Constrained Physical Design Tuning

Nicolas Bruno Surajit Chaudhuri
Microsoft Research Microsoft Research
nicolasb@microsoft.com surajitc@microsoft.com
ABSTRACT qualifying tuple from the secondary indéx:, and another to fetch

Existing solutions to the automated physical design problem in the releyant tple from th_e primary index). In absolute terfas,
database systems attempt to minimize execution costs of input work!€sults in a bettgr execution plan gompareq to that,of H.OYV'
loads for a given a storage constraint. In this paper, we argue that&ve" the execution plan thaF usks is only slightly Ies§ efficient
this model is not flexible enough to address several real-world sit- tp the one that usefo (spec[ally compared fo the naive alterna-
uations. To overcome this limitation, we introduce a constraint tive that performs a sequential scan over taf)leand at the same

language that is simple yet powerful enough to express many im- t'mi't mdcurs no overhggfj f(_)r updhates in colurhne, d or 6|.' ”,, id
portant scenarios. We build upon an existing transformation-based.SudC up atehs arefp053| eIt migf t rrr:af.e slensef.to penalizewide
framework to effectively incorporate constraints in the search space.'n exes such ak rom appearing int € linal con |gu_rat|on. .HOW'
We then show experimentally that we are able to handle a rich classEVe": current techniques cannot explicitly model this requirement

of constraints and that our proposed technique scales gracefully. without r esortlng_ to art|f|C|aI cha_tnges. _F_o_r Instance, we COUId_ sim-
ulate this behavior by introducing artificiabDATE statements in

the workload. This mechanism, however, is not general enough to
1. INTRODUCTION capture other important scenarios that we discuss below.

In the last decade, automated physical design tuning became a Note, however, that the previous example does not lead itself to
relevant area of research. As a consequence, several academic aralnew “golden rule” of tuning. There are situations for which the
industrial institutions addressed the problem of recommending a setcovering index is the superior alternative (e.g., there could be no
of physical structures that would increase the performance of the updates on tabl& by design). In fact, an application that repeat-
underlying database system. The central physical design problemedly and almost exclusively executes the above query can result in
statement has been traditionally stated as follows: a 50% improvement when using the covering indexrather than
the narrow alternativéy. A more subtle scenario that results in
deadlocks when narrow indexes are used is described in [13].

In general, there are other situations in which the traditional
problem statement for physical design tuning is not sufficient. In
This problem is very succinctly described and understood. Conse-many cases we have additional information that we would like to
quently, it has recently received considerable attention resulting in incorporate into the tuning process. Unfortunately, it is often not
novel research results and industrial-strength prototypes in all ma- possible to do so by only manipulating either the input workload or
jor DBMS. Despite this substantial progress, however, the problem the storage constraint. For instance, we might want to tune a given
statement and existing solutions cannot address important real-lifeworkload for maximum performance under a storage constraint, but
scenarios. Consider, as a simple example, the following query: ensuring that no query degrades by more than 10% with respect to

Given a workload? and a storage budgé?, find the
set of physical structures (or configuration), that fits in
B and results in the lowest execution cost ¥or.

SELECT a, b, c, d, e the original configuration. Or we might want to enforce that the

FROM R clustered index on a table cannot be defined over certain columns

WHERE a=10 of T' that would introduce hot-spots (without specifying which of
and suppose that a single tuple frdbsatisfiesz=10. If the space the remaining columns should be chosen). As yet another example,
budget allows it, a covering indef over (a, b, ¢, d, ¢) would be in order to decrease contention during query processing, we might

the best alternative fay, requiring a single I/O to locate the qual- ~Want to avoid any single column from a table from appearing in

ifying row and all the required columns. Now consider a narrow More than, say, three indexes (the more indexes a column appears

single-column indexX x over (a). In this case, we would require in, the more contention due to exclusive locks during updates).

two I/Os to answer the query (one to locate the record-id of the ~ The scenarios above show that state-of-the-art techniques for
Permission to make digital or hard copies of portions of this work for physical design tunllng are not flexible enough. SpeCIflcfaIIy, .a S|n.-
personal or classroom use is granted without fee provided that copies gle storage constraint does not model many important situations in
are not made or distributed for profit or commercial advantage and leg current DBMS installations. What we need is a generalized version
that copies bear this notice and the full citation on the first page. age, Of the physical design problem statement that accepts complex con-
Copyright for components of this work owned by others than VLDB ar, straints in the solution space, and exhibit the following properties:

Endowment must be honored. M2 ey hressivenessit should be easy to specify constraints with suf-

Abstracting with credit is per_mit?ed. To copy other_/vise, to republi_sh, rers ficient ex .

to post on servers or to redistribute to lists requires prior specific the pressive power.

permission and/or a fee. Request permission to republish from: Effectiveness. Constraints should be able to effectively restrict the
Publications Dept, ACM, Inc. Fax +1 (212) 869-0481 or search process (e.g., a naive approach that tests a-posteriori
permissions@acm.org. whether constraints are satisfied would not be viable).

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Specialization. In case there is a single storage constraint, the re- would be(a,b,), from the access-path request that attempts
sulting configurations should be close to those obtained by to seek column for all tuples that satisfy<10 followed by
current physical design tools in terms of quality. a sort byb, and (v,a,c), from the access-path-request that

In this paper we introduce a framework that addresses these chal- scans inb-order and filtera.<1o on the fly.

lenges. For simplicity, we restrict our techniques to handle primary 2.2 Language Features

and secondary indexes as the physical structures that define the \ye next llustrate the different features of our constraint lan-

search space (extensions to materialized views and other physicabuage by using examples.

structures are part of future work). Specifically, the main contri-

butions of the paper are as follows. First, in Section 2 we present

a simple language to specify constraints that is powerful enough

to handle many desired scenarios including our motivating exam-

ples. Second, we review a previously studied transformation-based ASSERT size(C) < 200M

search framework (Section 3) and adapt it to incorporate constraintswheresize (c) returns the combined size of the final configuration.

into the search space (Sections 4 and 5). Finally, in Section 6 we Constraints start with the keywordsert and follow the pattern

report an extensive experimental evaluation of our techniques. function-comparison-constanfs another example, the constraint
below ensures that the cost of the second query in the workload

2. CONSTRAINT LANGUAGE under the final configuration is not worse than twice its cost under

Our design approach has been to provide a simple constraint Ian-the currently deployed configuration:
guage that covers a significant fraction of interesting scenarios (in- ASSERT cost(W[2], C) < 2 * cost(W[2], COrig)
cluding all the motivating examples in the previous section). We Note that, for a fixed queny, the valueost (@, Corig) is constant,
also provide a lower-level interface to specify more elaborate con- gq theasserT clause above is valid.
straints as well as more efficient ways to evaluate constraints. In the

rest of this section we introduce our language by using examples. Generators.Generators allow us to apply a template constraint

21 Data Types Functions. Constants over each element in a given collection. For instance, the following
' ! ! constraint generalizes the previous one by ensuring that the cost of

Our constraint language understands simple types such as nUmgach queryunder the final configuration is not worse than twice its

bers and strings, and also domain-specific ones. Specifically, we qst under the currently deployed configuration:
natively handle data types that are relevant for physical design,

such as database tables, columns, indexes and queries. We also
support sets of elements, which are unordered homogeneous col-)) i))
lections (e.g., workloads are sets of queries, and configurations are/n turn, the_ following constraint ensures that every index in the final
sets of indexes). These sets can be accessed using either position&Pnfiguration has at most four columns:
or associative array notation (e.g[2] returns the second query in FOR I in C
W, andw["QLong"] returns the query im whose id iSqLong). ASSERT numCols(I) < 4
Our language supports a rich set of functions over these data
types. As an example, we can obtain the columns of tahlising
cols(T), the expected size of indekusingsize(I), and the ex-
pected cost of queryunder configuratiol' usingcost(g, C). In
the rest of this section, we introduce additional functions as needed.
Finally, there are useful constants that can be freely referenced FOR I in C
in the language. We useo denote the input workload, and the fol- WHERE I LIKE "col3,*"
lowing constants to specify certain commonly used configurations: ASSERT numCols(I) < 4

