
Parallelizing Query Optimization

Wook-Shin Han1 Wooseong Kwak1 Jinsoo Lee1 Guy M. Lohman2 Volker Markl2
1 Department of Computer Engineering, Kyungpook National University, Republic of Korea

2 IBM Almaden Research Center, San Jose, California

ABSTRACT
Many commercial RDBMSs employ cost-based query op-
timization exploiting dynamic programming (DP) to effi-
ciently generate the optimal query execution plan. How-
ever, optimization time increases rapidly for queries join-
ing more than 10 tables. Randomized or heuristic search
algorithms reduce query optimization time for large join
queries by considering fewer plans, sacrificing plan optimal-
ity. Though commercial systems executing query plans in
parallel have existed for over a decade, the optimization of
such plans still occurs serially. While modern micropro-
cessors employ multiple cores to accelerate computations,
parallelizing query optimization to exploit multi-core par-
allelism is not as straightforward as it may seem. The DP
used in join enumeration belongs to the challenging non-
serial polyadic DP class because of its non-uniform data de-
pendencies. In this paper, we propose a comprehensive and
practical solution for parallelizing query optimization in the
multi-core processor architecture, including a parallel join
enumeration algorithm and several alternative ways to allo-
cate work to threads to balance their load. We also introduce
a novel data structure called skip vector array to significantly
reduce the generation of join partitions that are infeasible.
This solution has been prototyped in PostgreSQL. Extensive
experiments using various query graph topologies confirm
that our algorithms allocate the work evenly, thereby achiev-
ing almost linear speed-up. Our parallel join enumeration
algorithm enhanced with our skip vector array outperforms
the conventional generate-and-filter DP algorithm by up to
two orders of magnitude for star queries–linear speedup due
to parallelism and an order of magnitude performance im-
provement due to the skip vector array.

1. INTRODUCTION
The success of relational database management systems

(RDBMSs) can largely be attributed to the standardization
of the SQL query language and the development of sophis-
ticated query optimizers that automatically determine the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

optimal way to execute a declarative SQL query by enu-
merating many alternative query execution plans (QEPs),
estimating the cost of each, and choosing the least expen-
sive plan to execute [18]. Many commercial RDBMSs such
as DB2 employ dynamic programming (DP), pioneered by
Selinger et al. [29]. Dynamic programming builds QEPs
“bottom up” and exploits the principle of optimality to prune
sub-optimal plans at each iteration (thereby saving space)
and to guarantee that the optimal QEP is found without
evaluating redundant sub-plans [12].

As the number of tables referenced in a query increases,
however, the number of alternative QEPs considered by a
DP-based optimizer can, in the worst case, grow exponen-
tially [13]. This means that many real-world workloads that
reference more than 20 tables (e.g., many Siebel queries)
would have prohibitive optimization times using current DP
optimization. In extreme cases (queries referencing a large
number of relatively small tables), the time to optimize a
query with DP may even exceed the time to execute it!
Although randomized or heuristic (e.g., greedy) search al-
gorithms [3, 13, 31, 33] reduce the join enumeration time
by not fully exploring the entire search space, this can re-
sult in sub-optimal plans that execute orders of magnitude
slower than the best plan, more than negating any savings
in optimization time by such heuristics. And while the plan
picked by the optimizer can sometimes be stored and re-
used, thereby amortizing the optimization cost over multi-
ple executions, changes to the parameters in the query or
the underlying database’s characteristics may make this ap-
proach sub-optimal, as well.

In an era in which new chips are achieving speed-up not
by increasing the clock rate but by multi-core designs [7, 32],
it seems obvious to speed up CPU-bound query optimiza-
tion by parallelizing it. Yet even though QEPs to execute a
query in parallel have been common in commercial products
for over a decade [6, 15], remarkably there have been no ef-
forts, to the best of our knowledge, to parallelize the query
optimization process itself! In the typical shared-nothing
or shared-memory multi-node system, a single coordinator
node optimizes the query, but many nodes execute it [10].

In this paper, we propose a novel framework to paral-
lelize query optimization to exploit multi-core processor ar-
chitectures whose main memory is shared among all cores.
Our goal is to allocate parts of the optimizer’s search space
evenly among threads, so that speed-up linear in the number
of cores can be achieved. Specifically, we develop a parallel
DP-based join enumerator that generates provably optimal
QEPs for much larger queries than can practically be op-

188

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

timized by today’s query optimizers (> 12 tables). While
parallelism doesn’t negate the inherent exponential nature of
DP, it can significantly increase the practical use of DP from
queries having less than 12 tables to those having more than
20 or 25 tables, depending upon how strongly connected the
query graph is, as we will see. Assigning the extra cores
to other, concurrent queries might increase throughput, but
would do nothing to improve the response time for individ-
ual queries, as our approach does.

Parallelizing query optimization that uses DP is not as
simple as it might first appear. As we will see in Section
2, the DP algorithm used in join enumeration belongs to
the non-serial polyadic DP class [8], which is known to be
very difficult for parallelization due to its non-uniform data
dependence [35]. Sub-problems in other applications of DP
depend on only a fixed number of preceding levels (mostly,
two), whereas sub-problems in join enumeration depend on
all preceding levels. Thus, existing parallel DP algorithms
[2, 5, 11, 34, 35] cannot be directly applied to our framework.
Therefore, we develop a totally new method for parallelizing
DP query optimization, which views join enumeration as a
series of self-joins on the MEMO table containing plans for
subsets of the tables (or quantifiers).

Parallel query optimization can speed up many other ap-
plications that exploit the query optimizer. It can help
feedback-based query optimization such as progressive op-
timization (POP) [10, 20], especially for queries that have
longer compilation time than execution time. Since POP re-
peatedly invokes an optimizer until it finds an optimal plan,
parallel optimization can speed up such queries. Automatic
physical database tools that exploit the query optimizer as
a “What if?” tool, such as index advisors, are dominated
by the time to re-optimize queries under different “What
if?” scenarios, and so will also enjoy significantly improved
execution times from parallelized query optimization.

Our contributions are as follows: 1) We propose the first
framework for parallel DP optimization that generates op-
timal plans. 2) We propose a parallel join enumeration al-
gorithm, along with various strategies for allocating por-
tions to different threads to even the load. 3) We propose
a novel index structure called a skip vector array and al-
gorithms that exploit it to speed up our parallel join enu-
meration algorithm, especially for star queries. 4) We for-
mally analyze why the various allocation schemes generate
different sizes of search spaces among threads; 5) We per-
form extensive experiments on various query topologies to
show that: (a) our parallel join enumeration algorithms al-
locate the work to threads evenly, thereby achieving almost
linear speed-up; and b) our parallel join enumeration al-
gorithm enhanced with our skip vector array outperforms
the conventional generate-and-filter DP algorithm used by
industrial-strength optimizers such as DB2 and PostgreSQL
by up to two orders of magnitude for star queries.

The rest of this paper is organized as follows. Section 2
reviews the current serial, DP-based join enumeration. Sec-
tion 3 gives an overview of our framework and our algorithm
for parallelizing DP-based join enumeration. The next two
sections give the details of an important subroutine to this
algorithm – Section 4 details the basic algorithm, and Sec-
tion 5 enhances the basic algorithm with the skip vector
array to avoid generating many joins that will be infeasible
because their quantifier sets aren’t disjoint. In Section 6, we
give a formal analysis of different strategies for allocating

work to threads. Section 7 summarizes our experimental re-
sults. We compare our contributions with related work in
Section 8, and conclude in Section 9.

2. DP BASED JOIN ENUMERATION
To understand how we parallelize query optimization, we

must first review how DP is used today in serial optimiza-
tion to enumerate join orders, as outlined in Algorithm 1,
which we call SerialDPEnum. SerialDPEnum generates
query execution plans (QEPs) in a ”bottom up” fashion [12].
It first generates different QEPs for accessing a single ta-
ble. Types of table access QEPs include a simple sequen-
tial scan, index scan, list prefetch, index ORing, and in-
dex ANDing [17]. SerialDPEnum then calls PruneP lans
to prune any plan QEP1 if there is another plan QEP2

such that cost(QEP1) > cost(QEP2), and whose proper-
ties (e.g., tables accessed, predicates applied, ordering of
rows, partitioning, etc.) subsume those of QEP1 (Line 3).
SerialDPEnum then joins these best QEPs to form larger
QEPs, and iteratively joins those QEPs together to form
successively larger QEPs. Each QEP can be characterized
by the set of tables, (or quantifiers), that have been accessed
and joined by that QEP. QEPs for a given quantifier set are
maintained in an in-memory quantifier set table (often called
MEMO). Each entry in MEMO contains a list of QEPs for a
quantifier set, and the entry typically is located by hashing
the quantifier set.

To produce a QEP representing quantifier sets of size
S, SerialDPEnum successively generates and then joins
quantifier sets smallQS and largeQS of size smallSZ and
largeSZ = S − smallSZ, respectively, where smallSZ can
vary from 1 up to half the size of S (bS/2c). At each it-
eration, subroutine CreateJoinP lans does the bulk of the
work, generating and estimating the cost of all join QEPs
between the two given sets of quantifiers, smallQS and
largeQS, including QEPs in which either quantifier set is
the outer-most (left input to the join) and alternative join
methods (Line 13). SerialDPEnum iteratively increases
the size S of the resulting quantifier set until it obtains the
optimal QEP for all N quantifiers in the query.

