Figure 9: Performance breakdown when reading from a local disk
(300K-record fragment of Table 77)

Graph (e) indicates, parsing adds another 50% on top of reading
and decompression time. These costs are paid for all fields, includ-
ing the ones that are not needed.

The main takeaways of this experiment are the following: when
few columns are read, the gains of columnar representation are of
about an order of magnitude. Retrieval time for columnar nested
data grows linearly with the number of fields. Record assembly and
parsing are expensive, each potentially doubling the execution time.
We observed similar trends on other datasets. A natural question
to ask is where the top and bottom graphs cross, i.e., record-wise
storage starts outperforming columnar storage. In our experience,
the crossover point often lies at dozens of fields but it varies across
datasets and depends on whether or not record assembly is required.

MR and Dremel. Next we illustrate a MR and Dremel exe-
cution on columnar vs. record-oriented data. We consider a case
where a single field is accessed, i.e., the performance gains are
most pronounced. Execution times for multiple columns can be
extrapolated using the results of Figure 9. In this experiment, we
count the average number of terms in a field txtField of table 77 .
MR execution is done using the following Sawzall [20] program:

numRecs: table sum of int;

numWords: table sum of int;

emit numRecs <- 1;

emit numWords <- CountWords(input.txtField);

The number of records is stored in the variable numRecs. For
each record, numWords is incremented by the number of terms
in input.txtField returned by the CountWords function. After the
program runs, the average term frequency can be computed as
numWords/numRecs. In SQL, this computation is expressed as:

Q1: SELECT SUM(CountWords(txtField)) / COUNT(*) FROM T1

Figure 10 shows the execution times of two MR jobs and Dremel
on a logarithmic scale. Both MR jobs are run on 3000 work-
ers. Similarly, a 3000-node Dremel instance is used to execute
Query Q1. Dremel and MR-on-columns read about 0.5TB of com-
pressed columnar data vs. 87TB read by MR-on-records. As the
figure illustrates, MR gains an order of magnitude in efficiency by
switching from record-oriented to columnar storage (from hours to
minutes). Another order of magnitude is achieved by using Dremel
(going from minutes to seconds).

Serving tree topology. In the next experiment, we show the
impact of the serving tree depth on query execution times. We
consider two GROUP BY queries on Table 75, each executed using

335

'execution time (sec)

Lttt

1"

1"

I#" , , , ,

o (I [I— [R—
$%&'()*'+,"  $%&)*-./0," NG

Figure 10: MR and Dremel execution on columnar vs. record-
oriented storage (3000 nodes, 85 billion records)

execution time (sec
60 (sec)

50
40
30
20
10

0

12 levels
3 levels

4 levels
| I—

Q2 Q3

Figure 11: Execution time as a function of serving tree levels for
two aggregation queries on 75

a single scan over the data. Table 7% contains 24 billion nested
records. Each record has a repeated field item containing a numeric
amount. The field item.amount repeats about 40 billion times in the
dataset. The first query sums up the item amount by country:

Q2: SELECT country, SUM(item.amount) FROM T2
GROUP BY country

It returns a few hundred records and reads roughly 60GB of com-
pressed data from disk. The second query performs a GROUP BY
on a text field domain with a selection condition. It reads about
180GB and produces around 1.1 million distinct domains:

Q3: SELECT domain, SUM(item.amount) FROM T2
WHERE domain CONTAINS ’.net’
GROUP BY domain

Figure 11 shows the execution times for each query as a function
of the server topology. In each topology, the number of leaf servers
is kept constant at 2900 so that we can assume the same cumulative
scan speed. In the 2-level topology (1:2900), a single root server
communicates directly with the leaf servers. For 3 levels, we use
a 1:100:2900 setup, i.e., an extra level of 100 intermediate servers.
The 4-level topology is 1:10:100:2900.

Query @2 runs in 3 seconds when 3 levels are used in the serv-
ing tree and does not benefit much from an extra level. In con-
trast, the execution time of )3 is halved due to increased paral-
lelism. At 2 levels, Q3 is off the chart, as the root server needs
to aggregate near-sequentially the results received from thousands
of nodes. This experiment illustrates how aggregations returning
many groups benefit from multi-level serving trees.

