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ABSTRACT

Machine learning has become a prominent method in many data-

base optimization problems such as cost estimation, index selection

and query optimization. Translating query execution plans into

their vectorized representations is non-trivial. Recently, several

query plan representation methods have been proposed. However,

they have two limitations. First, they do not fully utilize readily

available database statistics in the representation, which charac-

terizes the data distribution. Second, they typically have difficulty

in modeling long paths of information flow in a query plan, and

capturing parent-children dependency between operators.

To tackle these limitations, we proposeQueryFormer, a learning-

based query plan representationmodel with a tree-structured Trans-

former architecture. In particular, we propose a novel scheme to

integrate histograms obtained from database systems into query

plan encoding. In addition, to effectively capture the information

flow following the tree structure of a query plan, we develop a

tree-structured model with the attention mechanism. We integrate

QueryFormer into four machine learning models, each for a data-

base optimization task, and experimental results show that Query-

Former is able to improve performance of these models significantly.
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1 INTRODUCTION

A host of work [9, 16, 17, 30, 36, 37, 39] which leverages machine

learning techniques for database optimizations depends on phys-

ical query plans. A physical query plan describes a sequence of

operations, such as joins and scans, and the algorithms used for

operators during query execution [3]. A physical query plan may
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Index Scan
t. year > 2000

(d)

Index Scan
mi.type_id = 113

(e)

Index Scan
mc.c_id = 2

(c)

Nested Loop

(a)

Nested Loop

(b)

SELECT * FROM 
title t,
movie_info mi,
movie_companies mc,

WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id = 2 AND
t.year > 2000

Figure 1: Example query and query plan from JOB-Light.

contain up to hundreds of operations [39] and it can be modeled

as a Directed Acyclic Graph (DAG) where each node describes an

operation and each edge indicates the dependency of two nodes, i.e.,

children nodes are executed first and the output of each children

node is fed into the parent. A real-life example of a query and its

query plan is shown in Figure 1.

Physical query plans have been used as the input to the ma-

chine learning models for database optimization tasks such as

cardinality and cost estimation [30], index recommendation [9],

query optimization [16, 17], view selection [37], and join order

selection [18, 36]. Despite targeting on different tasks, the models

proposed in these studies rely on the representations of query plans

to learn the correlations between query plan properties and the

targeted outputs. Therefore, representation learning for physical

query plans, or encoding physical query plans is a cornerstone for

the successful application of machine learning techniques to solve

database tasks with physical plans as the input.

To extract useful features from physical query plans and encode

them into vectors, a number of query plan representation methods

have been proposed. A summary of these approaches is shown in

Table 1 and we will review them and their limitations in Section 2.2.

Overall, they have two limitations: (1) they do not fully utilize the

statistics of database content in the representation, and (2) they have

difficulty in modeling long paths of information flow and capturing

parent-children dependency.We next illustrate the limitations using

the Tree-LSTMmodel [31] as an example, which is used to represent

physical plans in E2E-Cost [30] for cost estimation. First, E2E-Cost

includes a small sample for each table in the encoding, similar

to the encoding method [12]. However, sampling suffers from 0-

tuple problem for some queries [22]. In contrast, we argue that

the readily available per-table statistics, such as histograms, can

provide useful knowledge about data distribution [2]. Second, E2E-

Cost uses RNN model, which is generally difficult to train because
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of the recurrent steps [25]. The issue is more serious for physical

plans with long paths. That is, information from leaf nodes may be

lost in the recurrent processing steps before reaching top node [25].

Indeed, encoding a physical query plan is a non-trivial task, as

it has to capture useful features from each individual node, and

aggregate features from nodes in the physical plan. There are three

main challenges in physical plan representation. (C1) Plan encoding

should include the database statistics information which character-

izes the underlying data distribution [2]. It has been shown that

database statistics such as samples significantly improve the per-

formance of machine learning models in database tasks like cost

and cardinality estimation [12, 30]. However, there is no consensus

on what statistics is useful and there is no straightforward way to

embed the statistics into machine learning models. Choosing useful

statistics and encoding them effectively with query plans is a open

problem. (C2) Plan encoding should capture the parent-children

dependency in a physical plan. The behavior of a parent node is

directly dependent on the behaviors of its children. For example,

in the query plan of Figure 1, join node b works on tuples emitted

from scan nodes d and e. The interesting features of output tuples

from d and e are thus important when estimating the cost and

output tuples of the join operation in b. (C3) It is difficult to model

the long paths of information flow in a query plan. During query

execution, there may be long-range dependencies between nodes.

