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ABSTRACT
The diversity and large volumes of data processed in the
Natural Sciences today has led to a proliferation of highly-
specialized and autonomous scientific databases with inher-
ent and often intricate relationships. As a user-friendly
method for querying this complex, ever-expanding network
of sources for correlations, we propose exploratory queries.
Exploratory queries are loosely-structured, hence requiring
only minimal user knowledge of the source network. Evalu-
ating an exploratory query usually involves the evaluation of
many distributed queries. As the number of such distributed
queries can quickly become large, we attack the optimiza-
tion problem for exploratory queries by proposing several
multi-query optimization algorithms that compute a global
evaluation plan while minimizing the total communication
cost, a key bottleneck in distributed settings. The proposed
algorithms are necessarily heuristics, as computing an opti-
mal global evaluation plan is shown to be np-hard. Finally,
we present an implementation of our algorithms, along with
experiments that illustrate their potential not only for the
optimization of exploratory queries, but also for the multi-
query optimization of large batches of standard queries.

1. INTRODUCTION
Motivation. The diversity and large volumes of data pro-
cessed in the Natural Sciences today has led to a prolif-
eration of highly-specialized scientific databases. Notable
examples from biology include Genbank for genes; Swiss-
Prot for proteins; Go for functional descriptions of pro-
teins (among other things); Enzyme for enzymes; OMIM
for genetic diseases; and PubMed for publications [1]. De-
spite being highly-specialized, autonomous, and indepen-
dently evolving, these sources are inherently related : genes
produce proteins, proteins affect diseases, and so on. The
added scientific value of the sources for conducting research
then lies in the ability to query their relationships for in-
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teresting correlations (e.g. “What gene produces proteins
missing in diabetes patients?”). Currently, such queries are
mainly supported through an ftp-grep approach [13] in which
users are forced to download archives of all sources and to
query locally. This approach is defective in two ways:

First, as pointed out by Gray and Szalay [13], an informa-
tion avalanche is causing the sources to grow exponentially,
leading to databases that take weeks to months to down-
load. For instance, Genbank roughly doubles in size every
two years, and is expected to hit the terabyte boundary
within three years [25, section 2.2.8]. It is known that this
deficiency can be overcome by adopting a distributed, feder-
ated architecture where sources cooperate to answer queries
and where downloading is hence no longer necessary [13].

Second, users must be knowledgeable of all sources that
potentially contribute to the desired answer of a correla-
tion query. To illustrate, consider a biologist looking for
Genbank genes that are linked to SwissProt ‘Fly’ proteins
with a Go molecular function ‘f ’ and Enzyme description
‘d’. Available to the biologist are the relational tables from
the sources and mapping tables that provide the semantic
glue to relate them [10, 18]. In its most basic version as
used in this article, a mapping table is nothing more than
a n-to-n binary relation over the keys of the participating
source tables. Figures 1(d)–1(f) show sample mapping ta-
bles for the simplified sample instances in Figure 1(a)–1(c)
of some of the biological sources mentioned earlier. There,
for example, Genbank gene 4763 is directly connected to
SwissProt protein O00662, while Genbank gene 768272 is
indirectly connected to SwissProt protein Q9Z167 through
the link with PubMed article 18022237. The mapping ta-
bles are usually stored along with the regular tables at the
corresponding sources and are widely used in biology1. For
instance, Figure 1(g) shows a graph in which there is an edge
between two sources whenever we found actual mapping ta-
bles between them. Using the mapping tables, the query
above can be expressed by means of the select-project-join
expression

πgid

`
Genbank 1 MGen,Swiss 1 σspecies =fly(SwissProt)

1 MSwiss,Go 1 σfunc=f (Go) 1 MSwiss,Enz

1 σdesc=d(Enzyme)
´
, (Q1)

where MGen,Swiss, MSwiss,Go, and MSwiss,Enz denote the map-
ping tables between Genbank and SwissProt; SwissProt and

1
Although mapping tables may seem difficult to maintain at first

sight as they need to be created manually by domain specialists, re-
cent work has illustrated how mapping tables can be managed semi-
automatically [18].
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gid gname
4763 NF1
4771 NF2

768272 Ppp2r3a
114565 Zfp295

(a) Genbank

pid pname species
P21359 Neurofibromin Human
O00662 Neurofibromatosis Human
P35240 Merlin Human

Q3UM76 zinc finger Mouse
Q9Z176 Phosphatase 2A Mouse

(b) SwissProt

pubid title
17899678 Genetic predisposition...
18021924 Neurofibromatosis: novel...
18032664 Neuroprotective Effects...
18022237 Protein phosphatase subunit...

(c) PubMed

gid pid
4763 P21359
4763 O00662

114565 Q3UM76

(d) Mapping table be-
tween Genbank and
SwissProt

gid pubid
4763 18021924

768272 18022237

(e) Mapping table be-
tween Genbank and
PubMed

pubid pid
18021924 O00662
18022237 Q9Z176

(f) Mapping table
between PubMed and
SwissProt

Genbank SwissProt

OMIM Go

EnzymePubMed

(g) Existing mapping tables

Genbank

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

(h) Example ex-
ploratory query

Figure 1: Sample instances, mapping tables, and an exploratory query.

Go; and SwissProt and Enzyme, respectively. This only re-
turns genes that are directly linked to SwissProt fly proteins
with Go function f , however. For genes that are indirectly
linked, for example through some common PubMed article,
separate expressions like

πgid

`
Genbank 1 MGen,Pub 1 PubMed 1 MPub,Swiss

1 σspecies=fly(SwissProt) 1 MSwiss,Go 1 σfunc=f (Go)

1 MSwiss,Enz 1 σdesc=d(Enzyme)
´
, (Q2)

are necessary since MGen,Swiss need not contain all infor-
mation derivable from MGen,Pub and MPub,Swiss. This is
clear from Figure 1, for example where gene 768272 is not
directly linked to protein Q9Z167 in MGen,Swiss although
it is indirectly linked through PubMed article 18022237 in
MGen,Pub and MPub,Swiss. Enumerating all expressions like
(Q2) is impractical, however, as (1) the number of paths
between Genbank and SwissProt may be too large to enu-
merate manually and (2) the biologist must know the whole
network of sources and mapping tables to express her query,
a rather ominous requirement in the Internet era where new
sources are easily added. For instance, at the beginning of
2008 there were 1078 major molecular biology databases,
110 more than in the beginning of 2007 [12].

Exploratory queries. While the information avalanche
problem disappears in the federated architecture setting, the
need for complete user knowledge persists. We therefore
propose exploratory queries. An exploratory query takes
the form of a tree with nodes representing sources and two
kinds of edges: direct edges (depicted as single lines) indicat-
ing that the sources must be directly linked through some
mapping table, and path edges (depicted as double lines) in-
dicating that the sources must be linked through a path of
alternating sources and mapping tables. To illustrate, Fig-
ure 1(h) shows the exploratory query corresponding to our
biologist’s original intent. Due to the declarative nature of
exploratory queries, users need only specify local constraints
on the sources of interest, and an intent of how these sources
should be linked. They need not be aware of other sources,
nor of the mapping tables needed to link them.

Exploratory query optimization. Of course, actually
evaluating an exploratory query requires the evaluation of
many concrete queries. To evaluate the query in Figure 1(h),
for example, we need to evaluate (Q1) and (Q2), among oth-
ers. Sequentially evaluating these queries clearly leads to
redundant computation and communication (e.g., subquery

σspecies=fly(SwissProt) is executed multiple times). Since the
ratio of communication time to I/O time in a wide area net-
work (WAN) can be of the order of 20:1 [27], it is especially
important to minimize the amount of communicated data
and to share as much as possible the communication of com-
mon subresults. It is this multi-query optimization problem
that forms the focus of this article.