Per-tablet histograms. To drill deeper into what happens dur-
ing query execution consider Figure 12. The figure shows how fast
tablets get processed by the leaf servers for a specific run of ()2 and
Q3. The time is measured starting at the point when a tablet got
scheduled for execution in an available slot, i.e., excludes the time
spent waiting in the job queue. This measurement methodology
factors out the effects of other queries that are executing simulta-
neously. The area under each histogram corresponds to 100%. As
the figure indicates, 99% of Q2 (or 3) tablets are processed under
one second (or two seconds).



16 percentage of processed tablets

1.4

12 Q2 Q3
1
0.8
0.6
0.4 —
02 processing time
o per tablet (sec)
0 0.5 1 15 2 25
Figure 12: Histograms of processing times
execution time (sec)
250
200
150
100
50
0 number of
leaf servers

1000 2000 3000 4000

Figure 13: Scaling the system from 1000 to 4000 nodes using a
top-k query (s on a trillion-row table T4

Within-record aggregation. As another experiment, we ex-
amine the performance of Query Q4 run on Table 73. The query
illustrates within-record aggregation: it counts all records where
the sum of a.b.c.d values occurring in the record are larger than
the sum of a.b.p.q.r values. The fields repeat at different levels of
nesting. Due to column striping only 13GB (out of 70TB) are read
from disk and the query completes in 15 seconds. Without support
for nesting, running this query on 73 would be grossly expensive.

Q4 : SELECT COUNT(c1 > ¢2) FROM
(SELECT SUM(a.b.c.d) WITHIN RECORD AS ct,
SUM(a.b.p.q.r) WITHIN RECORD AS c2
FROM T3)

Scalability. The following experiment illustrates the scalability
of the system on a trillion-record table. Query ()5 shown below
selects top-20 aid’s and their number of occurrences in Table 7.
The query scans 4.2TB of compressed data.

Q5: SELECT TOP(aid, 20), COUNT(*) FROM T4
WHERE bid = {value1} AND cid = {value2}

The query was executed using four configurations of the sys-
tem, ranging from 1000 to 4000 nodes. The execution times are
in Figure 13. In each run, the total expended CPU time is nearly
identical, at about 300K seconds, whereas the user-perceived time
decreases near-linearly with the growing size of the system. This
result suggests that a larger system can be just as effective in terms
of resource usage as a smaller one, yet allows faster execution.

Stragglers. Our last experiment shows the impact of stragglers.
Query Q¢ below is run on a trillion-row table 75. In contrast to
the other datasets, 75 is two-way replicated. Hence, the likelihood
of stragglers slowing the execution is higher since there are fewer
opportunities to reschedule the work.

QRQ6: SELECT COUNT(DISTINCT a) FROM T5

Query Q¢ reads over 1TB of compressed data. The compres-

336

6 percentage of processed tablets

0.5
0.4
0.3
0.2 stragglers

0.1 A

[}

10 12 14 16
processing time per tablet (sec)
Figure 14: Query (25 on T illustrating stragglers at 2 x replication

percentage of queries

execution
time (sec)
1000

1 10 100

Figure 15: Query response time distribution in a monthly workload

sion ratio for the retrieved field is about 10. As indicated in Fig-
ure 14, the processing time for 99% of the tablets is below 5 sec-
onds per tablet per slot. However, a small fraction of the tablets
take a lot longer, slowing down the query response time from less
than a minute to several minutes, when executed on a 2500 node
system. The next section summarizes our experimental findings
and the lessons we learned.

8. OBSERVATIONS

Dremel scans quadrillions of records per month. Figure 15 shows
the query response time distribution in a typical monthly workload
of one Dremel system, on a logarithmic scale. As the figure indi-
cates, most queries are processed under 10 seconds, well within the
interactive range. Some queries achieve a scan throughput close
to 100 billion records per second on a shared cluster, and even
higher on dedicated machines. The experimental data presented
above suggests the following observations:

e Scan-based queries can be executed at interactive speeds on

disk-resident datasets of up to a trillion records.

