
Finding Relevant Patterns in Bursty Sequences

Alexander Lachmann
∗

RWTH
Aachen, Germany

alexander.lachmann@rwth-aachen.de

Mirek Riedewald
Cornell University
Ithaca, New York

mirek@cs.cornell.edu

ABSTRACT
Sequence data is ubiquitous and finding frequent sequences
in a large database is one of the most common problems
when analyzing sequence data. Unfortunately many sources
of sequence data, e.g., sensor networks for data-driven sci-
ence, RFID-based supply chain monitoring, and comput-
ing system monitoring infrastructure, produce a challenging
workload for sequence mining. It is common to find bursts
of events of the same type. Such bursts result in high mining
cost, because input sequences are longer. An even greater
challenge is that these bursts tend to produce an overwhelm-
ing number of irrelevant repetitive sequence patterns with
high support. Simply raising the support threshold is not
a solution, because at some point interesting sequences will
get eliminated. As an alternative we propose a novel trans-
formation of the input sequences. We show that this trans-
formation has several desirable properties. First, the trans-
formed data can still be mined with existing sequence mining
algorithms. Second, for a given support threshold the min-
ing result can often be obtained much faster and it is usu-
ally much smaller and easier to interpret. Third, and most
importantly, we show that the result sequences retain the
important characteristics of the sequences that would have
been found in the original (not transformed) data. We val-
idate our technique with an experimental study using syn-
thetic and real data.

Keywords
Frequent sequence mining, data transformation, event
stream, bursts, temporal data mining

1. INTRODUCTION
Sequence data is ubiquitous and mining this data to find

patterns is a challenging problem for many applications [12].
In this paper we focus on the important problem of find-
ing frequent subsequences in a set of given input sequences.

∗Work done while visiting Cornell University.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Traditionally frequent sequence mining is used to discover
purchase patterns in sales transaction data. Consider a cus-
tomer’s purchase history like {chocolate, chips, water} →
cheese → {broccoli, carrots}. Here the set step {} indi-
cates that products were purchased in the same transac-
tion, while the sequence step → indicates that the products
on the left were purchased earlier than those on the right.
A subsequence like {chocolate, chips} → {broccoli, carrots}
could indicate that after indulging on sweets and snacks, the
customer feels guilty and purchases healthy vegetables.1 If
many customer sequences contain this subsequence, stores
can take advantage of such patterns for targeted advertise-
ment or promotions.

Discovery of common patterns of page visits in Web logs
can help in improving the design of a Web site or in deciding
what advertisements to present to Web surfers. By finding
common sequences of hardware or software related events
(errors, warnings, status events) that lead to critical system
failures, system administrators can take active measures for
re-configuring/re-designing systems or for preventive main-
tenance. Similarly, there is strong interest in finding fre-
quent patterns in other inherently sequential data like RFID
readings in supply chain monitoring and readings from sen-
sors monitoring natural or industrial processes. Last but
not least, frequent sequence mining has also been applied to
DNA data and medical treatment sequence analysis.

Frequent sequence mining is concerned with finding se-
quences that are contained in a large fraction of input se-
quences, i.e., subsequences that have a high support. Re-
turning to the purchase analysis example, a sequence pat-
tern is frequent if it occurs in many customer sequences.
An input sequence can support a number of subsequences
that is exponential in its size. This makes frequent sequence
mining for long sequences expensive.

In this paper we concentrate on a problem that is com-
mon in all the above mentioned applications concerned with
mining of event logs—bursts of common events. Consider
a large digital printing machine for industrial scale docu-
ment printing. Complex systems like this continuously pro-
duce events reporting status of components (e.g., currents
at various electronic components or motors, resets of system
components), less severe problems (e.g., paper jams, excep-
tions reported by firmware, too early or too late arrival of
paper at various sensors), or critical errors (transport mo-
tor faults, open interlocks during run). If the wrong paper

1Notice that transactions in the subsequence do not have to
be adjacent to each other in the input sequence; transactions
in between can be “skipped over”.

78

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Original input data Transformed

167 → 232 → 232 → 167 → 167 {167, 232}
167 → 232 → 167 → 167 → 167 167 → 232
167 → 232 → 167 → 167 → 232
167 → 232 → 232 → 232 → 232 → 232 → 232
167 → 167 → 232 → 232 → 232 → 232
232 → 167 → 232 → 232 → 232
And all subsequences of these sequences

Table 1: Frequent result sequences (real data)

is used or paper feed rolls are dirty, a high rate of paper
transport related timeouts might be recorded. A paper jam
will typically result in another burst of warning and error
messages, and so on. A typical source of event bursts are
watchdog processes that repeatedly poll system components
and record timeouts.

In general, depending on the state of system components,
bursts of certain event types will occur. Similar bursts can
also be observed in Web logs (popular topics [8]), sensor
networks (typical environmental conditions versus unusual
events), and computing system event logs (normal status,
overloaded machines, intrusion attacks).

Bursts create two challenges for sequence mining. First,
higher event rates produce longer input sequences, which
makes mining more expensive. Second, and actually worse,
the repeated occurrence of the same event type produces
irrelevant results that bury the more interesting sequences.
The left column in Table 1 shows a typical subset of the re-
sult obtained by mining event logs from large digital printing
machines. Events 167 and 232 signal that two different elec-
tromechanical components are in an error state, and they
tend to occur in bursts. In the mining results we can see
many combinations of these two events in different orders.
Notice that all subsequences of the ones shown are also fre-
quent, but are omitted to avoid clutter.

The problem with results like in the left column in Table 1
is that the different combinations of the common events do
not convey much information and make it virtually impos-
sible to find other patterns in the overwhelmingly large re-
sult set. One could try to raise the support threshold so
that fewer sequences qualify as frequent. However, as we
will show, bursts of common events tend to produce un-
interesting sequences with high support, and hence other
more interesting sequences would be eliminated by higher
support thresholds even before many of the repetitive se-
quences. Alternatively, one could completely remove com-
mon events like 167 and 232 from the analysis. However, this
is not desirable and would result in significant information
loss because such event bursts only occur at certain times.
For example, a burst of paper feed delay events might be im-
portant in signaling mechanical problems with some printer
component and hence should not be ignored.

We propose to transform the input data to eliminate
repetitive event patterns created by bursts, but at the same
time retain the important structure in the data. Intuitively,
we map the individual re-occurrences of an event type to
a high-level concept modeling the burst. Then we fur-
ther transform this mixed sequence of bursts and individ-
ual events to a traditional sequence format so that existing
sequence mining algorithms can be applied. For the print-
ing system example, the individual occurrences of events
167 and 232 are transformed into a few transactions (sets of

events) signaling that “many 167 and 232 events occurred”
during the corresponding time period. The mining result
for the transformed data is shown in the right column in
Table 1. Notice that far fewer sequences are produced, but
the essential information that events 167 and 232 occurred
is retained.

In particular, we make the following contributions:

• We propose a novel transformation of the input se-
quences. It first replaces repeated occurrences of the
same event type by an object that encodes the notion
of a burst. Then it maps a sequence of such bursts
and other events to a traditional sequence representa-
tion so that existing algorithms for sequence mining
can be leveraged.

• We prove that the transformation reduces input se-
quence length and at the same time retains the most
important characteristics of subsequences supported
by the original input data.

• We show how we can further reduce the result set for
the transformed sequences.

• We show the effectiveness of our technique in a series
of experiments with synthetic and real data.

In the remainder of the paper we first introduce impor-
tant notation and discuss properties of sequence data in Sec-
tion 2. The input transformation is introduced in Section 3,
its properties are analyzed in Section 4. The sequence min-
ing algorithm and extension for reducing result size are dis-
cussed in Section 5. In Section 6 we present results of an
experimental evaluation. Related work is discussed in Sec-
tion 7 and we conclude in Section 8.

2. PRELIMINARIES
We first introduce the standard definitions of itemset, se-

quence, subsequence, sequence database, and support fol-
lowing mostly the notation of [5]. Then we discuss impor-
tant properties of bursty sequences.

2.1 Notation

Definition 1. (itemset, sequence) Let I = {i1, i2, . . . , in}
be a set of items; an itemset is a subset of I. A se-
quence S is a set of itemsets with timestamps, i.e., S =
{(s1, t1), (s2, t2), . . . , (sl, tl)}, where sj ⊆ I (1 ≤ j ≤ l) and
ti < tj for all 1 ≤ i < j ≤ l.

