q, for a total of 2n nodes (see Figure 3). Assign to every
node in the lattice the set ids in q̃∪ that, first, exceed the

t1t2t3t4

t1t2t4 t1t3t4 t2t3t4

t1t2 t1t3 t1t4 t2t3 t2t4 t3t4

t1 t2 t3 t4

t1t2t3

Figure 3: Post-stratification lattice for a query with
four tokens. The worst case maximum instantiated
lattice size will be AS ≤ |q̃∪|.

query threshold and, second, have partial weights coming
only from the lists corresponding to that node. Hence, nodes
have mutually disjoint sets of ids, and the worst case max-
imum size of the instantiated lattice is at most AS ≤ |q̃∪|
nodes. Now consider the following procedure for scaling up
the results from the sample. For every node, compute a
node specific scale up factor which is calculated by taking
into account only the lists that correspond to that node.
Computing the scale up factor follows exactly the same rea-
soning as the one in HS. Compute as the final estimate the
sum of the contributions from all nodes. The reasoning be-
hind post-stratification is that as the number of instantiated
lattice nodes increases, each node provides an independent
estimate for a smaller subset of the space. Notice that a
very small number of lattice nodes will be instantiated in
practice. In order for a given set to exceed the threshold,
it has to appear in at least a certain number of lists. Our
experimental evaluation suggests that in practice very few
queries result in a lattice with more than 4 nodes. To con-
clude, post-stratification does not hurt performance, and it
can potentially provide some benefit for certain distributions
of elements among lists, hence it should always be used. For
our test data, post-stratification resulted in marginal bene-
fits.

4.4 Improving performance
Given that low idf lists on average contain a large number

of sets and at the same time they do not contribute signif-
icantly to the overall score, we can exclude such lists from
processing, in order to improve performance. A principled
way of choosing which lists to exclude appeared in [18], and
we briefly repeat it here. Let query q with length len(q), con-
sisting of n tokens with idfs idf(t1) ≥ idf(t2) ≥ . . . ≥ idf(tn)
(i.e., we sort tokens in decreasing idf order). Assume also
that every list is sorted by decreasing partial weight, and let
tf universally equal 1 for all list entries for simplicity. It is
not hard to see that in order for a set s contained in list ~ti

to exceed threshold τ , provided that s does not appear in
any list ~tj , j < i, it must have length ([18]):

len(s) ≤ λi =
τ

len(q)

nX
i

idf(ti). (7)

Thus, if the top element of ~ti has weight w < wλi , we can
avoid processing the elements of this list. Our experimental
evaluation shows that this optimization yields tremendous
performance benefits in practice, without affecting estima-
tion accuracy.
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5. COMPARISON OF ALTERNATIVES
We have considered four main alternatives in the preced-

ing analysis. Here we concisely compare those alternatives.
The first approach considered is simple uniform random

sampling over the whole dataset. This approach gives the-
oretical guarantees on estimation accuracy (see Theorem
2), but the estimator cannot handle updates and limits the
available space budget for storing samples in order to store
the actual sets needed for score computation (the space
needed per sample is not constant and depends on the aver-
age size of sets for a given application). In addition, given
that the sample is constructed over the whole dataset and
not over query specific only samples, it will yield estimates
of very large variance.

The second approach discussed is to draw independent
samples from each inverted list, and use only query spe-
cific list samples for selectivity estimation. Performance
wise this method will be equivalent to exact evaluation since
in order to scale up the sample estimate it needs to com-
pute the distinct number of ids in the query lists, which
requires a complete scan of the lists. Hence, this method is
not competitive. Alternatively, we could use distinct value
estimation synopsis in addition to the list samples in or-
der to avoid scanning the inverted lists, but the proposed
HS method subsumes this approach by building a combined
sample/distinct value estimation synopsis per list.

The third technique discussed is to build query samples
dynamically using reservoir sampling. This method does
not provide any theoretical guarantees since the resulting
sample is biased due to the presence of duplicates. It also
requires storing distinct value estimation synopsis in addi-
tion to building the samples, and hence, is subsumed by
HS.

HS provides concise theoretical guarantees on the size of
the sample needed to achieve a given estimation error. It
is the only approach that can support insertions and dele-
tions. It builds specialized list samples that can be used
both for producing a uniform random sample of the query
lists on the fly, and for distinct value estimation. Resulting
samples have small variance since they are built over query
specific samples only. It utilizes the partial weight informa-
tion contained in the sampled lists to compute scores, and
hence does not need to store the actual sets in the sample.
Thus, HS consumes smaller space per sample than simple
random sampling (constant space in contrast to simple ran-
dom sampling), and hence, for the same allotted budget |S|
it has better estimation accuracy (smaller ε).

6. EXPERIMENTS
First, we show that the straightforward solutions do not

work at all in practice. Then, we contact a comprehensive
empirical evaluation of the HS algorithm, on real datsets.