Algorithm 1 SerialDPEnum
Input: a connected query graph with quantifiers q1, · · · , qN

Output: an optimal bushy join tree
1: for i ← 1 to N
2: Memo[{qi}] ← CreateTableAccessPlans(qi);
3: PrunePlans(Memo[{qi}]);
4: for S ← 2 to N
5: for smallSZ ← 1 to bS/2c
6: largeSZ ← S − smallSZ;
7: for each smallQS of size smallSZ
8: for each largeQS of size largeSZ
9: if smallQS ∩ largeQS 6= ∅ then

10: continue; /*discarded by the disjoint filter*/
11: if not(smallQS connected to largeQS) then
12: continue; /*discarded by the connectivity filter*/
13: ResultingP lans ← CreateJoinPlans(

Memo[smallQS], Memo[largeQS]);
14: PrunePlans(Memo[smallQS ∪ largeQS], ResultingP lans);

15: return Memo[{q1, · · · , qN}];

Before calling CreateJoinP lans, SerialDPEnum first
checks whether the two quantifier sets smallQS and largeQS
can form a feasible join. To do so, a series of filters must
be executed. For a more detailed description of the fil-

189

ters, refer to reference [24]. The two most important fil-
ters are a disjoint filter (in Line 9) and a connectivity fil-
ter (in Line 11). The disjoint filter ensures that the two
quantifier sets smallQS and largeQS are disjoint. The con-
nectivity filter verifies that there is at least one join pred-
icate that references quantifiers in smallQS and largeQS.
Disabling the connectivity filter permits Cartesian products
in the resulting QEPs. Note that the DP formulation in
SerialDPEnum is a non-serial polyadic formulation, since
SerialDPEnum has two recursive sub-problems (polyadic)
(in Line 13), and sub-problems depend on all preceding lev-
els (non-serial) (loop beginning on Line 5).

3. OVERVIEW OF OUR SOLUTION
In order to achieve linear speed-up in parallel DP join

enumeration, we need to: (1) partition the search space
evenly among threads, and (2) process each partition in-
dependently without any dependencies among threads. Our
key insight is the following. In DP-based join enumeration,
each sub-problem depends only on the results of all pre-
ceding levels. By partitioning sub-problems by their sizes
– or, more precisely, the sizes of the resulting quantifier
sets – sub-problems of the same resulting size are mutu-
ally independent. Furthermore, as the number of quanti-
fiers increases, the number of sub-problems of the same size
grows exponentially. This is especially true for star and
clique queries, which will benefit most from parallel execu-
tion. In addition, each sub-problem of size S is constructed
using any combination of one smaller sub-problem of size
smallSZ and another sub-problem of size largeSZ, such
that S = smallSZ + largeSZ. Thus, we can further group
the partitioned sub-problems of the same resulting size by
the sizes of their two smaller sub-problems. In this way,
we can solve the sub-problems of the same size by execut-
ing joins between their smaller sub-problems. With this
approach, we can transform the join enumeration problem
into multiple theta joins, which we call multiple plan joins
(MPJs), in which the disjoint and connectivity filters consti-
tute the join conditions. Each MPJ is then parallelized us-
ing multiple threads without any dependencies between the
threads. Thus, by judiciously allocating to threads portions
of the search space for MPJ, we can achieve linear speed-up.

To illustrate this more concretely, regard the MEMO table
as a plan relation with two attributes, QS and PlanList. We
horizontally partition this plan relation (by construction)
into several partitions according to the size of the quantifier
set QS. Thus, each partition of the plan relation, called a
plan partition, has only tuples whose QS attributes are of
same size. Let PS denote the plan partition containing all
quantifier sets of size S. As before, we maintain a hash index
on the QS column to efficiently find the tuple in the plan
relation having a given quantifier set. The plan partition
PS is generated by performing bS/2c joins from the start
join between P1 and PS−1 to the end join between PbS/2c
and PS−bS/2c. Figure 1 shows the plan relation for a query
graph G. Since G has four quantifiers, we have four plan
partitions, P1 ∼ P4, as shown in Figure 1(b).

To parallelize the MPJ for PS , we need to assign parts of
the search space for the MPJ to threads. This step is called
search space allocation. There are many possible ways to
perform this allocation, some better than others. For ex-
ample, the MPJ for P4 in Figure 1 (b) must execute two
plan joins, one between P1 and P3, and the other join be-

Horizontal
Partitioning

Plan Relation for G

(b) Plan Partitions for PR.(a) Plan Relation PR for G.

QEP32, QEP33

QEP9, QEP10

QEP21

QEP27, QEP30

QEP31

QEP35

QEP17

QEP11

QEP4, QEP8

QEP3

QEP1, QEP2

PlanListQS

QEP32, QEP33

QEP9, QEP10

QEP21

QEP27, QEP30

QEP31

QEP35

QEP17

QEP11

QEP4, QEP8

QEP3

QEP1, QEP2

PlanListQS

4
3
2
1

QEP4, QEP8

QEP9, QEP10

QEP3

QEP1, QEP2

PlanListQS

4
3
2
1

QEP4, QEP8

QEP9, QEP10

QEP3

QEP1, QEP2

PlanListQS

3
2
1

QEP17

QEP21

QEP11

3
2
1

QEP17

QEP21

QEP11

3
2
1

QEP31

QEP27, QEP30

QEP32, QEP333
2
1

QEP31

QEP27, QEP30

QEP32, QEP33

q1

q2 q3

Query Graph G

q4

q1

q2 q3

Query Graph G

q4

1 QEP351 QEP35

P1

P2

P3

P4

q1
q2
q3
q4

q1q2
q1q3
q1q4

q1q2q3
q1q2q4
q1q3q4

q1q2q3q4

q1
q2
q3
q4

q1q2
q1q3
q1q4

q1q2q3
q1q2q4
q1q3q4

q1q2q3q4

Figure 1: Plan relation and its four plan partitions.

tween P2 and P2. If we try to evenly allocate all possible
pairs of quantifier sets to two threads as shown in Figure
2, the workload looks balanced (thread 1 has 10 pairs, and
thread 2 has 11 pairs). But in reality thread 2 will never
invoke CreateJoinP lans, because all of its pairs will be dis-
carded by the disjoint filter as infeasible! Thus, this seem-
ingly even allocation unfortunately would result in seriously
unbalanced workloads. This motivates us to more carefully
allocate search spaces to threads, as we investigate further
in Section 4.1. Note also that, as the number of quantifiers
increases, the number of times the disjoint filter is invoked
increases exponentially, dominating the join enumerator’s
performance. This motivates us to propose a novel index
called a skip vector array (SVA) that minimizes the number
of unnecessary invocations of the disjoint filter, as well as a
new flavor of MPJ that exploits the SVA, in Section 5.

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

P1 P3 thread 1

thread 2P2 P2

Figure 2: Allocating search spaces for building P4 to
two threads.

Algorithm 2 outlines our parallelized join enumeration al-
gorithm, called ParallelDPEnum. We first allocate parts
of the MPJ search space to m threads (Line 5), each of which
then executes its allocated MPJs in parallel (Line 7). Here,
we can use one of two different flavors of MPJ, depending on
whether we exploit a skip vector array (SVA) or not. Both
types of MPJ are useful, depending on the sizes of the plan
partitions. If we choose not to exploit the SVA, at Line 7
we’ll invoke the “basic” flavor of MPJ without SVAs, which
will be explained in Section 4. Otherwise, we instead invoke
at Line 7 the “enhanced” flavor of MPJ that exploits SVAs,
which will be explained in Section 5. Once we’ve completed
this parallel execution of MPJs for each size of quantifier
sets, we need to merge results and prune expensive QEPs in
the plan partition (Line 9). Then, if we are performing the
SVA-enhanced MPJs, we must build an SVA for the plan
partition we just constructed (Line 11), as will be explained
in Section 5.1, to be exploited in subsequent MPJs. Note
that the unit of allocation to threads in the SVA-enhanced
MPJ is a pair of partitioned SVAs, whereas the unit of allo-
cation to threads in the basic MPJ (without SVAs) is a pair
of tuples.

190

Algorithm 2 ParallelDPEnum
Input: a connected query graph with quantifiers q1, · · · , qN

Output: an optimal bushy join tree
1: for i ← 1 to N
2: Memo[{qi}] ← CreateTableAccessPlans(qi);
3: PrunePlans(Memo[{qi}]);
4: for S ← 2 to N
5: SSDVs ← AllocateSearchSpace(S, m);/*SSDVs: search space

description vectors allocated for m threads */
6: for i ← 1 to m /*Execute m threads in parallel*/
7: threadPool.SubmitJob(MutiplePlanJoin(SSDVs[i], S));
8: threadPool.sync();
9: MergeAndPrunePlanPartitions(S);

10: for i ← 1 to m
11: threadPool.SubmitJob(BuildSkipVectorArray(i));
12: threadPool.sync();

13: return Memo[{q1, · · · , qN}];

4. MULTIPLE PLAN JOIN
In our parallel DP optimizer, two important functions –

AllocateSearchSpace and MultipleP lanJoin – still need to
be defined. We first propose in Section 4.1 judicious ways
to allocate plan joins to threads (AllocateSearchSpace in
ParallelDPEnum). Then in Section 4.2, we detail the basic
algorithm (without the skip vector array enhancement) for
MultipleP lanJoin in ParallelDPEnum.

We assume that elements in a quantifier set are sorted in
increasing order of their quantifier numbers, and thus sets
can be regarded as strings. We also assume that each plan
partition is sorted in lexicographical order of the quantifier
sets.