The sj in sequence S are often referred to as transactions.
When only the sequence order is important, but not the
actual timestamps, we will write S more compactly as s1 →
s2 → · · · → sl.

Definition 2. (length, i-length) The length of a sequence
S = {(s1, t1), (s2, t2), . . . , (sl, tl)}, denoted |S|, is the num-
ber of elements in the sequence, i.e., |S| = l. The i-length of
a sequence is the total number of instances of items in the
sequence, i.e., |s1|+ |s2|+ · · ·+ |sl|.

Definition 3. (subsequence, super-sequence) A sequence
A = a1 → a2 → · · · → al, aj ⊆ I for 1 ≤ j ≤ l, is a
subsequence of another sequence B = b1 → b2 → · · · → bm,
bj ⊆ I for 1 ≤ j ≤ m, if there exist integers 1 ≤ j1 < j2 <

79

· · · < jl ≤ m such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn .
We write A v B to denote that A is a subsequence of B,
and B is a super-sequence of A.

Notice that the length of a sequence does not depend on
the size of the itemsets, e.g., both a → b and {a, c} →
{b, d, e} have length 2. However, their i-length is different,
2 and 5, respectively, in the example. For the subsequence
relation, the actual timestamps are irrelevant. Only the or-
der of the transactions matters and that some transactions
in B contain the corresponding transactions in A.

Definition 4. (sequence database, support) A sequence
database DB is a set of tuples of the form (cid, S), where cid
is a unique identifier, historically referred to as customer ID,
and S a sequence. A tuple (cid, S) contains (or supports)
a sequence A if A is a subsequence of S. The support of
a sequence A in database DB is the number of tuples that
contain A, i.e.,

supportDB(A) = |{(cid, S)| (cid, S) ∈ DB ∧ A v S}|.

In the remainder of this article we will omit the
database name from the support function and simply write
support(A). Note that historically the fact that (cid, S) con-
tains A is also expressed as “customer cid supports sequence
A”.

The goal of frequent sequence mining is to find all se-
quences over itemset I that have a support in database DB
that is greater than or equal to a user-specific threshold
minSupp.

2.2 Properties of Bursty Sequences
From the definition it follows immediately that sequence

support has the monotonicity property. Formally, for se-
quences A and B, if A v B then support(A) ≥ support(B).
This property is heavily exploited for designing efficient al-
gorithms for finding all frequent sequences: Once we know
that a given sequence A is not frequent, then none of its
super-sequences can be frequent either and the algorithm
can prune the search space effectively.

However, the downside of monotonicity is that if some
long sequence B is frequent, than all its subsequences are
frequent as well. This is particularly problematic for bursty
event streams. As the example in Table 1 illustrated, event
bursts produce uninteresting repetitive result patterns and
increase mining time because finding such long patterns is
expensive. The following lemma shows that already bursts
of two event types that occur simultaneously, tend to gen-
erate long repetitive sequences with high support.

Lemma 1. Let A = a1 → a2 → · · · → an be a sequence
of length n where the aj, 1 ≤ j ≤ n, are i.i.d. and each
aj is either i1 or i2 with equal probability of 0.5. Then any
given sequence of m items, such that m ≤ n and each item
is either i1 or i2, is a subsequence of A with probability at
least (1− 0.5bn/mc)m.

Proof. We first prove the lemma for a sequence B =
i1 → · · · → i1 with m occurrences of item i1.

Consider the first bn/mc items of A. Each of these items
is either i1 or i2 with equal probability. Hence the proba-
bility that there is at least one occurrence of i1 among the
first bn/mc items is 1 − 0.5bn/mc. We can show similarly,

that there is a probability of 1 − 0.5bn/mc for at least one

occurrence of i1 among the next bn/mc items, and so on. In

total we therefore obtain a probability of (1− 0.5bn/mc)m of
finding at least one instance of i1 in each of the m adjacent
subsequences of length bn/mc.

In general, there could be multiple instances of i1 in a
subsequence of length bn/mc. Hence (1 − 0.5bn/mc)m is a,
possibly rather loose, lower bound for the probability of B =
i1 → · · · → i1 being a subsequence of A.

Since i1 and i2 have the same probability of occurrence,
the above proof can be applied to any sequence of length m
that consists of any combination of i1 and i2 instances.

Lemma 1 provides no tight bound, but nevertheless it suf-
fices to illustrate the problem caused by bursts. For ex-
ample, for n = 100 and m = 10, the probability is 0.99;
for n = 100 and m = 20 it still is as high as 0.53. This
means that a burst of 100 events of type i1 and i2 is al-
most guaranteed to support all possible sequences of i1 and
i2 of length 10, and with high probability it also supports
many such sequences of length 20. If i1 and i2 are common
items (events), then such bursts occur for many input se-
quences and these repetitive sequence patterns and all their
subsequences will have high support. Furthermore, many
super-sequences might be frequent as well, creating an over-
whelming result set.

This analysis naturally generalizes to bursts containing
more than two different items, but the lower bound will be
looser the more different items are considered. Obviously,
in practice i1 and i2 might occur with different probabilities
during a burst and occurrences will typically not be inde-
pendent. In principle it is possible to adjust our analysis
for such cases. E.g., different probabilities can be taken into
account by partitioning the burst sequence non-uniformly.
However, the simple analysis above already illustrates the
problem that event bursts tend to support a large number
of long and repetitive sequences of common events and we
observed such patterns in real data (see Table 1 for a repre-
sentative example).

3. INPUT TRANSFORMATION
The main idea for transforming the input data is to re-

place a burst of events of the same type by a single interval
covering the time period during which the burst occurred.
To be able to leverage existing high-performance algorithms
for sequence mining, which cannot handle intervals, we also
introduce a mapping from intervals to traditional sequences.

3.1 Transforming Bursts to Intervals
Consider a sequence like (a, 1), (a, 2), (a, 4), (a, 5), (a, 100).

If a is a non-critical warning event, users typically do not
care about how many a events were created within a short
period of time. It is enough to know that “many a events
occurred between time 1 and 5”. Similarly, for simultaneous
bursts of a and b events it would be sufficient to know that
such bursts occurred for a certain time period, but the actual
number and ordering of the a and b events is not important.

We model this abstract notion of a burst by supporting
events with duration. In the above example, we can replace
the original sequence of a events by two intervals: (a, 1, 5)
and (a, 100, 100). This idea is formalized as follows.

Definition 5. (τ -linkable transactions) Let τ be a user
specified non-negative number, called merge threshold.

80

10

a

b

c

d

Transformed sequence:
{a, b, c} {a, b, d} {a, b}

Original events

Burst interval

time
1 2 3 4 5 6 7 8 9

Figure 1: Transformation of item-sequence

Transactions (s1, t1) and (s2, t2) are τ -linkable if (1) s1 and
s2 contain exactly one item, (2) s1 = s2, and (3) t2− t1 ≤ τ .

Definition 6. (τ -maximal interval set for ho-
mogeneous singleton sequence) For a sequence
A = {(i, t1), (i, t2), . . . , (i, tj)} of singleton transactions
containing only item i ∈ I, the τ -maximal interval set,
intervalsτ (A), is the set of intervals obtained by merging all
τ -linkable transactions, i.e.,

intervalsτ (A) = {(i, tk, tl)| 1 ≤ k ≤ l ≤ j
∧ ∀k ≤ m < l : tm+1 − tm ≤ τ
∧ tk − tk−1 > τ ∧ tl+1 − tl > τ}.

Definition 7. (i-projected sequence) For an item i ∈ I
and a sequence S = {(s1, t1), (s2, t2), . . . , (sl, tl)}, the cor-
responding i-projected sequence S(i) is defined as

S(i) = {(i, t)| ∃(s, t) ∈ S : i ∈ s}.

Definition 8. (τ -maximal interval set for arbitrary se-
quence) Let S = {(s1, t1), (s2, t2), . . . , (sl, tl)} be a sequence.
The corresponding τ -maximal interval set, intervalsτ (S), is
the set of intervals obtained by merging all τ -linkable trans-
actions, i.e.,

intervalsτ (S) =
⋃
i∈I

intervalsτ (S(i)).