In particular, we show that the problem of finding an ex-
ploratory query evaluation plan that maximizes sharing is
np-hard. In response, we optimize an exploratory query E
in two steps. In the first step, we generate the concrete
queries Q1, . . . , Qk necessary to evaluate E, and determine
optimal evaluation plans for each Qi individually. In the
second step we use heuristics to combine these individual
plans in a single combined plan. (We discuss each step in
more detail in the following paragraphs.) We emphasize
that while exploratory query optimization is inherently a
multi-query optimization (MQO) problem, existing MQO
techniques are unsuitable in our context. Indeed, as further
detailed in the Related Work section, they scale only to a
small (i.e., 10–15) number of queries whereas in large source
networks a single exploratory query may yield hundreds of
concrete queries. Moreover, the existing techniques mainly
focus on traditional (disk I/O based) optimization instead of
communication-based optimization. Hence, while earlier re-
search has shown that combining optimal single-query plans
often yields suboptimal multi-query plans with regard to
disk I/O cost [31], our experiments show that single-plan
combination is not only successful with regard to communi-
cation cost, but also scales to thousands of queries.

Single plan generation. An evaluation plan for a sin-
gle concrete query specifies the direction and order in which
sources communicate. Figure 2 for example, shows two eval-
uation plans P1 and P2 for (Q1), where edge labels indicate
the order of communication. So, in P1, Go and Enzyme
compute in parallel the goids with function f and the eids
with description d and send them to SwissProt. SwissProt
joins the received ids with MSwiss,Go and MSwiss,Enz respec-
tively to determine which fly pids it should send to Genbank.
From these pids and MGen,Swiss, Genbank derives the gids
to output. In P2 on the other hand, the order of communi-
cation is different. Enzyme first sends to SwissProt the eids
with description d. SwissProt joins these with MSwiss,Enz, se-
lects the corresponding fly pids from the result, caches them
temporarily, and sends them to Go. Go joins the received
pids with MSwiss,Go and returns to SwissProt the matching
goids with function f . SwissProt joins the received goids
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Genbank

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

2

1 1

(a) P1

Genbank

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

1
2

3

4

(b) P2

Genbank

PubMed

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

3

2

1 1

(c) P3

Genbank

PubMed

SwissProt [spec=fly]

Go [func=g]

3

2

1

(d) P4

Genbank

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

2

1 1

Genbank

PubMed

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

3

2

1 1

(e) C1

Figure 2: Evaluation plans and combined evaluation plans.

with MSwiss,Go, selects the corresponding fly pids from the
result, and intersects them with the pids cached earlier in
order to send the correct result to Genbank. Note that the
communication cost of P2 is lower than the cost of P1 if the
number of ids sent from SwissProt to Go and from Go back
to SwissProt in P2 is less than the number of ids sent from
Go to SwissProt in P1. Hence, as in classical query process-
ing, the order in which subresults are joined can have a huge
impact on the overall (communication) cost.

As this example illustrates, computing the optimal plan
for a single concrete query is far from easy. In fact, for ar-
bitrary cost estimation functions, the problem is known to
be np-hard [36]. We show that optimal plans for a single
concrete query can be computed in time quadratic in the
size of the query using a cost estimation function inspired
by Stocker et al. [34]. This function is very suited for op-
timization in loosely collaborating environments, as it does
not require detailed statistics to be globally available.

Combined plan generation. Intuitively, a combined eval-
uation plan is an evaluation plan that consists of multiple
ordinary evaluation plans. These plans execute in paral-
lel, but share communication as indicated by the combined
plan. To illustrate, consider plan P1 for (Q1) and plan P3 for
(Q2) as shown in Figure 2. When executed independently,
the intermediate results σfunc=f (Go) and σdesc=d(Enzyme)
would be transmitted twice. In the combined plan C1 in
Figure 2(e), in contrast, these results are only transmitted
once. (The dotted lines indicate for which edges of P1 and
P3 communication should be shared.) Combined evaluation
plans can also take into account that intermediate results do
not coincide completely but have a high overlap. To illus-
trate, consider plans P1 and P4 in Figure 2. Although Go is
filtered by σfunc=f in P1 and by σfunc=g in P4, a combined
plan containing P1 and P4 can still indicate that the com-
munication of these results to SwissProt should be shared.
In that case the corresponding ids are transmitted to Swiss-
Prot in such a way that shared ids are transmitted only
once. Similarly, SwissProt in P1 can share communication
to Genbank with SwissProt in P4. This is especially effective
when the results have significant (expected) overlap.

As these examples indicate, computing a combined op-
timal plan is even more challenging than the single-query
case. Indeed, we prove that the problem is np-hard, even
for the cost estimation function mentioned above for which
computation of a single optimal plan is in quadratic time.
In response, we propose two efficient heuristics that com-
bine individual plans by looking for structural and semantic
similarities. Our first heuristic, levelwise merging, oper-
ates by looking for local similarities. Our second heuristic,
alignment, is based on a heuristic for solving the multi-
ple partial order alignment problem in Computational Biol-
ogy [17] and intuitively looks for global similarities.

Multi-exploratory query optimization. Finally, we in-
vestigate how effective the proposed heuristics are for the
optimization of multiple exploratory queries. Such optimiza-
tion is necessary, for instance, to support continuous ex-
ploratory queries that are registered once and that need
to be re-evaluated when the sources are updated. In this
context, we show that a two-stage approach where (1) a
combined plan is computed for each exploratory query and
where (2) the resulting plans are later combined in a sin-
gle super-plan, executes faster than the approach where the
super-plan is computed directly, while still yielding super-
plans of the same quality.

To summarize our contributions:

1. We introduce the notion of Exploratory Queries (Sec-
tion 2). We provide an optimization algorithm for
single concrete queries that returns optimal plans in
quadratic time (Section 3). In strong contrast, we
prove the optimization of single exploratory queries
to be np-hard (Section 4).

2. In response, we propose two efficient heuristics for ex-
ploratory query optimization (Section 4): levelwise
merging and alignment, and derive from these heuris-
tics several two-stage heuristics for the optimization of
multiple exploratory queries (Section 5).

3. We assess the effectiveness of the proposed heuristics
by extending the BioScout-platform [19] (a distributed
monitoring system for biological data) with exploratory
queries.

Our experiments based on this platform (in Section 6) show
that alignment is best suited for the optimization of sin-
gle exploratory queries as it takes the best advantage of the
structural similarity of the corresponding concrete queries.
The method is less suited for optimization of multiple ex-
ploratory queries as in that case the time needed to con-
struct the combined plans becomes a bottleneck, and level-
wise merging yields better plans. For multiple exploratory
queries, the two-stage heuristic based on levelwise merg-
ing is shown to compute combined plans faster than the
one-stage levelwise merging, while still yielding plans of
the same quality. Finally, we also show levelwise merg-
ing and alignment to be suitable methods for multi-query
optimization of sets of arbitrary queries, as opposed to sets
of queries that implement the same exploratory query and
that hence have significantly shared structure. To the best
of our knowledge, this makes them the first algorithms for
MQO that scale to hundreds of queries.