4.1 Search Space Allocation Schemes
We compare four different schemes for allocating portions

of the join enumeration space to threads: total sum, equi-
depth, round-robin outer, and round-robin inner. Unlike a
shared-nothing environment, in which tuples must be phys-
ically allocated to a thread on a specific node, we need
only logically allocate partitions of the search space to each
thread, because those partitions are stored in memory that
is shared among cores.

4.1.1 Total Sum Allocation
When building the plan partition PS in MPJ, there are

bS/2c plan joins. Thus, the size of the search space for

building PS is
∑bS/2c

smallSZ=1 (|PsmallSZ | × |PS−smallSZ |).
Given m threads, with total sum allocation, we equally

divide the search space into m smaller search spaces, and
allocate them to the m threads. Each thread Ti executes
MPJ for the i-th search space allocated. Figure 2 in Section
3 shows two allocated search spaces for building P4 using
total sum allocation.

This allocation method is useful when the number of Create-
JoinP lans is evenly distributed among threads. However,
depending on the topologies of the query graph, each plan
join in the MPJ may invoke a considerably different number
of CreateJoinP lans. To remedy this, we propose a concept
of stratified allocation. Formal analysis about different allo-
cation schemes for different query topologies will be given
in Section 6.

4.1.2 Stratified Allocation
Stratified allocation divides the search space of MPJ for

PS into smaller strata, and then applies an allocation scheme
to each stratum. Each stratum corresponds to the search

space of one plan join in MPJ, and thus the number of strata
is bS/2c. Stratified allocation more evenly spreads the num-
ber of actual CreateJoinP lans invocations among threads
than does total sum allocation. We propose the following
three different stratified allocation schemes.

Equi-Depth Allocation
Given m threads, equi-depth allocation divides the whole

range of the outer loop in each plan join between PsmallSZ

and PlargeSZ into smaller contiguous ranges of equal size.
That is, with equi-depth allocation, each thread loops through

a range of size |PsmallSZ |
m

in the outer loop.
This allocation scheme is useful when the size of the outer

is divisible by the number of threads, and the number of
invocations of CreateJoinP lans are similar for contiguous
and equally-partitioned ranges.

Round-Robin Outer Allocation
Given m threads, round-robin outer allocation logically

assigns the k-th tuple in the outer partition to thread k
mod m. As with equi-depth allocation, each thread loops

through a range of size |PsmallSZ |
m

in the outer loop.
With round-robin outer allocation, outer tuples are dis-

tributed randomly across threads. Thus, this allocation
scheme works well even when there is skew in the number
of CreateJoinP lans invocations for different outer rows in
the plan join. However, as in star queries, if the number of
outer tuples is small and is not divisible by m, then some
threads will have an extra outer tuple, and hence would in-
voke a considerably larger percentage of CreateJoinP lans
than those without that extra row. This phenomenon will
be explained further in Section 6.

Round-Robin Inner Allocation
Given m threads, round-robin inner allocation logically

assigns a join pair (ti, t′j) to thread (j mod m), where t′j is
the j-th tuple in the inner plan partition. Unlike all other
allocation methods, each thread using this allocation scheme
loops through the entire range of the outer loop of MPJ,
but inner tuples are distributed randomly across threads.
This has an effect similar to randomly distributing all join
pairs in a plan join across threads. Therefore, this scheme
provides the most uniform distribution of CreateJoinP lans
invocations among threads, regardless of query topologies.

4.2 Basic MPJ
Since the MPJ algorithm is executed in memory, it must

be very cache conscious to make the best use of the CPU’s
cache. We therefore base MPJ upon the block nested-loop
join [14], which is considered to be one of the fastest cache-
conscious, in-memory joins [30], and we physically cluster
tuples in plan partitions using arrays. The join enumera-
tors of conventional optimizers, such as those of DB2 and
PostgreSQL [25], effectively use a tuple-based nested-loop
method and are less cache conscious, so suffer more cache
misses than our approach, especially for large plan parti-
tions. Note that those join enumerators were developed be-
fore cache-conscious techniques emerged. In a block-nested
loop join of relations R1 and R2, the inner relation R2 is
logically divided into blocks, and then, for each block B in
the relation R2, it performs the tuple-based nested-loop join
over B and the outer relation R1.

To represent an allocated search space for each thread, we
introduce a data structure called the search space descrip-
tion vector (SSDV). This vector is computed according to

191

the chosen search space allocation scheme described in Sec-
tion 4.1. Each entry in SSDV gives the parameters for one
problem to be allocated to a thread, in the form of a quintu-
ple: 〈smallSZ, [stOutIdx,stBlkIdx,stBlkOff], [endOutIdx,end-

BlkIdx,endBlkOff], outInc, inInc〉. Here, smallSZ corre-
sponds to a plan join between PsmallSZ and PS−smallSZ ;
[stOutIdx,stBlkIdx,stBlkOff] specifies the start outer tuple
index, the start block index, and the offset of the start in-
ner tuple in the block; [endOutIdx,endBlkIdx,endBlkOff]
gives the end outer tuple index, the end block index, and
the offset of the end inner tuple in the block; and outInc

and inInc specify increasing step sizes for the loops over
the outer and inner plan partitions, respectively. Due to
space limitations, we omit detailed explanations of how to
compute the SSDV for each of the search space allocation
methods discussed above.

Example 1. Recall Figure 2 where total sum allocation
is used. For ease of explanation, let the block size be the size
of the inner plan partition (= tuple-based nested loop). The
SSDV for thread 1 is {〈1, [1,1,1], [4,1,1], 1, 1〉, 〈2, [-1,-1,-
1], [-1,-1,-1], 1, 1〉}. The first entry in the SSDV represent
the first 10 pairs as shown in Figure 2. Since thread 1 does
not execute a plan join between P2 and P2, ranges in the
second entry are set to [-1,-1,-1]. The SSDV for thread 2
is {〈1, [4,1,2], [4,1,3], 1, 1〉, 〈2, [1,1,1], [3,1,3], 1, 1〉}. The
first entry represents the 11th and 12th pairs, and the second
represents all 9 pairs for a plan join between P2 and P2.

Algorithm 3 represents a basic MultipleP lanJoin (MPJ)
that can be used with the various allocation schemes dis-
cussed in Section 4.1. The inputs of the algorithm are an
SSDV and the size S of quantifier sets for the plan partition
to build. The loop iterates over the SSDV , calling Plan-
Join. In PlanJoin, the first loop iterates over blocks in the
inner plan partition PS−smallSZ . The second loop iterates
over tuples in the outer plan partition PsmallSZ . The last
loop iterates over tuples in the current block of the outer
relation. According to the current block number and the
current offset, we compute ranges for outer tuples (Line 5)
and the offsets for inner tuples in the block (Line 7). We
omit detailed explanations of how to compute these values,
which is not the focus of our paper. When smallSZ =
largeSZ, we can use a simple optimization called NoInner-
Preceding, since the plan join becomes a self-join [25]. That
is, we skip any cases where the index of the inner tuple ti ≤
that of the outer tuple to. We used NoInnerPreceding in all
experiments in Section 7; however, for ease of explanation,
we do not show this distinction in the algorithm.

5. ENHANCED MULTIPLE PLAN JOIN
The basic MPJ in Section 4 requires invoking the disjoint

filter for all possible pairs of tuples in the inner and outer
plan partitions. Furthermore, as the number of quantifiers
increases, the number of these disjoint filter invocations in-
creases exponentially, especially in star queries, dominating
the overall performance.

To measure the impact of both the number and the se-
lectivity of these filter invocations, we performed some ex-
periments for star queries as the number of quantifiers in-
creased. Figure 3(a) confirms that the number of invocations
of the disjoint filter increases exponentially with the num-
ber of quantifiers. Figure 3(b) shows that the selectivity of
the disjoint filter decreases exponentially as the number of

Algorithm 3 MultiplePlanJoin
Input: SSDV , S
1: for i ← 1 to bS/2c
2: PlanJoin(SSDV [i], S);

Function PlanJoin

Input: ssdvElmt, S
1: smallSZ ← ssdvElmt.smallSZ;
2: largeSZ ← S − smallSZ;
3: for blkIdx ← ssdvElmt.stBlkIdx to ssdvElmt.endBlkIdx
4: blk ← blkIdx-th block in PlargeSZ ;
5: 〈stOutIdx, endOutIdx〉 ← GetOuterRange(ssdvElmt, blkIdx);
6: for to ← PsmallSZ [stOutIdx] to PsmallSZ [endOutIdx]

step by ssdvElmt.outInc
7: 〈stBlkOff, endBlkOff〉

← GetOffsetRangeInBlk(ssdvElmt, blkIdx, offset of to);
8: for ti ← blk[stBlkOff] to blk[endBlkOff]

step by ssdvElmt.inInc
9: if to.QS ∩ ti.QS 6= ∅ then continue;
10: if not(to.QS connected to ti.QS) then continue;
11: ResultingP lans ← CreateJoinPlans(to, ti);
12: PrunePlans(PS , ResultingP lans);

quantifiers increases. We observed a similar trend for vari-
ants of star queries, such as snowflake queries, which occur
frequently in enterprise data warehouses. This escalating
cost for invoking the disjoint filter motivated us to develop
Skip Vectors, and the enhanced MPJ algorithm that uses
them, to minimize unnecessary invocations of the disjoint
filter.

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10
 1e+11

 10 12 14 16 18 20#
of

 d
is

jo
in

t f
ilt

er
 c

al
ls

of quantifiers

(a) # of disjoint filter calls.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 12 14 16 18 20

se
le

ct
iv

ity

of quantifiers

(b) Selectivities.