Example 1. Consider input sequence S =
{(a, 1), (b, 2), (c, 3), ({a, d}, 4), (b, 5), ({a, b}, 8), (a, 10)}
and merge threshold τ = 3. The corresponding a-
projected sequence is S(a) = {(a, 1), (a, 4), (a, 8), (a, 10)}.
For the τ -maximal interval set for S(a) we obtain
intervalsτ (S(a)) = {(a, 1, 4), (a, 8, 10)}. Similarly, we obtain
intervalsτ (S(b)) = {(b, 2, 8)}, intervalsτ (S(c)) = {(c, 3, 3)},
and intervalsτ (S(d)) = {(d, 4, 4)}. Hence intervalsτ (S) =
{(a, 1, 4), (a, 8, 10), (b, 2, 8), (c, 3, 3), (d, 4, 4)}. Notice that
for example intervals (a, 1, 4) and (b, 2, 8) overlap and
(a, 1, 4) contains (c, 3, 3). The items and intervals are shown
in the lower section of Figure 1.

3.2 From Intervals to Sequences
The intervals in a τ -maximal interval set can overlap,

hence this set does not define a sequence in the traditional
sense. Existing algorithms for frequent sequence mining

therefore cannot be applied to this set. One option would
be to design new algorithms for interval data. This is an in-
teresting direction for future work. For this article we chose
to map the interval data to a sequence so that the wealth of
existing algorithms and experience for sequence mining can
be leveraged.

The mapping from (possibly overlapping) intervals to se-
quences follows the intuitive interpretation that an inter-
val (i, tk, tl) signals that “event i repeatedly occurs be-
tween time tk and tl”. If two intervals (i1, tk1 , tl1) and
(i2, tk2 , tl2) are disjoint, then the corresponding bursts hap-
pen one strictly before the other. If the intervals intersect,
then both bursts happen simultaneously. We capture this
interpretation by creating itemsets for such periods of over-
lapping time intervals.

Let T (S) denote the set of all times in intervalsτ (S) at
which either an interval starts or ends, i.e.,

T (S) = {t| ∃(i, tk, tl) ∈ intervalsτ (S) ∧ (t = tk ∨ t = tl)}.

Furthermore, let start(t) and end(t) denote the set of inter-
vals from intervalsτ (S) that start, respectively end, at time t.
Similarly, contain(t) is the set of intervals from intervalsτ (S)
that start strictly before time t and end at time t or later.
We can now formally define the transformation from inter-
vals to a sequence.

Definition 9. (τ -transformed sequence) For a given se-
quence S, let T (S) = {t1, t2, . . . , tk}. The τ -transformed
sequence, transfτ (S) is defined as

transfτ (S) = {(σ, ti)| ti ∈ T (S) ∧ start(ti) 6= ∅
∧ (end(ti) 6= ∅ ∨ start(ti+1) = ∅)
∧ σ = contain(ti) ∪ start(ti)}

Intuitively, the definition ensures that we only generate
transactions that are “locally maximal”, i.e., no transaction
is the subset or superset of the next following transaction in
the sequence. In particular, we only generate a transaction
for time instants ti where new intervals start and where ei-
ther some intervals end as well, or where no intervals start
at the next time instant ti+1 in T (S) (and hence some inter-
val has to end at ti+1, because otherwise that time instant
would not be in T (S)).

To illustrate this transformation, we continue Example 1
(see Figure 1). For the example, T (S) = {1, 2, 3, 4, 8, 10}.
Now we derive the transactions for each time in T (S).
At time 1, start(1) = {(a, 1, 4)}, but end(1) = ∅ and
start(2) 6= ∅, therefore no transaction is created for time
1. Similarly, at time 2 we have start(2) = {(b, 2, 8)}, but
end(2) = ∅ and start(3) 6= ∅, and therefore transfτ (S) also
does not contain a transaction for time 2. Then at time 3, we
have start(3) = {(c, 3, 3)} and end(3) = {(c, 3, 3)}. Accord-
ing to Definition 9, we therefore add transaction ({a, b, c}, 3)
to transfτ (S). For time 4 we similarly add transaction
({a, b, d}, 4). Notice how c and d are still in separate trans-
actions, even though they both are contained in the same
a and b interval. Then for time 8, we add ({a, b}, 8), be-
cause start(8) = {(a, 8, 10)}, end(8) 6= ∅, and contain(8) =
(b, 2, 8). At time 10 no new transaction is generated, because
start(10) = ∅. In summary, the final transformed sequence is
transfτ (S) = {({a, b, c}, 3), ({a, b, d}, 4), ({a, b}, 8)}. Notice
how the conditions in Definition 9 eliminate transactions like
(a, 1), ({a, b}, 2), and (a, 10), because they are contained in
({a, b, c}, 3) and ({a, b}, 8), respectively.

81

The transformed sequence captures very naturally the no-
tion of a burst as an ongoing occurrence of an event, or a
set of simultaneously occurring events. Uninteresting order
information, here for the common a and b events, is elimi-
nated.

4. TRANSFORMATION PROPERTIES
We show that the proposed transformation reduces input

length and still preserves the important structural informa-
tion of the original data. Then we analyze how the result of
frequent sequence mining is affected.

4.1 Length Reduction
Theorem 1. The τ -transformed sequence transfτ (S) has

at most as many transactions as the original sequence S,
i.e., |transfτ (S)| ≤ |S|.

Proof. Definition 9 guarantees that the transformed se-
quence can only have transactions for times t at which an
interval in intervalsτ (S) starts. Intervals can only start at
time t if there was a transaction with timestamp t in the
original input data. Hence transfτ (S) can contain transac-
tions only for those times t at which S had a transaction as
well.

In general, the larger τ , the more the individual events
get merged into longer intervals, thus reducing the number
of transactions in the transformed sequence. However, as
more intervals overlap, the transactions in the transformed
sequence tend to contain more items than those in the orig-
inal sequence. In the running example, transfτ (S) contains
the 3-item transaction ({a, b, c}, 3), while S only contained
1- and 2-item transactions. This implies that the transfor-
mation, while guaranteeing to never increase the length, it
might possibly increase the i-length of a sequence. For most
bursty sequences, including real data, we observed a signif-
icant reduction in both length and in i-length for a wide
variety of merge threshold settings.

Notice also that the transformation can be done very ef-
ficiently (see Section 5). A user therefore can try different
values for τ and choose the one that results in good reduc-
tion in i-length as well. If no appropriate τ can be found,
then the sequences are not bursty enough for the transfor-
mation to pay off. In this case the algorithm falls back to
mining the original data and the transformation would not
be applied.

It is also fairly easy to modify the transformation process
so that it uses different merge thresholds for different event
types and even for the same event type during different time
periods. This way one can more aggressively merge event
types that tend to occur in larger bursts at certain times,
while leaving event types with short bursts unmerged. Defi-
nition 9 applies to any set of intervals, no matter if the same
τ was used for all events at all times or not. Developing such
adaptive strategies for setting τ is part of our future work.

4.2 Structure Preservation
We first introduce additional notation to simplify the dis-

cussion.

Definition 10. Let {a1, a2, . . . , an} ⊆ I be a transaction
in a given sequence. We will also use “↔” to denote that
two items are in the same transaction, i.e., {a1, a2, . . . , an} =
a1 ↔ a2 ↔ · · · ↔ an.

Definition 11. For a given sequence S, adjacent items a
and b in the sequence have relation a ; b if and only if
either a→ b or a↔ b.

Consider a sequence {i1, i2, i3} → {i4, i5}. We can equiv-
alently write this sequence as i1 ↔ i2 ↔ i3 → i4 ↔ i5. This
sequence therefore follows the general pattern i1 ; i2 ;

i3 ; i4 ; i5.

Theorem 2. Let S = {(s1, t1), (s2, t2), . . . , (sl, tl)} and
transfτ (S) be a given original sequence and its correspond-
ing transformed sequence for some τ ≥ 0 as defined before.
Furthermore, let

A = a1 ;1 a2 ;2 · · ·;k−1 ak

be a sequence where ai ∈ I for 1 ≤ i ≤ k and ;i∈ {↔,→}
for 1 ≤ i < k. If A is a subsequence of S, then Â is a
subsequence of transfτ (S) where

Â = a1 ;
′
1 a2 ;

′
2 · · ·;′k−1 ak

∧ ∀1 ≤ i < k : ;
′
i∈ {↔,→} ∧ ((;i≡↔)⇒ (;′i≡↔)).

