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Abstract 
This paper introduces Clustera, an integrated computation and 
data management system.  In contrast to traditional cluster-
management systems that target specific types of workloads, 
Clustera is designed for extensibility, enabling the system to be 
easily extended to handle a wide variety of job types ranging from 
computationally-intensive, long-running jobs with minimal I/O 
requirements to complex SQL queries over massive relational 
tables.  Another unique feature of Clustera is the way in which the 
system architecture exploits modern software building blocks 
including application servers and relational database systems in 
order to realize important performance, scalability, portability and 
usability benefits.  Finally, experimental evaluation suggests that 
Clustera has good scale-up properties for SQL processing, that 
Clustera delivers performance comparable to Hadoop for 
MapReduce processing and that Clustera can support higher job 
throughput rates than previously published results for the Condor 
and CondorJ2 batch computing systems. 

1. Introduction 
A little more than 25 years ago a cluster of computers was an 
exotic research commodity found only in a few universities and 
industrial research labs.  At that time a typical cluster consisted of 
a couple of dozen minicomputers (e.g. VAX 11/750s or PDP 11s) 
connected by a local area network.  By necessity clusters were 
small as the cost of a node was about the same as the annual 
salary of a staff member with an M.S. in computer science 
($25K). 

Today, for a little more than the annual salary of a freshly minted 
M.S., one can purchase a cluster of about 100 nodes, each with 
1,000 times more capacity in terms of CPU power, memory, disk, 
and network bandwidth than 25 years ago.  Clusters of 100 nodes 
are now commonplace and many organizations have clusters of 
thousands of nodes.  These clusters are used for various tasks 
including analyzing financial models, simulating circuit designs 
and physical processes, and analyzing massive data sets.  The 
largest clusters, such as those used by Google, Microsoft, Yahoo, 

and various defense laboratories, include over 10,000 nodes.  
Except for issues of power and cooling, one has to conclude that 
clusters of 100,000 or even one million nodes will be deployed in 
the not too distant future. 

While it is always dangerous to generalize, clusters seem to be 
used today for three distinct types of applications: 

• computationally intensive tasks 
• analyzing large data sets with techniques such as MapReduce 
• running SQL queries in parallel on structured data sets 

Applications in the first class usually run as a single process on a 
single node.  That is, rather than using multiple nodes to 
cooperatively run a single simulation, the general pattern is that 
the nodes execute independent instances of the simulation, each 
exploring a different portion of the parameter space.  This style of 
usage is what Livny [1] refers to as “high throughput” computing. 

The second type of application is typified by Google’s 
MapReduce [2] software.  This software has revolutionized the 
analysis of large data sets on clusters.  A user of the MapReduce 
framework needs only to write map and reduce functions.  The 
framework takes care of scheduling the map and reduce functions 
on the nodes of the cluster, moving intermediate data sets from the 
map functions to the reduce functions, providing fault tolerance in 
the event of software or hardware failures, etc. 

There are two key differences between the class of jobs targeted 
by the MapReduce framework and those targeted by the first class 
of cluster software.  First, MapReduce jobs run in parallel.  For 
example, if the input data set is partitioned across the disks of 100 
nodes, the framework might run 100 coordinated instances of the 
job simultaneously.  The second major difference is that 
MapReduce is targeted towards data intensive tasks while the 
former is targeted towards compute intensive tasks. 

The third class of cluster applications is one for which the 
database community is most familiar: a SQL database system that 
uses the nodes of a cluster to run a SQL query in parallel.  Like 
MapReduce, such systems are targeted towards running a single 
job (i.e., a SQL query) in parallel on large amounts of data.  In 
contrast to MapReduce, the programming model is limited to that 
provided by SQL augmented, to a limited degree, by the use of 
user-defined functions and stored procedures. 

Despite their obvious differences, all three types of cluster 
systems have significant similarities.  All have a notion of a job 
and a job scheduler.  For Condor-like batch systems the job is an 
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executable to be run on a single node.  For MapReduce it is a pair 
of functions.  For database systems the job is a SQL query.  All 
three also have a job scheduler that is responsible for assigning 
jobs to nodes and monitoring their execution.  In the case of 
MapReduce and SQL, the scheduler also is responsible for 
“parallelizing” the job so that it can run on multiple nodes 
concurrently. 

With this background, we turn our attention to the focus of this 
paper, which is to present the design, implementation, and 
evaluation of a new cluster management system called Clustera.  
Clustera is different from all previous attempts to build a cluster 
management system in three important ways.  First, it is designed 
to run the three classes of jobs described above efficiently.  
Second, its design leverages modern software components 
including database systems and application servers as its 
fundamental building blocks.  Third, the Clustera framework is 
designed to be extensible, allowing new types of jobs and job 
schedulers to be added to the system in a straightforward fashion. 

The remainder of this paper is organized as follows.  In Section 2 
we present related work.  Section 3 describes Clustera’s software 
architecture including the three classes of abstract job schedulers 
we have implemented so far.  In Section 4 we evaluate Clustera’s 
performance, including a comparison of Clustera’s MapReduce 
implementation with that provided by Hadoop on a 100-node 
cluster.  Finally, our conclusions and future research directions are 
presented in Section 5. 

2.  Related Work 
2.1 Cluster Management Systems 
The idea of using a cluster of computers for running 
computationally intensive tasks appears to have been conceived 
by Maurice Wilkes in the late 1970s [3].  Many different cluster 
management systems have been developed including LoadLeveler 
[5], LSF [6], PBS [7], and N1 Grid Engine (SGE) [8].  Like 
Condor, LoadLeveler, LSF and PBS use OS files for maintaining 
state information.  SGE, optionally, allows the use of a database 
system for managing state information (job queue data, user data, 
etc.).  In contrast to these “application-level” cluster management 
systems that sit on top of the OS, some vendors offer clustering 
solutions that are tightly integrated into the OS.  One example of 
this class of system is Microsoft’s Compute Cluster Server [9] for 
Windows Server 2003.  The focus of the GridMP [10] is to 
provide a framework within which developers can “grid-enable,” 
or “port to the grid” pre-existing enterprise applications. 

2.2 Parallel Database Systems 
Parallel database systems have their roots in early database 
machine efforts [11,12,13].  MUFFIN [14] was the first database 
system to propose using a cluster of standard computers for 
parallelizing queries, a configuration that Stonebraker later termed 
“shared-nothing”.  Adopting the same shared-nothing paradigm, 
in the mid-1980s the Gamma [15] and Teradata [16] projects 
concurrently introduced the use of hash-based partitioning of 
relational tables across multiple cluster nodes and disks as well as 
the use of hash-based split functions as the basis of parallelizing 
the join and aggregate operators.  Today parallel database systems 
are available from a variety of vendors including Teradata, 
Oracle, IBM, HP (Tandem), Greenplum, Netezza, and Vertica. 

2.3 MapReduce  
Developed initially by Google [2], and now available as part of 

the open source system Hadoop [17], MapReduce has recently 
received very widespread attention for its ability to efficiently 
analyze large unstructured and structured data sets.  The basic 
idea of MapReduce is straightforward and consists of two 
functions that a user writes called map and reduce plus a 
framework for executing a possibly large number of instances of 
each program on a compute cluster. 
The map program reads a set of “records” from an input file, does 
any desired filtering and/or transformations and then outputs a set 
of records of the form (key, data).  As the map program produces 
output records a “split” function partitions the records into M 
disjoint buckets by applying a function to the key of each output 
record.  The map program terminates with M output files, one for 
each bucket.  In general, there are multiple instances of the map 
program running on different nodes of a compute cluster.  Each 
map instance is given a distinct portion of the input file by the 
MapReduce scheduler to process.  Thus, with N nodes in the map 
phase each producing M files there is a total of N * M files.  