2. PRELIMINARIES
Sources. We consider a fixed, finite set of sources S, to-
gether with a set of mapping tables [18] that provide the
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PubMed

Genbank [spec=fly]

Go
[func=f ]

OMIM
[dis=d]

(a) Example EQ

Genbank

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

(b) CQ for (Q1)

Genbank

PubMed

SwissProt [spec=fly]

Go
[func=f ]

Enzyme
[desc=d]

(c) CQ for (Q2)

Figure 3: An exploratory query and two concrete
queries.

semantic glue to relate them. To simplify notation, we as-
sume each source to consist of a single relation whose key in
turn consists of a single attribute (the tuple id attribute). In
this way, a mapping table between sources R and S is noth-
ing more than a binary n-to-n relation between the keys of
R and S, as illustrated in Fig. 1. Let the Data Interconnec-
tion Graph DIG(S) of S be the undirected graph over the
sources in S in which edges indicate the presence of a map-
ping table between the corresponding sources. An example
is given in Fig. 1(g). If there is a mapping table between R
and S, then we denote this table by MR,S . Mapping tables
are assumed to be symmetric, and hence MS,R = MR,S .

Exploratory queries. Exploratory queries provide a declar-
ative way for stating correlation queries over S without com-
plete user knowledge of DIG(S). Formally, an exploratory
query (EQ) E is a tree with two types of edges, direct edges
and path edges, whose nodes are labeled by atoms. An atom
A is a pair R[F ] consisting of a source name R ∈ S and
a filter F (like “func=f”) specifying the ids to be selected
from R. For each direct edge in E there must be an edge
between the corresponding sources in DIG(S).

Fig. 1(h) and 3(a) show example EQs with direct edges
depicted as single lines and path edges depicted as double
lines. As mentioned, Fig. 1(h) selects those Genbank genes
that are linked through some path in DIG(S) to SwissProt
‘Fly’ proteins with a Go molecular function ‘f ’ and Enzyme
description ‘d’. Fig. 3(a), on the other hand, selects those
PubMed articles that are directly linked to a Genbank record
that is (1) directly linked to OMIM disease d and (2) linked
through some path in DIG(S) to Go function f .

Concrete queries. The semantics of EQs is formally de-
fined in terms of the concrete queries that implement them.
For Fig. 1(h), these include (Q1) and (Q2) from the Intro-
duction. We find it convenient to also represent concrete
queries as trees. Formally, a concrete query (CQ) Q is a
tree whose nodes are labeled by atoms such that for each
edge in the tree there is an edge between the correspond-
ing sources in DIG(S). In other words, a concrete query
is an exploratory query in which no path edges occur. To
illustrate, Figures 3(b) and 3(c) show the concrete queries
corresponding to (Q1) and (Q2) from the Introduction.

Semantically, a concrete query Q returns a set of tuple
ids. In particular, it returns the set res(r) with r the root
node of Q and res(·) defined as follows. Let w be a node in
Q labeled by atom A = R[F ]. Then the set of ids returned
by w is inductively given by

res(w) := πidA(A) ∩
\

v∈children(w)

πidA(Mw,v 1 res(v)),

where we abuse notation and simply write A for the set of
tuples returned by applying filter F to R; where idA denotes

the key attribute of R; and where Mw,v denotes the mapping
table between the sources corresponding to nodes w and v.
(This mapping table always exists since each edge in M is
required to have a corresponding edge in DIG(S).) Observe
in particular that res(w) = πidA(A) when w is a leaf node.

We should note that, although for ease of exposition we
only consider atoms with equality (e.g., func=f) and in-
equality filters (e.g., val > 10) in this article, a filter can
be anything that is locally supported by the corresponding
source. In particular, it can be an SQL statement involv-
ing aggregation such as select id from R where func = f
group by species having count(*) > 5.

Exploratory query semantics. A concrete query Q is
said to implement an exploratory query E if it can be ob-
tained from E by replacing every path edge in E with a
simple path allowed by DIG(S). (Recall that a simple path
in a graph is a path without repeated nodes.) For exam-
ple, Fig. 4 shows all possible implementations of the EQ in
Fig. 3(a). The semantics of an exploratory query is then
defined in terms of its implementations, i.e.,

res(E) := res(Q1) ∪ · · · ∪ res(Qk),

where Q1, . . . , Qk are all possible implementations of E and
where res(Qi) abbreviates res(root(Qi)).

Observe that each concrete query is essentially a select-
project-join expression (possibly with arbitrary atoms in the
selection conditions). The exploratory queries are therefore
essentially select-project-join-union expressions. Since both
concrete queries and exploratory queries are tree-shaped,
however, they cannot express cyclic joins [2], and therefore
necessarily form a strict subclass of the select-project-join(-
union) queries. A brief discussion of how our results can be
extended to deal with cyclic joins may be found in the full
version of this article.

3. OPTIMIZING CONCRETE QUERIES
Since concrete queries form a particular subclass of the

exploratory queries (the ones without path edges), it is in-
structive to discuss their evaluation and optimization before
turning our attention to full exploratory queries. Indeed,
concrete query optimization will form a key component of
exploratory query optimization, as discussed in Section 4.

Evaluation plans. To evaluate a CQ, sources must eval-
uate atoms; transmit ids to neighboring sources; and trans-
late incoming ids by means of mapping tables. The order
and direction in which ids are transmitted is recorded in an
evaluation plan (or simply plan for short), of which two ex-
amples are shown in Figures 2(a) and 2(b). Formally, a plan
on a CQ Q is a directed, connected graph P whose nodes
are labeled by atoms and whose edges are strictly ordered.
This strict partial order ≺P is required to be total on ad-
jacent edges, i.e., for all edges u → v and v → w either
u → v ≺P v → w or v → w ≺P u → v (but not both).
As with exploratory and concrete queries, there must be an
edge between the corresponding sources in DIG(S) for each
edge in P . Finally, a single node root(P ) is distinguished as
the root of P . Intuitively, ≺P specifies the order of trans-
mission while root(P ) specifies the node whose ids are to be
output.

A plan is evaluated as follows. Let src(v) stand for the
source corresponding to node v. During evaluation P com-
putes, for every node v, a set of tuple ids res(v). This set
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PubMed

Genbank [spec=fly]

SwissProt

Go
[func=f ]

OMIM
[dis=d]

(a)

PubMed

Genbank [spec=fly]

OMIM

SwissProt

Go
[func=f ]

OMIM
[dis=d]

(b)

PubMed

Genbank [spec=fly]

OMIM

PubMed

SwissProt

Go
[func=f ]

OMIM
[dis=d]

(c)

PubMed

Genbank [spec=fly]

OMIM

PubMed

SwissProt

Go
[func=f ]

OMIM
[dis=d]

(d)

PubMed

Genbank [spec=fly]

PubMed

SwissProt

Go
[func=f ]

OMIM
[dis=d]

(e)

PubMed

Genbank [spec=fly]

Enzyme

SwissProt

Go
[func=f ]

OMIM
[dis=d]

(f)

Figure 4: Concrete queries for the exploratory query in Fig. 3(a)

is stored at src(v), and initially consists of the ids returned
by the atom A at v, i.e., initially res(v) := πidA(A). When
v → w is an edge without predecessor in ≺P , src(v) sends
src(v) n Mv,w to src(w). In other words, src(v) sends to
src(w) those ids in res(v) that are linked to a tuple in src(w).
On reception, src(w) updates res(w):

res(w) := res(w) ∩ πidw (Mw,v 1 res(v)),

and deletes v → w from P and ≺P , hence enabling other
edges to “execute”. Evaluation stops when P has no more
edges, at which point res(root(P )) is output. In what fol-
lows, we will simply write res(P ) for this output.

For example, in the plan P2 shown in Fig. 2(b), Enzyme
computes the eids with description d and sends them to
SwissProt. (For convenience we have labeled edges in Fig. 2
that are incomparable according to ≺P with equal natural
numbers, whereas the other edges are labeled with natural
numbers respecting the order in ≺P .) Let vR be the node in
P2 with source name R. On reception, SwissProt updates
res(vSwissProt) to πpid(σspec=fly(SwissProt))∩ πpid(MSwiss,Enz

1 res(vEnzyme)), and transmits to Go. Go in turn updates
res(vGo) to

πgoid(σfunc=f (Go)) ∩ πgoid(MSwiss,Go 1 res(vSwissProt)),

and transmits back to SwissProt who updates

res(vSwissProt) := res(vSwissProt)∩πpid(MSwiss,Go 1 res(vGo)).