Intuitively, the theorem states that if A is a subsequence of
the original input sequence, then we can find a subsequence
of the transformed input sequence that preserves the impor-
tant characteristics of A. In particular, all items that occur
in A will also occur in the same order in Â and the ↔ re-
lation will be preserved. In fact, the only possible change
between A and Â is that some of the sequence steps (→)

in A might have turned into set steps (↔) in Â. For ex-
ample, A = {a, b} → c = a ↔ b → c might turn into

Â = a↔ b↔ c = {a, b, c}, but not into a→ b→ c.
We will now prove the theorem. The proof makes use of

the following lemma.

Lemma 2. Let S = {(s1, t1), (s2, t2), . . . , (sl, tl)} and
transfτ (S) be a given original sequence and its correspond-
ing transformed sequence for some τ ≥ 0 as defined before.
Then the following holds:

∀a ∈ I : (∃(s, t) ∈ S : a ∈ s) ⇒ (∃(σ, t′) ∈ transfτ (S)

where a ∈ σ and ∃(a, tl, tu) ∈ intervalsτ (S) : tl ≤ t, t′ ≤ tu).

Proof. (Lemma 2) The lemma states that for each item
a occurring in a transaction at some time t in the original
input sequence, there is a transaction in the transformed
sequence that also contains the item and whose timestamp
is “approximately” t. Here “approximately” means that if
the a instance at time t in the original data is merged into a
larger interval with other a instances, then the timestamp in
the transformed data could be any time within this interval.
See Figure 2 for an illustration. There item ak with times-
tamp tk is contained in an interval starting at time tl(k) and
ending at time tu(k). As we show below, this interval will
create a transaction in the transformed data at some time
between tl(k) and tu(k), and ak belongs to this transaction.

To prove this lemma, notice that the occurrence of a in
a transaction with timestamp t in the original sequence im-
plies that there exists an interval (a, tl, tu) ∈ intervalsτ (S)
with tl ≤ t ≤ tu. This follows from Definitions 6, 7, and 8.

Now we need to show that this interval creates a transac-
tion (σ, t′) in transfτ (S) such that a ∈ σ and tl ≤ t′ ≤ tu.
This follows from Definition 9: Without loss of general-
ity, let {tl, tl+1, . . . , tu} be the set of timestamps from T (S)

82

that fall into the range between tl and tu. Since (a, tl, tu)
starts and ends at time tl and tu, respectively, we have
(1) (a, tl, tu) ∈ start(tl), (2) (a, tl, tu) ∈ end(tu), and (3)
∀t ∈ {tl+1, . . . , tu} : (a, tl, tu) ∈ contain(t).

Now assume for contradiction that transfτ (S) does not
contain any transaction that contains a and has times-
tamp t′ with tl ≤ t′ ≤ tu. For time tl we know that
start(tl) 6= ∅. According to Definition 9, there is a transac-
tion (σ, tl) with a ∈ σ in transfτ (S), unless both end(tl) = ∅
and start(tl+1) 6= ∅. Hence for the initial assumption that
there is no such transaction at time tl to be satisfied, for
the next time tl+1 it has to hold that end(tl+1) = ∅ and
start(tl+2) 6= ∅. The same argument can now in turn be
applied to tl+2 and so on. In the last step of this chain
of implications we reach time tu, for which it also has to
hold that start(tu) 6= ∅. However, since also end(tu) 6= ∅
and a ∈ contain(tu), there will be a transaction (σ, tu) with
a ∈ σ, contradicting the assumption.

Proof. (Theorem 2) The proof of Theorem 2 proceeds
by induction on the length of A. We prove the following,
slightly stronger, statement: For a subsequence A = a1 ;1

a2 ;2 · · ·;k−1 ak of S where ak has timestamp tk, there is
a corresponding sequence Â = a1 ;′1 a2 ;′2 · · · ;′k−1 ak
in transfτ (S) that satisfies the following properties: (1)
ak ∈ σ for some transaction (σ, t′k) ∈ transfτ (S), (2)
tl(k) ≤ t′k ≤ tu(k), where tl(k) and tu(k) are the lower and up-
per endpoint, respectively, of an interval (ak, tl(k), tu(k)) in
intervalsτ (S) that satisfies tl(k) ≤ tk ≤ tu(k), and (3) if there
are multiple transactions (σ, t′k) ∈ intervalsτ (S) with prop-
erties (1) and (2), then the ak instance from A is mapped
to the transaction with the lowest timestamp value.

Stated differently, we show that all items in the original se-
quence A can be mapped to their corresponding transactions
in the transformed sequence. And this mapping preserves
the timestamps sufficiently so that no item in A would be
“skipped” in the transformed data.

Base case: Let A = a1 be a subsequence of S for some
a1 with timestamp t1 in S. From Lemma 2 follows directly
that there exists a transaction (σ, t′1) in transfτ (S) such that
a ∈ σ and tl(1) ≤ t, t′ ≤ tu(1), where tl(1) and tu(1) are the
endpoints of some interval (a1, tl(1), tu(1)) ∈ intervalsτ (S).

Induction step: Assuming the hypothesis is true for
a1 ;1 a2 ;2 · · ·;k−1 ak, we have to show it also holds for
a1 ;1 a2 ;2 · · ·;k−1 ak ;k ak+1.

For the following discussion, Figure 2 provides an illus-
tration. Notice that the figure indirectly implies ak 6= ak+1.
However, the proof also applies to ak = ak+1. Similarly, the
figure shows only one of several possible spatial relation-
ships between the interval for ak and the interval for ak+1.
The proof also applies to other spatial relationships between
these intervals.

Consider the two intervals in intervalsτ (S) that
contain (ak, tk) and (ak+1, tk+1). Let these inter-
vals be (ak, tl(k), tu(k)), tl(k) ≤ tk ≤ tu(k), and
(ak+1, tl(k+1), tu(k+1)), tl(k+1) ≤ tk+1 ≤ tu(k+1), respec-
tively. Recall that Lemma 2 guarantees that there exist
transactions (σk, t

′
k) and (σk+1, t

′
k+1) in the transformed

data such that ak ∈ σk, ak+1 ∈ σk+1, tl(k) ≤ t′k ≤ tu(k),
and tl(k+1) ≤ t′k+1 ≤ tu(k+1). Since tk ≤ tk+1, the interval
endpoints can only have the following order relationships:

1. tl(k) ≤ tu(k) < tl(k+1) ≤ tu(k+1)

2. tl(k) ≤ tl(k+1) ≤ tu(k) ≤ tu(k+1)

a

l(k)
t k

t l(k+1) t u(k)
t k+1

t u(k+1)

a k+1k original = S

transform(S)

intervals(S)

{a , ... }k k k+1

must exist

{a , ... }k+1

may exist

{a , a , ...}

t

time

may exist

Figure 2: Items ak, ak+1 ∈ S, their corresponding
intervals and transactions in the transformed data

3. tl(k) ≤ tl(k+1) ≤ tu(k+1) ≤ tu(k)

4. tl(k+1) ≤ tl(k) ≤ tu(k) ≤ tu(k+1)

5. tl(k+1) ≤ tl(k) ≤ tu(k+1) ≤ tu(k)

We now show for each of these cases that the induction
hypothesis is satisfied for k + 1.

For the first interval relationship, tl(k) ≤ t′k ≤ tu(k) and
tl(k+1) ≤ t′k+1 ≤ tu(k+1) implies t′k < t′k+1. Hence the trans-
formed data has the following structure: transfτ (S) = · · · →
(σk, t

′
k) → · · · → (σk+1, t

′
k+1) → · · · . (Timestamps are

shown in the transactions for convenience.) Hence there is a
sequence relationship between ak ∈ σk and ak+1 ∈ σk+1

and therefore the transformed data must support subse-
quence a1 ;1 a2 ;2 · · · ;k−1 ak → ak+1. We map ak+1

to (σk+1, t
′
k+1); if there are multiple such transactions in

the transformed data, we map to the one with the smallest
timestamp t′k+1.