Figure 3: Disjoint filter selectivity tests for star
queries by varying the number of quantifiers.

5.1 Skip Vector Array
To avoid unnecessary invocations of the disjoint filter, we

introduce a new index structure, called a Skip Vector, for
speeding retrieval of disjoint quantifier sets. We augment
each row in the plan partition with a Skip Vector for the
quantifier set in that row. Collectively, the Skip Vectors for
all rows in a plan partition are called the Skip Vector Array
(SVA). The ith element of the Skip Vector for any given
quantifier set qs gives the row k of the first quantifier set
that does not contain the ith element of qs. Since we num-
ber quantifiers in a specific order and maintain quantifier
sets for a plan partition in lexicographical order, the Skip
Vector thus enables us to skip large groups of quantifier sets
that are known to contain any element of a given quantifier
set qs. In order to cluster together quantifiers likely to be
joined together, we initially number quantifiers in the query
graph in depth-first order, starting from the node having the
maximum number of outgoing edges. For example, the hub
node in a star query would typically be numbered one, since
it usually has the maximum number of outgoing edges.

Let us define the Skip Vector more precisely. In the fol-
lowing, we will represent quantifier sets as text strings. For
example, a quantifier set {q1, q3, q5} is represented as a string
q1q3q5.

The i-th row of plan partition PS thus contains its quanti-
fier set PS [i].QS and its corresponding Skip Vector PS [i].SV ,

192

as well as the plan list for PS [i].QS. Then element j of
PS [i].SV , PS [i].SV [j], is defined as

min {k|PS [i].QS[j] does not overlap PS [k].QS, k > i} .

Example 2. Consider plan partition P3 in Figure 4. The
Skip Vector is shown as the third column of the plan parti-
tion. Consider the first entry of the first skip vector P3[1].SV [1]
(for quantifier set q1q2q3), which is 8. This indicates that
if any quantifier set qs matches P3[1].QS on its first ele-
ment (q1), then qs can skip to row 8 (P3[8]), thereby bypass-
ing rows 2 through 7 in P3, because their quantifer sets all
start with the same quantifier (q1). Similarly, if qs matches
on the first two elements (q1q2), then the second element,
P3[1].SV [2], which contains 5, points to the first row (5) in
P3 at which the prefix q1q2 changes to another value (q1q3).

7…6
87
9…8

6…5
5…4

QS

3
2
1

4
3
2

SV

…

…

…
PlanList

7…6
87
9…8

6…5
5…4

QS

3
2
1

4
3
2

SV

…

…

…
PlanList

999…8
888…7

101010…9

788…6
868…5
5
4
3
2

58…4
5
5
5

QS

3
2
1

8
8
8

SV

…

…

…
PlanList

999…8
888…7

101010…9

788…6
868…5
5
4
3
2

58…4
5
5
5

QS

3
2
1

8
8
8

SV

…

…

…
PlanListP1 P3

q1
q2
q3
q4
q5
q6
q7
q8

q1q2q3
q1q2q4
q1q2q5
q1q2q6
q1q3q4
q1q4q7
q1q4q8
q2q5q6
q4q7q8

Figure 4: Example SVAs.

Since the plan partition is sorted in lexicographical or-
der, its SVA can be constructed in linear time, whenever
the number of quantifiers in a query graph is constant. To
compute the indexes for skip vectors efficiently, the algo-
rithm BuildSkipVectorArray constructs skip vectors back-
wards, that is, from the last skip vector to the first one. Sup-
pose that we are constructing the i-th skip vector PS [i].SV of
PS . We will have already constructed from the (i+1)-th
skip vector of PS to its end. If PS [i].QS[j] does not overlap
PS [i + 1].QS, then i + 1 is assigned to PS [i].SV [j]. Oth-
erwise, – i.e., if PS [i].QS[j] is equal to PS [i + 1].QS[l] for
some l – PS [i + 1].SV [l] is assigned to PS [i].SV [j]. For ex-
ample, consider P3[4].SV . P3[5].SV [1](=8) is assigned to
P3[4].SV [1], since P3[4].QS[1] (=q1) is equal to P3[5].QS[1].
P3[4].SV [2] is assigned to 5, since P3[4].QS[2](=q2) does
not overlap P3[5].QS(=q1q3q4). Similarly, P3[4].SV [3] is as-
signed to 5. Since quantifier sets are lexicographically or-
dered, the time complexity of constructing a skip vector is
O(S).

Theorem 1. Given a plan partition PS, the time com-
plexity of BuildSkipVectorArray is O(|PS | × S).

Now, we describe how to use the SVA in our parallel DP
join enumerator. To use a pair of partitioned SVAs as the
unit of allocation to threads, we first partition each plan
partition into sub-partitions. To support MPJ with SVA
using total sum allocation or equi-depth allocation, the plan
partition needs to be partitioned using equi-depth partition-
ing. To support MPJ with SVA using round-robin inner or
outer allocation, the plan partition needs to be partitioned
using round-robin partitioning. Ideally, the total number
of sub-partitions for a plan partition should be a multiple
of the number of threads, in order to assign an equal num-
ber of sub-partitions pairs to threads when we use NoInner-
Preceding optimization. We denote the j-th sub-partition
of PS as P{S,j}. Next, we build the SVAs for all the sub-
partitions. Here, for fast clustered access, we can embed skip

vectors within sub-partitions. Figure 5 shows an example
of partitioned SVAs using the equi-depth partitioning. The
plan partition P3 is first partitioned into four sub-partitions,
P{3,1}, P{3,2}, P{3,3}, and P{3,4}. We next build embedded
SVAs for the four sub-partitions.

…q2q5q6

…q1q4q8

…q4q7q8

…q1q4q7

…q1q3q4

…q1q2q6

q1q2q5

q1q2q4

q1q2q3

QS

…

…

…
PlanList

…q2q5q6

…q1q4q8

…q4q7q8

…q1q4q7

…q1q3q4

…q1q2q6

q1q2q5

q1q2q4

q1q2q3

QS

…

…

…
PlanList P3

q1q2q4

q1q2q3

QS

…

…

SV

…

…
PlanList

q1q2q4

q1q2q3

QS

…

…

SV

…

…
PlanList

……q1q2q6

q1q2q5

QS

…

SV
…

PlanList

……q1q2q6

q1q2q5

QS

…

SV
…

PlanList

……q1q4q7

……q1q3q4

QS SVPlanList

……q1q4q7

……q1q3q4

QS SVPlanList

……q2q5q6

……q1q4q8

……q4q7q8

QS SVPlanList

……q2q5q6

……q1q4q8

……q4q7q8

QS SVPlanList

Equi-depth partitioning
& building SVAs

P{3,1}

P{3,2}

P{3,3}

P{3,4}

Figure 5: An example of a plan partition divided
into four sub-partitions.

5.2 MPJ With Skip Vector Array
We first explain how to allocate search spaces when MPJ

with SVA is executed. As explained in the previous section,
the unit of allocation to threads is a pair of partitioned SVAs.
Except for using a different allocation unit, we can reuse the
same allocation schemes developed in Section 4.1.

Algorithm 4 represents the enhanced MPJ algorithm, Multi-
plePlanJoinWithSVA, that exploits SVAs. The inputs of the
algorithm are an SSDV and the size S of quantifier sets
for the plan partition to build. The loop iterates over the
SSDV , calling PlanJoinWithSVA. In PlanJoinWithSVA, the
first loop iterates over sub-partitions in the outer plan parti-
tion PsmallSZ . The second loop iterates over sub-partitions
in the inner plan partition PlargeSZ and invokes Skip Vector
Join SVJ subroutine, described next, for P{smallSZ,outerPartIdx}
and P{largeSZ,innerPartIdx}.

Algorithm 4 MultiplePlanJoinWithSVA
Input: SSDV , S
1: for i ← 1 to bS/2c
2: PlanJoinWithSVA(SSDV [i], S);

Function PlanJoinWithSVA
Input: ssdvElmt, S
1: smallSZ ← ssdvElmt.smallSZ;
2: largeSZ ← S − smallSZ;
3: for outerPartIdx ← ssdvElmt.stOuterPartIdx to

ssdvElmt.endOuterPartIdx step by ssdvElmt.outInc
4: 〈stInnerPartIdx, endInnerPartIdx〉 ←

GetInnerRange(ssdvElmt, outerPartIdx);
5: for innerPartIdx ← stInnerPartIdx to

endInnerPartIdx step by ssdvElmt.inInc
6: outerPartSize ← |P{smallSZ,outerP artIdx}|;
7: innerPartSize ← |P{largeSZ,innerP artIdx}|;
8: SVJ(〈P{smallSZ,outerP artIdx}, 1, outerPartSize〉,

〈P{largeSZ,innerP artIdx}, 1, innerPartSize〉);

Note that there are two differences between MultiplePlan-
Join (Section 4.2) and MultiplePlanJoinWithSVA algorithms.
First, MultiplePlanJoinWithSVA uses loops over sub-parti-
tions, whereas MultiplePlanJoin uses loops over tuples. Sec-
ondly, MultiplePlanJoinWithSVA invokes the Skip Vector
Join subroutine for each inner and outer sub-partition to
skip over partitions that won’t satisfy the disjoint filter,
whereas MultiplePlanJoin performs a block nested-loop join
on all pairs, resulting in many unnecessary invocations of
the disjoint filter. Apart from these differences, the two al-
gorithms are the same.