Simple Constraintswe can specify the storage constraint used
in virtually all physical design tuning tools as follows:

FOR Q IN W
ASSERT cost(Q, C) < 2 * cost(Q, COrig)

Filters. Filters allow us to choose a subset of a generator. For
instance, if we only want to enforce the above constraint for in-
dexes that have leading columan13, we can extend the original
constraint as follows:

- C: denotes the desired configuration, on top of which con- whereLIXE performs “pattern matching” on the index columns.
straints are typically specified.

corig: This is the configuration that is currently deployed in Aggregation.Generators allow us to duplicate a constraint mul-
the database system. tiple times by replacing a free variable in theserT clause with

a range of values given by the generator. In many situations, we
want a constraint acting on aggregatevalue calculated over the
elements in a generator. As a simple example, we can rewrite the
original storage constraint used in physical design tools using gen-
erators and aggregates as follows:

FOR I in C
ASSERT sum(size(I)) < 200M

CBase: The base configuration only contains those indexes
originating from integrity constraints. Therefore, it is the
worst possible configuration f@ELECT queries in the work-
load, and the one with lowesPDATE overhead.

CSelectBest: This configuration is the best possible one for
SELECT queries in the workload. SpecificallgselectBest
contains the indexes resulting from access-path requests gen-
erated while optimizing the input workload (see [4] for more As a more complex example, the following constraint ensures that
details). Intuitively, indexes in this configuration are the most the combined size of all indexes defined over tabls not larger
specific ones that can be used in some execution plan for than four times the size of the table itself:
a query in the workload. For instance, the two indexes in FOR I in C
CSelectBest for query: WHERE table(I) = TABLES["T"]
ASSERT sum(size(I)) < 4 * size(TABLES["T"])
f,ﬁlgg?ai;g’c FROM R whereTABLES is the collection of all the tables in the database, and
ORDER BY b functionsize on a table returns the size of its primary index.

Nested ConstraintsConstraints can have free variables that 2.4 Motivating Examples Revisited

are bound by outer generators, effectively resulting in nested con- e now specify constraints for the motivating examples in Sec-
straints. The net effect of the outer generator is to duplicate the in- tion 1. The following constraint ensures that no column appears in

ner constraint by binding each generated value to the free variablemore than three indexes to decrease the chance of contention:
in the inner constraint. As an example, the following constraint FOR T in TABLES

generalizes the previous one to iterate over all tables: FOR col in cols(T)
FOR T in TABLES FOR I in C WHERE I LIKE "*,col,*"
FOR I in C ASSERT count(I) < 3
WHERE table(I) = T))
ASSERT sum(size(I)) < 4 * size(T) The next constraint enforces that the clustered index on table

must have eithes, b, or c as its leading column:

. o) , FOR I in C
Soft ConstraintsThe implicit meaning of the language defined VHERE clustered(I)

so far is that a configuration has to satisfy all constraints to be ASSERT I LIKE "(a,*) | (b,*) | (c,#)"

valid. Among those valid configurations, we keep the one with

the minimum expected cost for the input workload. There are sit- Note that theasserT clause is a predicate and does not follow
uations, however, in which we would prefer a relaxed notion of the patterrifunction-comparison-constantintroduced earlier. We
constraint. For instance, consider a constraint that enforces thatthus implicitly replace a predicate with §(p)=1, where¢ is the
every nOnvPDATE query results in at least 10% improvement over characteristic functiond(true)=1 andd(false)=0).

the currently deployed configuration. In general, there might be no The constraint below enforces that seELECT query degrades by
configuration that satisfies this constraint, specially in conjunction more than 10% compared to the currently deployed configuration:
with a storage constraint. In these situations, a better alternative is

! . . . -) FOR Q in W
to specify asoft constraintwhich states that the final configuration WHERE type(Q) = SELECT
should get as close as possible to a 10% improvement (a configu- ASSERT cost(Q, C) < 1.1 * cost(Q, COrig)
ration with, say, 8% improvement would still be considered valid). .) .
We specify suctsoft constraints by adding soFT keyword in the The last c.onstr.alnt enforces that no index can be replaced b){ its
ASSERT clause. The resulting constraint thus becomes: narrow version without at least doubling the cost of some query:
WHERE type(Q) = SELECT FOR Q in W
SOFT ASSERT COSt(Q, c) S COSt(Q, COrig) /1.1 ASSERT cost(Q, C - I + narrow(I))/cost(Q, C) S 2
Note that the traditional optimization function (i.e., minimizing the wherenarrou (1) results in a single-column index witts leading
cost of the input workload), can be then specified as follows: column (e.g.parrow((a,b,c)) = (a)).
FOR Q IN W
SOFT ASSERT sum(cost(Q, C)) =0 3. SEARCH FRAMEWORK

If no soft constraints are present in a problem specification, we im- |, this section we review the general architecture of our search
plicitly add the above soft constraint and therefore optimize for the framework, which we adapted from [4, 5]. For presentation pur-
expected cost of the input workload. In general, however, soft con- hoses, we address in this section the traditional physical design
straints .allow S|gn|f|cantly more flexibility while spemfymg a phys- _problem (i.e., we assume that there is a single storage constraint
ical design problem. For instance, suppose that we are interested irh g we optimize for expected cost). Then, in Section 4 we explain

the smallest configuration for which the cost of the workload is at po to incorporate multiple constraints into the search framework.
most 20% worse than that for the currently deployed configuration

(as shown in [5], this problem statement is useful to eliminate re- 3.1 General Architecture
dundant indexes without significantly degrading the expected cost Figure 1 shows a high-level architectural overview of our search

of the workload). ‘We can specify this scenario using soft con- framework. Animportant component of the framework is the global
straints as follows: cache of explored configurations (shown at the bottom of Figure 1).

FOR Q IN W) This global cache is structured in three tiers, which respectively
ASSERT sum(cost(Q, C)) < 1.2 * sum(cost(Q, COrig)) contain (i) the best configuration found so far, (i) the set of non-
SOFT ASSERT size(C) = 0 domiqgted config.ur.ations in case there.are multiple soft constraints,
and (iii) the remaining suboptimal configurations.
2.3 Generic Constraint Language We begin the search from an initial configuration (step 1 in the

figure), which becomes the current configuration. After that, we
progressively explore the search space until a stopping condition is

satisfied (typically a time bound). Each exploration iteration con-
sists of the following steps. First, we evaluate the current configu-
)) ration and store it in the global cache (step 2 in the figure). Then,

ConS"a'”tFI[Sgg;] VﬁstEI?T e[r?gr%]tofru“d'on (=1=12) constant we perform a pruning check on the current configuration. If we de-
[WHERE predi?:ate] cide to prune the current configuration, we keep retrieving from the

constraint global cache previously explored configurations until we obtain one

that is not pruned (this step effectively implements a backtracking

We next show that although our language is simple, it is able to mechanism). At this point, we use transformation rules to gener-
specify all the motivating examples in the previous section. In Sec- ate new candidate configurations from the current one (step 3 in
tion 5 we discuss how we can handle constraints that lie outside thethe figure). We rank candidate configurations based on their ex-
expressive power of the language by using a specialized interface. pected promise and pick the best candidate configuration that is not

In general, a constraint is defined by the grammar below, where
bold tokens are non-terminals (and self-explanatory), non-bold to-
kens are literals, tokens between brackets are optional ldrreép-
resents choice:

Pick Best

all the columns off; followed by those inl; that are not
in I (if one of the original indexes is a clustered index, the
merged index will also be clustered). For example, merg-
Contmtemtion ing (a,b,c) and(a, d, c) returns(a, b, c,d). Index merging
is an asymmetric operation (i.e., in general mefgd}) #
A merge(,/1)). LetC be a configuration and, I-) a pair of
Retrieve; Store indexes defined over the same table such {iiatl>} C C.
\ Then, the merging rule induced Hy and I (in that order)
on C, denotedmerge(C, I1, I2) results in a new configura-
_ T e (4] tionC' = C — {I1, I} U {merge(I1, I2)}.
gliconlaistions b’"'“”"“a‘e" Configurations | - ¢ niguration | Reduction rules: Reduction rules replace an index with another

Pruned? Retrieve new

K]
Candidate
Configurations

Initial Current

Configuration

'

Output X A -
s g vl that shares a prefix of the original index columns. For in-

stance, the reductions of indéx, b, c, d) are(a), (a,b), and
Figure 1: Architecture of the Search Framework. (a, b, c). Areduction rule denoted asduce(C, 1, k), where
k is the number of columns to keepinreplaced in C with
its reduced versiomeduce(I, k).
already in the global cache, which becomes the current configura- Deletion rules: Deletion rules, denotegemove(C, I'), remove in-
tion. This cycle repeats until the stopping criterium is met, and we dex I from configurationC'. If the removed index is a clus-
output the best configuration(s) found so far (step 4 in the figure). tered index, it is replaced by the corresponding table heap.
Looking at the search strategy at a high level, we start with some)]) o
configuration (either the initial one or a previously explored one) _ Ihe number of transformations for a given configurat@ris
and keep transforming it into more and more promising candidates O(7 - (n + m)) wheren is the number of indexes i6" andm
until a pruning condition is satisfied. At this point we pick a new IS the maximum number of columns in an indexGh Of course,
configuration and begin a new iteration. In the rest of this section N real situations this number is likely to be much smaller, because
we discuss additional details on the search framework. indexes are spread throughout several tables (and therefore merging
is valid for only a subset of the possible cases), and also because
3.1.1 Configuration Evaluation not all reductions need to be considered. To clarify the latter point,

Each step in the search process requires evaluating a previouslyconsider index on (a, b, ¢, d, e) and the single-query workload:
unexplored configuration, which in itself consists of two tasks. SELECT a,b,c,d,e

First, we need to determine whether the storage constraint is sat- FROM R
isfied, and if not, how close is the current configuration to a viable WHERE a=10
state. With a storage constraint Bf we simply estimate the size
of the current configurationsize (C). If size(C) < B, the storage
constraint is satisfied. Otherwise, the vatiee(C') — B quantifies
how close we are to a valid configuration.

Second, we need to evaluate the optimizing function, that is, the 3.1.3 Candidate Configuration Ranking
expected cost of the workload under the current configuration. In - ager generating all valid transformations for the current config-
order to do so, we need to optimize the queries in the workload in 5400 we need to rank them in decreasing order of “promise”, so
awhat-if mode [9], which returns the expected cost of each query w4t more promising configurations are chosen and explored first.

without materializing the configuration. This step is usually the £q ot purpose, we estimate both the expected cost of the work-
bottleneck of the whole process, since optimizer calls are typically |oa4 and the expected size (i.e., the storage constraint) of each

expensive. There are several ways to reduce this overhead. One apzogting configuration. While estimating sizes can be done effi-
_proach is to use information about previous optimizations to mfgr, ciently, estimating workload costs is much more challenging. The
in some cases, the cost of a query under a given configuration with-ye 551 is that often there are several candidate configurations to
out issuing an optimization call (examples of SL_Jch techniques use .o\ (typically one per transformation), and the cost of optimiz-
atomic configurations [8] or a top-down relaxation approach [4]). jn4 queries (even using the optimizations described earlier) is too
A recent approach introduced in [7] results in accurate approxima- gy To address this issue, we use the local transformation ap-
tions of the cost of a query at very low overhead (typically orders ,,ach of [4, 6] and obtain upper bounds on the cost of queries for
of magnitude faster than a regular optimization call). each candidate transformation. Consider a qyeaypd a configu-
] - , . . ; .
3.1.2 Transformations ration C’ obtained fromC. The idea is to analyze the exe_cutlon_
.)) plan of g underC and replace each sub-plan that uses an index in
After evaluating the current configuration, we apply transforma- C — ¢’ with an equivalent plan that uses indexegthonly.
tion rules to generate a set of new, unexplored configurations inthe ~ aq g example, consider the execution plamt the left of Fig-
search space. For that purpose, we usertbege-reducdamily of ;.0 5 ynder configuratiod. Index I on (a, b, ¢) is used to seek
transformations introduced in [5]. Specifically, the transformations tuples that satisfy. < 10 and also to retrieve additional columns
that are considered for the current configuration are as follows: b ande, which would eventually be needed at higher levels in the
Merging rules: Merging has been proposed as a way to eliminate execution plan. Suppose that we are evaluating a configur&tion
redundancy in a configuration without losing significant effi- obtained by reducind to I’ on (a,b). We can then replace the
ciency during query processing [5, 10]. The (ordered) merg- small portion of the execution plan that usewith a small com-
ing of two indexesl; andI> defined over the same table is pensating plan that usds (specifically, the replacement sub-plan
the best index that can answer all requests that eithand uses/’ and additional rid-lookups to obtain the remaining required
I, do, and can efficiently seek in all cases thatan. Specif- c column). The resulting plaf*’ is therefore valid and at most as
ically, the merging of/; and > is a new index that contains efficient as the best plan found by the optimizer undér

In this situation, the only useful reduction for the indexi®n (a),
since any other prefix dfis going to be both larger thail and less
efficient for answering the query.

Constraint | Objective
I=(a,b.c) reduced to '=(a,b) ggg; < f[g \HI?E)((JSSL FI({C[) - K)
———> F(C) > K | max(0, K — F(C))
o

Table 1: Converting constraints into c-objectives.
Seek (a<10)
I'=(a,b)
Seek (a<10)

Figure 2: Local transformations to obtain upper-bound costs.

4. CONSTRAINED PHYSICAL TUNING

In the previous sections we introduced a constraint language and
reviewed a general transformation-based strategy to traverse the
space of valid configurations. In this section we explain how to in-
tegrate constraints into the search framework. In short, we convert
constraints into objective functions and avoid directly comparing
multiple objectives together by using Pareto optimality concepts.

Once we obtain estimates for both the optimizing function and
the deviation from the storage constraint for each of the alternative
configurations, we need to put together these values to rank the dif-

ferent candidate transformations. In the context of a single storage4.1 From Constraints to C-Objectives

constraint, reference [4] uses the vallig,s: /Asiz. to rank trans- Constrained physical design is a multi-constraint multi-objective

forcrinatlotn?, ther"ﬁc‘é.“ IS thef.dlffertc.encealfr; d(?os'.[btehtween th(i.pre- optimization problem (recall that soft-constraints naturally lead to
and post-transformation conniguration, ize IS (NE respective more than a single optimization function). A common approach to

difference in required storage (reference [4] adapts this metric from handle such problems is to transform constraints into new objec-

the greedy solution for the fractional knapsack problem). tive functions (we call these-objectivedor short) and then solve
. . . a multi-objective optimization problem. Note that thenction-