After reception of the updated res(vSwissProt), Genbank de-
rives the gids to output: res(Genbank) := πgid(Genbank) ∩
πgid(MGen,Swiss 1 vSwissProt).

It is important to note that there can be multiple edges
executing simultaneously in a plan. In Fig. 2(a), for exam-
ple, Go and Enzyme compute and send in parallel the goids
with function f and the eids with description d. SwissProt
receives both sets of ids and computes

πpid(σspec=fly(SwissProt) ∩ πpid(MSwiss,Go 1 res(vGo))

∩ πpid(MSwiss,Enz 1 res(vEnzyme))

as its final value for res(vSwissProt).
We also note that sources (like Go) always send their own

ids to other sources (like SwissProt), and it is the responsi-
bility of the receiving source (SwissProt) to use a mapping
table (MSwiss,Go) to map the received ids to its own ids. Al-
ternatively, Go could have used MSwiss,Go first to send pids
to SwissProt, instead of goids. Since in practice the average
fan-out of the mapping tables is rather large (see Fig. 7), the
latter strategy generates more traffic however, and therefore
we opt for the former.

The transmission cost of a plan P is the total number of

ids transmitted during P ’s evaluation. That is,

cost(P ) :=
X

v→winP

#(v → w),

where #(v → w) denotes the size of the semijoin res(v) n
Mv,w at the time when v → w executes.

Optimization. Say that a plan P is a plan for a CQ Q if
res(P ) = res(Q) on all possible source relation instances and
mapping tables. As usual, the goal of query optimization is
to find a plan P for a given CQ Q such that cost(P ) is
minimal among all possible plans for Q. Since in general
there are infinitely many such plans and since the cost of
a plan is unknown until after its evaluation, an optimizer
in practice will generate only a finite set of candidate plans
for Q and pick one with minimal estimated cost according
to some suitably chosen cost estimation method. In this
section, we restrict ourselves to those candidate plans built
from the nodes in Q that can transmit ids only from child
nodes in Q to their parents in Q and vice versa, and we use a
particular cost estimation method that allows computation
of a candidate with minimal estimated cost in quadratic
time. We should stress, however, that our techniques in
Section 4 for combining plans of single CQs into plans for
EQs are independent of the way in which the single plans are
computed. In particular, our combination techniques work
equally well on single plans that contain more nodes than Q;
on single plans in which ids can also be transmitted between,
say, ancestors and descendants (although such transmissions
only rarely yield a plan for Q, see the full version of this
article); and on single plans that are optimal under some
other cost estimation method.

Definition 1. A plan P is a candidate of a CQ Q if
the nodes of P are the same as the nodes of Q (including
labels); root(P ) = root(Q); and the edges of P are a subset
of {v → w, w → v | v parent of w in Q}.

For example, both P1 and P2 in Fig. 2 are candidate plans
for Q1 in Fig. 3(b) while P3 in Fig. 2 is not since its nodes
are different than those of Q1.

Observe that cost estimation for a candidate of Q boils
down to the estimation of #(v → w), the size of res(v) n
Mv,w when v → w executes in P . Since res(v) is defined by
an ordinary relational algebra expression, one can use the
traditional (distributed) size estimation functions based on
join selectivities [27] or histograms [24] for this purpose. In
that case, however, computing the candidate plan with the
least estimated cost is known to be np-hard [36]. In contrast,
the following size estimation function, inspired by Stocker et
al. [34], allows such plans to be computed in quadratic time.

Essentially, Stocker et al. propose to conservatively esti-
mate the size of an intersection R1∩· · ·∩Rn by the minimum
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of the cardinalities |R1|, . . . , |Rn|. Since in our context the
set of ids transmitted from src(v) to src(w) when v → w
executes in a plan P consists of the ids satisfying the atom
A at v intersected with the translated ids received from all
incoming edges u → v ≺P v → w this yields the following
estimation est(v → w) of #(v → w):

est(v → w) := min{est(A), est(u→ v)× αu,v

| (u→ v) ∈ P, (u→ v) ≺P (v → w)}.

Here, est(A) with A = R[F ] estimates the number of tuples
in R satisfying filter F (this estimation can be obtained, for
example, by contacting the source R), and αv,w denotes the
average fan-out of v-ids in Mv,w,

αv,w := avg{|πidwσidv=i(Mv,w)| : i ∈ πidv (Mv,w)}.

Observe that the direction is important here, αv,w 6= αw,v.
Although est(v → w) depends on the estimations est(u→

v) of all predecessor edges u→ v ≺P v → w, this definition
is not cyclic since ≺P is a strict order. Therefore, est(e)
for every edge e in P can be computed by following the
order ≺P . The estimated transmission cost ecost(P ) of P is
simply the sum of all est(v → w). Say that P is optimal for
a CQ Q if (1) P is a candidate of Q; (2) P is a plan for Q;
and (3) there is no other candidate plan for Q with smaller
estimated cost.

Example 1. Assume est(Enzyme[dis=d]) = 5, est(Go
[func=f ]) = 75, est(SwissProt[spec=fly]) = 1000, and
est(Genbank) = 50× 106. Assume that α is as follows

v w αv,w αw,v

Genbank SwissProt 3 2
SwissProt Go 1.5 3.5
SwissProt Enzyme 3 2.5

Then we estimate as follows for P2 from Fig. 2:

v w est(v → w)
Enzyme SwissProt 5
SwissProt Go min(1000, 5× 2.5) = 12.5
Go SwissProt min(75, 12.5× 1.5) = 18.75
SwissProt Genbank min(1000, 5× 2.5, 18.75× 3.5)

= 12.5

Hence ecost(P2) = 48.75. A similar reasoning for P1 yields
ecost(P1) = 92.5. Hence, P2 is preferable over P1.

In contrast to estimation techniques based on histograms,
the above size estimation function is particularly suited for
optimization in loosely collaborating environments, as it
only requires a small number of statistics (namely αv,w and
|πidv (Mv,w)|) to be globally available.

Algorithm GenDown, shown in Algorithm 1 can be used
to compute an optimal plan for a given CQ. Essentially,
it computes the set of “downward” edges v → w from par-
ent nodes v in Q to child nodes w that, when added to
the bottom-up evaluation plan of Q consisting solely of Q’s
nodes and edges, yields an optimal plan for Q. To formal-
ize this claim, we introduce the following definitions. Let
a downward edge for Q be an edge v → w over the nodes
in Q for which w is a child of v in Q. Let D be a set of
downward edges for Q and define Q ] D to be the plan P
for Q obtained by adding all edges in D to Q such that:

Algorithm 1 GenDown

Input: CQ Q and number n
Output: a set of downward edges for Q
1: let v be the root of Q
2: initialize the result D to the empty set
3: for every child w of v do
4: D↓↑

w := GenDown
`
Q|w, n× αv,w

´
5: D↑

w := GenDown
`
Q|w, up(w)

´
6: c↓↑w := n + ecost(Q|w ]D↓↑

w ) + n · αv,w

7: c↑w := ecost(Q|w ]D↑
w) + up(w)

8: if c↓↑w < c↑w then
9: add all edges in D↓↑

w ∪ {v → w} to D
10: else
11: add all edges in D↑

w to D
12: return D

1. downward edges ending in a node v are evaluated be-
fore all edges leaving v, i.e., for all u→ v in D and all
v → w in Q ]D we have (u→ v) ≺P (v → w);

2. all edges u → v in Q for which there is no corre-
sponding downward edge v → u in D are evaluated
before all downward edges v → w in D leaving v:
(u→ v) ≺P (v → w); and

3. all edges u → v in Q are evaluated after all edges
w → u in Q: (u→ v) ≺P (w → u).