The second phase executes M instances of the reduce program.  
Each reads one input file from each of the N nodes.  After being 
collected by the MapReduce framework, the input records to a 
reduce instance are grouped on their keys (by sorting or hashing) 
and fed to the reduce program.  Like the map program, the reduce 
program is an arbitrary computation in a general-purpose 
language.  Each reduce instance can write records to an output 
file, which forms part of the “answer”. 

2.4 Dryad 
Drawing inspiration from cluster management systems like 
Condor, MapReduce, and parallel database systems, Dryad [18] is 
intended to be a general-purpose framework for developing 
coarse-grain data parallel applications.  Dryad applications consist 
of a data flow graph composed of vertices, corresponding to 
sequential computations, connected to each other by 
communication channels implemented via sockets, shared-
memory message queues, or files.  The Dryad framework 
provides support for scheduling the vertices constituting a 
computation on the nodes of a cluster, establishing 
communication channels between computations, and dealing with 
software and hardware failures.  
In many ways the goals of the Clustera project and Dryad are 
quite similar to one another.  Both are targeted toward handling a 
wide range of applications ranging from single process, 
computationally intensive jobs to parallel SQL queries.   The two 
systems, however, employ radically different implementation 
strategies.  Dyrad uses techniques similar to those first pioneered 
by the Condor project based on the use of daemon processes 
running on each node in the cluster to which the scheduler pushes 
jobs for execution. 

3. Clustera Architecture 
3.1  Introduction 
The goals of the Clustera project include efficient execution of a 
wide variety of job types ranging from computationally-intensive, 
long-running jobs with minimal I/O requirements to complex SQL 
queries over massive relational tables.  Rather than “prewiring” 
the system to support a specific type of job, Clustera is designed 
to be extensible, enabling the system to be easily extended to 
handle new types of jobs and their associated schedulers.  Finally, 
the system is designed to scale to tens of 1000s of nodes by 
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Figure 1:  “Push” Cluster Architecture 

exploiting modern software building blocks including applications 
servers (e.g., JBoss) and relational database systems. 
In designing and building this system we also wanted to answer 
the question of whether a general-purpose cluster management 
system could be competitive with one designed to execute a single 
type of job.  As will be demonstrated in Section 4, we believe that 
the answer to this question is “yes”. 

3.2 The Standard Cluster Architecture  
Figure 1 depicts the “standard” architecture that many cluster 
management systems use.  Users submit their jobs to a job 
scheduler that “matches” submitted jobs to nodes as nodes 
become “available”.  Examples of criteria that are frequently used 
to match a job to a node include the architecture for which the job 
has been compiled (e.g. Intel or Sparc) and the minimum amount 
of memory needed to run the job.  From the set of “matching” 
jobs, the job scheduler will select which job to run according to 
some scheduling mechanism.  Condor, for example, uses a 
combination of “fair-share” scheduling and job priorities.  After a 
job is “matched” with a node, the scheduler sends the job to a 
daemon process on the node.  This process assumes responsibility 
for starting the job and monitoring its execution until the job 
completes.  How input and output files are handled varies from 
system to system.  If, for example, the nodes in the cluster (as well 
as the submitting machines) have access to a shared file system 
such as NFS or AFS, jobs can access their input files directly.  
Otherwise, the job scheduler will push the input files needed by 
the job, along with the executable for the job, to the node.  Output 
files are handled in an analogous fashion.  We use the term “push” 
architecture in reference to the way jobs get “pushed” from the 
job scheduler to a waiting daemon process running on the node. 

Examples of this general class of architecture include Condor, 
LSF, IBM Loadleveler, PBS, and SunN1 Grid Engine.  There are 
probably dozens of other similar systems.  Despite this high-level 
similarity, there are differences between the systems, too.  
Condor, for example, uses a distributed job queue and file transfer 
to move files between the submitting machine and the node. 

3.3 Clustera System Architecture 
Figure 2 depicts the architecture of Clustera.  This architecture is 
unique in a number of ways. First, the Clustera server software is 
implemented using Java EE running inside the JBoss Application 
Server.  As we will discuss in detail below, using an Application 
Server as the basis for the system provided us a number of 
important capabilities including scalability, fault tolerance, and 
multiplexing of the connections to the DBMS.   The second 
unique feature is that the cluster nodes are web service clients of 
the Clustera server, using SOAP over HTTP to communicate and 
coordinate with the Clustera server.  Third, all state information 
about jobs, users, nodes, files, job execution history, etc. is stored 
in a relational database system. Users and system administrators 
can monitor the state of their jobs and the overall health of the 
system through a web interface. 

 
The Clustera server provides support for job management, 
scheduling and managing the configuration and state of each node 
in the cluster, concrete files, logical files, and relational tables, 
information on users including priorities, permissions, and 
accounting data, as well as a complete historical record of each 
job submitted to the system.  The utility provided by maintaining 
a rich, complete record of job executions cannot be overstated.  In 
addition to serving as the audit trail underlying the usage 
accounting information, maintaining these detailed historical 
records makes it possible, for example, to trace the lineage of a 
logical file or relational table (either of which typically is 
composed of a distributed set of physical files) back across all of 
the jobs and inputs that fed into its creation.  Similarly it is 
possible to trace 
forward from a given 
file or table through 
all of the jobs that – 
directly or indirectly 
– read from the file or 
table in question to 
find, for example, 
what computations 
must be re-run if a 
particular data set 
needs to be corrected, 
updated or replaced.  
 
Users can perform essential tasks (e.g., submit and monitor jobs, 
reconfigure nodes, etc.) through either the web-service interface to 
the system or via a browser-based GUI.  Additionally, users can 
access basic aggregate information about the system through a set 
of pre-defined, parameterized queries (e.g., How many nodes are 
in the cluster right now?  How many jobs submitted by user X are 
currently waiting to be executed?  Which files does job 123 
depend on?).  While pre-defined, parameterized queries are quite 
useful, efficiently administering, maintaining, troubleshooting and 
debugging a system like Clustera requires the ability to get real-
time answers to arbitrary questions about system state that could 
not realistically be covered by even a very large set of canned 
reports.  In these situations one big benefit of maintaining system 
state information in an RDBMS is clear – it provides users and 
administrators with the full power of SQL to pose queries and 
create ad-hoc reports.  During development, we have found that 
our ability to employ SQL as, among other things, a very high-
powered debugging tool has improved our ability to diagnose, and 
fix, both bugs and performance bottlenecks. 
 
The Clustera node code is implemented as a web-service client in 
Java for portability (either Linux or Windows).  The software runs 
in a JVM that is forked and monitored by a daemon process 
running on the node.  Instead of listening on a socket (as with the 
“push” model described in the previous section), the Clustera 
node software periodically “pings” the Clustera server requesting 
work whenever it is available to execute a job.  In effect, the node 
software “pulls” jobs from the server.   
 
While the use of a relational DBMS should be an obvious choice 
for storing all the data about the cluster, there are a number of 
benefits from also using an application server.  First, application 
servers (such as JBoss [20], BEA’s WebLogic, IBM’s 
WebSphere, and Oracle Application Server) are designed to scale 

 
Figure 2:  Clustera Architecture 
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to tens of 1000s of simultaneous web clients. Second, they are 
fault tolerant, multithreaded, and take care of pooling connections 
to the database server.  Third, software written in Java EE is 
portable between different application servers.  Finally, the Java 
EE environment presents an object-relationship model of the 
underlying tables in the database.  Programming against this 
model provides a great deal of back-end database portability 
because the resulting Java EE application is, to a large extent, 
insulated from database-specific details such as query syntax 
differences, JDBC-SQL type-mappings, etc.  We routinely run 
Clustera on both IBM’s DB2 and on PostgreSQL. 

As illustrated in Figure 3, application servers can also be clustered 
on multiple machines for enhanced reliability and scalability.  In a 
clustered environment the application server software can be 
configured to automatically manage the consistency of objects 
cached on two or more servers.  In effect, the Java EE application 
is presented the image of a shared object cache. 