6.1 Setup
For our evaluation we use three real datasets; the DBLP

citation database [24], the IMDB movie database [20], and
the YellowPages listings [3]. More specifically, we use the
Author/Paper association table from DBLP that contains
approximately 2,500,000 pairs, the Actor/Movie association
table from IMDB that contains approximately 7,000,000 pairs,
and the Business Listing table from YellowPages that is sig-
nificantly larger than IMDB (details are proprietary and
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Figure 4: Space differential between id and string
samples for DBLP dataset.

cannot be disclosed). We decompose strings into sets of 3-
grams and computed similarities using the popular TF/IDF

score function. The average author and actor set size for
DBLP and IMDB is 15. First, we build one inverted list
per 3-gram on secondary storage. Then, we construct the
corresponding list samples, according to a pre-defined space
budget. We experiment with space budgets corresponding
to 1%, 5%, and 10% of the total size of the inverted lists.
We use the heuristic SHA1 hash function to create the sam-
ples in practice. All experiments are run on a four dual
core Intel(R) Xeon(R) CPU 2.66 GHz, with 16 GB of main
memory. We implement all algorithms in C++.

We draw queries from the actual data uniformly at ran-
dom. Each query set contains 100 queries with a certain
number of answers for a certain similarity threshold. More
specifically, we choose queries that have between 100 to 200,
200 to 300, and 300 to 400 answers, for similarity thresholds
equal to 0.4, 0.6 and 0.8; this results in a total of 9 query
sets. We avoid queries with a smaller number of answers,
since for numbers of small magnitude average relative errors
are not meaningful from a practical point of view (e.g., an
estimated answer of 2 versus an exact answer of 1, yields
50% error).

We evaluate the proposed algorithms in terms of estima-
tion accuracy (average relative errors with respect to the ex-
act answers), and wall-clock time (CPU and I/O cost). We
perform post-stratification for all algorithms. As a baseline
comparison we use the optimized TA/NRA exact evaluation
algorithms for the TF/IDF measure, proposed in [18]. We ex-
pect the speed up of HS to be proportional to the sample
size, irrespective of the algorithm used, since the selectivity
estimators simply need to scan the whole sample (usually
small enough to be prefetched or buffered in main memory),
while the exact algorithms need to read a large portion of
the disk resident inverted lists. We test all algorithms for
varying thresholds, query answer sizes, and available bud-
get. In all of our experiments we average results over 100
queries and 4 independent runs per algorithm.

6.2 Straightforward solutions
In what follows we show results for the DBLP dataset.

Results for IMDB and YellowPages followed the same trends
overall. Furthermore, the default experimental parameters
are 5% budget (with respect to the total size of the inverted
index), 100 to 200 answers per query for a 0.4 threshold.

First, we show that storing the actual strings, instead of
8 byte string id/partial weight pairs in the samples reduces
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Figure 5: Accuracy of the dynamic reservoir sam-
pling algorithm.
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Figure 6: Runtime cost of the dynamic reservoir
sampling algorithm.
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Figure 7: Accuracy of the HS algorithm as a func-
tion of available budget.
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Figure 8: Runtime cost of the HS algorithm as a
function of available budget.

the effective size of the sample by almost 50%. We created
4 independent 5% samples of string ids, computed the size
of the resulting samples, then replaced each id with the cor-
responding string and measured the increase in size. Figure
4 shows that the size of the string sample was consistently
1.85 times larger than the size of the ids sample. This di-
rectly implies that simple random sampling cannot compare
to HS, since for the same available space budget HS will be
able to store almost twice as many samples than random
sampling. For completeness, we evaluated the performance
of the naive sampling approach. This technique yields con-
sistently larger than 40% errors in all cases, since it does not
build query specific samples.

We evaluate the cost and accuracy of the Reservoir Sam-
pling technique discussed in Section 3.2. Recall that reser-
voir sampling will inadvertently create a biased sample. Hence,
we do not expect estimates of high accuracy. At the same
time, since any dynamic sampling technique has to retrieve
the actual strings from storage, runtime performance will
suffer since a large number of random I/Os will need to be
performed. Figures 5 and 6 show the accuracy and the run-
time cost of reservoir sampling with reservoir sizes equal to
1%, 5% and 10% of the total size of the relevant inverted
lists for a given query. Clearly, this technique yields inaccu-
rate estimates, and has an extremely high processing cost.
As a baseline comparison, we plot the runtime cost of pro-
ducing exact answers using the fast NRA algorithm [18] on
the same plot (notice that the x-axis is not relevant for this
algorithm). The runtime plot is in log scale.

