
Clustera: An Integrated Computation
And Data Management System

David J. DeWitt

Erik Paulson

Eric Robinson

Jeffrey Naughton
Joshua Royalty

Srinath Shankar
Andrew Krioukov

Computer Sciences Department, University of Wisconsin-Madison, Madison, WI USA 53726
{dewitt, erobinso, srinath, epaulson, naughton, krioukov, royalty}@cs.wisc.edu

Abstract
This paper introduces Clustera, an integrated computation and
data management system. In contrast to traditional cluster-
management systems that target specific types of workloads,
Clustera is designed for extensibility, enabling the system to be
easily extended to handle a wide variety of job types ranging from
computationally-intensive, long-running jobs with minimal I/O
requirements to complex SQL queries over massive relational
tables. Another unique feature of Clustera is the way in which the
system architecture exploits modern software building blocks
including application servers and relational database systems in
order to realize important performance, scalability, portability and
usability benefits. Finally, experimental evaluation suggests that
Clustera has good scale-up properties for SQL processing, that
Clustera delivers performance comparable to Hadoop for
MapReduce processing and that Clustera can support higher job
throughput rates than previously published results for the Condor
and CondorJ2 batch computing systems.

1. Introduction
A little more than 25 years ago a cluster of computers was an
exotic research commodity found only in a few universities and
industrial research labs. At that time a typical cluster consisted of
a couple of dozen minicomputers (e.g. VAX 11/750s or PDP 11s)
connected by a local area network. By necessity clusters were
small as the cost of a node was about the same as the annual
salary of a staff member with an M.S. in computer science
($25K).

Today, for a little more than the annual salary of a freshly minted
M.S., one can purchase a cluster of about 100 nodes, each with
1,000 times more capacity in terms of CPU power, memory, disk,
and network bandwidth than 25 years ago. Clusters of 100 nodes
are now commonplace and many organizations have clusters of
thousands of nodes. These clusters are used for various tasks
including analyzing financial models, simulating circuit designs
and physical processes, and analyzing massive data sets. The
largest clusters, such as those used by Google, Microsoft, Yahoo,

and various defense laboratories, include over 10,000 nodes.
Except for issues of power and cooling, one has to conclude that
clusters of 100,000 or even one million nodes will be deployed in
the not too distant future.

While it is always dangerous to generalize, clusters seem to be
used today for three distinct types of applications:

• computationally intensive tasks
• analyzing large data sets with techniques such as MapReduce
• running SQL queries in parallel on structured data sets

Applications in the first class usually run as a single process on a
single node. That is, rather than using multiple nodes to
cooperatively run a single simulation, the general pattern is that
the nodes execute independent instances of the simulation, each
exploring a different portion of the parameter space. This style of
usage is what Livny [1] refers to as “high throughput” computing.

The second type of application is typified by Google’s
MapReduce [2] software. This software has revolutionized the
analysis of large data sets on clusters. A user of the MapReduce
framework needs only to write map and reduce functions. The
framework takes care of scheduling the map and reduce functions
on the nodes of the cluster, moving intermediate data sets from the
map functions to the reduce functions, providing fault tolerance in
the event of software or hardware failures, etc.

There are two key differences between the class of jobs targeted
by the MapReduce framework and those targeted by the first class
of cluster software. First, MapReduce jobs run in parallel. For
example, if the input data set is partitioned across the disks of 100
nodes, the framework might run 100 coordinated instances of the
job simultaneously. The second major difference is that
MapReduce is targeted towards data intensive tasks while the
former is targeted towards compute intensive tasks.

The third class of cluster applications is one for which the
database community is most familiar: a SQL database system that
uses the nodes of a cluster to run a SQL query in parallel. Like
MapReduce, such systems are targeted towards running a single
job (i.e., a SQL query) in parallel on large amounts of data. In
contrast to MapReduce, the programming model is limited to that
provided by SQL augmented, to a limited degree, by the use of
user-defined functions and stored procedures.

Despite their obvious differences, all three types of cluster
systems have significant similarities. All have a notion of a job
and a job scheduler. For Condor-like batch systems the job is an

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’08, August 24-30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

28

executable to be run on a single node. For MapReduce it is a pair
of functions. For database systems the job is a SQL query. All
three also have a job scheduler that is responsible for assigning
jobs to nodes and monitoring their execution. In the case of
MapReduce and SQL, the scheduler also is responsible for
“parallelizing” the job so that it can run on multiple nodes
concurrently.

With this background, we turn our attention to the focus of this
paper, which is to present the design, implementation, and
evaluation of a new cluster management system called Clustera.
Clustera is different from all previous attempts to build a cluster
management system in three important ways. First, it is designed
to run the three classes of jobs described above efficiently.
Second, its design leverages modern software components
including database systems and application servers as its
fundamental building blocks. Third, the Clustera framework is
designed to be extensible, allowing new types of jobs and job
schedulers to be added to the system in a straightforward fashion.

The remainder of this paper is organized as follows. In Section 2
we present related work. Section 3 describes Clustera’s software
architecture including the three classes of abstract job schedulers
we have implemented so far. In Section 4 we evaluate Clustera’s
performance, including a comparison of Clustera’s MapReduce
implementation with that provided by Hadoop on a 100-node
cluster. Finally, our conclusions and future research directions are
presented in Section 5.

2. Related Work
2.1 Cluster Management Systems
The idea of using a cluster of computers for running
computationally intensive tasks appears to have been conceived
by Maurice Wilkes in the late 1970s [3]. Many different cluster
management systems have been developed including LoadLeveler
[5], LSF [6], PBS [7], and N1 Grid Engine (SGE) [8]. Like
Condor, LoadLeveler, LSF and PBS use OS files for maintaining
state information. SGE, optionally, allows the use of a database
system for managing state information (job queue data, user data,
etc.). In contrast to these “application-level” cluster management
systems that sit on top of the OS, some vendors offer clustering
solutions that are tightly integrated into the OS. One example of
this class of system is Microsoft’s Compute Cluster Server [9] for
Windows Server 2003. The focus of the GridMP [10] is to
provide a framework within which developers can “grid-enable,”
or “port to the grid” pre-existing enterprise applications.

2.2 Parallel Database Systems
Parallel database systems have their roots in early database
machine efforts [11,12,13]. MUFFIN [14] was the first database
system to propose using a cluster of standard computers for
parallelizing queries, a configuration that Stonebraker later termed
“shared-nothing”. Adopting the same shared-nothing paradigm,
in the mid-1980s the Gamma [15] and Teradata [16] projects
concurrently introduced the use of hash-based partitioning of
relational tables across multiple cluster nodes and disks as well as
the use of hash-based split functions as the basis of parallelizing
the join and aggregate operators. Today parallel database systems
are available from a variety of vendors including Teradata,
Oracle, IBM, HP (Tandem), Greenplum, Netezza, and Vertica.

2.3 MapReduce
Developed initially by Google [2], and now available as part of

the open source system Hadoop [17], MapReduce has recently
received very widespread attention for its ability to efficiently
analyze large unstructured and structured data sets. The basic
idea of MapReduce is straightforward and consists of two
functions that a user writes called map and reduce plus a
framework for executing a possibly large number of instances of
each program on a compute cluster.
The map program reads a set of “records” from an input file, does
any desired filtering and/or transformations and then outputs a set
of records of the form (key, data). As the map program produces
output records a “split” function partitions the records into M
disjoint buckets by applying a function to the key of each output
record. The map program terminates with M output files, one for
each bucket. In general, there are multiple instances of the map
program running on different nodes of a compute cluster. Each
map instance is given a distinct portion of the input file by the
MapReduce scheduler to process. Thus, with N nodes in the map
phase each producing M files there is a total of N * M files.

The second phase executes M instances of the reduce program.
Each reads one input file from each of the N nodes. After being
collected by the MapReduce framework, the input records to a
reduce instance are grouped on their keys (by sorting or hashing)
and fed to the reduce program. Like the map program, the reduce
program is an arbitrary computation in a general-purpose
language. Each reduce instance can write records to an output
file, which forms part of the “answer”.