3.1.4 Configuration Pruning comparisojn-constaFr)pattern fOI‘ESSERT clauses enables us to as-

As explained in Figure 1, we keep transforming the current con- sign a non-negative real value to each constraint with respect to
figuration until it is pruned, at which point we backtrack to a previ- g given configuration. It is in fact straightforward to create-a
ous configuration and start another iteration. Consider a single stor-gpjectivethat returns zero if the constraint is satisfied and positive
age constrainB, and assume sELECT-only workload. Suppose values when it is not (and moreover, the higher the value the more
that the current configuratiof' exceeds3, but after transforming distant the configuration to one that satisfies the constraint). Ta-

C.into C’ we observe tha€’ is within the storage boundB. In ble 1 shows this mapping, Wheﬁc) andK denote, respectivew’
this case, no matter how we further transfaff we would never the function (of the current configuration) and the constant in the
obtain a valid configuration that is more efficient thah. The ASSERT clause. For constraints that iterate over multipéeERT

reason is that all the transformations (i.e., merges, reductions andgjayuses, we sum the values of the individassERT clauseé.

deletions) result in configurations that are less efficient for the in- By proceeding as before, each configuration is now associated
put workload. Thereforel” dominates the remaining unexplored with n, + n;, values fom, soft constraints and;, hard (i.e., non-
configurations, and we can stop the current iteration by pruning seft) constraints. Minimizing the,, c-objectivesdown to zero re-

C”. When there are multiple rich constraints, the pruning condition sults in a valid configuration that satisfies all hard constraints, while

becomes more complex, and is discussed in Section 4. minimizing then, c-objectivesesults in the most attractive config-
. . . . uration (which might not satisfy some hard constraint). Usually, the
3.1.5 Choosing the Initial Configuration ny, c-objectivesare in opposition to the,, c-objectivesand also to

Although any configuration can be chosen to be the starting point each other, and therefore our search problem is not straightforward.
in our search, the initial configuration effectively restricts the search A common approach to address multi-objective problems is to
space. Specifically, our search framework is able to eventually con- combine allc-objectivegogether into a new single objective func-
sider any configuration that is a subset of the closure of the initial tion. In this way, the resulting optimization function might become:
configuration under the set of transformations. FormallyCldte

a configuration and lef’; (¢ > 0) be defined as follows: singleObjectiveC) = Z w; - ;i (C)
- Co =C . Z:.l .
wherea; (C') denotes theé-th c-objectiveandw; are user-defined
- Ciy1 = Ci U {merge(I, I,) for eachl,, I € C;} weights. While this approach is universally applicable, it suffers
from a series of problems. The choice of weights is typically a
U {reduce(/, K) foreachl € C;, K < |I|} subtle matter, and the quality of the solution obtained (or even the

likelihood of finding a solution whatsoever) is often sensitive to
the values chosen. A deeper problem arises from the fact that usu-
ally c-objectivesare non-commensurateand therefore trade-offs
between them range from arbitrary to meaningless.

For this reason, we do not reduce the original problem to a single-
optimization alternative. Instead, we rely on the concefRarkto
optimality, which in general does not search for a single solution
but instead the set of solutions with the “best possible trade-offs”.

'e next explain this notion and how we use it to reason with con-
figurations within our search strategy.

We defineclosurdC) = Cj, wherek is the smallest integer that
satisfiesC, = Ck41. The closure of a configuratio@' is then

the set of all indexes that are either@hor can be derived fron?’
through a series of merging and reduction operations. For that rea-
son, if no subset of thelosureof the initial configuration satisfies

all the constraints, the problem is unfeasible. Unless a specific ini-
tial configuration is given, the default starting pointfelectBest,
which contains the most specific indexes that can be used anywher
by the query optimizer for the input workload, and thus should be
appropriate to handle all but non-standard constrhints

2Instead, we could consider eatBSERT within a generator individually.
‘An example of such constraint would be the requirement that some index Our experiments show that this alternative results in additional complexities
not useful for any workload query be present in the final configuration. without improving the effectiveness of the search strategy.

4.2 Pareto Optimality for Configurations Constraint templatg Instance __| D(C, F)
o . : F<KF#K |FC)>K | Tor—
The concept of Pareto optimality can be explained by using the F>K F#K ‘ F(C)<K | lore

notion of dominance We say that vector = (z1, ..., z») dom- Table 2: Sufficient pruning conditions for hard constraints.

inates vectoy = (y1,...,yn) if the value of each dimension of

x is at least as good as thatsfand strictly better for at least one

dimension. Therefore, assuming that smaller values are better: ~ were not able to improve the current configuration. We now extend
z dominates) < Vi:azi <y AJjias; <y this technique to work with multiple, rich constraints. We introduce

a functionD that takes a configuration and the left-hand-side func-

tion F' of anAsskeRT clause, and returns one of four possible values

(which intuitively represent the “direction” on whidi moves after

applying transformations to the input configuration). Thus,

An elementz € X is said to bdPareto Optimain z if it is not dom-
inated by any other vectar € X. (ThePareto Optimalelements
of a set are also said to form tkkyline[3] of the set).

In our scenario, each configuration is associated with a vector of]) i
sizens + ny, for ns soft constraints and;, hard constraints, and D :: configurationx function— {T, |, <, 7}
thus we can talk about dominance of configurations. If there is a Recall that, for any given configuration instanCe, we evaluate
single soft constraint and all hard constraints are satisfiable, therethe valueF'(Co) by binding the free variablein F' (i.e., the desired
must be a uniqué®areto optimalsolution. In fact, for a configu- configuration on top of which constraints are defined) With The
ration to be valid, each of the;, c-objectivesmust be zero, and semantics oD(C, F') are as follows:
thus the valid configuration with the smallesbbjectivevalue for

T ! /
the soft-constraint dominates every other configuration. (Even for I :; ?Eg,; z g%gg ;g; Z:: g, g zgggz:z%gg
a single soft constraint, however, there can be mulffaleeto opti- DIC.F)=0 & it F(C') = F(C) forall ¢’ € closure(C)
mal configurations among the explored ones during the search.) ? otherwise
4.3 Configuration Ranking As an example, consider the following constraint:
Using the notion of dominance, we can obtain a total ranking ASSERT size(C) - size(COrig) < 200M

of configurations in two steps. First, we assign to each configu- | this situation,D(C, ') =| for any C' because any sequence
ration a “rank” equal to the number of solutions which dominate - of transformations starting with’ will result in a smaller config-
it>. As an example, Figure 3(b) shows the rankings of all the two- yration, and therefore the value of functidhalways decreases.
dimensional vectors shown in Figure 3(a). This ranking induces a ajthough the definition ofD is precise, in practice it might be un-
partial order, where each vector with rankinigelongs to an equiv- feasible to evaluat® for arbitrary values of". We adopt a best-
alence clasd.;, and every element if; goes before every element effort policy, and try to inferD values. If we cannot prove that
in L; fori < j (see Figure 3(c) for a graphical illustration of such D(C,F) € {1, 1, <} we return the unknown value “?". Opera-
equivalence classes). The final ranking is then obtained by proba-tionally, we evaluateD in an inductive manner. We first assign

bilistically choosing a total order consistent with the partial order ,5ues for the base numeric function calls, such as, for instance:
given by equivalence classés (see Figure 3(d) for an exampte)

The pseudo-code below implements this idea. D(C, size(C)) =|

D(C, size(Tables[” R"])) =«

RankConfigurations (C=cy,ca,...,cn:configurations) D(C, cost(Q, C)) = if type(Q) is SELECT then? else?
Output R: a ranked list of configurations .
01 for each ¢; € C and propagate results through operators using standard rules, such
02 rank(c;) = |{c; € C': ¢; dominates c;}| as forinstance (i) + 1=1, (i) T+|=7, and (i) max(T, <)=1. (We
03 R=10 handle constraints with generators and aggregation similarly, but
04 f°rLea‘ih P € ‘{C%-:"} - omit details for simplicity.)
05 i = {c€C: rank(c) =i} Using the definition oD, Table 2 specifies sufficient conditions
06 LP; = random permutation of L; ! . . .
06 append LP; to R tq prune the currgnt configuration for a given hard constraint. Con-
07 return R sider the constraint below:

Our search strategy relies on the ability to rank configurations at ASSERT cost(W[1], €) / cost(W, COrig) < 0.1

two specific points. First, in Step 3 in Figure 1 we need to pick the In this case;D(C, F)) =1 if w[1] is aSELECT query. The reason
transformation that would result in the most promising configura- is thatD(C, cost(W[1], C))=1, D(C, cost(W, COrig))=«, and fi-
tion. Second, after pruning the current configuration in Step 2 in nally 1 / <= If, during the search procedure, the current config-
Figure 1, we need to pick, among the partially explored configu- urationC satisfiest'(C) > 0.1 (i.e.,C violates the constraint), we
rations, the most promising one to backtrack to. Whenever we re- can guarantee that no element in clogargobtained by transform-
quire to rank a set of configurations, we proceed as follows. First, ing C would ever be feasible, because valueg'¢"’) are always
we evaluate (or approximate) the values of all ¢hebjectivesas larger thanF(C') for anyC” transformed fronC. Therefore, prun-
explained in Sections 3.1.1 and 3.1.3. Then, using the pseudo-codeing C is safe (see Figure 4 for an illustration of this reasoning).
above we obtain a partial order and probabilistically choose a rank-

ing consistent with this partial order. Soft Constraintsin addition to the conditions stated in Table 2,
: pruning a configuratior based on a soft constraint additionally
4.4 Search Space Prunmg requires that” satisfy all the hard constraints (since any value of

~ In Section 3 we described a mechanism to prune a given con- the c-objectiveassociated with the soft constraint is acceptable, we
figuration, which relied on identifying when future transformations mignt otherwise miss overall valid solutions).

A variation of this approach is used in [14, 17] in the context of constrained e : :
evolutionary algorithms. 4.4.1 Additional Pruning Guidance

“We shuffle element ranks in each equivalence class to decrease the chance Although the above technique safely prunes configurations guar-
of getting caught in local minima due to some arbitrary ordering scheme. anteed to be invalid, there are certain situations in which we require

A A 'y A
[] 00 | .1
° L4 o o o o
2
® . ¢ o o o
1 4
o * ° o0 hd o2 o d o’
° o _ o’ o
(a) Original Points. (b) Pareto ranking. (c) Pareto layers. (d) Instance ranking.
Figure 3: Inducing a partial order from the dominance relationship.
A can enable this heuristic pruning by annotating the global constraint
—TF(©C) specification with the valuBSE_DOMINANCE_PRUNING.
D(C.F)=1 ConstraintF < i To provide even additional flexibility into the search strategy, we
F(O) > K enable two annotations that modify how pruning is handled for in-
4k D(C,F) =1 dividual constraints that satisf(C, F') =?. Specifically, we can
Result: Prune specify the following behaviors:
Valid region o
] HILL_CLIMB: If a constraint is marked agLL_CLIMB, any transfor-

mation fromCj, to C that results in a value of the constraint
in C that is worse than that af', gets pruned, even though
C), does not dominaté€'.

additional support. Suppose that we want to minimize the cost of a KEEP_VALID: Values of a constraint marked &BEP_VALID can go
workload with updates using the constraint below: up or down fromC, to C'. However, ifC), satisfies the con-
straint and”' does not, we prun€'.

Figure 4: Sample pruning condition.

SOFT ASSERT cost(W, C) < 0

Since the workload has updat&3(C, cost(W, C'))=7. However,
suppose that the initial configuration does not contain any index
on tableR, and all updates queries refer exclusively to tahle

In this situation weknowthat the cost of the workload would al-
ways increase as we apply transformations, but our system canno
infer it. To address such scenarios, we augment the constraint lan-
guagfe_with annotati(_)ns that override the default pruning _behavior. 4.4.3 Transformation Guidance
Specifically, by adding the keywordonoTONIC_UP (respectively,
MONOTONIC_DOWN) before theasseRT clause, we specify that the re-
spective constraint functioft' satisfiesD(C, F') =1 (respectively
D(C,F) =]). Of course, our framework has no way to verify FOR I in C

whether the annotation is correct (otherwise it would have used this WHERE name(I) = "goodl"

knowledge upfront!) and implicitly trusts the annotation as being ASSERT count(I) = 1

correct. The example above can then be augmented as follows: ~ This is such a common situation that we provide an alternative and
more direct approach to achieve the same goal:

The annotations discussed in this section effectively change the
search strategy and require a non-trivial understanding of the search
space, its relationship with constraints, and even the internal work-
ings of the framework. Providing guidance to assist users or even

ropose the usage of such annotations is a very important problem
hat lies outside the scope of this work.

Suppose that we want an existing indgodI to appear in the
final configuration. We can achieve this by using a constraint:

SOFT MONOTONIC_UP ASSERT cost(W,C) < O
AVOID delete(I) WHERE name(I)="goodI"

4.4.2 Heuristic Pruning would mechanically ignore any transformation that matches the

To allow for additional flexibility in defining the search strategy, specification above. In general the syntax of such specification is:
in this section we present annotations that heuristically restrict the

search space. In contrast to the previous section, these annotations
result in a trade-off between search space coverage and the effi-As a less trivial example, to avoid merging large indexes we can
ciency of the search procedure, and are interesting when at leasuse the following fragment:

one constraint satisfi@(c, F) :_?. Recall that our search strat- AVOID merge(I1,I2)

egy keeps applying transformation rules to the current configura- WHERE size(I1)>100M OR size(I2)>100M

tion with the objective to obtain the best configuration that satisfies - N
all constraints. Since-objectivesare usually conflicting, a config-
uration that improves some objectives might move away from oth-
ers. However, if the transformed configuration does not improve
any objective, there might not be an incentive to continue explor-
ing beyond that point (of course, this is a heuristic and as such it 5. IMPLEMENTATION DETAILS

might prune valid solutions). Instead, we might consider the con- In this section we provide some implementation details of a pro-
figuration an end-point and backtrack to a previously seen config- totype built using the constraint optimization framework described
uration. This pruning condition can be succinctly expressed using earlier. We also explain some extensions that enable additional flex-
the notion of dominance. Suppose that the current configuration, ibility and performance. Figure 5 illustrates the different required
was obtained by using some transformation over configuration steps to go from a problem specification tega script that deploys
Then, wheneve€’,, dominatesC' we pruneC' and backtrack. We the resulting physical design. Initially, we provide a specification

AVOID transformations [WHERE predicate]

As with other heuristic annotations, the usage of these alternatives
should be guided by special knowledge about the search space and
its impact on the input constraints.