(Here, root(Q ] D) = root(Q).) For example, if Q1 is the
CQ shown in Fig. 3(b), then Q1 ] {vGo → vSwissProt} yields
the plan P2 from Fig. 2(b).

Let Q|w stand for the subtree of Q rooted at node w in
Q, and let up(v) stand for the estimated size of res(v) when
we evaluate Q in a bottom-up manner:

up(v) := min{est(A), up(w) · αw,v | w ∈ children(v)}.

In particular, up(v) = est(A) for leaf nodes. Given a CQ Q
and a number n, GenDown now operates as follows. For
every child node w of Q’s root v, GenDown recursively
computes two sets of downward edges in lines 4 and 5: the
set D↓↑

w for the case where we would add the downward
edge v → w and the set P ↑

w for the case where would not.
Based on the estimated costs of Q|w ]D↓↑

w and Q|w ]D↑
w,

GenDown estimates in line 6 the gain of adding v → w
to the final plan and makes its decision accordingly in the
following lines. We show in the full version of this paper:

Theorem 1. If Q is a CQ without redundant nodes, then
Q ] GenDown(Q, up(root(Q)) is an optimal plan for Q.
Moreover, GenDown runs in time quadratic in the number
of edges in Q.

Here, a node n is said to be redundant in Q if Q is equiv-
alent to the query obtained by removing n and all of its
descendants. For instance, the second Go node in Fig. 5
is redundant as this CQ is clearly equivalent to the CQ in
Fig 3(b) without this node. Although redundant nodes can
be identified and removed in ptime when containment of
all mentioned atoms is decidable in ptime (see the full ver-
sion of this article), this quickly becomes undecidable for
arbitrary atoms [2]. Even in the latter case, however, The-
orem 1 shows how to compute optimal plans for Q modulo
the removal of redundant nodes. In contrast, computing the
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Genbank

SwissProt [spec=fly]

Go
[func=f ]

Go Enzyme
[desc=d]

Figure 5: A concrete query with redundant node.

optimal plan using the traditional size estimation techniques
is np-hard, even for CQs without redundant nodes [36].

Example 2. With the same parameters as in Example 1,
GenDown(Q, up(root(Q)) yields {vGo → vSwissProt}, which
results in the optimal plan P2 in Fig. 2(b).

4. OPTIMIZING EXPLORATORY QUERIES
To evaluate exploratory queries, sources again evaluate

atoms; transmit ids to neighboring sources; and translate
incoming ids by means of mapping tables. Since EQs in gen-
eral have many implementing concrete queries however (as
shown in Figure 4), the transmission of some intermediate
results can be merged. The order and direction in which ids
are transmitted and how they should be merged is recorded
in a combined evaluation plan (or simply combined plan for
short).

Combined evaluation plans. Formally, a combined plan
C consists of a set of pairwise node-disjoint plans P1, . . . , Pn,
together with an equivalence relation ≡C over the edges in
P1, . . . , Pn (called the merging relation of C) such that

• only compatible edges are merged: if (v → w) ≡C

(v′ → w′) then src(v) = src(v′) and src(w) = src(w′);

• the ordering of the edges is respected: if e ≡C f , e′ ≡
f ′ and e ≺Pi e′ for some i, then f ′ 6≺Pj f for all j.

Figure 2(e) shows an example combined plan in which
merged edges are linked by dotted lines.

A combined plan evaluates all the Pi in parallel, and out-
puts

Sn
i=1 res(Pi) as its final result (we denote this set simply

by res(C) in what follows). However, merged edges execute
synchronously. In particular, an edge v → w can only ex-
ecute when all v′ → w′ ≡C v → w are ready to execute.
Since all such edges are compatible (i.e., src(v) = src(v′)
and src(w) = src(w′)), the transmission of their set of ids
from src(v) to src(w) can be combined. Several approaches
exist to reduce data transfer in this case. For instance, when
e1 ≡C e2 ≡C e3 ≡C e4 are merged edges where e1 transmits
the id {a}, e2 transmits {b}, e3 transmits {a, b}, and e4

transmits {a}, then one can simply group over the ids, and
transmit {(a, 1, 3, 4), (b, 2, 3)} instead. Here the ‘1’ indicates
that the id is in the result of e1, the ‘2’ indicates that the
id is in the result of e2, and so on. This simplistic scheme
already results in 20% savings in transmission costs. More
advanced compression methods may increase these savings
even further.

Optimization. Let plans(C) denote the set of plans that
C is composed of and let E be an exploratory query. We say
that C is a combined plan for E if for every implementation
Q of E there exists a plan P ∈ plans(C) that outputs res(Q)
and conversely for every plan P ∈ plans(C) there exists an
implementation Q of E such that P outputs res(Q). Clearly,
if C is a combined plan for E then res(C) is guaranteed to
be equal to res(E).

Similar to CQ optimization, the goal of EQ optimization
is to find a combined plan C for a given EQ E such that
cost(C) is minimal among all plans for E. In this sense,
Theorem 2 below stands in strong contrast to Theorem 1:
it shows that computing optimal combined plans for EQs is
much harder than computing optimal plans for CQs.

Specifically, adapt the cost estimation method of Section 3
to combined plans as follows. Let E be a set of compatible
edges over C. Let compr(E) be a function that estimates the
compression ratio achieved by combining the transmission of
all edges in E under the particular compression method used
(0 < compr(E) ≤ 1) . The estimated number of transmitted
ids when all the edges in E execute simultaneously is then
defined as

est(E) := compr(E) ·
X

v→w∈E

est(v → w),

where est(v → w) is the estimated number of ids transmit-
ted from v to w in the plan Pi to which v → w belongs,
as defined in Section 3. The estimated cost ecost(C) is then
simply the sum of all estimations of synchronously executing
edges. That is, if {E1, . . . , En} is the set of all equivalence
classes of ≡C , then ecost(C) := est(E1) + · · ·+ est(En).

In the full version of this paperwe show by a reduction
from the Shortest Common Supersequence problem [29]:

Theorem 2. Given a number k, an EQ E, and parame-
ters for the cost estimation method, deciding whether there is
a combined plan C for E with ecost(C) ≤ k is np-complete.

The corresponding optimization problem is hence also np-
hard. In view of this negative complexity result, we will
refrain from generating combined plans for EQs directly.
Rather, given a EQ E we first compute the concrete queries
Q1, . . . , Qk implementing E and determine optimal plans
for each Qi individually. We then use the heuristic below to
construct a merging relation ≡C on the edges of these plans,
hence obtaining a combined plan.

4.1 Levelwise merging
Our first heuristic operates by looking for local similarities

between edges. In particular, it merges edges in a set of plans
P only if they have almost the same level, where the level
of an edge e in Pi ∈ P is defined as

level(e) := 1 + max{level(f) | f ≺Pi e}.

In particular, level(e) = 1 if there is no edge f with f ≺Pi e.
To illustrate, the level of vEnzyme → vSwissProt in Figure 2(b)
is 1, the level of vSwissProt → vGo is 2, and so on.