2.4 Dryad
Drawing inspiration from cluster management systems like
Condor, MapReduce, and parallel database systems, Dryad [18] is
intended to be a general-purpose framework for developing
coarse-grain data parallel applications. Dryad applications consist
of a data flow graph composed of vertices, corresponding to
sequential computations, connected to each other by
communication channels implemented via sockets, shared-
memory message queues, or files. The Dryad framework
provides support for scheduling the vertices constituting a
computation on the nodes of a cluster, establishing
communication channels between computations, and dealing with
software and hardware failures.
In many ways the goals of the Clustera project and Dryad are
quite similar to one another. Both are targeted toward handling a
wide range of applications ranging from single process,
computationally intensive jobs to parallel SQL queries. The two
systems, however, employ radically different implementation
strategies. Dyrad uses techniques similar to those first pioneered
by the Condor project based on the use of daemon processes
running on each node in the cluster to which the scheduler pushes
jobs for execution.

3. Clustera Architecture
3.1 Introduction
The goals of the Clustera project include efficient execution of a
wide variety of job types ranging from computationally-intensive,
long-running jobs with minimal I/O requirements to complex SQL
queries over massive relational tables. Rather than “prewiring”
the system to support a specific type of job, Clustera is designed
to be extensible, enabling the system to be easily extended to
handle new types of jobs and their associated schedulers. Finally,
the system is designed to scale to tens of 1000s of nodes by

29

Figure 1: “Push” Cluster Architecture

exploiting modern software building blocks including applications
servers (e.g., JBoss) and relational database systems.
In designing and building this system we also wanted to answer
the question of whether a general-purpose cluster management
system could be competitive with one designed to execute a single
type of job. As will be demonstrated in Section 4, we believe that
the answer to this question is “yes”.

3.2 The Standard Cluster Architecture
Figure 1 depicts the “standard” architecture that many cluster
management systems use. Users submit their jobs to a job
scheduler that “matches” submitted jobs to nodes as nodes
become “available”. Examples of criteria that are frequently used
to match a job to a node include the architecture for which the job
has been compiled (e.g. Intel or Sparc) and the minimum amount
of memory needed to run the job. From the set of “matching”
jobs, the job scheduler will select which job to run according to
some scheduling mechanism. Condor, for example, uses a
combination of “fair-share” scheduling and job priorities. After a
job is “matched” with a node, the scheduler sends the job to a
daemon process on the node. This process assumes responsibility
for starting the job and monitoring its execution until the job
completes. How input and output files are handled varies from
system to system. If, for example, the nodes in the cluster (as well
as the submitting machines) have access to a shared file system
such as NFS or AFS, jobs can access their input files directly.
Otherwise, the job scheduler will push the input files needed by
the job, along with the executable for the job, to the node. Output
files are handled in an analogous fashion. We use the term “push”
architecture in reference to the way jobs get “pushed” from the
job scheduler to a waiting daemon process running on the node.

Examples of this general class of architecture include Condor,
LSF, IBM Loadleveler, PBS, and SunN1 Grid Engine. There are
probably dozens of other similar systems. Despite this high-level
similarity, there are differences between the systems, too.
Condor, for example, uses a distributed job queue and file transfer
to move files between the submitting machine and the node.

3.3 Clustera System Architecture
Figure 2 depicts the architecture of Clustera. This architecture is
unique in a number of ways. First, the Clustera server software is
implemented using Java EE running inside the JBoss Application
Server. As we will discuss in detail below, using an Application
Server as the basis for the system provided us a number of
important capabilities including scalability, fault tolerance, and
multiplexing of the connections to the DBMS. The second
unique feature is that the cluster nodes are web service clients of
the Clustera server, using SOAP over HTTP to communicate and
coordinate with the Clustera server. Third, all state information
about jobs, users, nodes, files, job execution history, etc. is stored
in a relational database system. Users and system administrators
can monitor the state of their jobs and the overall health of the
system through a web interface.

The Clustera server provides support for job management,
scheduling and managing the configuration and state of each node
in the cluster, concrete files, logical files, and relational tables,
information on users including priorities, permissions, and
accounting data, as well as a complete historical record of each
job submitted to the system. The utility provided by maintaining
a rich, complete record of job executions cannot be overstated. In
addition to serving as the audit trail underlying the usage
accounting information, maintaining these detailed historical
records makes it possible, for example, to trace the lineage of a
logical file or relational table (either of which typically is
composed of a distributed set of physical files) back across all of
the jobs and inputs that fed into its creation. Similarly it is
possible to trace
forward from a given
file or table through
all of the jobs that –
directly or indirectly
– read from the file or
table in question to
find, for example,
what computations
must be re-run if a
particular data set
needs to be corrected,
updated or replaced.

Users can perform essential tasks (e.g., submit and monitor jobs,
reconfigure nodes, etc.) through either the web-service interface to
the system or via a browser-based GUI. Additionally, users can
access basic aggregate information about the system through a set
of pre-defined, parameterized queries (e.g., How many nodes are
in the cluster right now? How many jobs submitted by user X are
currently waiting to be executed? Which files does job 123
depend on?). While pre-defined, parameterized queries are quite
useful, efficiently administering, maintaining, troubleshooting and
debugging a system like Clustera requires the ability to get real-
time answers to arbitrary questions about system state that could
not realistically be covered by even a very large set of canned
reports. In these situations one big benefit of maintaining system
state information in an RDBMS is clear – it provides users and
administrators with the full power of SQL to pose queries and
create ad-hoc reports. During development, we have found that
our ability to employ SQL as, among other things, a very high-
powered debugging tool has improved our ability to diagnose, and
fix, both bugs and performance bottlenecks.

The Clustera node code is implemented as a web-service client in
Java for portability (either Linux or Windows). The software runs
in a JVM that is forked and monitored by a daemon process
running on the node. Instead of listening on a socket (as with the
“push” model described in the previous section), the Clustera
node software periodically “pings” the Clustera server requesting
work whenever it is available to execute a job. In effect, the node
software “pulls” jobs from the server.

While the use of a relational DBMS should be an obvious choice
for storing all the data about the cluster, there are a number of
benefits from also using an application server. First, application
servers (such as JBoss [20], BEA’s WebLogic, IBM’s
WebSphere, and Oracle Application Server) are designed to scale

Figure 2: Clustera Architecture

30

to tens of 1000s of simultaneous web clients. Second, they are
fault tolerant, multithreaded, and take care of pooling connections
to the database server. Third, software written in Java EE is
portable between different application servers. Finally, the Java
EE environment presents an object-relationship model of the
underlying tables in the database. Programming against this
model provides a great deal of back-end database portability
because the resulting Java EE application is, to a large extent,
insulated from database-specific details such as query syntax
differences, JDBC-SQL type-mappings, etc. We routinely run
Clustera on both IBM’s DB2 and on PostgreSQL.

As illustrated in Figure 3, application servers can also be clustered
on multiple machines for enhanced reliability and scalability. In a
clustered environment the application server software can be
configured to automatically manage the consistency of objects
cached on two or more servers. In effect, the Java EE application
is presented the image of a shared object cache.

3.4 Concrete Files, Concrete Jobs, Pipelines, and
Concrete Job Scheduling
Concrete jobs and concrete files are the primitives on which
higher-level abstractions are constructed. Concrete files are the
basic unit of storage in Clustera and correspond to a single
operating system file. Concrete files are used to hold input,
output, and executable files and are the building blocks for higher-
level constructs, such as the logical files and relational tables
described in the following section. Each concrete file is replicated
a configurable number of times (three is the default) and the
location for each replica is chosen in such a way to maximize the
likelihood that a copy of the file will still be available even if a
switch in the cluster fails. As concrete files are loaded into the
system (or created as an output file) a checksum is computed over
the file to insure that files are not corrupted.