Algorithm 5 defines the Skip Vector Join (SVJ) subrou-
tine, which is an indexed join for two sub-partitions exploit-
ing their embedded SVAs. The inputs of the algorithm are

193

(a) the inner/outer sub-partitions P{smallSZ,outerPartIdx} (=
R1) and P{largeSZ,innerPartIdx} (=R2), (b) the start indexes
idxR1 and idxR2 of tuples in R1 and R2, respectively, and
(c) the end indexes endIdxR1 and endIdxR2 of R1 and R2,
respectively. SVJ checks whether two tuples are disjoint
(Lines 3-4). If so, SVJ invokes the connectivity filter and
generates join results (Lines 5-7). After that, SVJs are re-
cursively called to join all remaining join pairs of the two
sub-partitions (Lines 8-9). If the two tuples are not disjoint,
we first obtain skip indexes for the first overlapping element
(Lines 11-15). Then, we skip all overlapping pairs using the
skip indexes obtained, and recursively call SVJs. (Lines 16-
17). Note that, for fast performance, the iterative version of
SV J is used in our experiments.

Algorithm 5 SVJ (Skip Vector Join)

Input: 〈P{smallSZ,outerP artIdx}(= R1), idxR1 , endIdxR1 〉,〈P{largeSZ,innerP artIdx}(= R2), idxR2 , endIdxR2 〉
1: S ← smallSZ + largeSZ;
2: if idxR1 ≤ endIdxR1 and idxR2 ≤ endIdxR2 then

3: overlapQS ← R1[idxR1].QS ∩ R2[idxR2].QS;

4: if overlapQS = ∅ then /*the case for join*/
5: if (R1[idxR1].QS connected to R2[idxR2].QS) then

6: ResultingP lans ← CreateJoinPlans(R1[idxR1], R2[idxR2]);

7: PrunePlans(PS , ResultingP lans);

8: SVJ(〈R1, idxR1 + 1, endIdxR1 〉,〈R2, idxR2 , endIdxR2 〉);
9: SVJ(〈R1, idxR1 , idxR1 〉,〈R2, idxR2 + 1, endIdxR2 〉);

10: else /*the case for skip*/
11: elmt ← FirstElmt(overlapQS);
12: lvlR1 ← GetLevel(R1[idxR1].QS, elmt);

13: lvlR2 ← GetLevel(R2[idxR2].QS, elmt);

14: jpIdxR1 ← R1[idxR1].SV [lvlR1];

15: jpIdxR2 ← R2[idxR2].SV [lvlR2];

16: SVJ(〈R1, jpIdxR1 , endIdxR1 〉,〈R2, idxR2 , endIdxR2 〉);
17: SVJ(〈R1, idxR1 , min(jpIdxR1 − 1, endIdxR1)〉,

〈R2, jpIdxR2 , endIdxR2 〉);

Example 3. Consider the SVJ for plan partitions P1 and
P3 exploiting their SVAs in Figure 4. Suppose that SV J(〈P1,
1, 8〉, 〈P3, 1, 9〉) is invoked. Since the first entries of the par-
titions overlap (q1 and q1q2q3), we skip to the second en-
try of the first partition using P1[1].SV [1](= 2) and skip to
the eighth entry of the second partition using P3[1].SV [1](=
8). We then recursive call SV J(〈P1, 2, 8〉, 〈P3, 1, 9〉) and
SV J(〈P1, 1, 1〉, 〈P3, 8, 9〉). For SV J(〈P1, 1, 1〉, 〈P3, 8, 9〉),
since the first entry in P1 and the eighth entry in P3 are dis-
joint, we join the two quantifiers, and then, recursively call
SV J(〈P1, 2, 1〉, 〈P3, 8, 9〉) and SV J(〈P1, 1, 1〉, 〈P3, 9, 9〉).

Theorem 2. Given two plan partitions PM and PN , Al-
gorithm SVJ correctly generates all feasible QEPs using PM

and PN for the plan partition PM+N .

As an interesting alterative method for SVJ, we could
exploit inverted indexing techniques used for documents to
efficiently determine overlapping quantifier sets for a given
quantifier set qs [9, 19]. In this approach, sets are treated
as documents, and elements as keywords. We first com-
pute the corresponding inverted list for each quantifier in
qs. Next, we UNION all of these inverted lists, that is,
all overlapping sets. By then accessing the complement of
the UNIONed set, we will find all disjoint sets for qs. By
storing inverted lists as bitmaps, we can obtain the comple-
ment of the UNIONed set very easily. Here, we need to exe-
cute bit operations to find bits having 0 from the UNIONed
set. Given two partitions PsmallSZ and PlargeSZ , the time
complexity of this inverted-index scheme is O(|PsmallSZ | ×

smallSZ×IlargeSZ), where smallSZ is the size of the quan-
tifier set in PsmallSZ and IlargeSZ is the size of the inverted
list for PlargeSZ . Observe that IlargeSZ is in proportion
to |PlargeSZ |. The time complexity of the basic MPJ is
O(|PsmallSZ | × |PlargeSZ |). Thus, the inverted-index vari-
ant of MPJ outperforms the basic MPJ when |PlargeSZ | >
smallSZ×IlargeSZ . The time complexity of SVJ is O(# of
disjoint pairs). So SVJ is much faster than the other two
join methods for joins over large plan partitions. Note also
that the SVA can be used for both one-index and two-index
joins. However, we do not use the algorithm in [19] to com-
pute the complement of a set that requires two inverted in-
dexes, because of the expense of building a two-dimensional
bitmap for the set that can be constructed only after a join.

6. FORMAL ANALYSIS OF DIFFERENT AL-
LOCATION SCHEMES

In this section, we formally analyze why the different
search allocation schemes generate different numbers of Create-
JoinP lans among threads. For a given allocation scheme,
the number of CreateJoinP lans invoked per thread is de-
termined by the topology of the query graph. Figure 6 shows
four different representative query topologies: linear, cycle,
star, and clique.

…

q1 q2 qN

(a) Linear Query

q1 q2 qN

(b) Cycle Query

q2 q3

q1

qN

(c) Star Query

q2

q3

q1

qN

(d) Clique Query

……

…

Figure 6: Different query graph topologies.

For each quantifier set qs in the outer plan partition PsmallSZ ,
we calculate NumCJP (qs), which is the number of Create-
JoinP lans invoked for the quantifier set qs. We note that
CreateJoinP lans is called only when two quantifiers to join
are disjoint and connected. We assume that both plan par-
titions are sorted in lexicographical order. We also assume
that the NoInnerPreceding optimization is not used. In
Section 7, we analyze the effect of the NoInnerPreceding
optimization.

Linear Query

Theorem 3. Consider a linear query with N quantifiers
where nodes in the query graph are numbered from one to
N in depth first order, starting with the node having only
one connected node as shown in Figure 6 (a). Given any
plan join between PsmallSZ and PlargeSZ for PS such that
S = smallSZ + largeSZ, consider a quantifier set qs in
the outer plan partition, where qs = {qai , ..., qai+smallSZ−1}.
Case 1) If (ai < largeSZ+1)∧(ai > N−S+1), NumCJP (qs)
=0; Case 2) if largeSZ+1 ≤ ai ≤ N−S+1, NumCJP (qs) =
2; Case 3) otherwise, NumCJP (qs) = 1.

Proof: See Appendix B.

With Theorem 3, we see that quantifier sets in differ-
ent contiguous ranges in Cases 1 ∼ 3 invoke three differ-
ent numbers of CreateJoinP lans. With equi-depth alloca-
tion, contiguous ranges are allocated to threads, and thus it
would invoke skewed numbers of CreateJoinP lans among
the threads. With total sum allocation, all outer tuples in
bS/2c plan joins are allocated to threads in equi-depth fash-
ion across joins. Thus, it would invoke very similar numbers

194

of CreateJoinP lans among threads. The round-robin in-
ner (or outer) schemes also invoke almost similar numbers
of CreateJoinP lans among threads, since inner (or outer)
tuples in any contiguous range are randomly distributed.

To verify our analysis, we performed experiments using
all four allocation schemes for a linear query with 32 quan-
tifiers. In addition, we plotted the curve generated by an
optimal “oracle” allocation scheme that always divides the
total number of CreateJoinP lans evenly among threads.
Here, we use 8 threads. Figure 7 plots the maximum num-
ber of CreateJoinP lans invocations made by all threads as
a function of the size of the quantifier sets being built. With
the exception of equi-depth allocation, all other allocation
schemes generate very similar numbers of CreateJoinP lans
invocations among threads as does the oracle allocation.

Equi-depth Round-robin inner OracleRound-robin outerTotal sum

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

of

 C
re

at
eJ

oi
nP

la
ns

 c
al

ls

size of quantifier set

(a) Linear query with 32
quantifiers.

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

of

 C
re

at
eJ

oi
nP

la
ns

 c
al

ls

size of quantifier set

(b) Cycle query with 32
quantifiers.

 0

 50000

 100000

 150000

 200000

 250000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

of

 C
re

at
eJ

oi
nP

la
ns

 c
al

ls

size of quantifier set

(c) Star query with 18 quan-
tifiers.

 0
 1e+006
 2e+006
 3e+006
 4e+006
 5e+006
 6e+006
 7e+006
 8e+006
 9e+006
 1e+007

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

of

 C
re

at
eJ

oi
nP

la
ns

 c
al

ls

size of quantifier set

(d) Clique query with 18
quantifiers.

Figure 7: Distribution of # of CreateJoinP lans invo-
cations by 8 threads for different allocation schemes.