Intuitively, the level of an edge measures how early or
how late the edge executes in Pi, where edges with a low
level execute early and edges with a high level execute late.
The motivation for merging an edge only with edges that
have a similar level is the following. Consider an edge e in
a plan Pi ∈ P and suppose that there are two candidate
edges f1 and f2 in a plan Pj that we can merge e with such
that level(e) ≈ level(f1) but level(e) � level(f2). Since
merged edges must respect the order in ≺Pi and ≺Pj , every
successor e′ of e in Pi (with e ≺Pi e′) can only be merged
to the compatible edges f ′ in Pj with level(f ′) > level(f1)
if we merge e with f1. If on the other hand, we merge e
with f2 then every such successor can only be merged to the
compatible edges f ′′ in Pj with level(f ′′) > level(f2). Since
level(f1) ≈ level(e) � level(f2), we intuitively expect there
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to be significantly more such f ′ than f ′′. Therefore, it is
preferable to merge e with f1.

When we have several candidate edges to merge an edge
v → w with, we intuitively expect the overlap of transmit-
ted ids to be the largest for those edges v′ → w′ whose
atom A′ at v′ is the most similar to the atom A at v. In
order to assess this similarity, we assume given a function
sim(A, A′) with 0 ≤ sim(A, A′) ≤ 1 that encodes available
domain knowledge and estimates the overlap between A and
A′. For example, if all proteins with function f1 are guar-
anteed to also have function f2, but not f3, then
sim(Go[func = f1], Go[func = f2]) will be higher than
sim(Go[func = f1], Go[func = f3]). Even when such domain
knowledge is not available, sim can syntactically inspect A
and A′ to estimate similarity. In our experiments, for exam-
ple, we have taken sim(A, A′) = 1 if A and A′ are guaranteed
to select the same ids due to a syntactic containment check,
and sim(A, A′) = 0 otherwise.

The heuristic based on these observations, called level-
wise merging, is shown in Algorithm 2. Starting from the
initial relation that merges no edges (i.e., e ≡C f iff e = f),
levelwise merging considers the plans in P one by one
and refines ≡C . To ensure that this refinement respects ≺P

of the plan P under consideration, a queue Q is used. Ini-
tially (line 4), Q is populated with the “initial” edges e in
P that have no predecessor d ≺P e. For every edge e in Q,
levelwise merging then considers those compatible edges
f (denoted by e ∼ f) occurring at level i, i + 1, . . . , i + k
that have already been processed. Here, k is an input pa-
rameter that determines when edges have a “similar” level,
and i = 1 + max{level(d′) | d ≺P e, d′ ≡C d} ensures that if
e is merged with one of the considered f , then ≺P will be
respected. Let [f ] denote the equivalence class of f w.r.t.
≡C . The benefit gained from fusing e with all edges in [f ]
is measured as a combination of the expected similarity of
combined atoms (higher is better) and the level of [f ] (lower
is better). We introduce some notation to define this. Let
atoms([f ]) be the multiset consisting of the atoms labeling v,
for every (v → w) ∈ [f ]. Let sim(A, atoms([f ])) denote the
average similarity of A with regard to the atoms in atoms[f ]:

sim(A, atoms([f ])) :=

P
B∈atoms([f ]) sim(A, B)

n
,

where n is the cardinality of the multiset atoms([f ]). Finally,
let level([f ]) = max{level(f ′) | f ′ ≡C f}. The score of
fusing e to all edges in [f ] is then given by

score(e, [f ]) := b1×sim(Ae, atoms([f ]))−b2×(level([f ])−i),

where 0 ≤ b1, b2 ≤ 1 are parameters that may be used to
bias the score towards similarity rather than level-differences
or vice-verse (b1 + b2 = 1), and Ae is the atom at v in
e = v → w. In lines 9 − 11, levelwise merging picks
a candidate with maximum score (if it exists), and merges
accordingly. Finally, e is marked as processed in line 12,
and all unprocessed immediate successors of e (the edges
f 6∈ D ∪Q with e ≺P f and no f ′ such that e ≺P f ′ ≺P f)
are added to Q in line 13.

Example 3. As a simple illustration of levelwise merg-
ing, consider the case where P consists of the plans P1 and
P3 in Fig. 2 and suppose that P1 is processed before P3.
Then in the processing of P1, no edges are merged since
all edges of P1 are only compatible with themselves. When

Algorithm 2 levelwise merging

Input: a set of plans P, a parameter k
Output: a fusion relation ≡C

1: Init ≡C to the identity on edges in P
2: Init set of processed edges D ← ∅
3: for every plan P in P do
4: Init queue Q← initial(P )
5: while Q is not empty do
6: e← pop(Q)
7: i← 1 + max{level(d′) | d ≺P e, d′ ≡C d}
8: Can← {[f ] | f ∈ D, f ∼ e, i ≤ level(f) ≤ i + k}
9: if Can 6= ∅ then

10: pick [f ] ∈ Can with max score
11: merge e with every f ′ ∈ [f ] by setting e ≡C f ′

12: add e to processed edges D
13: add unprocessed immediate successors of e to Q
14: Return ≡C

P3 is processed, there is a single compatible candidate for
vEnzyme → vSwissProt, namely the corresponding edge in P1.
These edges are therefore merged. Likewise, there is a sin-
gle compatible candidate for vGo → vSwissProt, namely the
corresponding edge in P1. The other edges in P3 have no
compatible edges in P1, and the resulting combined plan is
hence the one in Fig 2(e).

4.2 Partial Order Alignment
Our second heuristic operates by looking for global sim-

ilarities and is based on an existing heuristic to solve the
multiple partial order alignment problem in Computational
Biology [17]. In this problem, one is given a set S; a set
{O1, . . . , On} of strict partial orders over S; and a set F ⊆
S × S of possible fusions and is asked to construct a min-
imal common supergraph for O1, . . . , On using only fusions
in F . To illustrate the concept of a common supergraph, a
small example is given in Figure 6 where Figure 6(c) shows
a common super graph for O1 and O2 given in Figure 6(a,b).
In particular, the nodes in the supergraph are sets of ele-
ments from S where an element s can occur at most once
in a set in the supergraph, and where distinct s1 and s2

can occur in the same set only if F (s1, s2). Furthermore, all
edges in O1, . . . , On must have corresponding edges in the
supergraph. Finally, the supergraph must be acyclic. For
instance, the particular solution in Figure6(c) is obtained by
applying the node fusions {(a1, a2), (b1, b2), (c1, c2), (e1, e2)}.
Now clearly, if we take (1) S to be all edges in a set of plans
P = {P1, . . . , Pn}; (2) O1, . . . , On to be ≺P1 , . . . ,≺Pn , re-
spectively; and (3) construct F such that F (e, f) if and only
if e and f are compatible edges, then a solution to the mul-
tiple partial order alignment problem also gives us a fusion
relation ≡C .

Finding the minimal common supergraph (i.e., the com-
mon supergraph for which some measuring function yields
a minimal result) is np-complete, however, and for this pur-
pose a heuristic ppoa has been developed [17]. We refer to
[17] for the details of this heuristic, but adapt it to our set-
ting by considering a fine-grained scoring mechanism that
incorporates the similarity of atoms, similar in spirit to the
scoring mechanism used for levelwise merging. In partic-
ular, the score of aligning f to all edges in a set of edges E
is defined as score(e, E) :=

b1 × sim(Ae, atoms(E))− b2 ×
`
level(E)− level(e)

´
,
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Figure 6: A minimal common super graph.

Algorithm 3 alignment/levelwise merging

Input: a set of EQs E = E1, . . . , En

Output: a combined plan C for E
1: for each E in E do
2: P = plans of the implementations of E
3: C = alignment(P )
4: add C to C
5: C = levelwisemerging(C)
6: Return C

where 0 ≤ b1, b2 ≤ 1 are tuning parameters (b1 +b2 = 1), Ae

denotes the atom at v in e = v → w, atoms(E) denotes the
multiset of atoms labeling v′ for every v′ → w′ ∈ E , level(e)
is defined as in Section 4.1, and level(E) = max{level(f) |
f ∈ E}. Let alignment denote the resulting algorithm.