As database practitioners we do the obvious thing and store the
metadata about each concrete file in the database as illustrated in
Figure 4. This includes ownership and permission information,
the file’s checksum and the location of all replicas. Since nodes
and disks fail, each node periodically contacts the server to
synchronize the list of the files it is hosting with the list the server
has. The server uses this information to monitor the state of the
replicas of each file. If the number of replicas for a concrete file
is below the desired minimum, the server picks a new node and
instructs that node (the next time it contacts the server) to obtain a
copy of the file from one of the nodes currently hosting a replica.

A concrete job is the basic unit of execution in the Clustera
system. A concrete job consists of a single arbitrary executable
file that consumes zero or more concrete files as input and
produces zero or more concrete output files. All information
required to execute a concrete job is stored in the database
including the name of the executable, the arguments to pass it, the

minimum memory required, the processor type and the file IDs
and expected runtime names of input and output files.

A pipeline is the basic unit of scheduling. Though the name
implies linearity, a pipeline is, in general, a DAG (directed acyclic
graph) of one or more concrete jobs scheduled for co-execution on
a single node; the nodes of the pipeline DAG are the concrete jobs
to execute and the edges correspond to the inter-job data-
dependencies. For large graphs of inter-dependent jobs, the
concrete job scheduler will dynamically segment the graph into
multiple pipelines. The pipelines themselves are often sized so
that the number of executables in the pipeline matches the number
of free processing cores on the node executing the pipeline.

The inputs to and the outputs from a pipeline are concrete files.
During pipeline execution, the Clustera software transparently
enables the piping (hence the term “pipeline”) of intermediate
files directly in memory from one executable to another without
materializing them on disk. Note that the user need not tell the
system which jobs to co-schedule or which files to pipe through
memory – the system makes dynamic co-scheduling decisions
based on the dependency graph and enables in-memory piping
automatically at execution time. (In the near future we plan to
extend piping of intermediate files across pipelines/nodes.) This
dynamic, transparent piping of data between jobs is similar to that
employed in Dryad [14]. The appendix provides more details on
how file access patterns can alter pipelining decisions.

The Clustera server makes scheduling decisions whenever a node
“pings” the server requesting a pipeline to execute. Matching, in
general, is a type of join between a set of idle nodes and a set of
jobs that are eligible for execution [19]. The output of the match
is a pairing of jobs with nodes that maximizes some benefit
function. Typically this benefit function will incorporate job and
user priorities while avoiding starvation. Condor, for example,
incorporates the notion of “fair-share” scheduling to insure that
every user gets his/her fair share of the available cycles [21]. In
evaluating alternative matches, Clustera also includes a notion of
what we term “placement-aware” scheduling which incorporates
the locations of input, output, and executable files. The “ideal”
match for a node is a pipeline for which it already has a copy of

Figure 4: A four-node cluster illustrating the use of

concrete files

Figure 3: Clustered Application Server

31

the executable files and all input files. If such a match cannot be
found then the scheduler will try to minimize the amount of data
to transfer. For example, if a pipeline has a large input file, the
scheduler will try to schedule that pipeline on a node that already
has a copy of that file (while avoiding starvation).

Figure 5 shows a linear pipeline of n jobs in which the outputs of
one job are consumed as the inputs to the successor job. For this
very common type of pipeline, only the first job in the pipeline
consumes any concrete files as input and only the last job in the
pipeline produces any concrete files as output; the rest of the data
passes through in-memory pipes transparently to the executables.

Figure 6 shows a four-job
DAG that runs as a single
complex pipeline. In contrast
to the Figure 5 pipeline, the
Figure 6 pipeline illustrates
that pipelines can be arbitrary
DAGs. This single pipeline
plan would likely be an
excellent choice for execution
on a four-core machine that
already hosts copies of files
LF1 and LF2. Figure 7
illustrates an alternative
execution plan in which the
four-job DAG of Figure 6 is
segmented into three separate
linear pipelines. Because they
can run independently of each
other, the first two pipelines are immediately eligible for
execution. The third pipeline is dependent upon output files from
the first two and is only eligible for execution after those output
files have been materialized.

In contrast to Figure 6, the segmented plan of Figure 7 is
potentially more suitable when files LF1 and LF2 are large and do
not reside on the same host. In this situation, the first two
pipelines can be executed without any data transfer required.

Since the decision on where to schedule the third pipeline can be
deferred until that pipeline is actually ready for execution, the
concrete job scheduler can wait to see which of the two
intermediate files (LF4 and LF5) is larger and minimize the
network bandwidth usage and data transfer time by scheduling the
third pipeline to run on that node.

Figure 8 illustrates the set-up and execution of a single-job
pipeline whose executable is File C, which is stored on node 1. In
response to the request for work from node 1 the Clustera server
returns a job identifier, the name of the executable and input files,
and a list of locations of the replicas for each file. Node 1
discovers that it already has a local copy of C but not a copy of
File A. Using HTTP, it requests a copy of file A from Node 2
(which includes an HTTP server). After retrieving File 1 from
Node 2, Node 1 stores it locally and then uses JNI to fork C.exe.

3.5 Logical Files and Relational Tables

In general, users interact with the system in terms of logical files
and tables rather than concrete files. A logical file is a set of one
or more concrete files that, together, form a single logical unit.
When a logical file is first created a partitioning factor is specified
which indicates the desired degree of declustering. For example,
if the creation specifies a partitioning factor of 100, as the logical
file is loaded into the system, it will be automatically partitioned
into 100 concrete files. Each concrete file, in turn, will be placed
on a different node in the cluster. The Server automatically takes
care of placing the set of concrete files (and their replicas) across
the nodes and disks of the cluster. As with concrete files, the
database is used to keep track of everything including the file
ownership and permissions as well as the identifiers of the
concrete files that constitute the logical file. For more details on
logical file management, please refer to the Appendix

A relation in Clustera is simply a logical file plus the associated
schema information. We store the schema information in the
Clustera database itself; an alternative approach is to store the
schema information in a second logical file. We chose the first
approach because it provides the SQL compiler with direct access
to the required schema information, bypassing the need to access
node-resident data in order to make scheduling decisions.

3.6 Abstract Jobs & Job Scheduler
3.6.1 Introduction
Abstract jobs and abstract job schedulers are the key to Clustera’s

Figure 6: A 4-job DAG

that could be executed as a
single pipeline

Figure 7: Possible alternative set of pipelines resulting
from segmenting the Figure 6 DAG into three separate

linear pipelines with materialized intermediate files.

Figure 5: A very common class of pipeline consisting of

a linear chain of n concrete jobs.

Figure 8: Example of Concrete Job Scheduling

32

flexibility and extensibility. Figure 9 illustrates the basic idea.
Users express their work as an instance of some abstract job type.
For example, a specific SQL query such as select * from students
where gpa > 3.0 is an instance of the class of SQL Abstract Jobs.
After optimization, the SQL Abstract Job Scheduler would
compile this query into a set of concrete jobs, one for each
concrete file of the corresponding students table.

Currently we have implemented three types of abstract jobs and
their corresponding schedulers: one for complex workflows, one
for MapReduce jobs, and one for running SQL queries. Each of
these is described in more detail below.

3.6.2 Workflow Abstract Job Scheduler
A workflow is a DAG of operations such as the one shown in
Figure 6. Workflows are common in many scientific applications.
Workflows can be arbitrarily complex and are frequently used to
take a relatively few base input files and pass them through a large
number of discrete processing steps in order to produce relatively
few final output files. It is not uncommon for the processing steps
to use pre-existing executable files as building blocks. The true
value of the workflow abstraction is that it provides end-users
with a way to create new “programs” without writing a single line
of executable code. Instead of writing code, users can create new
dataflow programs simply by recombining the base processing
steps in new and interesting ways. Workflows like this can often
generate a large number of intermediate files that are of little or no
use to the end-user: only the final output really matters.
Workflows can also benefit from parallelism, but keeping track of
the large number of processing steps and the intermediate files
they depend on is a tedious, error-prone process, which is why
users often use tools like Condor’s DAGMan [23].
The Clustera Workflow Abstract Scheduler (WAS) accepts a
workflow specification as input and translates it into a graph of
concrete jobs that are submitted to the system. The information
contained in the workflow specification is similar to that required
for any workflow scheduler – the executables to run, the input
files they require, the jobs that they depend on, etc. For the WAS,
the base input files and the output files are all specified as logical
files – the WAS will translate the logical file references into the
concrete file references required by the system. Since the WAS
input is a DAG of jobs, which the concrete job scheduler can deal
with directly, little is required of the WAS beyond translating the
file references and submitting the workflow to the scheduler.