For example, in Figure 1, the cost of the root node a depend on all

descendent nodes, e.g., node d, even though a and d are not directly
connected. Hence, to study the cost of a node, information from all

descendent nodes needs to be considered. The long paths in a query

plan makes it difficult to design effective representation models.

To address the challenges, we propose to use self-attention tech-

niques in Transformer [33] for representing query plans. The main

characteristic of Transformer is that it gathers information from the

entire sequence using self-attention mechanism, while RNN scans

through input elements one by one. This makes Transformer more

efficient and effective in sequencemodeling. However, vanilla Trans-

former is designed for sequence data but not physical plan as a tree.

To this end, we propose a novel tree-structured Transformer model

to represent physical query plans (calledQueryFormer), which uses

self-attention mechanism to model the pair-wise dependencies be-

tween nodes in a plan. On top of transformer, QueryFormer models

the structural information of query plans using two novel strategies:

height encoding and tree-bias attention. These modifications enable

effective capturing of parent-children dependencies (addressing

C2), as well as the long paths of information flow (addressing C3).

Empirically, we foundQueryFormer can model query plans with

more than 100 nodes and depth of 20. Lastly, we propose a novel

histogram encoding scheme and integrate it into query plan repre-

sentation, which improves model generalization to unseen query

predicates (addressing C1).

QueryFormer can be seamlessly integrated to physical plans

based machine learning models for database tasks by replacing

the physical plan representation with the output of QueryFormer

as the input. We apply QueryFormer to four different tasks, in-

cluding cost estimation, cardinality estimation, index selection and

steering query optimizer, and the experimental results show that

QueryFormer can improve their performances significantly.

In summary, we make the following contributions:

• We abstract the task of physical plan representation, which is

an essential and critical component of many machine learning

for database methods, and we propose QueryFormer, a tree-

structured Transformer model to learn the representation of

physical query plans for a variety of machine learning tasks

that take physical query plans as input.QueryFormer is featured

with two novelties: (1) It effectively captures node dependencies

and long paths of information flow of query plans. To the best

of our knowledge, this is the first work that adapts attention

networks for query plan representation. (2) We propose a new

scheme to integrate histograms into physical plan encoding,

which improves the generalization of the learned representation.

• We seamlessly integrateQueryFormer into four machine learn-

ing for database tasks, including cost estimation, cardinality esti-

mation, index selection and query optimizer, by replacing their

representation components with QueryFormer. Extensive exper-

iments demonstrate that QueryFormer is able to significantly

improve the effectiveness of these machine learning for database

algorithms by replacing their representation components.

2 RELATEDWORK

2.1 Physical Plans based Machine Learning

Physical query plans are used as input in a number of machine learn-

ing models that are designed for important database tasks, such as

index selection [9], cost estimation [19, 30], optimizer [16, 17], etc.

(1) For index selection, AIMeetsAI [9] proposes to train a classifier

to compare the costs of a query in different index configurations.

Specifically, it takes a pair of physical query plans as input, and pre-

dicts which plan is better. (2) For join order selection, ReJOIN [18]

and RTOS [36] use reinforcement learning to determine the join

order. They encode the state of intermediate plans as ‘state vectors’

or ‘join forests’, which are fed to models to output a join action.

(3) For cost estimation, E2E-Cost [30] and Plan-Cost [19] propose

to train a regression model to predict the cost of a physical plan.

(4) For view selection, AVGDL [38] is an automatic view genera-

tion approach. To estimate the benefit of a materialized view, it

designs a wide-deep model to estimate the cost of physical plans

with candidate view. (5) For query optimizer, NEO [17] proposes a

learnable query optimizer which incrementally searches and builds

the physical query plan. BAO [16] enhances an existing optimizer

by learning to provide a set of hints or flags to the optimizer for each

query. BAO compares physical plans generated by an optimizer

under different hint sets using neural networks.

A common and fundamental component of the aforementioned

approaches, despite their different targeted applications, is the phys-

ical query plan representation. We next review the query plan

representation methods in these studies.

2.2 Query Plan Representation Methods

We divide the existingmethods of representing physical query plans

into four categories based on their representation techniques, as

summarized in Table 1. We compare them based on whether they

capture parent-children dependency, model long paths of informa-

tion flow from leaf nodes to root, model database statistics, and
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Table 1: Summary of existing solutions to query plan representation.