Cycle Query

Theorem 4. Consider a cycle query with N quantifiers,
where nodes in the query graph are numbered from one to
N in depth-first order, as shown in Figure 6 (b). Given any
plan join between PsmallSZ and PlargeSZ for PS such that S
= smallSZ + largeSZ, consider a quantifier set qs in the
outer plan partition, where qs = {qai , ..., qai+smallSZ−1}. If
S = N , NumCJP (qs) = 1. Otherwise, NumCJP (qs) = 2.

Proof: See Appendix C.

In Theorem 4, it is clear that all allocation schemes gen-
erate the same CreateJoinP lans invocation numbers. We
can verify our analysis with experiments for a cycle query
with 32 quantifiers as in Figure 7(b).

Star query

Theorem 5. Consider a star query with N quantifiers
where nodes in the query graph are numbered from one to
N in depth first order as shown in Figure 6 (c). Given
any plan join between PsmallSZ and PlargeSZ for PS such
that S = smallSZ + largeSZ, consider a quantifier set qs
in the outer plan partition. Case 1) If (smallSZ > 1) ∨

((qs = {q1}) ∧ (largeSZ > 1)), NumCJP (qs) = 0; Case 2)
if qs = {q1} ∧ largeSZ = 1, NumCJP (qs) = N − 1; Case

3) otherwise, NumCJP (qs) =
(

N − 2
largeSZ − 1

)
.

Proof: See Appendix D.

With Theorem 5, we see that the number of CreateJoin-
Plans calls are extremely skewed with respect to smallSZ,
depending upon the allocation method. For total sum al-
location, the number of CreateJoinP lans invocations are
very skewed. For equi-depth and round-robin outer, threads
invoke different numbers of CreateJoinP lans depending on
whether outer tuples contain the hub quantifier or not. Note
that, with equi-depth and round-robin outer, the maximum
difference of outer tuples to process per thread is 1. This dif-
ference is negligible in other topologies, since b|PsmallSZ |/mc
(# of outer tuples to process per thread) is much larger than
m. However, in star queries, we can call CreateJoinP lans
only if |PsmallSZ | is the number of quantifiers, and thus,
b|PsmallSZ |/mc is also very small. Thus, this difference is
no longer negligible. With round-robin inner allocation, we
invoke nearly the same numbers of CreateJoinP lans among
threads, since we evenly partition inner tuples for each outer
tuple. Our analysis is verified by Figure 7(c).

Clique Query

Theorem 6. Consider a clique query with N quantifiers
where nodes in the query graph are numbered in depth first
order as shown in Figure 6 (d). Given any plan join with
PsmallSZ and PlargeSZ for PS such that S = smallSZ +
largeSZ, consider a quantifier set qs in the outer plan par-

tition. NumCJP (qs) =
(

N − smallSZ
largeSZ

)
.

Proof: See Appendix E.

All allocation methods except for total sum generate the
same invocation numbers of CreateJoinP lans among threads.
NumCJP (qs) for clique queries depends on the value of
smallSZ. Thus, total sum allocation generates consider-
ably different invocation numbers as shown in Figure 7(d).

7. EXPERIMENTS
The goals of our experiments are to show that: 1) our

algorithms significantly outperform the conventional serial
DP algorithm, in Section 7.1; and 2) both the basic and en-
hanced MPJ algorithms achieve almost linear speed-up, in
Sections 7.2 and 7.3, repectively. We evaluated four differ-
ent query topologies: linear, cycle, star, and clique. Since
smaller plan partitions rarely benefit from parallelism, our
parallel DP optimizer is invoked only when the sizes of plan
partitions exceed a certain threshold, ensuring that our so-
lution never slows down optimization.

All the experiments were performed on a Windows Vista
PC with two Intel Xeon Quad Core E5310 1.6GHz CPUs
(=8 cores) and 8 GB of physical memory. Each CPU has
two 4Mbyte L2 caches, each of which is shared by two cores.
We prototyped all algorithms in PostgreSQL 8.3 [25] to see
the performance trends in a real DBMS. We used the No-
InnerPreceding optimization, explained in Section 4.2, for
all experiments. That is, we skip any cases where the in-
dex of the inner tuple ti ≤ that of the outer tuple to. To
evenly distribute the number of disjoint filter calls among

195

threads under this optimization, round-robin outer alloca-
tion executes in a zig-zag fashion. That is, suppose that the
i(≥0)-th tuple in the outer partition is being assigned to
thread j (0≤j≤m-1). If bi/mc (=the number of tuples allo-
cated so far for the thread) is even, the next tuple index to
allocate for the thread is i+2m-2j-1; otherwise, the index is
i+2j+1. We also applied this technique to the round-robin
inner allocation that was used for all parallel algorithms.

Our performance metrics are the number of disjoint filter
invocations, the number of CreateJoinP lans invocations,
and the speed-up, where speed-up is defined as the execution
time of the serial algorithm divided by that of the parallel
algorithm. Table 1 summarizes the experimental parameters
and their values. We omit all experimental results for linear
and cycle queries, because the sizes of their plan partitions
are generally too small to benefit from parallelization. For
clique queries, we vary the number of quantifiers only up to
18 because optimization would take too long with the serial
optimizer, and the trends observed do not change when the
number of quantifiers is larger than 16.

Table 1: Experimental parameters and their values.
Parameter Default Range

query topology star, clique star, clique
of quantifiers 20, 18 10, 12, 14, 16, 18, 20
of threads 8 1 ∼ 8

7.1 Overall comparison of different algorithms
Experiment 1: Effect of # of quantifiers and query
topologies. Figure 8 shows our experimental results for
star and clique queries exploiting 8 threads, using our dif-
ferent allocation algorithms as the number of quantifiers in-
creases.

For star queries having ≤ 14 quantifiers, the basic MPJ
performs the best. However, as the number of quantifiers in-
creases over 16, plan partitions become big enough to benefit
from our SVA. Specifically, MPJ with SVA outperforms the
basic MPJ by up to 7.2 times, inverted index-based MPJ
by up to 3.8 times, and the conventional serial DP (Post-
greSQL DP join enumerator whose algorithm is outlined in
Algorithm 1) by up to 133.3 times. This is because, as the
number of quantifiers in the query increases, the number
of overlapping join pairs increases exponentially as well. In
another experiment using a star query with 22 quantifiers,
MPJ with SVA outperforms the basic MPJ by up to 18.1
times, inverted index-based MPJ by up to 10.2 times, and
the conventional serial DP by up to 547.0 times, from 14
hours 50 minutes to 98 seconds! For clique queries, the basic
MPJ slightly outperforms all other methods when the num-
ber of quantifiers ≤ 12. All parallel algorithms have almost
the same performance for clique queries having more than 12
quantifiers. This is because invocations of CreateJoinP lans
dominate the execution time in clique queries, and we used
the best allocation scheme, round-robin inner, for all parallel
algorithms.

7.2 Sensitivity analysis for basic MPJ
Experiment 2: Effect of # of quantifiers and query
topologies. Figure 9 shows the experimental results for
varying the number of quantifiers for star and clique queries
using 8 threads. The speed-up of the parallel basic MPJ
methods over the serial basic MPJ using various allocation
schemes is shown for star queries in Figure 9(a) and for

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 12 14 16 18 20

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

of quantifiers

MPJ with skip vector array (8 thread)
MPJ with inverted index (8 thread)
basic MPJ (8 thread)
conventional serial DP (1 thread)

(a) Star queries.

 0.1

 1

 10

 100

 1000

 10000

 10 12 14 16 18

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

of quantifiers

MPJ with skip vector array (8 thread)
MPJ with inverted index (8 thread)
basic MPJ (8 thread)
conventional serial DP (1 thread)

(b) Clique queries.

Figure 8: Experimental results using all different
algorithms (8 threads).

clique queries in Figure 9(b). With star queries, only round-
robin inner achieves linear speed-up when the number of
quantifiers ≥ 18. This is because plan partitions are large
enough to exploit 8 parallel threads, and round-robin inner
evenly allocates search spaces to threads. Since threads ac-
cess the same inner/outer plan partitions, we achieve 8.3
times speed-up for quantifier sets of size 20 with round-
robin inner, due to caching effects. Clique queries achieve
higher overall speed-ups than comparable star queries with
the same number of quantifiers because the numbers of Cre-
ateJoinPlans calls in clique queries are much larger than
those in equally-sized star queries. Note that the maximum
speedup for clique queries is about 7. This is because 1)
in clique queries, the number of invocations for CreateJoin-
Plans dominates performance, and 2) each thread accesses
the main memory using the per-thread memory manager, in
order to generate sub-plans in CreateJoinPlans, which then
results in some cache contention.

Equi-depth Round-robin innerRound-robin outerTotal sum

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 12 14 16 18 20

sp
ee

du
p

of quantifiers

(a) Star queries.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 12 14 16 18

sp
ee

du
p

of quantifiers

(b) Clique queries.

Figure 9: Experimental results for speed-up by vary-
ing the number of quantifiers (8 threads).

Figure 10 compares our three different performance met-
rics – the number of disjoint filter calls, the number of
CreateJoinP lans calls, and wall clock time – for a star
query with 20 quantifiers; and Figure 11 does the same for
the clique query with 18 quantifiers. These figures plot the
maximum performance metric among all threads as a func-
tion of the size of the quantifier sets being built.