10

The baseconstraint class exposes three virtual methods. The
first one,pruning, returns the valu®(C, F'). By default it always

returnsTNONE (i.e., corresponds t®(C, F') =7) and its definition
implements the inference mechanism and the heuristic annotations

Constraint Language Specification

o o ittt constat Other Constraint discussed in Section 4.4. The second anere, is called every
++
ode nitialization onstraints er Lonsiraints time we need to obtain the value of th@bjectiveassociated with
;’ the constraint. It takes a configuration as an input and returns a
— real number. The result value frosaore should be zero when the
Y constraint is satisfied, and larger than zero otherwise (its magnitude
User Defined Search i . . L
Object Code puiil o should reflect the degree of constraint violation). Clearly, the sim
plicity of the constraint language makes the compilation step into
derived classes fully mechanical. As an example, consider the fol-
\ ¢ lowing constraint, which enforces that no index is larger than half
Constrained | \ the size of the underlying table:
Execuatle pioakoall | oews ying
FOR I in C
—1 \— ASSERT size(I) < 0.5 * size(table(I))
QL + Text Reports De%'gryi:‘f”‘ In this case, the generated function would look as follows:
Figure 5: From Problem Specification to Results. class Cl: public Constraint {

double score(Conf* conf) {
double result = 0;

for the constrained optimization problem. A full specification con- for (imt i=0; i<conf->numIndexes(); i++) {

tains a header, which includes database and workload information double f = size(conf[i]);

(e.g., the location to find the DBMS and the workload), and the double ¢ = 0.5 * size(table(conf[il));
main body, which includes the initial configuration and all the con- double partialResult = MAX(0.0, f - c);
straints specified in the language of Section 2. A special-purpose result += partialResult;

compiler consumes the specification and produces awofiles. iemm result:

One file provides the necessary plumbing mechanism to initialize } ’

the search framework and perform the optimization and the other L

specifies each of the constraints by using classes (more de- }s

tails are discussed in Section 5.1). Note that it is possible to di-

rectly specify constraints in++, which provides more flexibility The third function in the baseonstraint class,estScore, is

at the expense of simplicity. After all constraints are translated called every time we need to estimate thebjectivefor a given
into c++ classes, the next step compiles this intermediate code andtransformation. It takes as inputs the original configuration, the
links the result with the search framework library. This step pro- transformation, and the resulting configuration, and returns a real
duces a program that connects to the database system and attempf§!mber. There is a defaultimplementatiorestscore that mimics
to solve the constrained optimization problem. Upon completion, almost exactly the implementation séore working on the trans-
the executable returnssaL script, which can be used to deploy the ~formed configuration. A subtle point is that the methods that obtain
best configuration, and additional reports that provide details on the the cost of the workload under a given configuration are automati-

configuration to be deployed and the overall search précess cally replaced irestScore with those that exploit local transforma-
tions from the original configuration, and therefore the default im-
5.1 Compilation into C++ classes plementation is very efficient. We can, however, replace the default

implementationestScore with a customized version that further

An important extensibility mechanism results from usirg as . . .) .
improves efficiency. Consider again the storage constraint:

an intermediate language to specify constraints. In fact, we can use
c++ to directly specify constraints that are too complex to be han- FOR I in C

dled inside the constraint language, or constraints that require spe- ASSERT sum(size(I)) < 200M
cific extensions for performance. We now describe the compilation
step from the original specification language inte. Each con-
straint is translated into a class derived from the l@s@traint

and suppose that the transformation merfjeand, into Is. Us-
ing the following equality:

class, which is defined as follows: Z size(I) = size(Is) — size(I) —size(I2) + Z size(I)
class Constraint { IetoConf I efromConf
protected:
typedef enum {TNONE, TUP, TDOWN, ...} TPruning; we can compute the size of the transf_ormed confl_ggratlon in con-
virtual TPruning pruning(Conf* conf) {return TNONE;} stant time, provided that we have the size of the original configura-
virtual double score(Conf* conf) = 0; tion available. Note that all transformations follow the same gen-
virtual double estScore(Conf* fromConf, eral pattern, i.e Catter = Chefore U It — 1=, wherel™ andI~ are
Conf* toConf, set of indexes. Therefore, in many situations we can incrementally
Transformations t); evaluateasserT functions by reusing previously computed values.
}

5Reports additionally describe suboptimal configurations, present tradeoffs 6. EXPERIMENTAL EVALUATION

in terms of constraint violation, and allow DBAs to analyze in relative depth ~ WWe now report an experimental evaluation of the search frame-
the benefits of a particular configuration. work described in this paper.

11

¥
S

6.1 Experimental Setting

Our experiments were conducted using a client prototype that
connects to an augmented version of Microsoft SQL Server. The
server code-base was extended to support the techniques in [4, 7] to
provide what-if functionality and the ability to exploit local trans-
formations. For our experiments we usedm-H database and
workloads generated with th@en utility®.

6.2 Single Storage Constraint 1seB 268 2568 3GB 3sGB 4GB

We fi_rst consider the traditional scenario v_vith a single storag_e Figure 7: Efficienc;m;‘g:jci;;trméi:t alternatives.
constraint, and compare our framework against previous work in
the literature. We used a 1GBc-H data and tuned a 22-query 2500 =
workload with both our framework and the relaxation approach _n—_.
of [4] augmented with the techniques of [7] so that both approaches
rely on the same underlying query optimization strategy. We used 1500 e
three minutes for each tuning session, and simulated the approach — s
in [4] with the following constraint specification:]"_ e

-
o

o @
v \ g < o

=&~ Constrained PDT
- Traditional PDT

w

Explored Configurations/sec.
.
o

©

2000

1000

Expected Cost

500

Initial = CSelectBest
SOFT ASSERT cost(W,C) = 0
ASSERT size(C) < B

0
0 20 40 60

Time
wheres is the storage bound (note that the last line is the only Figure 8: Quality of recommendations over time.
strictly required one, since the other two are always included by
default). Figure 6 shows the resulting execution cost of the work-
load for different values ok. We can see that the results are vir-
tually indistinguishable for storage bounds that cover the whole
spectrum of alternatives. Figure 7 compares the efficiency of both
approaches. We can see that our framework can evaluate roughly
half of the number of configurations in the approach of [4, 7], and 3000
the trends are similar in both approaches. The additional time per
configuration in our approach comes from additional layers of in- 2000 ' ' ' ' '
frastructure required to generalize the approach in [4] to work with foe 500 600 70 800 500
arbitrary constraints (in other words, many components are hard-
wired in [4]). Considering that our framework is substantially more
general and there are many opportunities for performance improve-
ment, we believe that our approach is very competitive.

6000

5000

4000

Expected Size

Expected Cost
Figure 9: Backtracking to an earlier configuration.

Finally, Figure 10 shows the number of candidate transforma-
tions against the number of indexes of the originating configuration
for the first 300 configurations evaluated in Figure 9. We can see
OTraditionsl POT that the number of candidate transformations is indeed quadratic
2000 | |- in the number of indexes (due to tineergetransformations), but
the quadratic coefficient is significantly less than one —-0.2 in Fig-
ure 10- due to restrictions in the set of feasible transformations
(e.g., we cannot merge indexes on different tables).

3000

B Constrained PDT|.

2500 {5

1500 1+

Expected Cost

1000 -

500 -

600

0

12GB 15GB 2GB 2.5GB 3GB 3.5GB 4GB Max g 500 o

400 s
o
of!

g

Storage Constraint
Figure 6: Quality of recommendations for storage constraint.

£

of Transfe

300

200
Figure 8 shows the expected cost of the best explored configura- 2 . - mumﬂ"!ﬁ
tion over time, for different storage constraints (we do not include : assaste®™’

in the figure the start-up cost required to optimize each query for 0 ' ' ' '
the first time). We can see that usually the search procedure finds
an initial solution relatively quickly, and then it refines it over time.

It isimportant to note that after only 60 seconds, the search strategy
converged to very competitive solutions in all cases.

Figure 9 illustrates the six initial iterations/backtracking when g 3 Multiple, Richer Constraints
tuning the same workload with a storage constraint of 3GB. In
many cases, the most promising configuration is not always the
best one, and therefore the stochastic backtracking mechanism i
crucial in exploring the search space.

T T
0 10 20 30 40 50 60 70

Numhb

of Indexes in Config

Figure 10: Number of candidate transformations.

We now explore more complex scenarios that require additional
constraints. Consider the tuning session with a 3GB storage bound
S[hat we described in the previous section. The dark bars in Fig-
ure 11 show the number of indexes per table in the resulting config-
®Available athttp: //www . tpc . org. uration. We can see that many tables have 6 or 7 indexes. Suppose

12

BIPT Unbounded
OIPT<=4

250

200

Expected Cost
T

o w

& o
a4+

T

50

0 -,‘.lll.l. PN T

Number of Indexes
B

1234567 8 910111213141516171819202122
lineitem supplier part nation customer region partsupp orders

Tables
Figure 11: Number of indexes per table in two configurations.