3.4 Concrete Files, Concrete Jobs, Pipelines, and 
Concrete Job Scheduling 
Concrete jobs and concrete files are the primitives on which 
higher-level abstractions are constructed.  Concrete files are the 
basic unit of storage in Clustera and correspond to a single 
operating system file.  Concrete files are used to hold input, 
output, and executable files and are the building blocks for higher-
level constructs, such as the logical files and relational tables 
described in the following section.  Each concrete file is replicated 
a configurable number of times (three is the default) and the 
location for each replica is chosen in such a way to maximize the 
likelihood that a copy of the file will still be available even if a 
switch in the cluster fails.  As concrete files are loaded into the 
system (or created as an output file) a checksum is computed over 
the file to insure that files are not corrupted. 
 
As database practitioners we do the obvious thing and store the 
metadata about each concrete file in the database as illustrated in 
Figure 4.  This includes ownership and permission information, 
the file’s checksum and the location of all replicas.  Since nodes 
and disks fail, each node periodically contacts the server to 
synchronize the list of the files it is hosting with the list the server 
has.  The server uses this information to monitor the state of the 
replicas of each file.  If the number of replicas for a concrete file 
is below the desired minimum, the server picks a new node and 
instructs that node (the next time it contacts the server) to obtain a 
copy of the file from one of the nodes currently hosting a replica. 
 
A concrete job is the basic unit of execution in the Clustera 
system.  A concrete job consists of a single arbitrary executable 
file that consumes zero or more concrete files as input and 
produces zero or more concrete output files.  All information 
required to execute a concrete job is stored in the database 
including the name of the executable, the arguments to pass it, the 

minimum memory required, the processor type and the file IDs 
and expected runtime names of input and output files. 
 
A pipeline is the basic unit of scheduling.  Though the name 
implies linearity, a pipeline is, in general, a DAG (directed acyclic 
graph) of one or more concrete jobs scheduled for co-execution on 
a single node; the nodes of the pipeline DAG are the concrete jobs 
to execute and the edges correspond to the inter-job data-
dependencies.  For large graphs of inter-dependent jobs, the 
concrete job scheduler will dynamically segment the graph into 
multiple pipelines.  The pipelines themselves are often sized so 
that the number of executables in the pipeline matches the number 
of free processing cores on the node executing the pipeline. 
 
The inputs to and the outputs from a pipeline are concrete files.  
During pipeline execution, the Clustera software transparently 
enables the piping (hence the term “pipeline”) of intermediate 
files directly in memory from one executable to another without 
materializing them on disk.  Note that the user need not tell the 
system which jobs to co-schedule or which files to pipe through 
memory – the system makes dynamic co-scheduling decisions 
based on the dependency graph and enables in-memory piping 
automatically at execution time.  (In the near future we plan to 
extend piping of intermediate files across pipelines/nodes.)  This 
dynamic, transparent piping of data between jobs is similar to that 
employed in Dryad [14].  The appendix provides more details on 
how file access patterns can alter pipelining decisions. 

The Clustera server makes scheduling decisions whenever a node 
“pings” the server requesting a pipeline to execute.  Matching, in 
general, is a type of join between a set of idle nodes and a set of 
jobs that are eligible for execution [19].  The output of the match 
is a pairing of jobs with nodes that maximizes some benefit 
function.  Typically this benefit function will incorporate job and 
user priorities while avoiding starvation.  Condor, for example, 
incorporates the notion of “fair-share” scheduling to insure that 
every user gets his/her fair share of the available cycles [21].  In 
evaluating alternative matches, Clustera also includes a notion of 
what we term “placement-aware” scheduling which incorporates 
the locations of input, output, and executable files.  The “ideal” 
match for a node is a pipeline for which it already has a copy of 

 
Figure 4:  A four-node cluster illustrating the use of 

concrete files 

 
Figure 3:  Clustered Application Server 
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the executable files and all input files.  If such a match cannot be 
found then the scheduler will try to minimize the amount of data 
to transfer.  For example, if a pipeline has a large input file, the 
scheduler will try to schedule that pipeline on a node that already 
has a copy of that file (while avoiding starvation). 

Figure 5 shows a linear pipeline of n jobs in which the outputs of 
one job are consumed as the inputs to the successor job.  For this 
very common type of pipeline, only the first job in the pipeline 
consumes any concrete files as input and only the last job in the 
pipeline produces any concrete files as output; the rest of the data 
passes through in-memory pipes transparently to the executables. 
 
Figure 6 shows a four-job 
DAG that runs as a single 
complex pipeline.  In contrast 
to the Figure 5 pipeline, the 
Figure 6 pipeline illustrates 
that pipelines can be arbitrary 
DAGs.  This single pipeline 
plan would likely be an 
excellent choice for execution 
on a four-core machine that 
already hosts copies of files 
LF1 and LF2.  Figure 7 
illustrates an alternative 
execution plan in which the 
four-job DAG of Figure 6 is 
segmented into three separate 
linear pipelines.  Because they 
can run independently of each 
other, the first two pipelines are immediately eligible for 
execution.  The third pipeline is dependent upon output files from 
the first two and is only eligible for execution after those output 
files have been materialized. 

In contrast to Figure 6, the segmented plan of Figure 7 is 
potentially more suitable when files LF1 and LF2 are large and do 
not reside on the same host.  In this situation, the first two 
pipelines can be executed without any data transfer required.  

Since the decision on where to schedule the third pipeline can be 
deferred until that pipeline is actually ready for execution, the 
concrete job scheduler can wait to see which of the two 
intermediate files (LF4 and LF5) is larger and minimize the 
network bandwidth usage and data transfer time by scheduling the 
third pipeline to run on that node. 
 
Figure 8 illustrates the set-up and execution of a single-job 
pipeline whose executable is File C, which is stored on node 1.  In 
response to the request for work from node 1 the Clustera server 
returns a job identifier, the name of the executable and input files, 
and a list of locations of the replicas for each file.  Node 1 
discovers that it already has a local copy of C but not a copy of 
File A.  Using HTTP, it requests a copy of file A from Node 2 
(which includes an HTTP server).  After retrieving File 1 from 
Node 2, Node 1 stores it locally and then uses JNI to fork C.exe.  

3.5 Logical Files and Relational Tables 

In general, users interact with the system in terms of logical files 
and tables rather than concrete files.  A logical file is a set of one 
or more concrete files that, together, form a single logical unit.  
When a logical file is first created a partitioning factor is specified 
which indicates the desired degree of declustering.  For example, 
if the creation specifies a partitioning factor of 100, as the logical 
file is loaded into the system, it will be automatically partitioned 
into 100 concrete files.  Each concrete file, in turn, will be placed 
on a different node in the cluster.  The Server automatically takes 
care of placing the set of concrete files (and their replicas) across 
the nodes and disks of the cluster.  As with concrete files, the 
database is used to keep track of everything including the file 
ownership and permissions as well as the identifiers of the 
concrete files that constitute the logical file.  For more details on 
logical file management, please refer to the Appendix 
 
A relation in Clustera is simply a logical file plus the associated 
schema information.  We store the schema information in the 
Clustera database itself; an alternative approach is to store the 
schema information in a second logical file.  We chose the first 
approach because it provides the SQL compiler with direct access 
to the required schema information, bypassing the need to access 
node-resident data in order to make scheduling decisions.  

3.6 Abstract Jobs & Job Scheduler 
3.6.1 Introduction 
Abstract jobs and abstract job schedulers are the key to Clustera’s 

 
Figure 6:  A 4-job DAG 

that could be executed as a 
single pipeline 

 
Figure 7:  Possible alternative set of pipelines resulting 
from segmenting the Figure 6 DAG into three separate 

linear pipelines with materialized intermediate files. 

 
Figure 5:  A very common class of pipeline consisting of 

a linear chain of n concrete jobs. 