For the second interval relationship, the intervals overlap
between tl(k+1) and tu(k). This is the case illustrated in
Figure 2. It is fairly straightforward to show that this inter-
section implies that the transformed sequence must contain
a transaction (γ, t) with the following properties: (1) ak ∈ γ,
(2) ak+1 ∈ γ, and (3) tl(k+1) ≤ t ≤ tu(k). (The proof is sim-
ilar to the one for Lemma 2 and therefore omitted.) Now
there are two cases to consider.

Case 1: ak was mapped to a transaction in the trans-
formed data with timestamp t′k < tl(k+1), i.e., strictly
before the intersection with the interval containing ak+1.
Then the transformed sequence has the following structure:
transfτ (S) = · · · → (σk, t

′
k) → · · · → (γ, t) → · · · , where

(σk, t
′
k) is the earlier transaction containing ak, which ak

was mapped to. In this case the transformed sequence sup-
ports a1 ;1 a2 ;2 · · · ;k−1 ak → ak+1, and we map ak+1

to transaction (γ, t) (actually the earliest of these transac-
tions, if there are multiple such transactions containing ak+1

with timestamp in the range from tl(k+1) to tu(k)).
Case 2: ak was mapped to a transaction in the trans-

formed data with timestamp tl(k+1) ≤ t′k ≤ tu(k), i.e., a
time covered by the interval (ak+1, tl(k+1), tu(k+1)). (Notice
that it cannot be mapped to a later time, because trans-
action (γ, t) as defined above contains ak and we mapped
ak to the transaction with the earliest time.) Definition 9
guarantees that any transaction generated with timestamp
t in the range tl(k+1) ≤ t ≤ tu(k) will contain both ak and
ak+1, because both intervals cover this time range and hence

83

the items are in either start(t) or in contain(t). This in
turn implies that the transformed sequence must support
a1 ;1 a2 ;2 · · · ;k−1 ak ↔ ak+1. We map ak+1 to trans-
action (γ, t) (actually the earliest of these transactions, if
there are multiple such transactions containing ak+1 with
timestamp in the range from tl(k+1) to tu(k)).

The proofs for the remaining interval relationships 3–5 are
similar, and therefore omitted due to space constraints.

4.3 Discussion of Theorem 2
Theorem 2 might appear counter-intuitive. We transform

the original data to remove repeated event occurrences dur-
ing bursts, hence it seems impossible that Â can preserve all
of A’s items. The “magic” lies in the set relation ↔. Con-
sider the example in Table 1. Sequence 167→ 232→ 232→
167 → 167 is preserved as 167 ↔ 232 ↔ 232 ↔ 167 ↔ 167,
which is identical to {167, 232}—exactly what we set out
to achieve. The other sequences are preserved similarly as
most of the sequence steps are replaced by set steps.

In general, Theorem 2 guarantees that if there is a sub-
sequence with certain items in the original data, then there
is a subsequence with these same items also in the trans-
formed data. However, depending on the merge threshold
τ , repeated occurrences of items in the original sequence A
might disappear due to the transformation.

An important question for frequent sequence mining is if
some sequence A is frequent in the original database, will an
approximate version of it, e.g., some instance of Â, be also
frequent in the transformed database?

Unfortunately, Theorem 2 is not strong enough to guar-
antee this desirable property. Consider a frequent sequence
a→ b in the original database. As the proof for Theorem 2
showed, depending on the relationship between the intervals
for a and b, a→ b might either be preserved as a→ b or it
might turn into a ↔ b = {a, b} as a result of the transfor-
mation. Assume a → b had support of 100 in the original
data and the support threshold is minSupp = 90. Out of the
100 supporting sequences, the transformation might result
in a scenario where 50 of the input sequences still support
a → b, while the other 50 now support a ↔ b instead. In
this case, neither a → b nor a ↔ b would be found as a
frequent sequence in the transformed data.

We refer to this problem as fragmentation of support.
There are several ways of dealing with it.

Option 1: We do nothing about it. Notice that while
support from a pattern with many sequence steps is usually
reduced by the transformation, support for patterns with set
steps actually tends to increase. More precisely, a sequence
A with n sequence steps (→) distributes its support over
up to 2n different corresponding sequence pattern instances
Â. (Each of these patterns Â is obtained by replacing one
or more of the sequence steps in A by set steps.) On the

other hand, a sequence Â with m set steps (↔) receives
additional support from up to 2m different corresponding
original sequence patterns A. (Each of these patterns A is

obtained by replacing one or more of the set steps in Â by
sequence steps.) Hence overall there is a re-distribution of
support, and in some cases the transformation reveals new
important patterns.

Option 2: To avoid fragmenting the support, we can
modify the definition of support and let a transaction with
k items support any sequence that is a permutation of these
k items. For example, {a, b} would support both a→ b and

b → a. This way it is guaranteed that if A = a1 ;1 a2 ;2

· · ·;k−1 ak is frequent in the original database, then there
exists an instance of pattern Â = a1 ;′1 a2 ;′2 · · ·;′k−1 ak
for some assignment of the different ;′ to either → or ↔,
that is frequent in the transformed database.

Option 3: We can lower the support threshold to guar-
antee that if A = a1 ;1 a2 ;2 · · · ;k−1 ak is frequent
in the original database, then there exists an Â = a1 ;′1
a2 ;′2 · · · ;′k−1 ak for some assignment of the differ-
ent ;′ to either → or ↔, that is frequent in the trans-
formed database. For a sequence A with support equal to
support(A) with n sequence steps (→), it is sufficient to
choose a lower minimum support threshold of minSupp/2n

to guarantee this property. Intuitively, this is true because
the support of A only gets distributed over the different
sequences Â that are obtained by replacing some sequence
steps in A by set steps. Since there are at most 2n such dif-
ferent patterns Â, it follows from the generalized pigeonhole
principle that at least one of them has to receive support
of at least support(A)/2n after data transformation. Hence,
if support(A) > minSupp, then for this sequence pattern

we have support(Â) ≥ support(A)/2n > minSupp/2n and it
would therefore be frequent for the modified support thresh-
old.

We propose to use option 1 for several reasons. First, our
experiments indicate that usually some approximate version
Â of A is preserved, i.e., fragmentation of support does not
appear to be a significant problem in practice. Second, our
experiments also show that lowering the support threshold
typically leads to a large increase in total runtime and in
the number of frequent patterns found. This often more
than offsets the runtime and result size improvements of
the data transformation, making option 3 an unattractive
choice. Third, option 2 will have a similar effect like op-
tion 3. During the mining process, for a transaction with n
items, all possible n! orderings need to be examined when
searching for sequence patterns. This can dramatically in-
crease mining time as well as result size. A detailed study
of these tradeoffs is beyond the scope of this paper.

5. ALGORITHM AND EXTENSIONS
The algorithm for mining databases with bursty sequences

first transforms the original sequences, then it runs a tradi-
tional sequence mining algorithm on the transformed data.
The data transformation can be done in time linear in the
input size, therefore its cost is usually negligible compared
to the mining cost.

For ease of presentation, we describe the data transforma-
tion algorithm as if it had two different steps. In the first
step, it sequentially reads each sequence in the database
in increasing order of transaction timestamps, converting it
into the corresponding set of intervals.2 This is straightfor-
ward, and the result is a set of intervals ordered by their
starting and then ending timestamps. In the second step,
the algorithm scans this database of interval sets and cre-
ates the corresponding transactions as follows. It advances
from one timestamp t in T (S), the set of all interval end-
points, to the next. For time t, first all intervals starting
at time t are added to the current transaction. As long as

2Sequence data in practice usually is recorded in timestamp
order. If this is not the case, an additional sorting step
would have to be added to the transformation algorithm.