3.6.3 MapReduce Abstract Jobs and Job Scheduler
A MapReduce abstract job consists of the name of the logical file
to be used as input, the map and reduce functions, and the name to
be assigned to the output logical file as shown in Figure 10. The
Split, Sort (not shown), and Merge functions are provided by the
system in the form of a permanently retained library of
executables.

Given a MapReduce abstract job as input, the abstract scheduler

will compile the abstract job into two sets of concrete jobs as
shown in Figures 11 and 12. For the map phase (Figure 11) there
will be one concrete job generated for each of the N concrete files
of the input logical file. Each concrete job CFi, 1≤ i ≤ N, will read
its concrete file as input and apply the user supplied executable
map function to produce output records that the Split function
partitions among M concrete output files Ti,j 1≤ j ≤ N.

For the reduce phase (Figure 12), M concrete jobs will be
generated during the compilation process. M is picked based on
an estimate of how much data the map phase will produce. Once
generated, the concrete jobs for the map and reduce phases can all
be submitted to the scheduler. While the map jobs are
immediately eligible for execution, the reduce jobs are not eligible
until their input files have been produced.

3.6.4 The SQL Abstract Job Scheduler
Currently, since we do not have a SQL parser and optimizer for
Clustera, SQL plans must be constructed manually. The SQL plan
is simply a standard tree of relational algebra operators. Each
operator (i.e. selection, join, aggregate, etc.) was implemented in
C++ and compiled into an executable file. Joins are implemented
using the Grace hash join algorithm. Since we currently do not
have indices, all selections are performed by sequentially
scanning the input table. Aggregates are implemented by sorting
on the group by attribute(s).

The SQL Abstract Job Scheduler is a two-phase compiler that
combines the characteristics of the Workflow and MapReduce
compilers. Like the Workflow compiler, the SQL compiler takes
the query plan (which is itself a DAG of relational operators) and
decomposes it into a DAG of operations that it orders according to
the inter-operation data dependencies. For example, a query with
two selections, two projections, a join and an aggregation on the
join attribute will get turned into three linear sequences of
operations. The first sequence will consist of the selection and

Figure 10: MapReduce Abstract Job Example

Figure 9: Compilation of abstract job into concrete jobs

Figure 11: One of N concrete Map jobs generated by

compiling the abstract job in Figure 10.

Figure 12: One of M concrete Reduce jobs generated by

compiling the abstract job in Figure 10.

33

projection on the first base table, while the second sequence will
be the selection and projection on the second base table. The third
sequence will be the join (the outputs of the first two sequences
are the inputs to the join) and subsequent aggregation. These
three sequences are combined into one workflow graph. The
compiler then checks the inputs to, and definitions of, all the join
and aggregation operators to determine if any repartitioning is
necessary. If so, it injects the necessary split and merge operators
into the workflow prior to the join or aggregation operator in
question. In the running example, the answer to whether or not
the base tables require repartitioning prior to the join depends on
whether or not they are already partitioned by the join attribute;
since the aggregation is on the join attribute, however, we know
that the aggregation operator will not require a repartitioning.

Once the SQL query has been translated into a workflow over
relational tables, the workflow is processed in a fashion similar to
the way MapReduce jobs are compiled. That is to say, each
sequence will be compiled into a set of concrete jobs - one for
each concrete file of the corresponding input table. As these
concrete jobs are generated they are inserted into the database
where they await scheduling by the concrete job scheduler.

3.6.5 Discussion
As described, pipelines of co-executing jobs are the fundamental
units of scheduling in Clustera. This approach provides Clustera
with two important opportunities for achieving run-time
performance gains. First, the concrete job scheduler can take
advantage of data-dependency information to make scheduling
decisions that improve overall cluster efficiency. These decisions
may, for example, help reduce network bandwidth consumption
(by scheduling job executions on nodes where large input data
files already reside) and disk I/O operations (by scheduling related
executables to run on the same node so that intermediate files can
be piped in memory rather than materialized in the file system)
resulting in higher job throughput and reduced end-to-end
execution times. Second, the concrete job scheduler can take
advantage of multi-core nodes by dynamically segmenting the
workload in order to match the number of executables in a
pipeline to the number of available processing cores on the node.
3.7 Wrapup
Before moving on to the performance analysis in Section 4, it is
interesting to consider one other architectural aspect in which
Clustera significantly differs from comparable systems – the
handling of inter-job dependencies. As was described above,
Clustera is aware of, and explicitly and internally manages, inter-
job data dependencies. Condor, on the other hand, employs an
external utility, DAGMan [23], for managing the inter-job
dependency graph. Users submit their workflow DAGs to the
DAGMan meta-scheduler utility. DAGMan analyzes the
workflow graph to determine which jobs are eligible for
submission and submits those to an underlying Condor process
that performs job queue management – the schedd. DAGMan
then “sniffs” the relevant schedd’s log files in order to monitor job
progress. As submitted jobs complete, DAGMan updates the
dependency graph in order to determine when previously
ineligible jobs become eligible for execution. As these jobs
become eligible DAGMan submits them to the Condor schedd.

For Clustera, probably the biggest benefit of managing the
dependencies internally is that it provides the concrete job
scheduler with the ability to do more intelligent scheduling. It is

clearly impossible to enable in-memory (or cross-node) piping of
intermediate data files if the jobs that would consume the piped
data are not even visible to the system until after the jobs that
produce that data have completed. One other noteworthy
advantage of handling the dependencies internally is that it
simplifies examining and/or manipulating a workflow as a unit.
More details of our scheduling mechanisms can be found in [24].

4. Performance Experiments and Results
As stated previously, a primary goal of the Clustera project is to
enable efficient execution of a wide variety of job types on a
potentially large cluster of compute nodes. To gauge our level of
success in achieving this goal we ran a number of experiments
designed to provide insight into the performance of the current
prototype when executing three different types of jobs. Section
4.1 describes the experimental setup. The MapReduce results are
presented in Section 4.2, the SQL results in Section 4.3, and
arbitrary workflow results in Section 4.4. Section 4.5 explores the
performance of the Clustera Server under load. A more complete
set of experimental results along with more details about the
system can be found in [27].

To give some additional context to the Clustera MapReduce and
SQL performance numbers, we also ran comparable experiments
using the latest stable release (version 0.16.0) of the open-source
Hadoop system. There are four key reasons that we chose to
compare Clustera numbers with Hadoop numbers for these
workloads. The first reason, as laid out in the introduction, is to
observe whether a general-purpose system like Clustera is capable
of delivering MapReduce performance results that are even “in
the same ballpark” as those delivered by a system, like Hadoop,
that is specifically designed to perform MapReduce computations.
The second reason is to understand how the relative performance
of a moderately complex operation (e.g., a two-join SQL query) is
affected by the rigidity of the underlying distributed execution
paradigm; in substantially more concrete terms, this goal can be
rephrased as trying to understand if it makes a difference whether
a SQL query is translated to a set of MapReduce jobs or to an
arbitrary tree of operators in preparation for parallel execution.
The third reason is to understand if there are any structural
differences between the two systems that lead to noticeably
different performance or scalability properties. The fourth reason
is to ascertain whether the benefit (if any) of enriching the data
model for a parallel computing system (e.g., by making it
partition-aware) is sufficient to justify the additional development
and maintenance associated with the enriched model.