Near-linear scalability in the number of columns and servers
is achievable for systems containing thousands of nodes.
MR can benefit from columnar storage just like a DBMS.
Record assembly and parsing are expensive. Software layers
(beyond the query processing layer) need to be optimized to
directly consume column-oriented data.

MR and query processing can be used in a complementary
fashion; one layer’s output can feed another’s input.

In a multi-user environment, a larger system can benefit from
economies of scale while offering a qualitatively better user
experience.

If trading speed against accuracy is acceptable, a query can
be terminated much earlier and yet see most of the data.

The bulk of a web-scale dataset can be scanned fast. Getting
to the last few percent within tight time bounds is hard.



Dremel’s codebase is dense; it comprises less than 100K lines of
C++, Java, and Python code.

9. RELATED WORK

The MapReduce (MR) [12] framework was designed to address the
challenges of large-scale computing in the context of long-running
batch jobs. Like MR, Dremel provides fault tolerant execution, a
flexible data model, and in situ data processing capabilities. The
success of MR led to a wide range of third-party implementations
(notably open-source Hadoop [15]), and a number of hybrid sys-
tems that combine parallel DBMSs with MR, offered by vendors
like Aster, Cloudera, Greenplum, and Vertica. HadoopDB [3] is
a research system in this hybrid category. Recent articles [13, 22]
contrast MR and parallel DBMSs. Our work emphasizes the com-
plementary nature of both paradigms.

Dremel is designed to operate at scale. Although itis conceivable
that parallel DBMSs can be made to scale to thousands of nodes,
we are not aware of any published work or industry reports that at-
tempted that. Neither are we familiar with prior literature studying
MR on columnar storage.

Our columnar representation of nested data builds on ideas that
date back several decades: separation of structure from content
and transposed representation. A recent review of work on col-
umn stores, incl. compression and query processing, can be found
in [1]. Many commercial DBMSs support storage of nested data
using XML (e.g., [19]). XML storage schemes attempt to separate
the structure from the content but face more challenges due to the
flexibility of the XML data model. One system that uses columnar
XML representation is XMill [17]. XMill is a compression tool.
It stores the structure for all fields combined and is not geared for
selective retrieval of columns.

The data model used in Dremel is a variation of the com-
plex value models and nested relational models discussed in [2].
Dremel’s query language builds on the ideas from [9], which intro-
duced a language that avoids restructuring when accessing nested
data. In contrast, restructuring is usually required in XQuery and
object-oriented query languages, e.g., using nested for-loops and
constructors. We are not aware of practical implementations of [9].
A recent SQL-like language operating on nested data is Pig [18].
Other systems for parallel data processing include Scope [6] and
DryadLINQ [23], and are discussed in more detail in [7].

10. CONCLUSIONS

We presented Dremel, a distributed system for interactive analy-
sis of large datasets. Dremel is a custom, scalable data manage-
ment solution built from simpler components. It complements the
MR paradigm. We discussed its performance on trillion-record,
multi-terabyte datasets of real data. We outlined the key aspects
of Dremel, including its storage format, query language, and exe-
cution. In the future, we plan to cover in more depth such areas as
formal algebraic specification, joins, extensibility mechanisms, etc.

11. ACKNOWLEDGEMENTS

Dremel has benefited greatly from the input of many engineers and
interns at Google, in particular Craig Chambers, Ori Gershoni, Ra-
jeev Byrisetti, Leon Wong, Erik Hendriks, Erika Rice Scherpelz,
Charlie Garrett, I[dan Avraham, Rajesh Rao, Andy Kreling, Li Yin,
Madhusudan Hosaagrahara, Dan Belov, Brian Bershad, Lawrence
You, Rongrong Zhong, Meelap Shah, and Nathan Bales.