84

Algorithm 1 Transformation algorithm

1: trans = ∅; result = ∅
2: addingphase = true
3: for all time in set of transaction timestamps in input

sequence in increasing order do
4: items = getEvents(time)
5: if items 6= ∅ then
6: trans = trans ∪ items

7: addingphase = true
8: items = getIntervalsEnding(time)
9: if items 6= ∅ then

10: if addingphase then
11: result = result ∪ trans

12: addingphase = false
13: trans = trans− items

14: return result

there are no intervals ending, more items will be added to
this transaction for later timestamps. This is the so-called
adding phase of the transformation. As soon as an interval
endpoint is encountered, the algorithm changes from adding
phase to removing phase. On this phase change, the trans-
action is written to the output. The algorithm will then
stay in the removing phase until another interval starts, at
which point it switches back to the adding phase. If at some
time t there are both intervals starting and ending, then the
algorithm first processes the starting intervals. This also
handles correctly point-intervals, i.e., those where start and
end time are the same. It is easy to show that this algorithm
implements Definition 9.

The algorithm as described above uses two scans, one of
the original sequences and one of the interval sets, to trans-
form the data. Both steps can actually be combined into a
single pass over the original input sequences. For this the
algorithm has to “look ahead” in the item sequence to be
able to find the correct ending times of the intervals. When
processing an item at time t in the original sequence, it is
sufficient to look ahead up to t + τ to know if the item be-
longs to an interval ending at time t or not. The algorithm
is shown in Algorithm 1.

Example 2. Consider intervals (a, 1, 4), (a, 8, 10), (b, 2, 8),
(c, 3, 3) and (d, 4, 4) as before (see Figure 1). The output
of the transformation will be the new customer sequence
{a, b, c} → {a, b, d} → {a, b}. The dotted lines in Figure 1
mark the times where a new transaction is generated.

5.1 Removing Redundancy
In this subsection we discuss an extension of the mining

process to further remove redundant structure in result se-
quences and also address redundancy that might be created
by the transformation. As we will show, Theorems 1 and 2
still hold.

5.1.1 Formalizing the Notion of Redundancy
Consider again Example 1 as illustrated in Figure 1. The

transformed sequence contains transactions ({a, b, c}, 3) and
({a, b, d}, 4). These transactions support sequence {a, b} →
a, where both instances of a originate from the same burst
interval. This is a redundant and hence undesirable “re-
use” of the same burst interval for item a. On the other
hand, sequence {a, b} → {a, d} is also supported by the same

transactions, but it is not redundant. The crucial difference
is the additional item d in the second result transaction.
Even though the burst interval for a is still the same, the
new d event creates the non-redundant information that the
{a, b} burst is followed by d, which occurs simultaneously
with the a burst.

In general, redundancy can occur when some intervals are
contained in others. “Re-use” of the same burst without
adding new items is undesirable, as it re-introduces some
uninteresting repetitive patterns that we set out to elim-
inate with the transformation. (Notice that other result
patterns like {a, b} → {a, b} would have the same problem.)
We therefore would like to remove such sequences from the
mining result.

To be able to decide if a result sequence like {a, b} → a
is redundant, we need information about the underlying
intervals that created the supporting transactions. To dis-
tinguish the intervals, we add a unique ID to each interval
as follows: The interval for item a with the lowest start time
has ID a(1), the interval for a with the second-lowest start
time has ID a(2), and so on. IDs for the other items are as-
signed in the same way. We can then create the augmented
transformed sequence for a given original input sequence
by using the unique interval IDs instead of the items.
For Example 1, the augmented transformed sequence is
{({a(1), b(1), c(1)}, 3), ({a(1), b(1), d(1)}, 4), ({a(2), b(1)}, 8)}.
With the added interval IDs, redundancy for sequence
{a, b} → a can be easily detected. From the first two
transactions, we obtain {a(1), b(1)} → a(1), which is
redundant. On the other hand, from the first and the
third transaction, we obtain {a(1), b(1)} → a(2), which is
a non-redundant result, because the two transactions are
supported by different a-bursts.

To formalize this idea of redundancy, we introduce the
concept of a witness assignment for a result transaction.

Definition 12. (witness assignment) Let transfτ (S) =
{(σ1, t1), (σ2, t2), . . . , (σm, tm)} be a transformed sequence
as defined before, where the σ’s are itemsets and the t’s are
timestamps. Furthermore, let P = π1 → π2 → · · · → πp
be some sequence with πi ⊆ I for all i. A function
W : {π1, . . . , πp} → {σ1, . . . , σm} is a witness assignment
if

1. ∀1 ≤ i ≤ p : ∃1 ≤ ji ≤ m : W (πi) = σji such that

2. πi ⊆ σji and

3. ∀1 ≤ i < k ≤ p : 1 ≤ ji < jk ≤ m.

A witness assignment intuitively maps each transaction
in a result sequence to the corresponding transaction in
the transformed input sequence by which it is supported.
The conditions ensure that the mapping is total, the wit-
ness transaction indeed supports the corresponding result
transaction, and the mapping respects transaction order.

Definition 13. (non-redundant witness assignment)
Let transfτ (S) and P as in Definition 12. Fur-
thermore, let the corresponding augmented trans-
formed sequence for transfτ (S) be augm(transfτ (S)) =
{(σ′1, t1), (σ′2, t2), . . . , (σ′m, tm)}, where each σ′j is obtained
from σj by replacing all items with their corresponding
interval IDs. A witness assignment W is non-redundant, if

∀1 ≤ i ≤ p : ∀1 ≤ k < i :

(W (πi) = σji ∧W (πk) = σjk) ⇒ πi ∩ σ′ji 6⊆ σ
′
jk

85

To illustrate the last two definitions, we return to
our running example. The transformed sequence is
transfτ (S) = {({a, b, c}, 3), ({a, b, d}, 4), ({a, b}, 8)};
the corresponding augmented sequence is
{({a(1), b(1), c(1)}, 3), ({a(1), b(1), d(1)}, 4), ({a(2), b(1)}, 8)}.
Now consider result sequence {a, b} → a and the following
two alternatives for witness assignments:

1. W1({a, b}) = {a, b, c} and W1(a) = {a, b, d}.

2. W1({a, b}) = {a, b, c} and W1(a) = {a, b}.

For the first assignment, a ∩ {a(1), b(1), d(1)} = {a(1)} and
since {a(1)} ⊆ {a(1), b(1), c(1)}, this assignment is redun-
dant. For the second assignment, we have a∩{a(2), b(1)} =
{a(2)}. And since {a(2)} 6⊆ {a(1), b(1), c(1)}, this assign-
ment is non-redundant.

Notice that in Definition 13 we slightly abuse notation
by overloading the ∩ operator. It first computes the in-
tersection by ignoring the additional interval ID informa-
tion, but after computing the intersection it adds the inter-
val IDs back to the result. Hence in the example we have
a∩{a(1), b(1), d(1)} = {a(1)} and a∩{a(2), b(1)} = {a(2)}.

5.1.2 Efficient Algorithm
Having formalized the notion of redundancy in mining re-

sults after transformation, we propose an efficient algorithm
for removing redundant result sequences. The algorithm is
based on the following lemma.

Lemma 3. Let transfτ (S), augm(transfτ (S)), and P be
defined as in Definition 13. A witness assignment W is
non-redundant, if and only if

∀1 ≤ i ≤ p :

(W (πi) = σji ∧W (πi−1) = σji−1) ⇒ πi ∩ σ′ji 6⊆ σ
′
ji−1

The lemma can be proved by using the property that an
interval that starts at some time k ≤ i−1 < i and ends after
time i, will also contain timestamp i− 1. The lemma intu-
itively states that to test if witness σji of result transaction
πi is redundant, we do not need to test the witnesses of all
previous result transactions. All we need to do is test the
preceding transaction πi−1 to see if all burst intervals used
for support of πi are already contained in the augmented
witness of πi−1. This reduces algorithm complexity from
depending on |P |2 to being linear in |P |.

Algorithm 2 for finding a non-redundant witness assign-
ment follows directly from the above lemma. It maps each
result transaction to the earliest possible witness that is non-
redundant. The algorithm finds a non-redundant witness
assignment if and only if such an assignment exists, and
returns true if and only if such an assignment was found.