6.3 Hashed Sampling

In the rest, we evaluate the HS algorithm only, since it
is the only viable solution. Figures 7 and 8 plot accuracy
and cost as a function of space budget. In the same graphs
we superimpose the cost of producing exact answers using
the fast NRA algorithm. As expected, the runtime cost
of HS increases as the sample size increases, but is up to
two orders of magnitude faster than NRA. We also run the
TA algorithm for completeness; it’s runtime was six times
slower than NRA on average, due to the increased number of
random accesses performed. HS achieves very high quality
answers for small sample sizes. A 5% sample of the inverted
lists of the DBLP dataset consumes a total of 20MB. One
can maintain this sample in main memory for faster process-
ing. The runtime of main memory resident HS is plotted as
HS-MR in the same figure. Clearly, the disk and the operat-
ing system do a great job in pre-fetching and buffering the
sample, hence we observe a very small benefit in practice.
In this figure we also show the 5th and 95th percentiles of
relative errors (as error bars in the graph), as an indication
of the variance of the proposed algorithm. As the budget
size increases, the variance decreases proportionately.

Figures 9 and 10 plot accuracy and runtime performance
of the same algorithms, as a function of varying query thresh-
olds. The accuracy of HS deteriorates somewhat for in-
creased thresholds, but remains consistently below 17%. We
also see an interesting trend here with regard to runtime per-
formance. The cost of running the algorithms drops sharply
as thresholds increase, which is expected since larger thresh-
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Figure 13: Comparison between HS with and with-
out lattice based post-stratification.

olds imply fewer potential candidates exceeding the thresh-
old, and faster termination of the algorithms. HS is up to
two orders of magnitude faster than NRA.

Figures 11 and 12 plot accuracy and runtime performance
of HS as a function of query answer size. We can see that the
error drops sharply as the answer size increases. Straight-
forwardly, any selectivity estimation algorithm should be
able to more accurately estimate queries of low selectivity.
Moreover, the runtime cost of HS remains constant, which
is expected since it is dominated by the cost of comput-
ing |q∪|d (which requires reading the whole sample). The
cost of NRA slightly increases with increasing number of
answers since first, a larger number of list elements need to
be accessed as the query becomes less selective and second,
maintaining the candidate set becomes more expensive.

6.4 Improving accuracy

Next, we evaluate the benefits of using the lattice based
post-stratification algorithm, with respect to estimation ac-
curacy. We profiled all strings in the DBLP dataset with
respect to the number of nodes they instantiate during post-
stratification. Overwhelmingly, in practice queries instanti-
ate less than 5 lattice nodes. Out of 700,000 queries, only
132 queries with answer size between 100 and 200 strings
for threshold 0.4, had more than 4 lattice nodes. We con-
structed a special query set out of those 132 queries in order
to exemplify the potential benefits of post-stratification. Re-
sults with (HS) and without (HS-NL) post stratification as
a function of budget space, are shown in Figure 13. Post-
stratification had only a marginally positive effect on accu-
racy. We observed exactly the same trends for the IMDB
and YellowPages data.

The next experiment evaluates the benefits of using high
and low idf list stratification. First, we need to decide an idf
cutoff threshold between high and low idf lists. Figure 14
plots the cumulative size of lists up to a certain idf. We can
see that lists with idf smaller than 8 add up to almost 50%
of the total inverted lists size. By sampling those lists at a
3% rate, we are able to sample high idf lists at a 9% rate, for
an overall 5% sample. Figure 15 shows the results of strati-
fication. We can see that in our setting, using the semantics
of idf to perform stratification is counter-productive, yield-
ing 80% errors. We profiled a large number of queries for
the DBLP dataset that yield between 100 and 200 answers
using a 0.4 threshold, and deduced that on average 64% of
the tokens of a given query had idf smaller than 8. Thus,

most queries have to use the relatively small low idf sam-
ple. Exactly the same trends are observed in the IMDB and
YellowPages corpora.

6.5 Improving performance

Next we evaluate the performance benefits of excluding
low idf lists from processing, as well as impact on accuracy.
The results are shown in Figures 16 and 17, where HS-LI
denotes the version of the algorithm that processes the low
idf lists normally. We superimpose on the graph the perfor-
mance of the NRA-LI algorithm (i.e., without the low idf op-
timization). We can see that the low idf optimization yields
significant performance benefits, without hurting accuracy.
This graph also exemplifies our claim that the performance
of the selectivity estimation techniques is mainly dependent
on the size of the sample. Notice that as the size of the
sample increases, the runtime cost of the HS-LI algorithm
increases (due to the large size of the low idf sampled lists
that have to be processed).