5. OPTIMIZING MULTIPLE EQs
The proposed heuristics of Sections 4.1 and 4.2 can read-

ily be adapted for the optimization of multiple exploratory
queries. Such optimization is necessary, for instance, to sup-
port continuous evaluation of exploratory queries that are
registered once and that need to be re-evaluated when the
sources are updated. Given exploratory queries E1, . . . , Em

one can first compute plans P1, . . . , Pn for all of their im-
plementations, and subsequently compute a merging rela-
tion ≡C for them using levelwise merging or alignment.
Alternatively, one can apply a two-staged approach: (1)
first compute a separate combined plan for each exploratory
query; and, (2) subsequently combine these plans into a
single combined plan using either levelwise merging or
alignment. Of course, in the second phase levelwise
merging and alignment need to compute merging rela-
tions based on existing merging relations, but they are read-
ily extended to this case.

In our experiments, we consider three two-phase strate-
gies. The first two simply consist of applying levelwise
merging and alignment in both phases. Since (as we will
demonstrate in Section 6) alignment gives better results for
a single EQ, we also consider the strategy where in the first
phase alignment is applied and in the second phase lev-
elwise merging. Algorithm 3 gives a schematic overview
of the latter approach.

6. EXPERIMENTS
BioScout platform. BioScout is a distributed monitoring
system for biological data which we described in [19]. It
consists of a relatively small number of sources: the biolog-
ical sources mentioned in Fig. 1(g). Scientists can register
queries which are evaluated periodically. When new results

are found for a query, the owner is notified. To assess the
algorithms presented in this paper, we extended BioScout’s
functionality with exploratory queries.

Setup. The experiments were performed on a Pentium
IV (3.0 GHz) architecture with 1 GB of internal memory
running under Linux 2.6. Figure 7 shows the statistics for
(portions of) the databases and mapping tables used in our
experiments which were downloaded from the actual biolog-
ical sources. Specifically, we show the sizes of the databases
along with the sizes of some mapping tables in terms of
number of tuples. Notice that database sizes vary from a
few thousands to millions of tuples and that the same is
true for mapping tables. Figure 7(c) depicts the number of
distinct ids in the left and right-hand side database of each
reported mapping table along with the average fan-out. We
stress the importance of these statistics for the estimation of
transmission costs. Notice that the tables are not complete,
i.e., not every tuple in a database has a corresponding tuple
in another database. For example, from the eleven million
Genbank gid’s, only seventeen thousand are associated with
enzymes. Also the fan-out of tables varies widely from val-
ues close to one, to values close to 55. For our experiments,
we have generated 500 EQs of varying size (4 to 6 nodes)
and shape with at least one path edge, in which all atom
filters are conjunctions of the form attrib = value and attrib
LIKE value. The resulting EQs correspond to almost 3000
concrete queries. We emphasize that although these EQs
are small, the corresponding evaluation plans can be much
larger. For example, we encountered plans with up to sev-
enteen edges in our experiments. As briefly touched upon
in Section 4, there are various ways to reduce data trans-
fer when transmitting query results over a network. As all
of these exploit commonalities of the data in some way or
another, we choose to abstract from a concrete compression
method and measure in what follows the indicated transmis-
sion costs in terms of uniquely transmitted ids. All of our
experiments use a value of k = 2 as locality parameter for
levelwise merging, and we have taken sim(A, A′) = 1 if
A and A′ are guaranteed to select the same ids (tested by a
mutual containment check on the filters in A and A′), and
sim(A, A′) = 0 otherwise.

Experiment 1. The first experiment is designed to validate
our heuristics for optimizing a single EQ E. As a baseline,
we also provide the transmission cost for the case where
all optimal plans of implementations of E are executed se-
quentially without any merging (we refer to this method
as sequential in what follows). Fig. 8(a) shows the to-
tal (aggregated) transmission cost for 50 EQs from our pool
of queries. Both heuristics significantly reduce communica-
tion: on average by 50% with values ranging from as low
as 5% to as high as 85% reduction. Low improvements oc-
cur when only few ids are transferred (around 20000) while
large improvements occur when many ids (around 1 million)
are transferred. Furthermore, for each of the 50 EQs, the
transmission cost of the plan computed by alignment was
always smaller than that of levelwise merging. The im-
provement varied from 1% to 30% with, as can be derived
from Figure 8(a), an average improvement of 10%. This
discrepancy can be explained by analyzing the structure of
the plans generated by the two heuristics. Figure 8(b) de-
picts box plots of the number of equivalence classes of ≡C .
Clearly, alignment generates smaller plans: fewer equiv-
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Database Size

Genbank 11658789
SwissProt 417832
Go 21610
PubMed 329214
Enzyme 4698
OMIM 17850

(a) Database sizes

Mapping Table Size

Genbank→ Enzyme 79667
OMIM→ Genbank 382177
PubMed→ Genbank 4449547
Go→ SwissProt 499351
SwissProt→ Genbank 666700
OMIM→ PubMed 109650

(b) Mapping table sizes

Mapping Table LHS ids RHS ids Avg. fan-out

Genbank→ Enzyme 17796 2520 4.47
OMIM→ Genbank 11588 182844 32.98
PubMed→ Genbank 267903 3841010 16.60
Go→ SwissProt 9024 143131 55.33
SwissProt→ Genbank 435734 262542 1.53
OMIM→ PubMed 13571 87934 8.08

(c) Mapping table statistics

Figure 7: Database statistics
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Figure 8: Results for the optimization of 50 single EQs.

alence classes implies more sharing of communication. As
a result, the maximum difference in level between merged
edges in the same equivalence class is greater for alignment
than levelwise merging, as shown in Figure 8(c). Con-
structing the 50 combined plans was reasonably fast: it took
levelwise merging 8.62 seconds, and alignment 10.24
seconds.

Experiment 2. The second experiment is designed to vali-
date our approach for optimizing multiple EQs. We have op-
timized and evaluated three batches of EQs of size 175, 350
and 500 respectively. These correspond to 1000, 2000, and
3000 concrete queries. As baseline we use again sequential
which corresponds to no optimization. In addition we use a
second baseline called template inspired by approaches like
e.g. NiagaraCQ [8] which group queries based on a common
expression signature disregarding selection constants. Intu-
itively, template checks for all plans P and P ′ whether the
graph of P is isomorphic to a subgraph of P ′ respecting ≺P .
If so, then all edges of P are merged with the correspond-
ing edges in P ′. The total transmission cost is shown in
Figure 9(a) and in more detail for the third batch of EQs
with 3000 EPs in Figure 9(b). It becomes apparent that all
proposed approaches significantly reduce the transmission
cost with repect to both baselines. Further, the transmis-
sion costs only increase moderately for increasing number
of evaluation plans. Specifically, when tripling the number
of evaluation plans (from 1000 to 3000) the transmission
costs of sequential, template and levelwise merging
increase with 242%, 227% and 55%, respectively. The high
transmission cost of template indicates that merging based
on subgraph isomorphism is too restrictive for the optimiza-
tion of multiple EQs. In addition, it stresses that evaluation
plans for randomly generated EQs are sufficiently different
to warrant more sophisticated approaches like alignment
and levelwise merging.

A second observation drawn from Fig. 9(b) is that lev-
elwise merging-based methods outperform alignment-
based methods for the optimization of multiple EQs. The
reason for this is that levelwise merging merges edges
with similar levels from the bottom up. When the number
of plans is large and the locality threshold k is low, there will

eventually be a phase transition point where there are many
(unmerged) edges on the lower levels. After this point, extra
edges to be merged almost always find a candidate amongst
those present. alignment, in contrast, as already explained
in Experiment 1, allows merging of edges with large level dif-
ferences. As a result, there is less saturation at the lower
levels, inhibiting later merging.