Algorithm 2 is used to “correct” the support count for
result sequences. It is applied after the initial mining result
has been found on the transformed data. The complete al-
gorithm for finding frequent sequences in bursty data now
has the following steps:

1. Transform all input sequences using Algorithm 1.

2. Find all frequent sequences in the transformed data,
using an existing frequent sequence mining algorithm.

3. For each result sequence, compute its non-redundant
support as the number of transformed input sequences

Algorithm 2 Existence of Non-Redundant Witness Assign-
ment
1: P = π1 → π2 → · · · → πp
2: transfτ (S) = {(σ1, t1), (σ2, t2), . . . , (σm, tm)}
3: j = 0
4: witness = ∅
5: for i = 1 to p do
6: accept = false
7: while j < m do
8: j + +
9: if πi ⊆ σj and πi ∩ σ′j 6⊆ witness then

10: witness = σj
11: accept = true
12: break while
13: return accept

that have a non-redundant witness assignment for this
result sequence (using Algorithm 2); eliminate result
sequences whose non-redundant support is below the
support threshold.

An obvious question is if we can inline the non-redundant
support counting into the mining process. Apart from hav-
ing to modify existing algorithms, the main problem is
that non-redundant support does not have the monotonicity
property. For example, a(1)→ {a(1), b(1)} non-redundantly
supports a → {a, b}, but it does not non-redundantly sup-
port a→ a.

5.1.3 Preserving Transformation Properties
Adding the redundancy removal step does not affect the

validity of Theorems 1 and 2 (see Section 4). Theorem 1
is obviously unaffected. For Theorem 2 we need to show
that for each pattern A = a1 ;1 a2 ;2 · · · ;k−1 ak in
the original data, at least one of the corresponding Â =
a1 ;′1 a2 ;′2 · · · ;′k−1 ak is preserved even after removing
redundancy. Stated differently, we need to show that not all
possible instances of Â will be eliminated due to redundancy.

Thanks to Lemma 3, this proof is surprisingly simple.
It is based on the following observation. Let πi−1, πi,
σji−1 and σji be the result transactions and their corre-
sponding redundant witnesses, i.e., πi ∩ σ′ji ⊆ σ′ji−1 . Since

πi ⊆ σji (witness property), this implies πi ⊆ σji−1 . To-
gether with πi−1 ⊆ σji−1 (witness property), this gives us
πi−1 ∪πi ⊆ σji−1 . Stated differently, if there is a pair of ad-
jacent result transactions that violates the non-redundancy
property, then the union of these transactions is supported
by the witness of the earlier one. This way we can “elim-
inate” such transaction pairs with redundant support by
replacing πi−1 → πi with πi−1 ∪ πi, which is the same as
πi−1 ↔ πi. If we start out with some result sequence Â,
then it is not difficult to show that repeated combination
of adjacent transactions by the union operation will always
result in a pattern that also corresponds to an instance of
Â, just with more set steps ↔ that have replaced some of
the sequence steps →.

6. EXPERIMENTS
We study the effects of the proposed data transformation

for synthetic and real data, using option 1 for dealing with
support fragmentation (see Section 4.3). All experiments
are performed on a Pentium 4 PC with 3.80GHz and 2 GB

86

Parameter Dense Sparse

sequence length 200 200
items 50 100
HL 100 20
LL 500 50

Table 2: Default parameters, synthetic data

of RAM running Windows XP. To mine the frequent se-
quences, we use the PrefixSpan algorithm that is available
in the IlliMine system package. PrefixSpan [10] is imple-
mented in C++, our transformation and post processing
algorithms are implemented in Java.

We do not report the runtime of the data transformation
algorithm. It is a little higher than the cost of a single
scan of the input sequences. In all our experiments this cost
was negligible compared to the cost of finding the frequent
subsequences.

6.1 Synthetic Data
Our synthetic data generator creates customer sequences

of desired lengths and can choose events from a pool of dif-
ferent items. To simulate bursts caused by the changing
state of a machine, items can be in one of two different
phases—a phase where they occur with high frequency and
a phase with low frequency. These phases alternate for each
item. Events are generated by a Poisson process, whose
mean interarrival time determines the average frequency of
the items. State changes from high to low frequency and
vice versa are controlled by another Poisson process with an
independently selectable mean interarrival time.

A synthetic data set is described by four parameters
Hx1 Lx2 HLx3 LLx4. Hx1 is the mean interarrival time
for an item in its high frequency phase, Lx2 is the mean in-
terarrival time of the item during the low frequency phase.
The two parameters HLx3 and LLx4 determine the average
length of the high and low frequency phases, respectively.
For example, for parameters H5 L20 HL100 LL400 an item
has a mean interarrival time of 5 during the high frequency
phase, and of 20 during the low frequency phase. The aver-
age length of the high and low frequency phases is 100 and
400, respectively.

We studied the impact of the data transformation for var-
ious parameter settings. In general we observed that the
number of frequent transactions found can be reduced con-
siderably, while significantly speeding up the computation.

In the remainder of this subsection we discuss represen-
tative results of our experimental analysis. We include two
different types of synthetic data: sparse and dense. The
density of a sequence often results in very different behavior
of the mining algorithms. While sparse data sets are usually
mined with a low support threshold, dense data has to be
mined with a higher support threshold. Dense data is gen-
erated by drawing items from a small pool of possible items,
while for sparse data a larger item pool is used. The default
parameters are shown in Table 2.

Figures 3, 4, and 5 show typical results for dense data.
They were obtained for H2 L40 (other parameters at their
default). In the transformed data, significantly fewer fre-
quent sequences are contained. With decreasing minimum
support threshold, the number of frequent sequences in-

creases rapidly for the original data, but increases only
slowly for the transformed data. The computation time for
these data sets is strongly dependent on the number of fre-
quent sequences found as can be seen in Figure 4. The same
general observations can be made for the sparse data as
shown in Figures 6, 7, and 8 for H2 L1000; however notice
the different support threshold.

For the sparse data set, the transformation reduces the
number of possible combinations in the data sequences even
more aggressively, eliminating many long sequences with
“medium” support. Decreasing the support threshold there-
fore leads to a comparably low increase in the number of
frequent sequences found for the transformed data. For the
original data the number of frequent sequences grows expo-
nentially.

6.2 Real Data
We obtained a number of proprietary datasets containing

event logs generated by large printing machines. There are
hundreds of machines with hundreds to hundreds of thou-
sands of events recorded for each machine. Frequent se-
quence mining is used to find those event sequences that
signal the occurrence of severe faults. For each severe fault
type X, an input sequence database is obtained by consid-
ering the sequences of non-X events occurring between all
pairs of consecutive X events for all printing machines that
had X events. There are dozens of severe faults of inter-
est, resulting in dozens of unique real datasets. We present
representative results for one fault type.

In Figure 9 the decrease of the input data size is shown
when the transformation is applied to the original data. The
data size drops rapidly for merge thresholds between 0 and
10 seconds. For larger merge thresholds the graph takes a
slower descent and converges to a data size of about 1750
kilobytes. This indicates the presence of many bursts with
a variety of interarrival times.

Figure 10 shows the number of frequent sequences found
when using a merge threshold of 80 seconds. The origi-
nal dataset supports significantly more sequences than the
transformed one. For a minimum support of 0.13, there are
more than twice as many frequent sequences compared to
the transformed data. With decreasing minimum support,
this ratio increases even further. For a minimum support
of 0.07 there are four times as many frequent sequences as
in the transformed data. Filtering out redundant result se-
quences, as discussed in Section 5.1, reduces the number of
sequences in the transformed result even further.

However, the redundancy is not very high, because for this
specific case there are not many burst intervals that con-
tain other intervals. For other fault types, minimum sup-
port, and higher merge thresholds, more redundancy was
removed. Figure 11 shows the effect of choosing a larger
merge threshold for the same data set and for minimum
support 0.1. Larger merge thresholds create longer inter-
vals, hence redundancy will be more likely. This leads to a
situation where the result size for the transformed data at
some point starts increasing, even though more and more
individual events become absorbed by burst intervals. This
increase is due to redundancy, as the “filtered” line indi-
cates, which shows the result size after removing redundant
result sequences.