Queries

Figure 13: Expected query costs fonpT < 4.

query under the currently deployed configuration (we denote that

that we want to limit the number of indexes in any given table b . T
v y constraintS70below). The specification looks as follows:

four. We can then search for a configuration that additionally satis-

fies the following constraint, denotadt for indexes-per-table: FOR I IN C ASSERT sum(size(I)) < 26G

FOR Q IN W ASSERT £(Q, C) < 0.7 * +(Q, COri
FOR T TABLES q cost(Q, €) < cost(Q, COrig)

FOR I in indexes(T)

ASSERT count(I) < 4 1500
Since the specification contains a single soft-constraint, there is
a single optimal configuration. Figure 12 shows this solution (at the 3300 1® .
bottom-left of the figure) along with all non-dominated configura- Yo en, o
tions that are cheaper but do not satisfy all constraints. This visual- L . "o, -‘ .
ization provides additional insights to DBAs, who might be willing ‘ovge It
to trade-off efficiency for some slight violation of a constraint. 2300 4 b ‘e
Nee
6000 Qe L
°® 1800
5500 7 . 600 800 1000 1200 1400
5000 -'.]] ExecutionCc_nst)
° Figure 14: Non-dominated configurations forS70.
& 4500 - o° oeoveee’
’ 4000 4 0o ,:: * Running the tool for five minutes produced no feasible solution
'::3. to this specification. Instead, the search procedure returned the non-
3500 1 $ogee dominated unfeasible configurations in Figure 14 (each circle in the
3000 +S008geee T T T T figure corresponds to one configuration, and the area of the circle
0 5 10 15 20 25 30 35 represents the degree of violation of thé0constraint). We might
IndexSurplus infer that the constraints might be too strict. Specifically, the tight
Figure 12: Non-dominated set of configurations forrpT < 4. storage constraint is preventing simultaneously satisfyindSf@

constraint. To relax the problem, we replaced the hard storage con-

The chosen configuration at the top-left of Figure 12 satisfies the straint by the following one:
new IPT constraint, as shown with the lighter bars in Figure 11.
Note that the resulting configuration is not a strict subset of the
original one, in which we simply removed indexes until the new Essentially we transform the problem into a multi-objective prob-
constraint was satisfied. This is clearly observed in Figure 13, lem (reducing execution timand storage) with a singl&70con-
which depicts the cost of each query under both configurations. For straint. As there are multipkoft-constraintsthe search strategy is
each query in the figure there is a narrow line, which bounds the not guaranteed to return a single solution. Instead, it returns the set
cost of the query undemBase from above, and undeselectBest of non-dominated configurations shown in Figure 15. These con-
from below (forseLECT queries, any configuration results in an ex- figurations present the best trade-offs between size and execution
pected cost between these two values). Each query is also associeost that satisfy th&70constraint (it also shows why the original
ated in the figure with a wider bar, whose extremes mark the cost specification resulted in no solutions — the smallest configuration
of the query under the configuration obtained with just a storage requires 2.4GB).
constraint, and the configuration obtained by additionally bound- Suppose that we pick thismallestconfiguration in Figure 15
ing the number of indexes per table to four (i®T < 4). If the (after all, our initial hard constraint limited the storage to 2GB).
configuration obtained withpT < 4 is the cheaper one, the baris Figure 16 contrasts the execution cost of the queries in the work-
painted black; otherwise it is painted white. Since the figure con- load under both this configuration and the one obtained when only
tains both black and white bars, we conclude that there are queriesoptimizing for storage (i.e., when dropping t8&0constraint), but
that are more efficiently executed under either the original configu- giving the 2.4GB storage bound that tBé0configuration required.
ration andIpT < 4. Of course, theotal cost of the workload under ~ Each query in the figure is associated with a light bar that represents
the original configuration (676 units) is smaller than that under the 70% of the cost of the query under the base configuration (i.e., the
IPT < 4 configuration (775 units), because the space of solutions baseline under th870constraint). Additionally, each query in the
for IPT < 4 is more restrictive than that of original specification. figure is associated in the figure with a narrower black/white bar,

As another example, suppose that we want to find a good con- whose extremes mark the cost of the query under the configuration
figuration under 2GB that additionally satisfies that no query un- obtained with just a storage constraint, and the configuration ob-
der the final configuration execute slower than 70% the time of the tained by additionally enforcin§7Q If the configuration obtained

FOR I IN C SOFT ASSERT sum(size(I)) < 2G

13

6000 10

5000 4~

4000

3000 *

2000 T T T T T T 1
400 500 600 700 800 900 1000 1100

Size

4 N
2 \

—~

Explored Configurations/sec.

1 5 10 50 100
Expected Cost

. . . . Number of Constraints
Figure 15: Non-dominated configurations for relaxedS70.

Figure 17: Scalability with respect to number of constraints.

with S70is the cheaper one, the bar is painted black; otherwise it
is painted white. We can clearly see that the configuration satis-
fying S70is always under the baseline (as expected). The figure
also helps understand the trade-offs in cost for queries when the
S70constraint is additionally enforced. As with the previous ex-
ample, theS70constraint is worse than the storage-only constraint
overall (901 vs 1058 units) because the search space is more re
stricted. However, some queries in the “830 configuration fall

to enforce the 70% bound that is required.

still evaluate one configuration per second, which is similar to the
performance in [4]. Higher values @f, however, degrade the ef-
ficiency of our strategy much more rapidly, because the estimation
function is called multiple times per configuration to rank all the
candidate transformations. Therefore, it is crucial to use efficient
procedures to estimate configuration promise. We note that all the
constraints discussed in this paper result in sub-millisecoadd

(8 values. Specifically, consider the soft constraint that minimizes
execution cost. This is a expensive constraint, since it requires per-
200 forming local transformations to estimate candidate promises and
either optimizing queries or using the techniques in [7] to eval-
uate configurations. Our experiments showed average values of
«=9.2 ms ang3=0.008 ms for this constraint.

8 0,0) =4@— Varying Evaluation Delay
- 1.0 == Varying Estimation Delay,
6 (106}
4 (100,0)
Queries 10,0.5)
Figure 16: Expected query costs forS70. (10.1)
R ,

\gfls)\:mqo)
6.4 Scalability o (10,10)

Expected Cost

1234567 8 910111213141516171819202122

Evaluated Configurations/sec.

£

We now analyze the scalability of our search strategy with re- Figure 18: Scalability with respect to constraint complexity.
spect to the number and complexity of the input constraints. We

first generated specifications with varying numbers of simple stor-
age constraints (strictly speaking, the most restrictive of these im- 7. RELATED WORK