Note that providing a performance benchmark comparison
between the two systems (or between Clustera and a parallel
RDBMS) was not a goal of our experimentation. Parallel
computation systems are very complex and, as will be discussed
further in Section 4.3, can be sensitive to a variety of system
parameters. While undoubtedly an interesting investigation in its
own right, tuning either Hadoop or Clustera (much less both) to
optimality for a particular workload is beyond the scope of this
study and, along with a performance comparison including a
parallel RDBMS, is deferred to future work. We are not
attempting to make any claims about the optimally tuned
performance of either system and the numbers should be
interpreted with that in mind.

4.1 Experimental Setup
We used a 100-node test cluster for our experiments. Each node

34

has a single 2.40 GHz Intel Core 2 Duo processor running Red
Hat Enterprise Linux 5 (kernel version 2.6.18) with 4GB RAM
and two 250GB SATA-I hard disks. According to hdparm, the
hard disks deliver ~7GB/sec for cached reads and ~74MB/sec for
buffered reads. The 100 nodes are split across two racks of 50
nodes each. The nodes on each rack are connected via a Cisco
C3560G-48TS switch. The switches have gigabit ethernet ports
for each node and, according to the Cisco datasheet, have a
forwarding bandwidth of 32Gbps. The two switches are
connected via a single gigabit ethernet link. In all our experiments
the participating nodes are evenly split across this link.

For the Hadoop experiments we used an additional desktop
machine with a single 2.40 GHz Intel Core 2 Duo processor and
2GB RAM to act as the Namenode and to host the MapReduce
Job Tracker. For the Clustera experiments we used two additional
machines - one to run the application server and one to run the
backend database. For the application server we used JBoss
4.2.1.GA running on the same hardware configuration used for the
Hadoop Namenode/Job Tracker. For the database we used DB2
v8.1 running on a machine with two 3.00 GHz Intel Xeon
processors and 4GB RAM. The database bufferpool was ~1GB
which was sufficient to maintain all of the records in memory.

As mentioned in Section 3, Clustera accepts an abstract
description of a MapReduce job or SQL query and compiles it
into a DAG of concrete jobs. For MapReduce jobs, the map and
reduce functions are specified as part of the MapReduce
specification, with the sort, split, and merge functions taken from
a system-provided library. These library functions are re-used in
the compilation of SQL queries. In addition SQL workflows also
use select, project, hashJoin, aggregate and combine library
functions. All MapReduce and SQL library functions are Linux
binaries written in C.

4.2 MapReduce Scaleup Test
This section presents the results of a series of scale-up
experiments we ran to evaluate Clustera performance for
MapReduce jobs. The base data for these experiments is the
LINEITEM table of the TPC-H 100 scale dataset. The
MapReduce job itself performs a group-by-aggregation on the
first attribute (order-key) of the LINEITEM table. For each
record in the input dataset the map function emits the first
attribute as the key and the entire record as the value. After this
intermediate data has been sorted and partitioned on the key (per
the MapReduce contract), the reducer emits a row count for each
unique key. If the goal were simply to calculate these row counts,
then clearly this computation could be implemented more
efficiently by having the map function emit, e.g., a “1” instead of
the entire record as its output. For experimentation, however, the
actual computation is immaterial; observing the performance
impact of large intermediate data files is, however, quite
interesting and important.

As explained earlier, we ran a set of MapReduce scale-up
experiments on both Clustera and Hadoop in order to try to
understand, among other things, whether Clustera could deliver
MapReduce performance results in the same general range as
those delivered by Hadoop. For the scale-up experiments we
varied the cluster size from 25 nodes up to 100 nodes and scaled
up the size of the dataset to process accordingly.

For the Clustera MapReduce experiments, the input logical file is

composed of a set of concrete files that each contain ~6 million
records and are approximately 759 MB in size. In each
experiment the number of concrete files composing the logical
input file and the number of Reduce jobs is set to be equal to the
number of nodes participating in the experiment; since the
MapReduce abstract compiler generates one Map job per concrete
file, the number of Map jobs, then, was always also equal to the
number of nodes participating in the experiment.

After getting up and running with Hadoop, we quickly realized
that there were quite a few configuration parameters that we could
adjust that would affect the observed MapReduce performance.
We evaluated several different configurations of chunk size (from
64 MB to 780MB) and number of concurrent mappers per node.
The configuration that gave us the best overall performance used a
chunk size of 128MB and two map tasks per node. See Appendix
I of [27] for the complete results of this study.

Finally, we ran one additional experiment designed to see how
performance of this computation is affected if the input data is
hash-partitioned and the scheduler is aware of the partitioning.
Since the “vanilla” MapReduce computation model does not
distinguish between hash-partitioned and randomly partitioned
input files, we could not run this experiment on Hadoop or via the
Clustera MapReduce abstract compiler. We could, however,
perform the same computation by recasting it as a Clustera-SQL
job over a relational table containing the same underlying dataset
(partitioned on the aggregation key) in which project and
aggregate take the place of map and reduce. To ensure
comparability across results, the query’s project operator outputs
the same intermediate values as the map functions of the
MapReduce jobs.

Figure 13 shows the scale-up results we obtained with Hadoop,
the Clustera MapReduce computation, and the Clustera SQL
computation over hash-partitioned data. The graph plots the
number of nodes participating in the experiment (x-axis) against
the end-to-end execution time (in seconds) of the experiment (y-
axis). The top line shows the observed performance for Hadoop.
The next line down shows the observed performance for the
Clustera MapReduce experiment and the flat line at the bottom
shows the observed performance for the equivalent SQL
computation on hash-partitioned data.

As is evident from the graph, MapReduce performance on
Clustera and Hadoop are in the same general range. In both
systems performance scales roughly linearly as the cluster size

Figure 13

35

and amount of data to process are increased (more on this
follows). The best observed performance was for the computation
over hash-partitioned data. The end-to-end performance time is
essentially flat across problem sizes implying very good scale-up.
This makes sense since the partition-aware scheduler can simplify
the computation to a set of independent three-step pipelines – one
for each concrete file of the table – and avoid the repartitioning.
A key learning from this set of experiments is that, at least for
MapReduce workflows with large intermediate data files, it
appears that a general-purpose system can deliver performance
comparable to a special-purpose MapReduce processing system.

Before moving on to the SQL experiments, it is interesting to look
a bit deeper into the Clustera MapReduce numbers to try to
understand why execution time scales roughly linearly with
problem size. To investigate this, we split the time taken for the
Clustera MapReduce computation into 3 components – a Map
phase, a Shuffle phase and a Reduce phase. We defined the Map
phase to encompass the time from the start of the workflow to the
end of the last split job. We defined the Shuffle phase to
encompass the time from end of the last split to the start of the last
merge job - i.e., the time taken for all the intermediate data to be
transferred from the mappers to the reducers. We defined the
Reduce phase to encompass the time from the start of the last
merge to the end of the last reduce job. The end of the Reduce
phase is the end of the MapReduce computation.

Figure 14 shows the breakdown of the Clustera MapReduce
experiments into these three phases. As was the case with the
previous graph, the x-axis corresponds to the number of nodes
participating in the experiment and the y-axis corresponds to the
time spent (in seconds) in a given phase. As this graph shows, the
time spent in the Map phase and the Reduce phase remain
basically constant across scale-factors. The time spent in the
Shuffle phase (i.e., transferring files), however, increases linearly
with the problem size and drives the linear growth of the entire
computation. Considering that, for this computation, an increase
in the input size implies a commensurate increase in the amount
of intermediate data generated, this linear growth makes sense.

One important consequence of this linear growth is that
intermediate data transfer can become a bottleneck in MapReduce
computations - with network bandwidth serving as the limiting
factor. In our experimental cluster the gigabit link between the
racks has a strong influence on the length of the Shuffle phase of
the computation. In the Hadoop MapReduce implementation, the
reducers begin pulling intermediate data as soon as the first map

task completes – the effect is that Hadoop is able to overlap some
of the data transfer time with some of the map task execution
time. Contrast this with the current Clustera prototype in which
none of the file transfer begins until all of the map jobs have
completed. This is an example of a structural difference between
the two systems that has the potential to impact performance and
scalability. In the near future we plan to extend Clustera to enable
this overlapping of data transfer time with map execution time,
though by pushing data through a socket rather than by pulling it,
and hope to see some performance gains as a result. Of course an
even more important structural issue is exposed by the hash-
partitioned version of this computation in which the partition-
aware scheduler is able to avoid all data transfer costs and, as a
result, display the best performance and scale-up properties.