 
Figure 8:  Example of Concrete Job Scheduling 

32



 

flexibility and extensibility.  Figure 9 illustrates the basic idea.  
Users express their work as an instance of some abstract job type. 
For example, a specific SQL query such as select * from students 
where gpa > 3.0 is an instance of the class of SQL Abstract Jobs.  
After optimization, the SQL Abstract Job Scheduler would 
compile this query into a set of concrete jobs, one for each 
concrete file of the corresponding students table. 

Currently we have implemented three types of abstract jobs and 
their corresponding schedulers:  one for complex workflows, one 
for MapReduce jobs, and one for running SQL queries.  Each of 
these is described in more detail below. 

3.6.2 Workflow Abstract Job Scheduler 
A workflow is a DAG of operations such as the one shown in 
Figure 6.  Workflows are common in many scientific applications.  
Workflows can be arbitrarily complex and are frequently used to 
take a relatively few base input files and pass them through a large 
number of discrete processing steps in order to produce relatively 
few final output files.  It is not uncommon for the processing steps 
to use pre-existing executable files as building blocks.  The true 
value of the workflow abstraction is that it provides end-users 
with a way to create new “programs” without writing a single line 
of executable code.  Instead of writing code, users can create new 
dataflow programs simply by recombining the base processing 
steps in new and interesting ways.  Workflows like this can often 
generate a large number of intermediate files that are of little or no 
use to the end-user: only the final output really matters.  
Workflows can also benefit from parallelism, but keeping track of 
the large number of processing steps and the intermediate files 
they depend on is a tedious, error-prone process, which is why 
users often use tools like Condor’s DAGMan [23]. 
The Clustera Workflow Abstract Scheduler (WAS) accepts a 
workflow specification as input and translates it into a graph of 
concrete jobs that are submitted to the system.  The information 
contained in the workflow specification is similar to that required 
for any workflow scheduler – the executables to run, the input 
files they require, the jobs that they depend on, etc.  For the WAS, 
the base input files and the output files are all specified as logical 
files – the WAS will translate the logical file references into the 
concrete file references required by the system.  Since the WAS 
input is a DAG of jobs, which the concrete job scheduler can deal 
with directly, little is required of the WAS beyond translating the 
file references and submitting the workflow to the scheduler. 

3.6.3 MapReduce Abstract Jobs and Job Scheduler 
A MapReduce abstract job consists of the name of the logical file 
to be used as input, the map and reduce functions, and the name to 
be assigned to the output logical file as shown in Figure 10.  The 
Split, Sort (not shown), and Merge functions are provided by the 
system in the form of a permanently retained library of 
executables. 
 
Given a MapReduce abstract job as input, the abstract scheduler 

will compile the abstract job into two sets of concrete jobs as 
shown in Figures 11 and 12.  For the map phase (Figure 11) there 
will be one concrete job generated for each of the N concrete files 
of the input logical file.  Each concrete job CFi, 1≤ i ≤ N, will read 
its concrete file as input and apply the user supplied executable 
map function to produce output records that the Split function 
partitions among M concrete output files Ti,j  1≤ j ≤ N.  

For the reduce phase (Figure 12), M concrete jobs will be 
generated during the compilation process.  M is picked based on 
an estimate of how much data the map phase will produce.  Once 
generated, the concrete jobs for the map and reduce phases can all 
be submitted to the scheduler.  While the map jobs are 
immediately eligible for execution, the reduce jobs are not eligible 
until their input files have been produced. 

3.6.4 The SQL Abstract Job Scheduler 
Currently, since we do not have a SQL parser and optimizer for 
Clustera, SQL plans must be constructed manually. The SQL plan 
is simply a standard tree of relational algebra operators.  Each 
operator (i.e. selection, join, aggregate, etc.) was implemented in 
C++ and compiled into an executable file.  Joins are implemented 
using the Grace hash join algorithm.  Since we currently do not 
have indices, all selections are performed by sequentially 
scanning the input table.  Aggregates are implemented by sorting 
on the group by attribute(s). 
 
The SQL Abstract Job Scheduler is a two-phase compiler that 
combines the characteristics of the Workflow and MapReduce 
compilers.   Like the Workflow compiler, the SQL compiler takes 
the query plan (which is itself a DAG of relational operators) and 
decomposes it into a DAG of operations that it orders according to 
the inter-operation data dependencies.  For example, a query with 
two selections, two projections, a join and an aggregation on the 
join attribute will get turned into three linear sequences of 
operations.  The first sequence will consist of the selection and 

 
Figure 10:  MapReduce Abstract Job Example 

 
 

Figure 9:  Compilation of abstract job into concrete jobs 

 
Figure 11:  One of N concrete Map jobs generated by 

compiling the abstract job in Figure 10. 

 
Figure 12:  One of M concrete Reduce jobs generated by 

compiling the abstract job in Figure 10. 
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projection on the first base table, while the second sequence will 
be the selection and projection on the second base table.  The third 
sequence will be the join (the outputs of the first two sequences 
are the inputs to the join) and subsequent aggregation.  These 
three sequences are combined into one workflow graph.  The 
compiler then checks the inputs to, and definitions of, all the join 
and aggregation operators to determine if any repartitioning is 
necessary.  If so, it injects the necessary split and merge operators 
into the workflow prior to the join or aggregation operator in 
question.  In the running example, the answer to whether or not 
the base tables require repartitioning prior to the join depends on 
whether or not they are already partitioned by the join attribute; 
since the aggregation is on the join attribute, however, we know 
that the aggregation operator will not require a repartitioning. 
 
Once the SQL query has been translated into a workflow over 
relational tables, the workflow is processed in a fashion similar to 
the way MapReduce jobs are compiled.  That is to say, each 
sequence will be compiled into a set of concrete jobs - one for 
each concrete file of the corresponding input table.  As these 
concrete jobs are generated they are inserted into the database 
where they await scheduling by the concrete job scheduler. 

3.6.5 Discussion 
As described, pipelines of co-executing jobs are the fundamental 
units of scheduling in Clustera.  This approach provides Clustera 
with two important opportunities for achieving run-time 
performance gains.  First, the concrete job scheduler can take 
advantage of data-dependency information to make scheduling 
decisions that improve overall cluster efficiency.  These decisions 
may, for example, help reduce network bandwidth consumption 
(by scheduling job executions on nodes where large input data 
files already reside) and disk I/O operations (by scheduling related 
executables to run on the same node so that intermediate files can 
be piped in memory rather than materialized in the file system) 
resulting in higher job throughput and reduced end-to-end 
execution times.  Second, the concrete job scheduler can take 
advantage of multi-core nodes by dynamically segmenting the 
workload in order to match the number of executables in a 
pipeline to the number of available processing cores on the node. 
3.7  Wrapup 
Before moving on to the performance analysis in Section 4, it is 
interesting to consider one other architectural aspect in which 
Clustera significantly differs from comparable systems – the 
handling of inter-job dependencies.  As was described above, 
Clustera is aware of, and explicitly and internally manages, inter-
job data dependencies.  Condor, on the other hand, employs an 
external utility, DAGMan [23], for managing the inter-job 
dependency graph.  Users submit their workflow DAGs to the 
DAGMan meta-scheduler utility.  DAGMan analyzes the 
workflow graph to determine which jobs are eligible for 
submission and submits those to an underlying Condor process 
that performs job queue management – the schedd.  DAGMan 
then “sniffs” the relevant schedd’s log files in order to monitor job 
progress.  As submitted jobs complete, DAGMan updates the 
dependency graph in order to determine when previously 
ineligible jobs become eligible for execution.  As these jobs 
become eligible DAGMan submits them to the Condor schedd.  
 
For Clustera, probably the biggest benefit of managing the 
dependencies internally is that it provides the concrete job 
scheduler with the ability to do more intelligent scheduling.  It is 

clearly impossible to enable in-memory (or cross-node) piping of 
intermediate data files if the jobs that would consume the piped 
data are not even visible to the system until after the jobs that 
produce that data have completed.  One other noteworthy 
advantage of handling the dependencies internally is that it 
simplifies examining and/or manipulating a workflow as a unit.  
More details of our scheduling mechanisms can be found in [24]. 