Category Paper Task
Parent-Children

Dependency

Long Path

Information Flow
Database Statistics

Training

Difficulty

Flattened AVGDL [38] View Selection No Yes NA Hard

Tree-RNN

RTOS [36] Join Order Selection Yes Yes NA Hard

E2E-Cost [30] Cost, Cardinality Yes Yes Sample Hard

Plan-Cost [19] Cost Estimation Yes Yes Estimated card, cost Hard

Tree-CNN

NEO [17] Optimization Yes No Estimated card Easy

BAO [16] Optimization Yes No Estimated card, cost Easy

Prestroid [39] Cost Estimation Yes No NA Easy

Feature
Vectors

ReJOIN [18] Join Order Selection No No NA Easy

AIMeetsAI [9] Index Selection No No Estimated card, cost Easy

LQPP [5] Cost Estimation No No Estimated card, cost Easy

Transformer QueryFormer (Ours) All Yes Yes Sample, Histogram Easy

have training difficulties, which refer to problems during model

training, such as gradient vanishing and explosion [25].

Flattened method such as AVGDL [38] formats the physical plan

into a flattened sequence, and combines the node features using

the LSTM model. The output is treated as the plan’s representation.

This approach does not capture full structural information from a

plan tree. Particularly, the parent-children dependency may not be

captured because a parent node may have a child node far away in

the flattened sequence. Additionally, LSTM suffers from forgetting

problem for large query plan trees and is difficult to train [25].

Tree-RNN family of approaches improves upon flattened method

by aggregating information hierarchically following the tree struc-

ture. RTOS [36] and E2E-Cost [30] use Tree-LSTM model [31] to

aggregate node information bottom up from leaf nodes to root

node, and use the final output as the representation of a physical

plan. Plan-Cost [19] designs two types of neural network modules

for leaf nodes and intermediate nodes. These methods can model

the parent-children dependency and the paths of information flow.

However, due to the recursive nature, they suffer from the forgetting

problem and are difficult to train for large query plans [25].

Tree-CNN [21] is a generalization to conventional CNN [14],

which allows tree-structured inputs. NEO [17] and BAO [16] uses

Tree-CNN with triangular-shape filters (parent, left-child, right-

child) to slide over a query plan tree. Therefore, they can capture

parent-children dependency of a physical plan tree. These methods

do not have recursive steps and can process all nodes in parallel,

and are thus easy to train. However, these methods have a small

receptive field, which means each node can only ‘see’ features

from near neighbors. Therefore, they cannot capture long paths

of information flow from leaf nodes to root node. Prestroid [39]

improves Tree-CNN by introducing a sub-tree sampling step. A

large physical plan tree is decomposed into smaller sub-trees, so

that a small receptive field would be less of a problem. However, this

method potentially introduces a more serious challenge: important

nodes may be dropped in the sampling process.

Unlike the aforementioned methods, Feature Vector approaches

directly encode features from query plans using pre-defined rules,

instead of using deep learning. In particular, AIMeetsAI [9] and

LQPP [5] design a set of important features for each node operator

in a physical plan, and collate a list of feature vectors as the phys-

ical plan representation. ReJOIN [18] represents the join state of

a query plan as a ‘state vector’. These methods are much easier to

train as they do not involve information exchange modules among

query plan nodes. However, they fail to capture parent-children

dependencies and information flow from leave nodes to root node.

Database Statistics. As summarized in Table 1, most existing so-

lutions encode some database statistics information that is related

to data distribution. Many existing solutions encode the estimated

cardinality and cost from database optimizers [2]. These estimates,

despite not being accurate, could provide ‘domain knowledge’ as

hints to the representation model [16, 27]. E2E-Cost maintains and

encodes a sample for each table as a bitmap in query plan encoding.

This sample bitmap helps describing the distribution of the under-

lying table. However, samples suffer from 0-tuple problem and are

not useful for low selectivity queries [12]. On the other hand, his-

togram is a common per-table statistics readily available in database

systems such as PostgreSQL [2] and MySQL [4], which provides a

synopsis of data distribution. However, none of existing query plan

encoding methods attempts to encode histogram. We fill the gap

and propose a method to encode histogram inQueryFormer.

3 PROBLEM AND OVERVIEW

Physical plan based machine learning models have been developed

to tackle various database tasks: cardinality estimation, cost esti-

mation, index selection, view selection, join order selection, and

query optimization. All the existing work first encodes and repre-

sents a physical plan into a vector representation using different

techniques as summarized in Table 1. Then, this representation is

fed to machine learning models used for different database tasks.