4.3 SQL Scaleup Test
This section presents the results of a series of scale-up
experiments we ran to evaluate the performance of SQL jobs. The
base data for these experiments consists of the CUSTOMER,
ORDERS and LINEITEM tables of the TPC-H dataset. The SQL
query we ran was:

SELECT l.okey, o.date, o.shipprio, SUM(l.eprice)
FROM lineitem l, orders o, customer c
WHERE c.mkstsegment = ‘AUTOMOBILE’ and
o.date < ‘1995-02-03’ and l.sdate > ‘1995-02-03’
and o.ckey = c.ckey and l.okey = o.okey
GROUP BY l.okey, o.date, o.shipprio

We ran experiments on 25, 50, 75 and 100 nodes using
appropriately scaled TPC-H datasets. For all the datasets, the size
of the CUSTOMER, ORDERS and LINEITEM chunks on each
node are 23MB, 169MB and 758 MB, respectively

For the Clustera experiments we used the SQL abstract scheduler.
The query plan joined the CUSTOMER and ORDERS tables first
(because they were the two smaller tables) and then joined that
intermediate result with the LINEITEMS table. For the Clustera
experiments we also varied the partitioning of the base tables. In
one set of experiments the base tables were not hash-partitioned.
For these experiments, each concrete file of a base table is first
filtered through select and project operators, followed by a
repartition according to the join key. Thus, there are four
repartitions in the workflow – one for each of the base tables, and
a fourth for the output of the first join (CUSTOMER-ORDERS).
The final group-by-aggregation does not require a repartition
since the final join key is okey. In the other set of experiments,
the CUSTOMER and ORDERS tables are hash-partitioned by
ckey and the LINEITEM table is hash-partitioned by okey. For
these experiments, the base tables do not need to be repartitioned
prior to the joins. The output of the CUSTOMER-ORDERS join,
though, is partitioned on ckey, so it must be repartitioned on okey
prior to the second join. The following table shows the total
amount of intermediate data that is repartitioned in both cases.

Total Data Shuffled (MB) Num
Nodes

Partitioned Unpartitioned
25 77 2122
50 154 4326
75 239 6537

100 316 8757

Figure 14

36

As was the case with the MapReduce experiments, we also ran the
SQL experiments on Hadoop. While joining two tables may not
fit “neatly” into the MapReduce paradigm, it can be done. In fact,
it is precisely because a join does not fit neatly into the
MapReduce paradigm that we thought that running the query on
Hadoop would be interesting; we hoped that it would help us to
understand if translating a SQL query into a series of MapReduce
jobs (as opposed to a tree of operators) would have any noticeable
impact on performance.

Rather than attempt to write our own MapReduce join code, we
used the DataJoin contrib package that is included with Hadoop.
In a DataJoin job in Hadoop, both join operands are treated as a
single logical input. The intermediate data is tagged with the base
table name in the Map phase, and the join is enumerated in the
Reduce phase with the help of these tags. As with the Clustera-
SQL queries, for the DataJoin jobs we joined the CUSTOMER
and ORDERS tables first and then joined this intermediate result
with the LINEITEMS table before performing the final
aggregation. Note that, in addition to tagging the data with the
base table name, we also performed the necessary selections and
projections in the Map phase. The total amount of intermediate
data to be repartitioned during the DataJoin jobs, then, is just
slightly larger than what is shown in the un-partitioned column in
the table above – the excess is due to the per-record tags required
to support the DataJoin. Since Hadoop does not support hash-
partitioned files, we only ran un-partitioned DataJoins. For all
DataJoin experiments we used the same Hadoop base
configuration as described in the Section 4.2 MapReduce
experiments.

On our generated datasets, the predicate on this query has a
selectivity of approximately 50%; this selectivity factor
significantly reduces the size of the intermediate files that are
generated. We also experimented with another version of the
query with no selection predicates to see if altering the selectivity
had any impact on performance.

Figure 15 plots the number of nodes in the experiment (x-axis)
against the observed run-time (in seconds, y-axis) of the
computation. Looking at the right side of the graph, the top line is
the DataJoin with no selection predicate, the second line is the
DataJoin with a selection predicate, the third line is the Clustera-
SQL job on un-partitioned data with no selection predicate, the
fourth line is the Clustera-SQL job on un-partitioned data with a
selection predicate and the bottom line is the Clustera-SQL job on
hash-partitioned data with no selection predicate. The Clustera-
SQL job on partitioned data with a selection predicate performed

on average about 30% better than the equivalent SQL job with no
selection predicate, but we have not displayed it here in order to
improve the readability of the figure.

As expected, observed performance and scalability on the hash-
partitioned datasets is superior to all other approaches. Again, this
would seem to suggest that, given the performance gains
available, when implementing a parallel computation system it is
probably worth the effort to enrich the data-model and scheduler
to support and take advantage of partitioned data. For both of the
Clustera SQL jobs over un-partitioned data, performance seems to
scale roughly linearly with an increase in the problem size.
Similar to the Clustera MapReduce results, the linear factor can be
traced back to the data transfer when tables are repartitioned.
Recall that in the current Clustera prototype none of the “merges”
of a repartitioning are scheduled until all of the corresponding
“splits” have completed. The result is that there is a spike in
network activity when the merges are scheduled which causes the
link between the racks to saturate (and become a bottleneck)
leading to the linear growth in the data-transfer time and, by
extension, the overall execution time. Compare this linear growth
to that of the DataJoin job on un-partitioned data with a selection
predicate (second line). This case still exhibits a linear
component to the growth, but the linear growth here is damped
relative to that of the Clustera SQL jobs just discussed; this
dampening most likely occurs because, as described previously,
the underlying Hadoop MapReduce jobs are able to overlap some
of the data transfer time with some of the map task execution
time. Again, in the near future we plan to apply this lesson by
extending Clustera to support overlapping data-transfer time and
execution time. Finally, the performance of the DataJoin with no
selection predicate is interesting to consider. The run-time for the
DataJoin with no selection predicate ranges from approximately
2.3 (25-nodes) to approximately 2.6 (100-nodes) times longer than
the run-time for the DataJoin with a selection predicate. Compare
this to the spread for the Clustera SQL jobs on un-partitioned data
that ranges from approximately 1.4 (100-nodes) to approximately
1.5 (25-nodes) times longer. It is not entirely clear why the
DataJoin spread is so much larger. One possible contributing
factor is that perhaps less of the data-transfer time is overlapped
with map task execution time. Another possible factor is that
implementing a join in the MapReduce framework inherently
incurs additional sorting overhead that can be avoided if a good
plan using a hash-join is available. Unfortunately, despite some
of their shared goals, the systems are sufficiently different that it
appears that an in-depth investigation beyond the scope of this
study is needed to draw firm conclusions about the performance
impact that the underlying parallel execution model has on join
implementation.

4.4 Blast Workflow Speedup test
Clustera also can run arbitrary workflows with user-defined data
and programs. This section examines the execution of the
BLAST scientific workflow. BLAST is a sequence alignment
program that searches a file of well-known proteins for
similarities with a new sequence of proteins. A BLAST DAG
consists of two jobs, blastall and javawrap. Blastall takes a
sequence of acids seq and performs sequence alignment using the
nr_db files, which document known proteins. Blastall produces a
seq,blast file which is then processed by the javawrap program to
produce csv and bin files for later use. A typical BLAST
workflow consists of several such BLAST DAGs. Each DAG
may operate on a different set of sequences, but all of them use

Figure 15

37

the same nr_db and all_java.tar files. We ran a workflow of 1000
BLAST DAGs on 25, 50, 75 and 100 machines to test the speedup
obtained. One copy of the input data (including the nr_db files
and all_java.tar) is placed on either side of the switch. The mean
execution times for blastall and javawrap are 207s and 6s.