4.  Performance Experiments and Results 
As stated previously, a primary goal of the Clustera project is to 
enable efficient execution of a wide variety of job types on a 
potentially large cluster of compute nodes.  To gauge our level of 
success in achieving this goal we ran a number of experiments 
designed to provide insight into the performance of the current 
prototype when executing three different types of jobs.  Section 
4.1 describes the experimental setup.  The MapReduce results are 
presented in Section 4.2, the SQL results in Section 4.3, and 
arbitrary workflow results in Section 4.4.  Section 4.5 explores the 
performance of the Clustera Server under load.  A more complete 
set of experimental results along with more details about the 
system can be found in [27]. 
 
To give some additional context to the Clustera MapReduce and 
SQL performance numbers, we also ran comparable experiments 
using the latest stable release (version 0.16.0) of the open-source 
Hadoop system.  There are four key reasons that we chose to 
compare Clustera numbers with Hadoop numbers for these 
workloads.  The first reason, as laid out in the introduction, is to 
observe whether a general-purpose system like Clustera is capable 
of delivering MapReduce performance results that are even “in 
the same ballpark” as those delivered by a system, like Hadoop, 
that is specifically designed to perform MapReduce computations.  
The second reason is to understand how the relative performance 
of a moderately complex operation (e.g., a two-join SQL query) is 
affected by the rigidity of the underlying distributed execution 
paradigm; in substantially more concrete terms, this goal can be 
rephrased as trying to understand if it makes a difference whether 
a SQL query is translated to a set of MapReduce jobs or to an 
arbitrary tree of operators in preparation for parallel execution.  
The third reason is to understand if there are any structural 
differences between the two systems that lead to noticeably 
different performance or scalability properties.  The fourth reason 
is to ascertain whether the benefit (if any) of enriching the data 
model for a parallel computing system (e.g., by making it 
partition-aware) is sufficient to justify the additional development 
and maintenance associated with the enriched model. 
 
Note that providing a performance benchmark comparison 
between the two systems (or between Clustera and a parallel 
RDBMS) was not a goal of our experimentation.  Parallel 
computation systems are very complex and, as will be discussed 
further in Section 4.3, can be sensitive to a variety of system 
parameters.  While undoubtedly an interesting investigation in its 
own right, tuning either Hadoop or Clustera (much less both) to 
optimality for a particular workload is beyond the scope of this 
study and, along with a performance comparison including a 
parallel RDBMS, is deferred to future work.  We are not 
attempting to make any claims about the optimally tuned 
performance of either system and the numbers should be 
interpreted with that in mind. 

4.1 Experimental Setup 
We used a 100-node test cluster for our experiments.  Each node 
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has a single 2.40 GHz Intel Core 2 Duo processor running Red 
Hat Enterprise Linux 5 (kernel version 2.6.18) with 4GB RAM 
and two 250GB SATA-I hard disks.  According to hdparm, the 
hard disks deliver ~7GB/sec for cached reads and ~74MB/sec for 
buffered reads.  The 100 nodes are split across two racks of 50 
nodes each.  The nodes on each rack are connected via a Cisco 
C3560G-48TS switch.  The switches have gigabit ethernet ports 
for each node and, according to the Cisco datasheet, have a 
forwarding bandwidth of 32Gbps.  The two switches are 
connected via a single gigabit ethernet link. In all our experiments 
the participating nodes are evenly split across this link. 
 
For the Hadoop experiments we used an additional desktop 
machine with a single 2.40 GHz Intel Core 2 Duo processor and 
2GB RAM to act as the Namenode and to host the MapReduce 
Job Tracker.  For the Clustera experiments we used two additional 
machines - one to run the application server and one to run the 
backend database.  For the application server we used JBoss 
4.2.1.GA running on the same hardware configuration used for the 
Hadoop Namenode/Job Tracker.  For the database we used DB2 
v8.1 running on a machine with two 3.00 GHz Intel Xeon 
processors and 4GB RAM.  The database bufferpool was ~1GB 
which was sufficient to maintain all of the records in memory. 
 
As mentioned in Section 3, Clustera accepts an abstract 
description of a MapReduce job or SQL query and compiles it 
into a DAG of concrete jobs.  For MapReduce jobs, the map and 
reduce functions are specified as part of the MapReduce 
specification, with the sort, split, and merge functions taken from 
a system-provided library.  These library functions are re-used in 
the compilation of SQL queries. In addition SQL workflows also 
use select, project, hashJoin, aggregate and combine library 
functions.  All MapReduce and SQL library functions are Linux 
binaries written in C. 

4.2 MapReduce Scaleup Test  
This section presents the results of a series of scale-up 
experiments we ran to evaluate Clustera performance for 
MapReduce jobs.  The base data for these experiments is the 
LINEITEM table of the TPC-H 100 scale dataset.  The 
MapReduce job itself performs a group-by-aggregation on the 
first attribute (order-key) of the LINEITEM table.  For each 
record in the input dataset the map function emits the first 
attribute as the key and the entire record as the value.  After this 
intermediate data has been sorted and partitioned on the key (per 
the MapReduce contract), the reducer emits a row count for each 
unique key.  If the goal were simply to calculate these row counts, 
then clearly this computation could be implemented more 
efficiently by having the map function emit, e.g., a “1” instead of 
the entire record as its output.  For experimentation, however, the 
actual computation is immaterial; observing the performance 
impact of large intermediate data files is, however, quite 
interesting and important. 
 
As explained earlier, we ran a set of MapReduce scale-up 
experiments on both Clustera and Hadoop in order to try to 
understand, among other things, whether Clustera could deliver 
MapReduce performance results in the same general range as 
those delivered by Hadoop.  For the scale-up experiments we 
varied the cluster size from 25 nodes up to 100 nodes and scaled 
up the size of the dataset to process accordingly. 
 
For the Clustera MapReduce experiments, the input logical file is 

composed of a set of concrete files that each contain ~6 million 
records and are approximately 759 MB in size.  In each 
experiment the number of concrete files composing the logical 
input file and the number of Reduce jobs is set to be equal to the 
number of nodes participating in the experiment; since the 
MapReduce abstract compiler generates one Map job per concrete 
file, the number of Map jobs, then, was always also equal to the 
number of nodes participating in the experiment. 
 
After getting up and running with Hadoop, we quickly realized 
that there were quite a few configuration parameters that we could 
adjust that would affect the observed MapReduce performance.  
We evaluated several different configurations of chunk size (from 
64 MB to 780MB) and number of concurrent mappers per node.  
The configuration that gave us the best overall performance used a 
chunk size of 128MB and two map tasks per node.  See Appendix 
I of [27] for the complete results of this study. 
 
Finally, we ran one additional experiment designed to see how 
performance of this computation is affected if the input data is 
hash-partitioned and the scheduler is aware of the partitioning.  
Since the “vanilla” MapReduce computation model does not 
distinguish between hash-partitioned and randomly partitioned 
input files, we could not run this experiment on Hadoop or via the 
Clustera MapReduce abstract compiler.  We could, however, 
perform the same computation by recasting it as a Clustera-SQL 
job over a relational table containing the same underlying dataset 
(partitioned on the aggregation key) in which project and 
aggregate take the place of map and reduce.  To ensure 
comparability across results, the query’s project operator outputs 
the same intermediate values as the map functions of the 
MapReduce jobs. 

Figure 13 shows the scale-up results we obtained with Hadoop, 
the Clustera MapReduce computation, and the Clustera SQL 
computation over hash-partitioned data.  The graph plots the 
number of nodes participating in the experiment (x-axis) against 
the end-to-end execution time (in seconds) of the experiment (y-
axis).  The top line shows the observed performance for Hadoop.  
The next line down shows the observed performance for the 
Clustera MapReduce experiment and the flat line at the bottom 
shows the observed performance for the equivalent SQL 
computation on hash-partitioned data. 
 