We note that a query plan representation serves as a fundamental

block for solving these downstream database tasks. The success of

a learning model for a database task depends heavily on whether

the useful information in a query plan can be captured in its vector

representation. Motivated by this, in this work we focus on learning

a query plan representation for downstream database tasks.

Problem Statement. Given a physical query plan 𝑃 , the task of

representation learning aims to learn a vector representation of a
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Figure 2: System overview.

query plan based on extracted useful features. The learned repre-

sentation can be used as input to various machine learning models

for downstream database tasks utilizing query plans.

Note that we aim to propose a general representation learning

method for physical plans and the learned representations can

be used for all the downstream machine learning tasks that take

physical plan representation as input. Although previous work

focuses on a particular database task only, their representation

learning methods are actually general and can be used for other

tasks. In fact, the important features of physical plans used across

different tasks are mostly the same. Hence, a good representation

technique in one task will likely perform well on other tasks.

3.1 The Proposed Framework

Overview. To learn a good representation of a physical query plan,

we aim to encode both individual node features and the tree struc-

ture. We present the workflow of our system in Figure 2. First, we

encode important node features for each node of a query plan. We

develop an Encoder Module that extracts features, and encodes each

tree node together with database statistics into a fixed-size vector

representation (Section 4). Next, to aggregate features from indi-

vidual nodes, which follows the tree structure of a query plan, we

develop theQueryFormer (Section 5), a tree-structured Transformer

model. The output vector representation of QueryFormer can be

fed to different machine learning models for various database tasks.

Encoder Module. It extracts useful features from each node of a

query plan tree, and encode it in a fix-size vector. We propose to

represent the categorical variables (such as operator, table, join and

etc.,) by learned embeddings, which has concise dimensions and

supports new variables (e.g., when database schema is updated).

This is different from the existing methods [17, 30] that are based on

one-hot encoding , and they cannot readily support new variables.

In addition, we incorporate per-table statistics, including histogram

and samples, into predicate encoding, which provides additional

information of the data distribution of the tables and columns in

the encoding. This addresses challenge C1 in Introduction. The

encoder module is presented in Section 4.

QueryFormerModel. It is a tree-structured Transformer model

designed to aggregate individual node representations following

query plan’s structural information. To address the two challenges

C2 and C3 of query plan representation (in Introduction),Query-

Former is equipped with novel Height Encoding and Tree-biased

Attention mechanisms, together with self-attention mechanism.

Furthermore,QueryFormer aggregates physical plan information

effectively without recursive processing, making it much easier to

train. The details are explained in Section 5.

4 ENCODER MODULE

We proceed to present our Encoder Module, which aims to incor-

porate database statistics into the encoding (Challenge C1). We

extract useful features from nodes of a physical query plan, and

encode them as fixed-size vectors in the embedding space. The tree

of vectors will be the input for theQueryFormer model.

4.1 Feature Extraction

A node of a query execution plan typically contains the operator,

relation, and predicate and join as explained below.

(1) Operator describes the operation of a query plan node, such as

Merge Join and Index Scan. It is a categorical variable with a fi-

nite domain (around 30, depending on the database system) [3].

(2) Predicate describes the filter conditions on relational table

columns, such as 𝑡 .𝑦𝑒𝑎𝑟 > 2000 from Figure 1. It can be viewed

as a <column, operator, value> triplet [12, 30, 39]. Column and

operator can be treated as categorical variables like operator,

and the value of predicate is range-normalized to [0, 1]. This
value normalization can generalize to string predicate with

equality constraint, by hashing string to integers. However,

we do not support wildcard predicate such as ‘Like’ because

it is nontrivial to extract sufficient information such that the

number of satisfied tuples can be inferred. One possible solution

could be using Astrid [28], which focuses on ‘Like’ predicate.

(3) Join is the join condition present in join nodes. It is treated as

a categorical variable as well, because there are finite possible

joins given a database schema.

(4) Table refers to the relational table that the node operates on,

and is treated as a categorical variable.

The aforementioned information can be used to describe the

semantics of a node, and can be used to capture the features of

physical plans for various database tasks. We illustrate the impor-

tance of the information using the task of cost estimation: such

information can be used to infer the execution cost of the node.

For example, consider the scan node with predicate 𝑡 .𝑦𝑒𝑎𝑟 > 2000

in the above example. The predicate condition defines the query

region of the relational table 𝑡 , and is thus essential in determining

satisfied tuples. Similarly, the exact scan algorithm, i.e., index scan

or sequential scan, affects the execution cost of the node as well,

and should be included in the encoding.