As we can see from Figure 16, as the number of nodes is
increased, the actual speed-up obtained deviates slightly away
from the ideal line. The reason is as follows. Before a blastall
job can begin executing on a node, all of its required input data
(the nr_db files) must be transferred to that node. As the number
of nodes is increased, the amount of data that is transferred across
the network increases, which delays the startup of the first blastall
job on each node. Note that all of the file transfer time is spent
before the execution of the first job. Also, once the first jobs on
each node completes, the input data is essentially replicated
throughout the cluster, and subsequent jobs do not incur any file
transfer cost. This suggests that for workflows containing a large
number of jobs with common input data, file transfer becomes a
bottleneck as the number of nodes used to run the workflow is
increased – for a given replication factor, when the number of
nodes used is doubled, the data transfer required more than
doubles. One way to alleviate this problem is to start with a high
degree of replication for this input data.

4.5 Application Server Throughput Tests
One metric for evaluating the scalability of a workflow
management system is the number of jobs that the system can
process per second. Under full load, the average throughput
demand is defined as the ratio of the number of nodes to the
average length of a job. For example, a system with 1,200 nodes
subject to a workload consisting solely of 20-minute jobs must be
capable of a job throughput rate of at least one job per second.
One important implication of this is that the overall system
throughput is affected not only by the time it takes to make
scheduling decisions and start up jobs, but also by the efficiency
with which the system can perform any necessary post-execution
processing. Post-execution tasks include recording historical
information about the job, recording accounting information, and
removing the job from the queue.
To evaluate the scalability of the Clustera server, using 100 nodes
we configured each node to run up to two simultaneous single-job
pipelines (since each node has two cores)1. We then pre-loaded

1 We enforced the single-job pipeline limitation in order to make

the results comparable with those published in [26].

the system with a number of identical, fixed-length jobs with
lengths that varied from a maximum of 200 seconds down to a
minimum of four seconds in order to cover a range from 1 job per
second all the way up to 50 jobs per second.

Figure 17 plots the number of jobs cycled per second against the
targeted throughput rate for the experiment. The top line shows
the ideal throughput rate while the bottom line shows the observed
results. The labels above the top line show the job length for that
experiment. Since our cluster was configured to run 200 jobs
concurrently the targeted throughput rate is simply 200 (the
number of concurrent jobs) divided by the job length; the 200
second jobs correspond to a target of one job per second whereas
the four second jobs correspond to a target of 50 jobs per second.
For the jobs that were six seconds or longer, we observed the
server achieving throughput rates very close to the ideal. For the
five- and four-second jobs the observed rate is below the ideal.

Figure 18 shows a plot of the server’s CPU cycle consumption as
a function of the number of jobs cycled per second. For each
experiment we calculated the average throughput rate, excluding
the ramp up and ramp down time. Looking at the left side of the
graph, the bottom line (square data points) in Figure 20 is
“System” usage (cycles spent executing in “kernel” mode), the
middle line (diamond data points) is “User” usage (cycles spent
doing actual computation) and the top line (triangular data points)
is idle cycles (spare computational capacity). These three
categories sum up to approximately 100%; the time spent
handling interrupts or waiting on IO was negligible and is not
plotted here. As Figure 18 shows, the server still had at least 20%
of its cycles to spare during all experiments.

Figure 16

Figure 17

Figure 18

38

One striking feature of Figure 18 is the apparent linear growth in
cycle usage in response to increases in targeted throughput across
experiments. This pattern changes at the right side of the chart as
the observed throughput peaks just shy of 38 jobs cycled per
second. Interestingly enough, the right-most data point actually
corresponds to the five-second job experiment (~37.9 jobs cycled
per second with ~23.8% idle cycles remaining) and the second-
from-the-right data point corresponds to the four-second job
experiment (~36.9 jobs cycled per second with ~23.2% idle
cycles). The server apparently saturates at around 38 jobs per
second after which additional demand causes interference on the
server leading to reduced performance.

The observed throughput rates presented here are an improvement
over previously published results for CondorJ2 (a precursor to
Clustera) and Condor [26]. This improvement comes despite the
fact that Clustera is required to manage not only the same job,
machine and configuration information managed by CondorJ2
(and Condor), but also to manage the logical and physical file
information required to support data-aware scheduling.

5. Conclusions and Future Directions
We are currently witnessing the early stages of the "cloud
computing" revolution, in which large clusters of processors are
exploited to perform various computing tasks on an "as needed"
basis. To date the database community has played a minor role in
this revolution in that (a) large-scale parallel database systems use
a model of dedicated, single-use clusters very different from that
adopted by cloud computing, and (b) cluster management systems
for high-throughput and data intensive computing use database
technology superficially if at all.

Our work on Clustera is an early step toward increasing the role of
database systems in cloud computing in two ways. First, we have
shown that cluster management is an ideal application for modern
relational database system technology. Second, we have shown
that a generic cluster management system like Clustera has
potential as a platform upon which to execute massively parallel
SQL queries. The potential in this second direction is huge – it
opens the door to integrated systems that can run SQL queries on
the same platform used to run other data intensive and compute-
intensive applications. There is still a great deal of challenging
research required to make such systems a reality. We hope the
database community will participate in this research, enabling
both parallel database systems and cloud computing to benefit
from this opportunity.

6. Acknowledgements
This work was funded by National Science Foundation Award
SCI-0515491. We would also like to thank the anonymous
reviewers for their feedback and suggestions that guided us in
improving the content and presentation of this paper.

7. References
[1] Litzkow, M., Livny, M., and M. Mutka, “Condor – A Hunter

of Idle Workstations”, Proc. of the 8th ICDCS Conf., 1988.
[2] Dean, J. and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Proc. of the 6th OSDI
Conference, Dec. 2004

[3] Needham, R. M. and A. J. Herbert. 1982. The Cambridge
Distributed Computing Systems, Addison-Wesley, MA.

[4] DeWitt, D., Finkel, R. and M. Solomon, “The Crystal
Multicomputer: Design and Implementation Experience,”
IEEE TSE, Vol 13. No. 8, 1987.

[5] IBM, “Tivoli Workload Scheduler LoadLeveler v3.3.2 Using
and Administering,” April 2006.

[6] Platform Computing Corporation, “Administering Platform
LSF”, Platform Computing Corporation, Feb. 2006.

[7] Urban, A (Ed.), “Portable Batch System Administrator
Guide,” Altair Grid Technologies, April 2005.

[8] Sun Microsystems, Inc., “N1 Grid Engine 6 Administration
Guide,” June 2004.

[9] Microsoft Corporation, “Windows Compute Cluster Server
2003 Reviewers Guide,” May 2006.

[10] United Devices, “Grid MP Platform Version 4.1 Application
Developer’s Guide,” 2004.

[11] Schuster, S., Nguyen, H., Ozkarahan, and K. Smith, “RAP.2
– An Associative Processor for Databases,” Proc. of the 5th
ISCA Conference, 1978.

[12] Su, S. and G. Lipovski, “CASSM: A Cellular System for
Very Large Databases,” Proceedings of the 1st VLDB
Conference, Framingham, MA, 1975.

[13] DeWitt, D., “DIRECT - A Multiprocessor Organization for
Supporting Relational DBMS,” IEEE Trans. on
Computers, Vol. C-28, No. 6, June 1979.

[14] Stonebraker, M., “Muffin: A Distributed Database Machine,”
Proc. of the 1st ICDCS Conference, Oct. 1979.

[15] DeWitt, D., Gerber, B, Graefe, G., Heytens, M., Kumar, K.
and M. Muralikrishna, “Gamma–A High Performance
Dataflow Database Machine,” Proc. of the 1986 VLDB Conf.

[16] Teradata, “DBC/1012 Data Base Computer Concepts &
Facilities,” Teradata Corp. Document No. C02-0001-00, 1983.