As is evident from the graph, MapReduce performance on 
Clustera and Hadoop are in the same general range.  In both 
systems performance scales roughly linearly as the cluster size 
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and amount of data to process are increased (more on this 
follows).  The best observed performance was for the computation 
over hash-partitioned data.  The end-to-end performance time is 
essentially flat across problem sizes implying very good scale-up.  
This makes sense since the partition-aware scheduler can simplify 
the computation to a set of independent three-step pipelines – one 
for each concrete file of the table – and avoid the repartitioning.  
A key learning from this set of experiments is that, at least for 
MapReduce workflows with large intermediate data files, it 
appears that a general-purpose system can deliver performance 
comparable to a special-purpose MapReduce processing system.   
 
Before moving on to the SQL experiments, it is interesting to look 
a bit deeper into the Clustera MapReduce numbers to try to 
understand why execution time scales roughly linearly with 
problem size. To investigate this, we split the time taken for the 
Clustera MapReduce computation into 3 components – a Map 
phase, a Shuffle phase and a Reduce phase.  We defined the Map 
phase to encompass the time from the start of the workflow to the 
end of the last split job.  We defined the Shuffle phase to 
encompass the time from end of the last split to the start of the last 
merge job - i.e., the time taken for all the intermediate data to be 
transferred from the mappers to the reducers.  We defined the 
Reduce phase to encompass the time from the start of the last 
merge to the end of the last reduce job.  The end of the Reduce 
phase is the end of the MapReduce computation. 

Figure 14 shows the breakdown of the Clustera MapReduce 
experiments into these three phases.  As was the case with the 
previous graph, the x-axis corresponds to the number of nodes 
participating in the experiment and the y-axis corresponds to the 
time spent (in seconds) in a given phase.  As this graph shows, the 
time spent in the Map phase and the Reduce phase remain 
basically constant across scale-factors.  The time spent in the 
Shuffle phase (i.e., transferring files), however, increases linearly 
with the problem size and drives the linear growth of the entire 
computation.  Considering that, for this computation, an increase 
in the input size implies a commensurate increase in the amount 
of intermediate data generated, this linear growth makes sense. 
 
One important consequence of this linear growth is that 
intermediate data transfer can become a bottleneck in MapReduce 
computations - with network bandwidth serving as the limiting 
factor.  In our experimental cluster the gigabit link between the 
racks has a strong influence on the length of the Shuffle phase of 
the computation.  In the Hadoop MapReduce implementation, the 
reducers begin pulling intermediate data as soon as the first map 

task completes – the effect is that Hadoop is able to overlap some 
of the data transfer time with some of the map task execution 
time.  Contrast this with the current Clustera prototype in which 
none of the file transfer begins until all of the map jobs have 
completed.  This is an example of a structural difference between 
the two systems that has the potential to impact performance and 
scalability.  In the near future we plan to extend Clustera to enable 
this overlapping of data transfer time with map execution time, 
though by pushing data through a socket rather than by pulling it, 
and hope to see some performance gains as a result.  Of course an 
even more important structural issue is exposed by the hash-
partitioned version of this computation in which the partition-
aware scheduler is able to avoid all data transfer costs and, as a 
result, display the best performance and scale-up properties. 

4.3 SQL Scaleup Test 
This section presents the results of a series of scale-up 
experiments we ran to evaluate the performance of SQL jobs.  The 
base data for these experiments consists of the CUSTOMER, 
ORDERS and LINEITEM tables of the TPC-H dataset.  The SQL 
query we ran was: 

SELECT l.okey, o.date, o.shipprio, SUM(l.eprice) 
FROM lineitem l, orders o, customer c 
WHERE c.mkstsegment = ‘AUTOMOBILE’ and  
o.date < ‘1995-02-03’ and l.sdate > ‘1995-02-03’  
and o.ckey = c.ckey and l.okey = o.okey 
GROUP BY l.okey, o.date, o.shipprio 

 
We ran experiments on 25, 50, 75 and 100 nodes using 
appropriately scaled TPC-H datasets.  For all the datasets, the size 
of the CUSTOMER, ORDERS and LINEITEM chunks on each 
node are 23MB, 169MB and 758 MB, respectively 
 
For the Clustera experiments we used the SQL abstract scheduler.  
The query plan joined the CUSTOMER and ORDERS tables first 
(because they were the two smaller tables) and then joined that 
intermediate result with the LINEITEMS table.  For the Clustera 
experiments we also varied the partitioning of the base tables.  In 
one set of experiments the base tables were not hash-partitioned.  
For these experiments, each concrete file of a base table is first 
filtered through select and project operators, followed by a 
repartition according to the join key.  Thus, there are four 
repartitions in the workflow – one for each of the base tables, and 
a fourth for the output of the first join (CUSTOMER-ORDERS). 
The final group-by-aggregation does not require a repartition 
since the final join key is okey.  In the other set of experiments, 
the CUSTOMER and ORDERS tables are hash-partitioned by 
ckey and the LINEITEM table is hash-partitioned by okey. For 
these experiments, the base tables do not need to be repartitioned 
prior to the joins.  The output of the CUSTOMER-ORDERS join, 
though, is partitioned on ckey, so it must be repartitioned on okey 
prior to the second join.  The following table shows the total 
amount of intermediate data that is repartitioned in both cases. 
 

Total Data Shuffled (MB) Num 
Nodes 

Partitioned  Unpartitioned 
25 77 2122 
50 154 4326 
75 239 6537 

100 316 8757 
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As was the case with the MapReduce experiments, we also ran the 
SQL experiments on Hadoop.  While joining two tables may not 
fit “neatly” into the MapReduce paradigm, it can be done.  In fact, 
it is precisely because a join does not fit neatly into the 
MapReduce paradigm that we thought that running the query on 
Hadoop would be interesting; we hoped that it would help us to 
understand if translating a SQL query into a series of MapReduce 
jobs (as opposed to a tree of operators) would have any noticeable 
impact on performance.   

Rather than attempt to write our own MapReduce join code, we 
used the DataJoin contrib package that is included with Hadoop.  
In a DataJoin job in Hadoop, both join operands are treated as a 
single logical input. The intermediate data is tagged with the base 
table name in the Map phase, and the join is enumerated in the 
Reduce phase with the help of these tags.  As with the Clustera-
SQL queries, for the DataJoin jobs we joined the CUSTOMER 
and ORDERS tables first and then joined this intermediate result 
with the LINEITEMS table before performing the final 
aggregation.  Note that, in addition to tagging the data with the 
base table name, we also performed the necessary selections and 
projections in the Map phase.  The total amount of intermediate 
data to be repartitioned during the DataJoin jobs, then, is just 
slightly larger than what is shown in the un-partitioned column in 
the table above – the excess is due to the per-record tags required 
to support the DataJoin.  Since Hadoop does not support hash-
partitioned files, we only ran un-partitioned DataJoins.  For all 
DataJoin experiments we used the same Hadoop base 
configuration as described in the Section 4.2 MapReduce 
experiments. 

On our generated datasets, the predicate on this query has a 
selectivity of approximately 50%; this selectivity factor 
significantly reduces the size of the intermediate files that are 
generated.  We also experimented with another version of the 
query with no selection predicates to see if altering the selectivity 
had any impact on performance.   

Figure 15 plots the number of nodes in the experiment (x-axis) 
against the observed run-time (in seconds, y-axis) of the 
computation.  Looking at the right side of the graph, the top line is 
the DataJoin with no selection predicate, the second line is the 
DataJoin with a selection predicate, the third line is the Clustera-
SQL job on un-partitioned data with no selection predicate, the 
fourth line is the Clustera-SQL job on un-partitioned data with a 
selection predicate and the bottom line is the Clustera-SQL job on 
hash-partitioned data with no selection predicate.  The Clustera-
SQL job on partitioned data with a selection predicate performed 

on average about 30% better than the equivalent SQL job with no 
selection predicate, but we have not displayed it here in order to 
improve the readability of the figure. 