The last experiment (Figures 18 and 19) tests the distinct
value estimation accuracy of the KMV synopsis. For these
results we run the HS algorithm once more, but this time we
compute the exact number of distinct set ids contained in
the inverted lists of each query, before scaling up the answers
(HS-NE). We can see that the distinct value estimation does
not hurt accuracy, yielding almost identical answers. This
verifies our intuition that the error rate of KMV is domi-
nated by the error rate of frequency estimation using the
sample, as the size of the sample increases. We also show
the overwhelming cost of having to scan the inverted lists
in order to compute the exact number of distinct ids in the
inverted lists of the query (in log scale).

7. RELATED WORK
The problem of selectivity estimation has been studied

extensively in the context of query optimization. The main
approaches utilize either random sampling or histograms.
Histograms are discussed in [27]. Histograms work well for
numerical attributes. One could use value-range histograms
in our setting, by sorting strings lexicographically. However,
this would not produce good estimates, since lexicographical
proximity could be small even if TF/IDF (or edit distance)
similarity is large. A survey of existing work on random
sampling appears in [26]. Haas and König [17] and Chaud-
huri et al [11] were the first to address sampling efficiency
with respect to random accesses for retrieving the actual
data. Our approach is inspired by the same problem, but in
our solution we make efficient use of available index struc-
tures to build specialized samples that eliminate the need to
access the data.

Selectivity of approximate string matching queries has
been addressed in the past. Jin and Li [22] propose selec-
tivity estimation techniques for the edit distance function
based on clustering and histograms. Their approach can
be extended, with some limitations, to other distance func-
tions as well, but dynamically maintaining the estimator is
expensive and results in deterioration of estimation accu-
racy over time, especially if the cluster of strings begins to
shift over time. Sahinalp et al. [28] use a two step ap-
proach that also uses clustering of strings within a certain
edit distance. In the first step, clusters not relevant to the
query are pruned. In the second step the remaining can-
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Figure 9: Accuracy of the HS algorithm as a func-
tion of query thresholds.
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Figure 10: Runtime cost of the HS algorithm as
a function of query thresholds.
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Figure 11: Accuracy of the HS algorithm as a
function of query answer size.
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Figure 12: Runtime cost of the HS algorithm as
a function of query answer size.
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Figure 14: Cumulative number of entries con-
tained in lists of tokens below a certain idf.
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Figure 15: Effects of using stratification across
high and low idf lists.

didate strings are scanned and the exact edit distances are
computed. The pruning technique works well only if the
database contains a large number of small string neighbor-
hoods. An improved estimator, specifically for edit distance,
appears in [25], where the authors use q-gram signatures as
a compact representation of the dataset. A different ap-
proach, based on wildcards, is presented in [23] for estimat-
ing selectivity of approximate string matching with low edit
distance.

Guha et al [16] propose a sampling based technique for
selectivity estimation of join queries under TF/IDF cosine
similarity. This technique constructs samples of the con-
ceptual binary matrix corresponding to the inverted lists
of a given relation, similarly to our setting (see Figure 2).

Then, it estimates the selectivity of the join by using the
product of the sample matrices corresponding to the joined
relations. In this work, efficiency was not a concern; rather
the sampling methodology was discussed. Our work con-
centrates on ways of constructing consistent samples that
enable very efficient estimation using the information con-
tained in the inverted lists. Our approach is faced with a
different set of problems as well. For example, leveraging
the partial weight information in the inverted lists, and per-
forming distinct value estimation to scale up the results.
Our estimators can be used for joins in vein similar to [16].
In general, using sampling to estimate join results does not
always resulting in accurate estimates. Nevertheless, it is an
interesting open problem whether our hashing based samples
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Figure 16: Effect of low idf lists on accuracy.
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Figure 17: Effect of low idf lists on runtime cost.
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Figure 18: Distinct value estimation impact on
overall accuracy.
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Figure 19: Distinct value estimation impact on
runtime cost.

provide some advantages over the straightforward sampling
techniques presented in [16].

Another approach for selectivity estimation of TF/IDF based
approximate string matching appears in [31]. The authors
propose estimating various statistical properties of the dataset
that can be used in order to eventually estimate selectivity.
This approach cannot support updates, does not provide any
guarantees, and in practice, it achieves close to 40% errors
and hence cannot compete with HS.

Another related problem is that of substring selectivity, or
estimating the number of database strings that have a given
query string as a substring. Quite a few techniques have
been proposed for this problem [21, 12], but they cannot be
used for providing estimates for selectivity on approximate
string matching queries on any distance measure.

8. CONCLUSION
We explore sampling techniques for selectivity estimation

of set similarity queries using traditional weighted similar-
ity measures, like TF/IDF. We show that straightforward ap-
proaches will not work better then exact solutions in prac-
tice, or will result in biased samples of very low accuracy.
We propose a novel algorithm based on consistent sampling
through hashing, that results in answers of very high qual-
ity. We also show experimentally that our approach works
very well for a large range of real datasets. As future work,
we plan to investigate if our techniques can be applied to
other similarity measures, like HMM and Jaccard.
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