[17] http://hadoop.apache.org/
[18] Isard, M., Budiu, M, Yu, Y., Birrell, A., and D. Fetterly,

“Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks,” European Conference on Computer
Systems (EuroSys), Lisbon, Portugal, March 21-23, 2007.

[19] Kini, A., Shankar, S., Naughton, J., and D. DeWitt,
“Database support for matching: limitations and
opportunities,” Proc. of the 2006 SIGMOD Conference, 2006.

[20]RedHat Enterprises, “JBoss Enterprise Application Platform,”
http://www.jboss.com/products/platforms/application

[21] Mutka, M. and M. Livny, “Scheduling Remote Processing
Capacity in a Workstation-Processor Bank Network,” In Proc.
7-th Int. Conf. on Distr. Comp. Systems, 1987.

[22] DeWitt, D. and J. Gray, “Parallel Database Systems: The
Future of High Performance Database Systems,” CACM Vol.
34, No. 6, 1992.

[23] http://www.cs.wisc.edu/condor/dagman/
[24] Shankar, S. and DeWitt, D. J. 2007. “Data driven workflow

planning in cluster management systems,” Proceedings of the
16th High Performance Distributed Computing Conf, 2007.

[25] Olson, C., Reed, B., Srivastava, U., Kumar, R. and A.
Tomkins, “Pig Latin: A Not-So-Foreign Language for Data
Processing, Proceedings of the 2008 SIGMOD Conference.

[26] Robinson, E., and D. DeWitt, “Turning Cluster Management
into Data Management: A System Overview,” Proceedings of
the 2007 CIDR Conference, Asilomar, CA.

[27] Computer Sciences Tech. Report, Univ. of Wisconsin,
#1637, http://www.cs.wisc.edu/techreports/2008/TR1637.pdf

39

8. Appendix
Data management is an important aspect of Clustera’s overall
system architecture. Reflecting this, Section 3 contained a general
overview of the approach sufficient for understanding the content
in the body of the paper. The purpose of this appendix is to
provide some additional details on Clustera’s data management
infrastructure for interested readers. Section 8.1 has a brief
overview of the basic concepts and terminology. Section 8.2
discusses issues related to file formats and schema management in
greater detail. Section 8.3 discusses partitioning and our plans for
incorporating indexing into the infrastructure.

8.1 Concrete Files, Logical Files and File Access
Patterns
As explained previously, a concrete file is the atomic unit of
storage in Clustera. The physical instantiation of a concrete file is
a single operating system file. A logical file, in comparison, is a
higher-level abstraction that does not have a direct physical
instantiation. In its most basic form, a logical file is simply a
collection of concrete files that the user can treat as a single
logical unit (hence the name logical file) for manipulation and
workflow specification. Note that, if necessary, a logical file can
specify an ordering over the constituent concrete files. Note also
that since the logical file itself is purely conceptual, it is possible
for a single concrete file to “belong to” multiple different logical
files simultaneously.
Given the notion of a logical file as a set of concrete files, it is
natural to parallelize, for example, the execution of a MapReduce
computation by running one map instance for each concrete file
composing the logical input file. This works because MapReduce
(like SQL) is a record-oriented paradigm so it never needs to view
the entire input data set as a single unit. Recall, though, that
Clustera also supports running arbitrary workflows that contain
non-modifiable, user-provided executables. Since these
executables often have file-oriented, rather than record-oriented,
semantics they must be able to view the (logical) input file as a
single unit. Setting the degree of partitioning for the logical file to
one is a possible approach to resolving this issue. However, this
approach will not always work. One common case in which this
approach will fail is if the entire file will not fit on a single node.
Another common case is if the user specifies a pre-existing logical
file that consists of multiple concrete files as the input to one of
these arbitrary executables.
To support logical files used in these ways, Clustera offers a
Logical File Translator (LFT) interface. The LFT abstracts away
the physical details (i.e., the mapping to, and optional ordering
over, concrete files) of a logical file and provides users with a
single file “view” they can read using the standard POSIX
interface. To achieve this, the first thing the LFT does is contact
the application server to obtain details on the relevant logical file -
i.e., the names and locations of the constituent concrete files.
Then, as the application needs them, the necessary concrete files
are fetched. On Linux this is implemented through a device driver
built on top of FUSE (Filesystem in USErspace).
For MapReduce and SQL computations, the LFT is generally
unnecessary given that the operators are automatically parallelized
across the relevant concrete files. For arbitrary workflows,
however, it is impossible to know (without user input) whether or
not a given “job” can be parallelized across the concrete files or
not. For these workflows the default assumption is that the job

cannot be parallelized in this way and the LFT is employed. We
have, however, recently implemented some experimental
extensions to the workflow specification model that permit the
user to provide “hints” to the Workflow Abstract Scheduler when
a computation can be parallelized across particular, user-specified,
logical files. The scheduler can use these hints to optionally
perform an automatic parallelization under certain conditions.
This work is still in a very early stage, though it appears
promising.
One final point to note with respect to concrete file management
relates to the automatic piping of intermediate data between
concrete jobs described in Section 3. Recall from that section that
Clustera will attempt, when possible, to avoid disk I/O operations
by transparently routing intermediate data in memory from one
concrete job to another when those jobs are co-scheduled for
execution on the same node. This type of piping, of course,
assumes both sequentially generated output and sequentially
accessed input. For MapReduce and SQL operators we know
exactly which operators for which these assumptions are valid
(e.g., map, select, project, etc…) or invalid (e.g., hash join, etc…).
This means that, when the concrete jobs are created and inserted
into the system, we know what intermediate data can be “tagged
as pipeline-able” and what cannot. For arbitrary workflow
executables, however, the assumption is that these assumptions
are violated unless expressly indicated by the user as part of the
workflow specification. Thus, for arbitrary workflows, data will
in general not be pipelined unless the user explicitly specifies that
the output is generated sequentially and the input file is consumed
sequentially.

8.2 File Formats and Schemata
Another interesting topic to discuss is what, if anything, Clustera
assumes about data file structure. The answer to this question
depends on the level of the system in question. At the concrete
level, Clustera assumes nothing about file structure. Both
concrete files and concrete jobs are essentially black boxes. All
that the concrete job scheduler knows about a given concrete job
is what its executable file is, what input files it consumes, what
output files it generates and whether its inputs and outputs are
accessed/generated sequentially.
At the logical level, however, the amount of knowledge about the
internal file structure depends on the specification of the logical
file itself. For logical files specified as containing “binary” data,
there must be an ordering provided over the concrete files and the
assumption is that an LFT will be used (possibly in conjunction
with a record reader) to access the file. For logical files specified
as “record” data, a record delimiter is given when the file is stored
in the system and is maintained as a property of the logical file.
Because the record delimiter is known when the file enters
Clustera, records need not span concrete files; this makes it
possible to avoid using an LFT to access records. Note that
“record” data need not specify a schema. Finally, “record” data
that does specify a schema is managed as a relational table as
described in Section 3.5 (i.e., a logical file plus the associated
schema information). For all relational tables, the schema
information includes the record attributes and the record format.
For partitioned tables the schema information also includes the
mapping between table partitions and concrete files. The SQL
abstract scheduler uses all of this information to take an abstract
workflow description specified in terms of tables and convert it
into an executable workflow specified in terms of concrete files.

40

8.3 Partitioning and Indexing
Currently, Clustera only supports partitioning over relational
tables. It should be possible to support partitioning over non-
relational “record” data via a user-supplied partitioning function
(e.g., a frequently used Map function), though we have yet to
pursue any research in that direction. Binary data, by its nature,
appears to be an unlikely candidate for partitioning.
The current Clustera prototype does not yet support indexing over
relational tables. We do plan to implement support for indexing
in the future. The indexes themselves would likely be physically
instantiated as concrete files with all of the relevant meta-data
stored in the central database alongside the rest of the schema
information. As was the case with partitioning, it seems as if it
should be possible to support indexing over non-relational
“record” data via a user-supplied function. If we implement this
functionality one interesting area of future research would be to
explore how an abstract scheduler could take advantage of such
indices.

41