As expected, observed performance and scalability on the hash-
partitioned datasets is superior to all other approaches.  Again, this 
would seem to suggest that, given the performance gains 
available, when implementing a parallel computation system it is 
probably worth the effort to enrich the data-model and scheduler 
to support and take advantage of partitioned data.  For both of the 
Clustera SQL jobs over un-partitioned data, performance seems to 
scale roughly linearly with an increase in the problem size.  
Similar to the Clustera MapReduce results, the linear factor can be 
traced back to the data transfer when tables are repartitioned.  
Recall that in the current Clustera prototype none of the “merges” 
of a repartitioning are scheduled until all of the corresponding 
“splits” have completed.  The result is that there is a spike in 
network activity when the merges are scheduled which causes the 
link between the racks to saturate (and become a bottleneck) 
leading to the linear growth in the data-transfer time and, by 
extension, the overall execution time.  Compare this linear growth 
to that of the DataJoin job on un-partitioned data with a selection 
predicate (second line).  This case still exhibits a linear 
component to the growth, but the linear growth here is damped 
relative to that of the Clustera SQL jobs just discussed; this 
dampening most likely occurs because, as described previously, 
the underlying Hadoop MapReduce jobs are able to overlap some 
of the data transfer time with some of the map task execution 
time.  Again, in the near future we plan to apply this lesson by 
extending Clustera to support overlapping data-transfer time and 
execution time.  Finally, the performance of the DataJoin with no 
selection predicate is interesting to consider.  The run-time for the 
DataJoin with no selection predicate ranges from approximately 
2.3 (25-nodes) to approximately 2.6 (100-nodes) times longer than 
the run-time for the DataJoin with a selection predicate.  Compare 
this to the spread for the Clustera SQL jobs on un-partitioned data 
that ranges from approximately 1.4 (100-nodes) to approximately 
1.5 (25-nodes) times longer.  It is not entirely clear why the 
DataJoin spread is so much larger.  One possible contributing 
factor is that perhaps less of the data-transfer time is overlapped 
with map task execution time.  Another possible factor is that 
implementing a join in the MapReduce framework inherently 
incurs additional sorting overhead that can be avoided if a good 
plan using a hash-join is available.  Unfortunately, despite some 
of their shared goals, the systems are sufficiently different that it 
appears that an in-depth investigation beyond the scope of this 
study is needed to draw firm conclusions about the performance 
impact that the underlying parallel execution model has on join 
implementation. 

4.4 Blast Workflow Speedup test  
Clustera also can run arbitrary workflows with user-defined data 
and programs.  This section examines the execution of the 
BLAST scientific workflow.  BLAST is a sequence alignment 
program that searches a file of well-known proteins for 
similarities with a new sequence of proteins.  A BLAST DAG 
consists of two jobs, blastall and javawrap.  Blastall takes a 
sequence of acids seq and performs sequence alignment using the 
nr_db files, which document known proteins.  Blastall produces a 
seq,blast file which is then processed by the javawrap program to 
produce csv and bin files for later use.  A typical BLAST 
workflow consists of several such BLAST DAGs.  Each DAG 
may operate on a different set of sequences, but all of them use 
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the same nr_db and all_java.tar files.  We ran a workflow of 1000 
BLAST DAGs on 25, 50, 75 and 100 machines to test the speedup 
obtained.  One copy of the input data (including the nr_db files 
and all_java.tar) is placed on either side of the switch.  The mean 
execution times for blastall and javawrap are 207s and 6s.  

As we can see from Figure 16, as the number of nodes is 
increased, the actual speed-up obtained deviates slightly away 
from the ideal line.  The reason is as follows.  Before a blastall 
job can begin executing on a node, all of its required input data 
(the nr_db files) must be transferred to that node.  As the number 
of nodes is increased, the amount of data that is transferred across 
the network increases, which delays the startup of the first blastall 
job on each node.  Note that all of the file transfer time is spent 
before the execution of the first job.  Also, once the first jobs on 
each node completes, the input data is essentially replicated 
throughout the cluster, and subsequent jobs do not incur any file 
transfer cost.  This suggests that for workflows containing a large 
number of jobs with common input data, file transfer becomes a 
bottleneck as the number of nodes used to run the workflow is 
increased – for a given replication factor, when the number of 
nodes used is doubled, the data transfer required more than 
doubles.  One way to alleviate this problem is to start with a high 
degree of replication for this input data.  

4.5 Application Server Throughput Tests 
One metric for evaluating the scalability of a workflow 
management system is the number of jobs that the system can 
process per second.  Under full load, the average throughput 
demand is defined as the ratio of the number of nodes to the 
average length of a job.  For example, a system with 1,200 nodes 
subject to a workload consisting solely of 20-minute jobs must be 
capable of a job throughput rate of at least one job per second.  
One important implication of this is that the overall system 
throughput is affected not only by the time it takes to make 
scheduling decisions and start up jobs, but also by the efficiency 
with which the system can perform any necessary post-execution 
processing.  Post-execution tasks include recording historical 
information about the job, recording accounting information, and 
removing the job from the queue.  
To evaluate the scalability of the Clustera server, using 100 nodes 
we configured each node to run up to two simultaneous single-job 
pipelines (since each node has two cores)1.  We then pre-loaded 

                                                                    
1 We enforced the single-job pipeline limitation in order to make 

the results comparable with those published in [26]. 

the system with a number of identical, fixed-length jobs with 
lengths that varied from a maximum of 200 seconds down to a 
minimum of four seconds in order to cover a range from 1 job per 
second all the way up to 50 jobs per second.   

Figure 17 plots the number of jobs cycled per second against the 
targeted throughput rate for the experiment.  The top line shows 
the ideal throughput rate while the bottom line shows the observed 
results.  The labels above the top line show the job length for that 
experiment.  Since our cluster was configured to run 200 jobs 
concurrently the targeted throughput rate is simply 200 (the 
number of concurrent jobs) divided by the job length; the 200 
second jobs correspond to a target of one job per second whereas 
the four second jobs correspond to a target of 50 jobs per second.  
For the jobs that were six seconds or longer, we observed the 
server achieving throughput rates very close to the ideal.  For the 
five- and four-second jobs the observed rate is below the ideal.  

Figure 18 shows a plot of the server’s CPU cycle consumption as 
a function of the number of jobs cycled per second.  For each 
experiment we calculated the average throughput rate, excluding 
the ramp up and ramp down time.  Looking at the left side of the 
graph, the bottom line (square data points) in Figure 20 is 
“System” usage (cycles spent executing in “kernel” mode), the 
middle line (diamond data points) is “User” usage (cycles spent 
doing actual computation) and the top line (triangular data points) 
is idle cycles (spare computational capacity).  These three 
categories sum up to approximately 100%; the time spent 
handling interrupts or waiting on IO was negligible and is not 
plotted here.  As Figure 18 shows, the server still had at least 20% 
of its cycles to spare during all experiments. 
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One striking feature of Figure 18 is the apparent linear growth in 
cycle usage in response to increases in targeted throughput across 
experiments.  This pattern changes at the right side of the chart as 
the observed throughput peaks just shy of 38 jobs cycled per 
second.  Interestingly enough, the right-most data point actually 
corresponds to the five-second job experiment (~37.9 jobs cycled 
per second with ~23.8% idle cycles remaining) and the second-
from-the-right data point corresponds to the four-second job 
experiment (~36.9 jobs cycled per second with ~23.2% idle 
cycles).  The server apparently saturates at around 38 jobs per 
second after which additional demand causes interference on the 
server leading to reduced performance. 

The observed throughput rates presented here are an improvement 
over previously published results for CondorJ2 (a precursor to 
Clustera) and Condor [26].  This improvement comes despite the 
fact that Clustera is required to manage not only the same job, 
machine and configuration information managed by CondorJ2 
(and Condor), but also to manage the logical and physical file 
information required to support data-aware scheduling. 