The general trend of all plots in Figure 10(c) is that the
elapsed time first increases until the size of quantifier sets
reaches 11, and then decreases until the size reaches 15, af-
ter which it sharply increases. This trend is explained as
follows. The elapsed time mostly depends on the number of
invocations of both CreateJoinP lans and the disjoint fil-
ter. However, the cost of CreateJoinP lans is much higher
than that of the disjoint filter. As the size of the quantifier
sets increases, the number of the disjoint filter calls increases
exponentially for the star query, as shown in Figure 10(a).
At the same time, the number of CreateJoinP lans calls

196

Equi-depth Round-robin innerRound-robin outerTotal sum

 0

 5e+008

 1e+009

 1.5e+009

 2e+009

 2.5e+009

 3e+009

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of

 d
is

jo
in

t f
ilt

er
 c

al
ls

size of quantifier set

(a) # of disjoint filter calls.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of

 C
re

at
eJ

oi
nP

la
ns

 c
al

ls

size of quantifier set

(b) # of CreateJoinPlans calls.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

size of quantifier set

(c) Wall clock time.

Figure 10: Distributions of performance figures us-
ing basic MPJ for the star query (8 threads).

first increases until the quantifier set size is 11, and then
decreases, forming a bell shape, as in Figure 10(b). Com-
bining these two costs, we obtain plots such as in Figure
10(c). Note also that equi-depth allocation does not evenly
distribute the number of disjoint filter calls among threads,
since we applied the NoInnerPreceding optimization. This
optimization is used only when the plan is a self-join, and
thus we see a skewed number of disjoint filter calls when the
sizes of quantifier sets to build are even numbers.

Equi-depth Round-robin innerRound-robin outerTotal sum

 0

 1e+008

 2e+008

 3e+008

 4e+008

 5e+008

 6e+008

 7e+008

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

of

 d
is

jo
in

t f
ilt

er
 c

al
ls

size of quantifier set

(a) # of disjoint filter calls.

 0
 1e+006
 2e+006
 3e+006
 4e+006
 5e+006
 6e+006
 7e+006
 8e+006

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18#
of

 C
re

at
eJ

oi
nP

la
ns

 c
al

ls

size of quantifier set

(b) # of CreateJoinPlans calls.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

size of quantifier set

(c) Wall clock time.

Figure 11: Distributions of performance figures us-
ing basic MPJ for the clique query (8 threads).

For clique queries, the trend of plots in Figure 11(c) is the
same as that in Figure 11(b). This is because the number
of CreateJoinP lans calls is only 100 times smaller than the
number of disjoint filter calls, and the cost of CreateJoinP lans
is much higher than that of the disjoint filter.

Experiment 3: Effect of # of threads and query
topologies. Figure 12(a) shows the speed-up of the par-
allel basic MPJ with various allocation schemes over the
serial basic MPJ for star queries; Figure 12(b) shows the
same for clique queries.

Regardless of query topologies, round-robin inner allo-
cation achieves almost linear speed-up as the number of
threads increases. For star queries, the second best alloca-
tion is round-robin outer, the third is equi-depth, and total

sum allocation performs the worst, with a speed-up of 5.1
using 8 threads. For clique queries, all allocation methods
except total sum allocation achieve nearly the same perfor-
mance.

Equi-depth Round-robin innerRound-robin outerTotal sum

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

of threads

(a) Star query with 20
quantifiers.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

of threads

(b) Clique query with 18
quantifiers.

Figure 12: Experimental results for speed-up by
varying the number of threads.

7.3 Sensitivity analysis for Enhanced MPJ
Experiment 4: Effect of # of quantifiers and query
topologies. Figure 13 shows the performance of our En-
hanced MPJ with SVA for star and clique queries, varying
the number of quantifiers. Figure 13(a) shows the speed-
up of the parallel MPJ with SVA using various allocation
schemes among 8 threads, versus the serial MPJ with SVA
for star queries; Figure 13(b) does the same for clique queries.
The SVA reduces the cost of disjoint filter invocation to al-
most negligible. However, for star queries, merging results
after executing MPJ constitutes about 5% of the overall ex-
ecution time. Thus, we achieve 6.1 times speed-up with
round-robin inner for star queries. Attempting to reduce
the merging time would be interesting future work. Note
that equi-depth and round-robin outer perform comparably
to round-robin inner at 16 quantifiers, since 16 is divisible
by the number of threads (=8), and thus all threads process
an equal number of outer tuples.

Equi-depth Round-robin innerRound-robin outerTotal sum

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 12 14 16 18 20

sp
ee

du
p

of quantifiers

(a) Star queries.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 12 14 16 18

sp
ee

du
p

of quantifiers

(b) Clique queries.

Figure 13: Experimental results for speed-up by
varying the number of quantifiers (8 threads).

Figure14(a) analyzes the performance for our three per-
formance metrics. Again, the SVA reduces the number of
disjoint filter calls to near the theoretical lower bound. Thus,
the trend of plots in Figure 14(b) is the same as that in Fig-
ure 14(c). Clique queries have performance similar to that
of Figure 11, so we omit the figures for them.
Experiment 5: Effect of # of threads and query
topologies. The speed-up of the MPJ with SVA using
various allocation schemes over the serial MPJ with SVA
is shown in Figure 15(a) for star queries and in Figure 15(b)
for clique queries. The total sum allocation achieves only
3.46 times speed-up using 8 threads, since the performance
depends only on the number of CreateJoinP lans calls. For
the other allocation methods, trends in MPJ with SVA are
similar to those of the basic MPJ.

197

Equi-depth Round-robin innerRound-robin outerTotal sum

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of

 d
is

jo
in

t f
ilt

er
 c

al
ls

size of quantifier set

(a) # of disjoint filter calls.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of

 C
re

at
eJ

oi
nP

la
ns

 c
al

ls

size of quantifier set

(b) # of CreateJoinPlans calls.

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

size of quantifier set

(c) Wall clock time.

Figure 14: Distributions of performance measures
using enhanced MPJ for the star query (8 threads).

7.4 Summary and Discussion
In a series of tests, we have shown how our algorithms per-

form with different numbers of threads and quantifiers. By
judiciously allocating to threads portions of the search space
for MPJ, we have achieved almost linear speedup. That is,
wait time caused by the synchronization required in our best
algorithms proved to be immaterial for the different param-
eters we tested. Specifically, the enhanced MPJ algorithm
reduced the unnecessary disjoint filter calls to the theoret-
ical minimum, thereby optimizing the star query with 22
queries in a couple of minutes using only 8 threads.

For star and clique queries, the memory required doubles
as the number of quantifiers increases. The star query with
20 quantifiers used about 714 Mbytes of memory for our
parallel optimizer in PostgreSQL, whereas the clique query
with 18 quantifiers used about 1.47 Gbytes of memory. Post-
greSQL uses linked-list structures to represent join predi-
cates, residual predicates, and projected columns in plan
nodes, so each plan node has very long lists on these larger
queries. For example, the clique query with 18 quantifiers
has 153 join predicates! We can reduce this memory require-
ment significantly if we replace the linked-list representation
with a bit-map set representation that is common practice
in commercial DBMS optimizers. For example, such tech-
niques reduce the memory required for the star query with
20 quantifiers to only 520 Mbytes, and the clique query with
18 quantifiers to only 640 Mbytes. Since memory capacities
are increasing so quickly, the memory footprint of parallel
query optimization presents a minimal limitation, especially
on enterprise-class machines.

Thus, our parallel optimizer significantly increases the
number of quantifiers in a query that can practically be opti-
mized with DP from less than 12 to at least 22 and probably
25 quantifiers, significantly delaying the need to rely upon
sub-optimal heuristics for complex queries.

8. RELATED WORK
Many researchers have endeavored to minimize query op-

timization time using approximate search algorithms. Tabu
search was used in [23], iterative improvement in [13, 31, 33],
simulated annealing in [13, 33], and genetic algorithms in [3].
Others have tried to parallelize iterative local improvement

Equi-depth Round-robin innerRound-robin outerTotal sum

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

of threads

(a) Star query with 20
quantifiers.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

of threads

(b) Clique query with 18
quantifiers.

Figure 15: Experimental results for speedup by
varying the number of threads.

[16, 31]. However, unlike our DP-based parallel optimizer,
all these approaches do not fully explore the entire search
space, resulting in sub-optimal plans.

Programming language compilers use loop partitioning to
partition iterations in nested loops equally among processors
[1, 27], similar to our total sum allocation in the basic MPJ.
This approach works well only when each iteration has the
same cost, since the compiler has no way to analyze differ-
ent processing costs per iteration. However, in MPJ, each
iteration may have different processing costs, depending on
whether CreateJoinP lans is invoked, in which case the to-
tal sum allocation performs poorly. This paper has formally
analyzed the performance of allocation schemes other than
the simplistic total sum, and has enhanced MPJ with skip
vector arrays (SVAs).

Efforts to parallelize dynamic programming problems gener-
ically [2, 5, 11, 34, 35] have enjoyed some success when
their sub-problems depend only on a fixed number of preced-
ing levels, (mostly, two), but in join enumeration, the sub-
problems depend on all preceding levels. Furthermore, the
traditional approaches exploit pipeline parallelism, which
cannot achieve linear speed-up. Our novel approach views
the join enumeration DP problem as a series of indepen-
dent MPJs that, when allocated to threads by our various
allocation schemes, can achieve almost linear speed-up.

Prior work on set-based joins is related to MPJ, but has
focused on similarity, containment, equality, and overlap of
sets [9, 19, 28], not the disjoint joins needed by join enu-
meration. As noted in Section 5, we could adapt existing
set overlap join techniques using an inverted index to find
disjoint sets for a given set, but we have shown that because
MPJ with the SVA is tailored to computing disjoint sets, it
outperforms this modified set overlap technique.