plies the rest, but our framework cannot make this inference and Wwith the aim of decreasing the total cost of ownership of database
considers each one individually). Figure 17 shows the impact of installations, physical design tuning has become an important and
the number of input constraints on the search efficiency. Increasing active area of research. Several pieces of work (e.g., [2, 8, 10,
the number of constraints by 50x only reduces the number of evalu- 15, 18, 20]) present solutions that consider different physical struc-
ated configurations per second from eight to around two. Even 100 tyres, and some of these ideas found their way into commercial
simultaneous constraints resultin more than one (specifically, 1.39) products (e.g., [1, 12, 19]). In contrast with this work, most of
configurations being analyzed per seconid is important to note previous research has focused on a single storage constraint.
that the approach in [4] without the optimizations in [7] analyzes ~ References [4, 5, 6, 7] introduce some of the building blocks of
1.09 configurations per second for a single storage constraint. our search strategy. Specifically, [4] introduces the concept of a
We next explore the scalability of our approach for varying com- transformational engine and the notion afse1ectBest configu-
plexity of the constraints. For that purpose, we created a “dummy” ration. Reference [6] exploits the techniques in [4] in the context
constraint, parameterized by, 3) that is always satisfied buttakes of local optimizations, by transforming a final execution plan into
« milliseconds to evaluate each configuration (Section 3.1.1pand another that uses different physical structures. Reference [5] con-
milliseconds to estimate the promise of each candidate transforma-siders a unified approach of primitive operations over indexes that
tion (Section 3.1.3). Figure 18 shows the number of configurations can form the basis of physical design tools. Finally, reference [7]
evaluated per second when varying the values of parametens! introducesConfiguration-Parametric Query Optimizatipwhich is
B for the dummy constraint. Clearly, the larger the valuesxof 3 Jight-weight mechanism to re-optimize queries for different phys-
andg the fewer configurations are evaluated per unit of time. We jcal designs at very low overhead. By issuing a single optimization
can see from the picture that it is feasible to have evaluation func- call per query, [7] is able to generate a compact representation of
tions (i.e.,a) values in the second range, and our strategy would the optimization space that can then produce very efficiently exe-
"Note that a fraction of the overhead arises from using suboptimal code Cution plans for the input query under arbitrary configurations.
to maintain non-dominated configurations, so the results in a more careful ~ The field of constrained optimization has been extensively stud-
implementation of our prototype would be even better. ied in the past, and the approaches vary depending of the nature

14

of both constraints and the optimization function. When variables 9. REFERENCES
are continuous and the optimization function and constraints can [1] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and

be expressed as linear functions, the simplex algorithm has proved
to be an effective tool. When the unknown variables are required
to be integer, the problem is callédteger programmingwhich

is NP-Hard and can be solved by branch and bound and cutting-
plane methods. Non linear but twice differentiable constraints can
be solved using the non-linear optimization techniques in [11]. A
sub-field more closely related to ours is combinatorial optimiza-
tion, which is concerned with problems where the set of feasible
solutions is discrete. Combinatorial optimization algorithms solve
instances of problems that are believed to be hard in general (ref-
erence [16] proves that the general physical design problem is NP-
Hard). For that reason, usually heuristic search methodséta-
heuristic algorithms) have been studied. Examples of such tech-
nigues are simulated annealing, tabu search, or evolutionary algo-
rithms (e.g., see [14, 17]).

8. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the constrained physical design prob-
lem and proposed a language that enables the specification of rich
constraints easily. As DBMS applications become increasingly
complex and varied, we believe that constrained physical design
tuning is an important addition to the repertoire of tools of ad-
vanced DBAs. As discussed in this paper, many new scenarios can
be successfully and efficiently handled by our framework. We also

(2]

(3]

—

4]

(5]

(6]

(7]

(8]

El

explained how a transformation-based search strategy can be useflo]

to solve the constrained physical design problem. There are several

M. Syamala. Database Tuning Advisor for Microsoft SQL Server
2005. InProceedings of the International Conference on Very Large
Databases (VLDB)2004.

S. Agrawal, S. Chaudhuri, and V. Narasayya. Automated selection of
materialized views and indexes in SQL databasePriaceedings of
the International Conference on Very Large Databases (VL.DB)
2000.

S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In
Proceedings of the International Conference on Data Engineering
(ICDE), 2001.

N. Bruno and S. Chaudhuri. Automatic physical database tuning: A
relaxation-based approach.Pmoceedings of the ACM International
Conference on Management of Data (SIGMQOZ)05.

N. Bruno and S. Chaudhuri. Physical design refinement: The
“Merge-Reduce” approach. International Conference on

Extending Database Technology (EDBZ)06.

N. Bruno and S. Chaudhuri. To tune or not to tune? A Lightweight
Physical Design Alerter. IRroceedings of the International
Conference on Very Large Databases (VLDE)06.

N. Bruno and R. Nehme. Configuration-parametric query
optimization for physical design tuning. Proceedings of the ACM
International Conference on Management of Data (SIGM{IDP8.

S. Chaudhuri and V. Narasayya. An efficient cost-driven index
selection tool for Microsoft SQL Server. Proceedings of the
International Conference on Very Large Databases (VLOBP7.

S. Chaudhuri and V. Narasayya. Autoadmin 'What-if’ index analysis
utility. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD)998.

S. Chaudhuri and V. Narasayya. Index mergingPtaceedings of

the International Conference on Data Engineering (ICDE)99.

open challenges where further work is needed. We mention SOMEe[11] A.R. Conn, N. I. M. Gould, and P. L. Toint. Large-scale nonlinear

of these below:

Analysis of Constraints. The ability to reason about relationships
among constraints can result in large benefits in search ef-
ficiency. For instance, if we recognize that some constraint
is implied by others, or that certain constraints are positively
(or negatively) correlated, we can exploit this information to
guide the search strategy more effectively.

Monitoring of constraints. In the context of an evolving system,
it would be very interesting to devise monitoring mecha-

nisms that can alert whenever a constraint is no longer sat- (1

isfied due to changes in either the workload or the data dis-

(13

]

[14]

5]

tribution, and therefore a tuning session would be required, [16]

similar to the work in [6].

[17]

Incremental constrained tuning. Suppose that the representative
workload or data distribution changes only slightly. In this
case, it would be beneficial to incrementally refine the cur-
rently deployed configuration rather than re-tune the system
from scratch obtaining, perhaps, a configuration that is very
different from the current one. The rationale is that DBAs
might deeply understand the currently deployed configura-
tion and they will have a high bar before accepting significant
changes to the physical design.

[19]

[20]

Higher level user interaction. Although the constraint language
is simple and powerful, it might not always be the preferred
alterative to interact with a database system. Novel mecha-
nisms to simplify specification of constraints, through pow-
erful user interfaces or macros (which would then be com-
piled down into our constraint language) might be beneficial
in easing the path to adoption.

15

constrained optimization: a current surveyAligorithms for
continuous optimization: the state of the,ak994.

[12] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin.

Automatic SQL Tuning in Oracle 10g. Broceedings of the
International Conference on Very Large Databases (VL2BP4.

B. Duncan. Deadlock Troubleshooting (Part 3). Accessible at
http://blogs.msdn.com/bartd/archive/2006/09/25/
deadlock-troubleshooting-part-3.aspx.

C. M. Fonseca and P. J. Fleming. Genetic algorithms for
multiobjective optimization: Formulation, discussion and
generalization. IfProceedings of the Conference on Genetic
Algorithms 1993.

S. Papadomanolakis and A. Ailamaki. An integer linear
programming approach to database desigiwémkshop on
Self-Managing Database Syster2607.

G. P. Shapiro. The optimal selection of secondary indices is
NP-Complete. Ir5SIGMOD Record 13(2)1983.

P. D. Surry, N. J. Radcliffe, and I. D. Boyd. A Multi-Objective
Approach to Constrained Optimisation of Gas Supply Networks :
The COMOGA Method. IrfEvolutionary Computing. AISB995.

G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2
advisor: An optimizer smart enough to recommend its own indexes.
In Proceedings of the International Conference on Data Engineering
(ICDE), 2000.

D. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm,

C. Garcia-Arellano, and S. Fadden. DB2 design advisor: Integrated
automatic physical database designPmceedings of the
International Conference on Very Large Databases (VL2BP4.

D. Zilio, C. Zuzarte, S. Lightstone, W. Ma, G. Lohman, R. Cochrane,
H. Pirahesh, L. Colby, J. Gryz, E. Alton, D. Liang, and G. Valentin.
Recommending materialized views and indexes with IBM DB2
design advisor. Itnternational Conference on Autonomic
Computing 2004.