12. REFERENCES

[1] D.J. Abadi, P. A. Boncz, and S. Harizopoulos.
Column-Oriented Database Systems. VLDB, 2(2), 2009.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin,
and A. Silberschatz. HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical
Workloads. VLDB, 2(1), 2009.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting Distinct Elements in a Data Stream. In
RANDOM, pages 1-10, 2002.

[5] L. A. Barroso and U. Holzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Morgan & Claypool Publishers, 2009.

[6] R.Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,

S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel

Processing of Massive Data Sets. VLDB, 1(2), 2008.

C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry,

R. Bradshaw, and N. Weizenbaum. FlumeJava: Easy,

Efficient Data-Parallel Pipelines. In PLDI, 2010.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber.

Bigtable: A Distributed Storage System for Structured Data.

In OSDI, 2006.

L. S. Colby. A Recursive Algebra and Query Optimization

for Nested Relations. SIGMOD Rec., 18(2), 1989.

[10] G. Czajkowski. Sorting 1PB with MapReduce. Official
Google Blog, Nov. 2008. At http://googleblog.blogspot.com/
2008/11/sorting-1pb-with-mapreduce.html.

[11] J. Dean. Challenges in Building Large-Scale Information
Retrieval Systems: Invited Talk. In WSDM, 2009.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[13] J. Dean and S. Ghemawat. MapReduce: a Flexible Data
Processing Tool. Commun. ACM, 53(1), 2010.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In SOSP, 2003.

[15] Hadoop Apache Project. http://hadoop.apache.org.

[16] Hive. http://wiki.apache.org/hadoop/Hive, 2009.

[17] H. Lietke and D. Suciu. XMill: An Efficient Compressor for
XML Data. In SIGMOD, 2000.

[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a Not-so-Foreign Language for Data
Processing. In SIGMOD, 2008.

[19] P. E. O’Neil, E. J. O’Neil, S. Pal, 1. Cseri, G. Schaller, and
N. Westbury. ORDPATHSs: Insert-Friendly XML Node
Labels. In SIGMOD, 2004.

[20] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the Data: Parallel Analysis with Sawzall.
Scientific Programming, 13(4), 2005.

[21] Protocol Buffers: Developer Guide. Available at
http://code.google.com/apis/protocolbuffers/docs/overview.html.

[22] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,

E. Paulson, A. Pavlo, and A. Rasin. MapReduce and Parallel
DBMSs: Friends or Foes? Commun. ACM, 53(1), 2010.

[23] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computing Using
a High-Level Language. In OSDI, 2008.

[7

—

[8

—

[9

—



1 procedure DissectRecord (RecordDecoder decoder,

2 FieldWriter writer, int repetitionLevel):
3 Add current repetitionLevel and definition level to writer
4 seenFields = {} // empty set of integers

5 while decoder has more field values

6 FieldWriter chWriter =

7 child of writer for field read by decoder

8 int chRepetitionLevel = repetitionLevel

9 if set seenFields contains field ID of chWriter
10 chRepetitionLevel = tree depth of chWriter
11 else

12 Add field ID of chWriter to seenFields

13 end if

14 if chWriter corresponds to an atomic field

15 Write value of current field read by decoder

16 using chWriter at chRepetitionLevel

17 else

18 DissectRecord (new RecordDecoder for nested record
19 read by decoder, chWriter, chRepetitionLevel)
20 end if
21 end while

22 end procedure

Figure 16: Algorithm for dissecting a record into columns

APPENDIX
A. COLUMN-STRIPING ALGORITHM

The algorithm for decomposing a record into columns is shown
in Figure 16. Procedure DissectRecord is passed an instance of a
RecordDecoder, which is used to traverse binary-encoded records.
FieldWriters form a tree hierarchy isomorphic to that of the input
schema. The root FieldWriter is passed to the algorithm for each
new record, with repetitionLevel set to 0. The primary job of the
DissectRecord procedure is to maintain the current repetitionLevel.
The current definitionLevel is uniquely determined by the tree posi-
tion of the current writer, as the sum of the number of optional and
repeated fields in the field’s path.