Recently, Moerkotte and Neumann [21] proposed a novel
serial join enumeration algorithm, called DPccp, that gener-
ates a pair of quantifier sets that are disjoint and connected
by directly traversing the query graph. Both our serial MPJ
algorithm with the SVA and DPccp reduce the unnecessary
disjoint filter calls to the theoretical minimum. However,
since the quantifier sets generated by DPccp are not con-
sidered in order of their sizes, as our parallelized join enu-
merator does, the resulting dependencies in the quantifier
sets would prevent cleanly parallelizing DPccp. They also
proposed DPhyp [22] by extending DPccp to handle more
complex, non-inner join predicates. Interestingly, the con-
ventional generate-and-filter DP framework on which our
work is based evolved in industrial-strength DP optimiz-
ers such as DB2 explicitly so that they could support such
predicates, using a connectivity filter that permits testing for
any kind of predicate linking one or more quantifiers (hyper-

198

edges in the query graph). Therefore only small modifica-
tions (such as adding SVAs) are needed to incorporate our
parallel framework into these industrial-strength optimizers
and enjoy their existing support (since 1995) for the types
of complex join predicates added by DPhyp to DPccp.

DeHaan and Tompa [4] have proposed a novel serial trans-
formation-based algorithm for join enumeration that is as
fast as DPccp; attempting to parallelize this algorithm would
be interesting future work.

9. CONCLUSIONS AND FUTURE WORK
While much research has been focused on heuristics to re-

duce the search space enumerated by query optimizers, and
on optimizing for parallel execution of queries, we believe
that our work is the first to successfully explore paralleliz-
ing the process of optimizing queries.

In this paper, we proposed a novel framework for par-
allelizing query optimization to exploit the coming wave
of multi-core processor architectures with cores that share
memory. Specifically, we developed a parallel, DP-based
join enumerator that generates optimal bushy tree plans.
By viewing join enumeration as a join between entries in
the MEMO table, we devised a way to partition the search
space cleanly into independent problems called multiple plan
joins (MPJs) that can be allocated evenly to threads operat-
ing in parallel, using one of our four allocation schemes. To
minimize unnecessary calls to the routine testing whether a
pair of quantifier sets are disjoint, we proposed a novel data
structure called the skip vector array to enhance the per-
formance of our parallel MPJs. We also formally analyzed
why our various allocation schemes generate differently-sized
search spaces among threads, to ensure even allocation of
the work among threads. Through extensive experiments
with various query topologies, we have shown that our algo-
rithms partition the search space evenly, thereby achieving
almost linear speed-up. Especially, by exploiting the skip
vector array, our algorithm outperforms the conventional
serial DP algorithm by as much as two orders of magnitude,
from hours to a couple of minutes. This permits for the first
time exploiting dynamic programming to find optimal plans
for some complex OLAP ad-hoc queries referencing more
than about 12 tables, which otherwise would have to rely on
sub-optimal heuristics to complete query optimization in a
reasonable time.

We believe that this work lays the foundation for future
studies on parallel query optimization. The future work
includes parallelizing different types of optimizers such as
DPccp and the top-down optimizer as well as comparing
the quality of plans produced by the randomized approach
and our parallelized DP approach using the same running
time.

10. REFERENCES
[1] A. Agarwal et al. Automatic partitioning of parallel loops

and data arrays for distributed shared-memory
multiprocessors. IEEE TPDS, 6(9), 1995.

[2] C. Alves et al. Parallel dynamic programming for solving
the string editing problem on a cgm/bsp. In SPAA, 2002.

[3] K. P. Bennett, et al. A genetic algorithm for database
query optimization. In ICGA, 1991.

[4] D. DeHaan and F. W. Tompa. Optimal top-down join
enumeration. In SIGMOD, pages 785–796, 2007.

[5] M. Elkihel and D. E. Baz. Load balancing in a parallel

dynamic programming multi-method applied to the 0-1
knapsack problem. In PDP, 2006.

[6] S. Englert et al. Parallelism and its price: A case study of
NonStop SQL/MP. SIGMOD Record, 24(4), 1995.

[7] J. Erickson. Multicore and gpus: One tool, two processors.
Dr. Dobb’s Journal, 2007.

[8] A. Grama et al. Introduction to Parallel Computing.
Addison Wesley, 2nd edition, 2003.

[9] B. Gedik et al. Adaptive load shedding for windowed
stream joins. In CIKM, 2005.

[10] W.-S. Han et al. Progressive optimization in a
shared-nothing parallel database. In SIGMOD, 2007.

[11] S.-H. S. Huang et al. Parallel dynamic programming. IEEE
TPDS, 5(3), 1994.

[12] I. F. Ilyas et al. Estimating compilation time of a query
optimizer. In SIGMOD, 2003.

[13] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms
for optimizing large join queries. In SIGMOD, 1990.

[14] W. Kim. A new way to compute the product and join of
relations. In SIGMOD, 1980.

[15] B. Klots. Cache coherency in oracle parallel server. In
VLDB, 1996.

[16] E. T. Lin et al. Large join optimization on a hypercube
multiprocessor. IEEE TKDE, 6(2), 1994.

[17] G. M. Lohman. Grammar-like functional rules for
representing query optimization alternatives. In SIGMOD,
1988.

[18] G. M. Lohman. Is (your) database research having impact?
In DASFAA (Keynote speech), 2007.

[19] N. Mamoulis. Efficient processing of joins on set-valued
attributes. In SIGMOD, 2003.

[20] V. Markl et al. Robust query processing through
progressive optimization. In SIGMOD, 2004.

[21] G. Moerkotte and T. Neumann. Analysis of two existing
and one new dynamic programming algorithm for the
generation of optimal bushy join trees without cross
products. In VLDB, 2006.

[22] G. Moerkotte and T. Neumann. Dynamic programming
strikes back. In SIGMOD, 2008.

[23] T. Morzy et al. Tabu search optimization of large join
queries. In EDBT, 1994.

[24] K. Ono and G. M. Lohman. Measuring the complexity of
join enumeration in query optimization. In VLDB, 1990.

[25] Postgresql version 8.3. http://www.postgresql.org.
[26] R. Ramakrishnan and J. Gehrke. Database Management

Systems. Addison Wesley, 2nd edition, 2003.
[27] F. Rastello and Y. Robert. Automatic partitioning of

parallel loops with parallelepiped-shaped tiles. IEEE
TPDS, 13(5), 2002.

[28] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, 2004.

[29] P. G. Selinger et al. Access path selection in a relational
database management system. In SIGMOD, 1979.

[30] A. Shatdal et al. Cache conscious algorithms for relational
query processing. In VLDB, 1994.

[31] M. Spiliopoulou et al. Parallel optimization of large join
queries with set operators and aggregates in a parallel
environment supporting pipeline. IEEE TKDE, 8(3), 1996.

[32] P. Stenström Is the Multi-Core Roadmap going to Live Up
to its Promises? In IPDPS, 2007.

[33] A. N. Swami and A. Gupta. Optimization of large join
queries. In SIGMOD, 1988.

[34] G. Tan et al. Biology - locality and parallelism
optimization for dynamic programming algorithm in
bioinformatics. In SC, 2006.

[35] G. Tan et al. A parallel dynamic programming algorithm
on a multi-core architecture. In SPAA, 2007.

199

Appendix A: Various Allocation Examples
In the following figures, we strike through pairs below that
will be discarded by disjoint and connectivity filters as in-
feasible.

Equi-Depth Allocation Example

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

P1 P3 thread 1

thread 2P2 P2

Figure 16: Allocating search spaces using equi-depth
allocation for building P4 to two threads.

Round-Robin Outer Allocation Example

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

P1 P3 thread 1

thread 2P2 P2

Figure 17: Allocating search spaces using round-
robin outer allocation for building P4 to two threads.

Round-Robin Outer Inner Example

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)

(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)

(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)

(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)

(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)

(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)

(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

P1 P3 thread 1

thread 2P2 P2

Figure 18: Allocating search spaces using round-
robin inner for building P4 to two threads.

Appendix B: Proof for Theorem 3
Proof: We have ai−1 connected quantifiers on the left side
of qai , and N − (ai + smallSZ− 1) connected quantifiers on
the right side of qai+smallSZ−1 . Thus, if 1) ai−1 ≥ largeSZ
or 2) N − (ai + smallSZ − 1) ≥ largeSZ, one invocation of
CreateJoinP lans is performed.

Appendix C: Proof for Theorem 4
Proof: When S = N , only one quantifier set of largeSZ
exists for the given qs. Otherwise, unlike the linear query,
two quantifier sets of size largeSZ always exist on both sides
of qs. This completes the proof.

Appendix D: Proof for Theorem 5
Proof: If (smallSZ > 1) or (qs is the hub quantifier and
largeSZ > 1), qs overlaps any quantifier sets of largeSZ.
If qs is the hub quantifier and largeSZ = 1, we can choose
N − 1 disjoint quantifier sets of largeSZ. Otherwise, that
is, if smallSZ = 1 and qs is not the hub quantifier, we can
choose disjoint quantifier sets of largeSZ−1 from the N−2
quantifiers. This completes the proof.

Appendix E: Proof for Theorem 6
Proof: Since all quantifiers are connected to each other, we
can choose any largeSZ quantifiers from N − smallSZ re-
maining quantifiers. We note that all these remaining quan-
tifiers are disjoint with qs.

200