Finally, one-phase and two-phase levelwise merging are
comparably succesful in reducing the total transmission cost
(91, 4% versus 91, 1% reduction w.r.t. sequential).

Figure 9(c) shows the construction time for computing the
combined plan for the different approaches. For the case
of 3000 plans, we have omitted for reasons of presentation
the outlier construction times of alignment and two-phase
alignment, which are around 25000 and 30 000 seconds, re-
spectively. Specifically alignment scales very poorly. The
reason is twofold. Since alignment searches for global sim-
ilarities more and more possible ways of merging edges have
to be considered. Furthermore, more time has to be spent
computing atom similarities for large number of equivalence
classes. levelwise merging, in contrast does scale to large
batches of EQs. Furthermore, its two-stage variant con-
structs the combined plans on average 20% faster, while
yielding plans of the same quality.

Experiment 3. Our final experiment is designed to vali-
date the behavior of levelwise merging and alignment
as suitable methods for multi-query optimization of sets of
arbitrary queries, as opposed to sets of queries that im-
plement the same exploratory query and which hence have
significantly shared structure. Specifically, for each EQ we
randomly choose one concrete query resulting in 500 overall
evaluation plans. Figure 10 shows that levelwise merg-
ing and alignment also significantly reduce the transmis-
sion cost in this unfavorable setup. Both algorithms save
around 70% transmission cost compared to sequential,
with a small advantage for levelwise merging. As in the
previous experiments, the construction time for alignment
(1296.17 seconds) is again notably larger than for levelwise
merging (157.58 seconds).

In summary. alignment is best suited for the optimiza-
tion of single exploratory queries as it takes the best advan-
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Figure 9: Results for the optimization of multiple EQs.
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Figure 10: Total cost for 500 random plans

tage of the structural similarity of the corresponding con-
crete queries. The method is less suited for multiquery
optimization both for exploratory and concrete queries as
the construction of the actual combined plan does not scale
well to larger sets of queries. levelwise merging is best
suited for multiquery optimization of concrete queries (both
in terms of transmission cost and in terms of construction
time). Moreover, its two-phase variant lw/lw is the best
choice for the optimization of multiple EQs because of faster
construction time.

7. RELATED WORK
Distributed databases. Distributed query processing has
been investigated since the early days of database systems
[21] and the interest is still strong in this area [34]. From
the huge literature, most related to ours are the works on
the optimization of semi-joins [3, 4], where the objective is
also to minimize communication cost among participating
sources. In this line of work, [9] only considers chain queries
while we consider the more general class of full-reducer tree
queries [36]. For this latter class, a number of optimization
algorithms have been proposed [28, among others] but they
all focus on single-query optimization, while we also con-
sider multi-query optimization. More recently, Stocker et
al. [34] have considered generic semi-join optimization tech-
niques. The proposed techniques target a particular class of
distributed client-server systems, however, in which clients
communicate with servers while servers cannot communi-
cate between themselves. Our work, in contrast, is com-
plimentary as it considers exactly the setting where inter-
server communication is possible. The difference in the two
systems is essential since it influences the evaluation plans
considered. Furthermore, we also consider multi-query op-
timization. From a theoretical standpoint, the problem of
optimizing full-reducer tree queries was shown to be np-hard

in [36] w.r.t. a cost-model based on (semi)-join-selectivities.
Here, we consider a more conservative cost model (c.f. Sec-
tion 3) motivated by [34], and consider the complexity both
for single- and multi-query optimization.
Multi-query optimization. In [31], queries (and their
plans) are represented as AND-OR DAGs [30] and a family
of optimization algorithms is presented to (a) group mul-
tiple query DAGs into a single one, by exploiting common
query sub-expressions, and (b) determine which common
sub-expressions to materialize to reduce the cumulative query
evaluation cost (in terms of time). The proposed algorithms
are effective for a relatively small number of chain queries
and some of the underlying optimization principles there
can be found in our work. However, we consider a much
larger number of more general queries and focus on mini-
mizing the communication cost. Multi-query optimization
is also considered in [35], in the context of sensor networks,
but only for aggregation queries, while the techniques in [33]
for multi-query optimization are expensive and cannot scale
to a large number of queries, as [8] also points out. In [32]
an np-hardness result is proved for multi-query optimiza-
tion for a setting which is entirely different from ours: plans
consist of sequences of abstract tasks without any meaning
associated to them. In strong contrast, in our setting, every
local plan has a clear semantics: it must compute the given
query. The hardness result in [32] therefore does not imply
our Theorem 2.
Scientific Databases. SkyQuery [23] offers subscription
of queries over a federation of astronomy databases. The
SkyQuery optimizer focuses on minimizing communication
cost through a simple strategy that uses performance queries
and asks each database for its estimate of data for a given
query. Then, databases are ordered in decreasing order of
selectivity - the one with least data is the first to execute etc.
Currently, SkyQuery does not support more complex (non-
chain) plans or multi-query optimization. In [26], a system
is proposed to monitor biological data. The queries are sim-
ilar to ours but their setting is a centralized one where every
source communicates only with a central source. Further-
more, it is not the amount of data transfer that is minimized
but the total number of different database accesses. BioGu-
ide [6,7] is a system which helps scientists in selecting sources
and finding alternate paths between them. Optimization
of life science queries in the work of [5] focuses on single
queries where the largest set of answers, following alternate
paths through the graph connecting the sources, has to be
computed at the lowest cost. Data integration systems for
the life sciences, like Aladin [22], BioFuice [20], Kleisli [11],
Orchestra [14] or DiscoveryLink [15] focus on the seamless
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integration of data from heterogeneous sources and on the
optimization of single-queries and/or updates. As such, they
do not consider scalable multi-query optimization like we do.
Peer-to-peer systems. Distributed query processing has
also been studied in the context of unstructured p2p sys-
tems. Like us, systems like Piazza [16] and Hyperion [18] fo-
cus on heterogeneous sources. However, the focus there is on
query translation, through mappings, between the sources.
Like Hyperion, our work uses data-level mapping between
heterogeneous sources. Unlike Hyperion, a distributed query
here involves multiple sources, instead of a single source each
time. Furthermore, to our knowledge, no work in this area
deals with the optimization of distributed queries.
Publish-subscribe systems. In publish-subscribe sys-
tems, multi-query optimization was only considered in the
context of boolean queries. In NiagaraCQ [8], the plans of
multiple queries are grouped together if they have common
expression signatures, i.e., their plans have common syntac-
tic characteristics. Our work differs since (a) we consider
non-boolean queries; and (b) apart from syntactic similari-
ties, our algorithms also take into account the communica-
tion cost while computing and merging different plans.

8. CONCLUSIONS AND FUTURE WORK
We have proposed exploratory queries as a user-friendly

means to query large networks of scientific databases for
interesting correlations and have proposed several heuristics
for the optimization of exploratory queries and the optimiza-
tion of multiple exploratory queries. This research is part of
an ongoing effort to build a distributed querying and mon-
itoring system for biological data called BioScout [19]. For
the querying part, we currently support only a small num-
ber of sources (namely six), which makes the enumeration
of all implementations of an exploratory query manageable.
For much larger networks it could be helpful to define a suit-
able ranking mechanism to avoid brute-force enumeration of
paths [5]. For the monitoring part, we support the continu-
ous evaluation of (exploratory) queries. In this context, huge
communication gains can be made by caching subresults of
previous evaluations and only transmitting differences with
these results upon re-evaluation. In future work, we plan to
investigate how the present optimization algorithms can be
extended to take such caching into account.
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