The while-loop of the algorithm (Line 5) iterates over all atomic
and record-valued fields contained in a given record. The set
seenFields tracks whether or not a field has been seen in the
record. It is used to determine what field has repeated most re-
cently. The child repetition level chRepetitionLevel is set to that
of the most recently repeated field or else defaults to its parent’s
level (Lines 9-13). The procedure is invoked recursively on nested
records (Line 18).

In Section 4.2 we sketched how FieldWriters accumulate levels
and propagate them lazily to lower-level writers. This is done as
follows: each non-leaf writer keeps a sequence of (repetition, def-
inition) levels. Each writer also has a ‘version’ number associated
with it. Simply stated, a writer version is incremented by one when-
ever a level is added. It is sufficient for children to remember the
last parent’s version they synced. If a child writer ever gets its own
(non-null) value, it synchronizes its state with the parent by fetch-
ing new levels, and only then adds the new data.

Because input data can have thousands of fields and millions
records, it is not feasible to store all levels in memory. Some levels
may be temporarily stored in a file on disk. For a lossless encoding
of empty (sub)records, non-atomic fields (such as Name.Language
in Figure 2) may need to have column stripes of their own, contain-
ing only levels but no non-NULL values.

B. RECORD ASSEMBLY ALGORITHM

In their on-the-wire representation, records are laid out as pairs of

338

1 Record AssembleRecord(FieldReaders|[] readers):
2 record = create a new record
3 lastReader = select the root field reader in readers
4 reader = readers[0]
5 while reader has data
6 Fetch next value from reader
7 if current value is not NULL
8 MoveToLevel (tree level of reader, reader)
9 Append reader's value to record
10 else
11 MoveToLevel (full definition level of reader, reader)
12 end if
13 reader = reader that FSM transitions to
14 when reading next repetition level from reader
15 ReturnToLevel (tree level of reader)
16 end while
17 ReturnToLevel (0)
18  End all nested records
19 return record
20 end procedure
21
22 MoveToLevel (int newLevel, FieldReader nextReader):
23 End nested records up to the level of the lowest common ancestor
24 of lastReader and nextReader.
25 Start nested records from the level of the lowest common ancestor
26 up to newLevel.
27 Set lastReader to the one at newLevel.
28 end procedure
29
30 ReturnTolLevel (int newlLevel) {

31  End nested records up to newLevel.
32 Set lastReader to the one at newLevel.
33 end procedure

Figure 17: Algorithm for assembling a record from columns

a field identifier followed by a field value. Nested records can be
thought of as having an ‘opening tag’ and a ‘closing tag’, similar to
XML (actual binary encoding may differ, see [21] for details). In
the following, writing opening tags is referred to as ‘starting’ the
record, and writing closing tags is called ’ending’ it.

AssembleRecord procedure takes as input a set of FieldReaders
and (implicitly) the FSM with state transitions between the readers.
Variable reader holds the current FieldReader in the main routine
(Line 4). Variable lastReader holds the last reader whose value
we appended to the record and is available to all three procedures
shown in Figure 17. The main while-loop is at Line 5. We fetch
the next value from the current reader. If the value is not NULL,
which is determined by looking at its definition level, we synchro-
nize the record being assembled to the record structure of the cur-
rent reader in the method MoveToLevel, and append the field value
to the record. Otherwise, we merely adjust the record structure
without appending any value—which needs to be done if empty
records are present. On Line 12, we use a ‘full definition level’.
Recall that the definition level factors out required fields (only re-
peated and optional fields are counted). Full definition level takes
all fields into account.

Procedure MoveTolLevel transitions the record from the state of
the lastReader to that of the nextReader (see Line 22). For exam-
ple, suppose the lastReader corresponds to Links.Backward in Fig-
ure 2 and nextReader is Name.Language.Code. The method ends
the nested record Links and starts new records Name and Language,
in that order. Procedure ReturnsToLevel (Line 30) is a counterpart
of MoveToLevel that only ends current records without starting any
new ones.