6.3 Preserving Relevant Results

87

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06
 6e+06

 7e+06

 8e+06

 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

of

 fr
eq

ue
nt

 s
eq

ue
nc

es

minimum support

original
transformed

Figure 3: Dense Data, H2 L40

 0

 100

 200

 300

 400

 500

 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

co
m

pu
ta

tio
n

tim
e

(s
ec

)

minimum support

original
transformed

Figure 4: Dense Data, H2 L40

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 2 4 6 8 10 12 14

of

 fr
eq

ue
nt

 s
eq

ue
nc

es

merge threshold

Figure 5: Dense Data, H2 L40

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0.005 0.01 0.015 0.02 0.025 0.03

of

 fr
eq

ue
nt

 s
eq

ue
nc

es

minumum support

original
transformed

Figure 6: Sparse Data, H2 L1000

 0

 20

 40

 60

 80

 100

 120

 0.005 0.01 0.015 0.02 0.025 0.03

co
m

pu
ta

tio
n

tim
e

(s
ec

)

minumum support

original
transformed

Figure 7: Sparse Data, H2 L1000

 0

 100000

 200000

 300000

 400000

 500000

 2 4 6 8 10 12 14 16

fr

eq
ue

nt
 s

eq
ue

nc
es

merge threshold

Figure 8: Sparse Data, H2 L1000

We discussed in Section 4.3 that our transformation does
not guarantee that some version Â of a frequent pattern A
in the original data will be preserved. In general, only a
domain expert can determine if the transformation indeed
only eliminated irrelevant patterns, but preserved the most
important patterns.

As an objective measure of how well important patterns
are preserved, we propose the following approach. For a
sequence pattern A = a1 ;1 a2 ;2 · · · ;k−1 ak, we re-
fer to the set {a1, a2, . . . , ak} (without duplicates!) as its
contained itemset. We determine the number of different
contained itemsets for the frequent sequences found for the
original data. Then we determine how many of them are
also among the contained itemsets for the frequent sequences
found for the transformed data. The ratio between this num-
ber for the transformed data divided by the number for the
original data indicates how well important non-redundant
pattern structure was preserved—a ratio close to 100% in-
dicates good preservation, a ratio close to zero that nothing
was preserved. This ratio is a good measure for two reasons.
First, there is no redundancy in the contained itemset (it
keeps only the “distinct” items occurring in A), and hence
all irrelevant structure caused by bursts is definitely elimi-
nated. Second, even though fine-grained sequence structure
is lost in the contained itemset, all items that are relevant
in the sequence pattern are preserved. This often provides
valuable information when studying causes of severe faults.

We computed the contained itemset size ratios for differ-
ent severe faults for various combinations of merge thresh-
olds between 1 minute and 1 day and different support
thresholds. In all cases, we observed a contained itemset
ratio between 89% and 97%. An analysis of result samples
revealed that many results looked similar to the example in
Table 1, i.e., irrelevant structure was removed. This provides
strong evidence, showing that across a variety of parame-
ter settings, for almost all frequent patterns in the original
data, at least one approximate version of the pattern was
preserved.

7. RELATED WORK
The problem of mining sequential patterns was first intro-

duced by Agrawal and Srikant [2] and is strongly related to
mining of association rules [1]. There the Apriori algorithm
was first introduced whose monotonicity based pruning in-
spired many sequence mining algorithms.

Early sequence mining algorithms relied on a breadth-first
technique that in theory allows for optimal pruning of the
search space, which can dramatically improve performance
for large data sets [11, 16, 15]. More recent algorithms use
different strategies to traverse the search space. FreeSpan,
PrefixSpan and Spam [7, 10, 3] rely on depth-first traversal.

Other research is concerned with the extension of the ap-
plicability of existing techniques and with further improved
performance of existing methods [6, 4, 14]. Another im-
portant research field in sequence mining is to improve the
result, e.g., by finding only maximal or closed sequences.
Here the main focus is on reduction of the final result set
[9, 13, 17]. In PlanMine, sequences are mined that lead
to a positive outcome of a plan. The number of sequences
can be reduced by removing those that also lead to negative
outcomes of a plan. This technique, however, cannot be ap-
plied to many datasets because of the lack of such “negative
information”.

Closed sequence mining [13], approaches used in PlanMine
[17], and other existing techniques for mining sequences are
orthogonal to our work. Since our transformation produces
sequence data, these techniques can be applied to the trans-
formed data as well.

For itemset mining, [18] addresses mining cost for the
explosive number of frequent itemset patterns due to the
monotonicity of frequency.

8. CONCLUSIONS
We proposed a novel technique that allows efficient mining

of bursty sequences. The general idea is to merge items
of the same type when they are in a chronologically short
distance from each other. The item-intervals generated this

88

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 40 60 80 100 120 140 160 180 200

da
ta

si
ze

 (
K

B
)

merge threshold (sec)

Figure 9: Real Data

 0

 200000

 400000

 600000

 800000

 1e+06

 0.07 0.08 0.09 0.1 0.11 0.12 0.13

of

 fr
eq

ue
nt

 s
eq

ue
nc

es

minimum support

original
transformed

filtered

Figure 10: Real Data

 0

 10000

 20000

 30000

 40000

 50000

 10 20 30 40 50 60 70 80 90 100

of

 fr
eq

ue
nt

 s
eq

ue
nc

es

merge threshold (min)

original
transformed

filtered

Figure 11: Real Data

way can be transformed back to a sequence database. This
allows the use of existing sequence mining algorithms on the
transformed data.

We proved that the transformation reduces input sequence
length and preserves important structure of individual pat-
terns. We also discussed the problem of fragmentation of
support and how it might cause loss of important frequent
patterns. Our experiments show that significant reduction
in mining time and result size are achieved, while still pre-
serving important frequent patterns. In general fragmenta-
tion of support was not a problem in practice, supporting
our decision for option 1 (see Section 4.3).

Our work on transforming input sequences raises inter-
esting questions for future work. First, instead of mapping
burst intervals back to traditional sequences, it might be
more efficient to mine sequences of intervals directly. Sec-
ond, the problem of mining very long sequences has still
many open questions. Transforming the original sequences
in different ways can be the answer and our approach is
merely a first step in this direction.

9. ACKNOWLEDGEMENTS
The authors would like to thank Tracy Thieret for many

insightful discussions and the reviewers for their constructive
comments.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0748626, by
the AFOSR under Award No. FA9550-06-1-0111, by the
U.S. Department of Homeland Security under Grant Award
Number 5-36423.5750, and by a gift from Xerox Corpora-
tion. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

10. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In VLDB, pages 487–499, 1994.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. In ICDE, pages 3–14, 1995.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu.
Sequential pattern mining using a bitmap
representation. In ACM SIGKDD, pages 429–435,
2002.

[4] A. Demiriz and M. J. Zaki. webSPADE: A parallel
sequence mining algorithm to analyze the web log
data, 2002.

[5] G. Dong and J. Pei. Sequence Data Mining (Advances
in Database Systems). Springer-Verlag New York,
2007.

[6] M. El-Sayed, C. Ruiz, and E. A. Rundensteiner.
Fs-miner: Efficient and incremental mining of frequent
sequence patterns in web logs. In Workshop on Web
Information and Data Management (WIDM), 2004.

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. Freespan: frequent pattern-projected
sequential pattern mining. In ACM SIGKDD, 2000.

[8] J. Kleinberg. Bursty and hierarchical structure in
streams. In ACM SIGKDD, pages 91–101, 2002.

[9] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In ICDT, pages 398–416, 1999.

[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining
sequential patterns efficiently by prefix projected
pattern growth. In ICDE, pages 215–224, 2001.

[11] R. Srikant and R. Agrawal. Mining sequential
patterns: Generalizations and performance
improvements. In EDBT, pages 3–17, 1996.

[12] W. Wang and J. Yang. Mining Sequential Patterns
from Large Data Sets. Springer-Verlag New York,
2005.

[13] X. Yan, J. Han, and R. Afshar. Clospan: Mining
closed sequential patterns in large datasets. In SDM,
pages 166–177, 2003.

[14] Z. Yang and M. Kitsuregawa. LAPIN-SPAM: An
improved algorithm for mining sequential pattern. In
ICDE Workshops, 2005.

[15] M. J. Zaki. Sequence mining in categorical domains:
Incorporating constraints. In CIKM, pages 422–429,
2000.

[16] M. J. Zaki. Spade: An efficient algorithm for mining
frequent sequences. Machine Learning, 42(1-2):31–60,
2001.

[17] M. J. Zaki, N. Lesh, and M. Ogihara. PlanMine:
Sequence mining for plan failures. In ACM SIGKDD,
pages 369–373, 1998.

[18] F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng.
Mining colossal frequent patterns by core pattern
fusion. In ICDE, 2007.

89