5. Conclusions and Future Directions 
We are currently witnessing the early stages of the "cloud 
computing" revolution, in which large clusters of processors are 
exploited to perform various computing tasks on an "as needed" 
basis.  To date the database community has played a minor role in 
this revolution in that (a) large-scale parallel database systems use 
a model of dedicated, single-use clusters very different from that 
adopted by cloud computing, and (b) cluster management systems 
for high-throughput and data intensive computing use database 
technology superficially if at all. 

Our work on Clustera is an early step toward increasing the role of 
database systems in cloud computing in two ways.  First, we have 
shown that cluster management is an ideal application for modern 
relational database system technology.  Second, we have shown 
that a generic cluster management system like Clustera has 
potential as a platform upon which to execute massively parallel 
SQL queries.  The potential in this second direction is huge – it 
opens the door to integrated systems that can run SQL queries on 
the same platform used to run other data intensive and compute-
intensive applications.  There is still a great deal of challenging 
research required to make such systems a reality.  We hope the 
database community will participate in this research, enabling 
both parallel database systems and cloud computing to benefit 
from this opportunity. 
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8. Appendix 
Data management is an important aspect of Clustera’s overall 
system architecture.  Reflecting this, Section 3 contained a general 
overview of the approach sufficient for understanding the content 
in the body of the paper.  The purpose of this appendix is to 
provide some additional details on Clustera’s data management 
infrastructure for interested readers.  Section 8.1 has a brief 
overview of the basic concepts and terminology.  Section 8.2 
discusses issues related to file formats and schema management in 
greater detail.  Section 8.3 discusses partitioning and our plans for 
incorporating indexing into the infrastructure. 

8.1 Concrete Files, Logical Files and File Access 
Patterns 
As explained previously, a concrete file is the atomic unit of 
storage in Clustera.  The physical instantiation of a concrete file is 
a single operating system file.  A logical file, in comparison, is a 
higher-level abstraction that does not have a direct physical 
instantiation.  In its most basic form, a logical file is simply a 
collection of concrete files that the user can treat as a single 
logical unit (hence the name logical file) for manipulation and 
workflow specification.  Note that, if necessary, a logical file can 
specify an ordering over the constituent concrete files.  Note also 
that since the logical file itself is purely conceptual, it is possible 
for a single concrete file to “belong to” multiple different logical 
files simultaneously. 
Given the notion of a logical file as a set of concrete files, it is 
natural to parallelize, for example, the execution of a MapReduce 
computation by running one map instance for each concrete file 
composing the logical input file.  This works because MapReduce 
(like SQL) is a record-oriented paradigm so it never needs to view 
the entire input data set as a single unit.  Recall, though, that 
Clustera also supports running arbitrary workflows that contain 
non-modifiable, user-provided executables.  Since these 
executables often have file-oriented, rather than record-oriented, 
semantics they must be able to view the (logical) input file as a 
single unit.  Setting the degree of partitioning for the logical file to 
one is a possible approach to resolving this issue.  However, this 
approach will not always work.  One common case in which this 
approach will fail is if the entire file will not fit on a single node.  
Another common case is if the user specifies a pre-existing logical 
file that consists of multiple concrete files as the input to one of 
these arbitrary executables. 
To support logical files used in these ways, Clustera offers a 
Logical File Translator (LFT) interface.  The LFT abstracts away 
the physical details (i.e., the mapping to, and optional ordering 
over, concrete files) of a logical file and provides users with a 
single file “view” they can read using the standard POSIX 
interface.  To achieve this, the first thing the LFT does is contact 
the application server to obtain details on the relevant logical file - 
i.e., the names and locations of the constituent concrete files.  
Then, as the application needs them, the necessary concrete files 
are fetched.  On Linux this is implemented through a device driver 
built on top of FUSE (Filesystem in USErspace). 
For MapReduce and SQL computations, the LFT is generally 
unnecessary given that the operators are automatically parallelized 
across the relevant concrete files.  For arbitrary workflows, 
however, it is impossible to know (without user input) whether or 
not a given “job” can be parallelized across the concrete files or 
not.  For these workflows the default assumption is that the job 

cannot be parallelized in this way and the LFT is employed.  We 
have, however, recently implemented some experimental 
extensions to the workflow specification model that permit the 
user to provide “hints” to the Workflow Abstract Scheduler when 
a computation can be parallelized across particular, user-specified, 
logical files.  The scheduler can use these hints to optionally 
perform an automatic parallelization under certain conditions.  
This work is still in a very early stage, though it appears 
promising. 
One final point to note with respect to concrete file management 
relates to the automatic piping of intermediate data between 
concrete jobs described in Section 3.  Recall from that section that 
Clustera will attempt, when possible, to avoid disk I/O operations 
by transparently routing intermediate data in memory from one 
concrete job to another when those jobs are co-scheduled for 
execution on the same node.  This type of piping, of course, 
assumes both sequentially generated output and sequentially 
accessed input.  For MapReduce and SQL operators we know 
exactly which operators for which these assumptions are valid 
(e.g., map, select, project, etc…) or invalid (e.g., hash join, etc…).  
This means that, when the concrete jobs are created and inserted 
into the system, we know what intermediate data can be “tagged 
as pipeline-able” and what cannot.  For arbitrary workflow 
executables, however, the assumption is that these assumptions 
are violated unless expressly indicated by the user as part of the 
workflow specification.  Thus, for arbitrary workflows, data will 
in general not be pipelined unless the user explicitly specifies that 
the output is generated sequentially and the input file is consumed 
sequentially. 

8.2 File Formats and Schemata 
Another interesting topic to discuss is what, if anything, Clustera 
assumes about data file structure.  The answer to this question 
depends on the level of the system in question.  At the concrete 
level, Clustera assumes nothing about file structure.  Both 
concrete files and concrete jobs are essentially black boxes.  All 
that the concrete job scheduler knows about a given concrete job 
is what its executable file is, what input files it consumes, what 
output files it generates and whether its inputs and outputs are 
accessed/generated sequentially. 
At the logical level, however, the amount of knowledge about the 
internal file structure depends on the specification of the logical 
file itself.  For logical files specified as containing “binary” data, 
there must be an ordering provided over the concrete files and the 
assumption is that an LFT will be used (possibly in conjunction 
with a record reader) to access the file.  For logical files specified 
as “record” data, a record delimiter is given when the file is stored 
in the system and is maintained as a property of the logical file.  
Because the record delimiter is known when the file enters 
Clustera, records need not span concrete files; this makes it 
possible to avoid using an LFT to access records.  Note that 
“record” data need not specify a schema.  Finally, “record” data 
that does specify a schema is managed as a relational table as 
described in Section 3.5 (i.e., a logical file plus the associated 
schema information).  For all relational tables, the schema 
information includes the record attributes and the record format.  
For partitioned tables the schema information also includes the 
mapping between table partitions and concrete files.  The SQL 
abstract scheduler uses all of this information to take an abstract 
workflow description specified in terms of tables and convert it 
into an executable workflow specified in terms of concrete files. 
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8.3 Partitioning and Indexing 
Currently, Clustera only supports partitioning over relational 
tables.  It should be possible to support partitioning over non-
relational “record” data via a user-supplied partitioning function 
(e.g., a frequently used Map function), though we have yet to 
pursue any research in that direction.  Binary data, by its nature, 
appears to be an unlikely candidate for partitioning. 
The current Clustera prototype does not yet support indexing over 
relational tables.  We do plan to implement support for indexing 
in the future.  The indexes themselves would likely be physically 
instantiated as concrete files with all of the relevant meta-data 
stored in the central database alongside the rest of the schema 
information.  As was the case with partitioning, it seems as if it 
should be possible to support indexing over non-relational 
“record” data via a user-supplied function.  If we implement this 
functionality one interesting area of future research would be to 
explore how an abstract scheduler could take advantage of such 
indices. 
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