1 procedure ConstructFSM(Field[] fields):
2 for each field in fields:
3 maxLevel = maximal repetition level of field

4  barrier = next field after £ield or final FSM state otherwise
5 DbarrierLevel = common repetition level of field and barrier
6 for each preField before field whose
7 repetition level is larger than barrierLevel:
8 backLevel = common repetition level of preField and field
9 Set transition (field, backLevel) -> preField

10 end for

11 for each level in [barrierLevel+l. .maxLevel]

12 that lacks transition from £field:

13 Copy transition's destination from that of level-1

14 end for

15 for each level in [0..barrierLevel]:

16 Set transition (field, level) -> barrier

17 end for

18 end for

19 end procedure

Figure 18: Algorithm to construct a record assembly automaton

C. FSM CONSTRUCTION ALGORITHM

Figure 18 shows an algorithm for constructing a finite-state ma-
chine that performs record assembly. The algorithm takes as input
the fields that should be populated in the records, in the order in
which they appear in the schema. The algorithm uses a concept of
a ‘common repetition level’ of two fields, which is the repetition
level of their lowest common ancestor. For example, the common
repetition level of Links.Backward and Links.Forward equals 1. The
second concept is that of a ‘barrier’, which is the next field in the
sequence after the current one. The intuition is that we try to pro-
cess each field one by one until the barrier is hit and requires a jump
to a previously seen field.

The algorithm consists of three steps. In Step 1 (Lines 6-10),
we go through the common repetition levels backwards. These are
guaranteed to be non-increasing. For each repetition level we en-
counter, we pick the left-most field in the sequence—that is the one
we need to transition to when that repetition level is returned by a
FieldReader. In Step 2, we fill the gaps (Lines 11-14). The gaps
arise because not all repetition levels are present in the common
repetition levels computed at Line 8. In Step 3 (Lines 15-17), we
set transitions for all levels that are equal to or below the barrier
level to jump to the barrier field. If a FieldReader produces such
a level, we need to continue constructing the nested record and do
not need to bounce off the barrier.

D. SELECT-PROJECT-AGGREGATE
EVALUATION ALGORITHM

339

Figure 19 shows the algorithm used for evaluating select-project-
aggregate queries in Dremel. The algorithm addresses a general
case when a query may reference repeated fields; a simpler opti-
mized version is used for flat-relational queries, i.e., those refer-
encing only required and optional fields. The algorithm has two
implicit inputs: a set of FieldReaders, one for each field appearing
in the query, and a set of scalar expressions, including aggregate
expressions, present in the query. The repetition level of a scalar
expression (used in Line 8) is determined as the maximum repeti-
tion level of the fields used in that expression.

In essence, the algorithm advances the readers in lockstep to the
next set of values, and, if the selection conditions are met, emits
the projected values. Selection and projection are controlled by
two variables, fetchLevel and selectLevel. During execution, only

1 procedure Scan():

2 fetchLevel = 0
3 selectLevel = 0
4  while stopping conditions are not met:
5 Fetch()
6 if WHERE clause evaluates to true:
7 for each expression in SELECT clause:
8 if (repetition level of expression) >= selectLevel:
9 Emit value of expression
10 end if
11 end for
12 selectLevel = fetchLevel
13 else
14 selectLevel = min(selectLevel, fetchLevel)
15 end if
16 end while
17 end procedure
18
19 procedure Fetch():
20 nextLevel = 0
21  for each reader in field reader set:
22 if (next repetition level of reader) >= fetchLevel:
23 Advance reader to the next value
24 endif
25 nextLevel = max (nextLevel, next repetition level of reader)
26 end for
27 fetchLevel = nextLevel

28 end procedure

Figure 19: Algorithm for evaluating select-project-aggregate
queries over columnar input, bypassing record assembly

readers whose next repetition level is no less than fetchLevel are
advanced (see Fetch method at Line 19). In a similar vein, only ex-
pressions whose current repetition level is no less than selectLevel
are emitted (Lines 7-10). The algorithm ensures that expressions
at a higher-level of nesting, i.e., those having a smaller repetition
level, get evaluated and emitted only once for each deeper nested
expression.