We note that an alternative feature selection strategy used in

someworks such as BAO and AIMeetsAI [9, 16] is to directly use the

estimated cost and cardinality from a database system. Specifically,

if the physical query plan is obtained from a database system, each

node in a query plan also contains estimates from the database

optimizer. Our method can easily include the estimates as extra

features. However, we choose not to include them because: the

estimates may not be accurate for complex and difficult query

plans [12, 30]; using these erroneous estimates as features might

not be beneficial to our model for difficult query plans, and our

model does not need them for easy query plans in the first place.

4.2 Node Encoding

Next, we present how to encode the extracted features from query

plan nodes into vector representation. The goal is to capture useful

features in the encoding while keeping the vector in a reasonable
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size. Note that a very large vector incurs unnecessary memory

overheads, and limits the batch size during model training [39].

4.2.1 Learned Embedding for Categorical Variable. The features we

extract for operator, table and join are categorical variables. Existing

methods typically use ‘one-hot’ encoding, which has the following

limitations: (1) Dimension of the one-hot vector can easily blow up

for large database schema. For example, a database with hundreds

of columns will require hundreds of bits for column encoding alone.

(2) It is difficult to handle new categorical variables when database

updates. For example, when new columns are added, the encoding

scheme has to reset to the required dimensions, and thus we have

to retrain the whole machine learning system. To alleviate the

problem, E2E-Cost [30] proposes reserving some extra bits of ‘0’s

at the end of the one-hot vector to accommodate new variables.

However, reserving how many bits is an open problem: too few bits

may not be sufficient, and too many bits will further blow up the

encoding dimension.

To address these limitations, we propose to use a fixed-size,

dense embedding to represent each categorical variable. These em-

beddings will be learned automatically through back-propagation

when a machine learning model is trained for a specific database

task, such as cost estimation. As such, the important features that

are relevant to the database task could be reflected in the embed-

ding space [10]. This setting also naturally supports inserting new

variables. To insert a new category (e.g., a new table) to the represen-

tation model, we simply add a new random-initialized embedding

for the variable, without affecting other learned embeddings.

4.2.2 Predicate Encoding. A predicate feature is described as a <col-

umn, operator, value> triplet. To get the predicate representation

𝐸𝑝 , we concatenate the representation of each element as it is done

in previous work [12, 30], i.e., 𝐸𝑝 = [𝐸𝑐 | |𝐸𝑜 | |𝑣𝑛𝑜𝑟𝑚], where ‖ repre-

sents concatenation, 𝐸𝑐 and 𝐸𝑜 are column and operator embedding,

respectively, and 𝑣𝑛𝑜𝑟𝑚 is the normalised predicate value.

4.3 Integrating Database Statistics into
Predicate Encoding

To generalize to unseen predicates for database tasks, such as car-

dinality estimation, we need to model the data distribution of the

columns in a predicate. We illustrate the challenge using the exam-

ple query plan in Figure 1: suppose the model has seen predicates

𝑡 .𝑦𝑒𝑎𝑟 < 1990 and 𝑡 .𝑦𝑒𝑎𝑟 < 2003 in training data, and encoun-

ters predicates 𝑡 .𝑦𝑒𝑎𝑟 < 2000 and 𝑡 .𝑦𝑒𝑎𝑟 < 2010 in test time. The

two test predicates correspond to model’s generalization ability to

interpolation and extrapolation. If the underlying distribution of

year column is uniform, and the model is well-trained, the model

is expected to ‘guess’ reasonably well for the two test predicates

using linear interpolation and extrapolation. However, if the year

column has a skewed distribution (which often happens in real-life

datasets), the model cannot perform well on the two test cases.

A naive solution would be to collect a very large training data

set that sufficiently covers all the possible query regions. Unfortu-

nately, this is prohibitively expensive. To this end, our idea is to

explicitly provide the model with additional information about the

data distribution of columns. To achieve this, we integrate per-table

statistics into the predicate encoding scheme.

4.3.1 Histogram. A histogram is a statistic that summarizes the

data distribution in a table column [1]. Many database systems

maintain a histogram for cardinality estimation. As histogram is

useful for column predicate cardinality estimation, we propose to

integrate the histogram to predicate encoding as follows. First, we

obtain an equi-height histogram of each column (represented as a

list of histogram boundaries), which can be taken from the stored

statistics from database systems (e.g. pg_stats in PostgreSQL [2]).

However, the number of bins for each column is not constant. To

unify encoding, we need to re-group the histograms for all columns

to the same 𝑁 number of bins. We approximate the new histogram

boundaries by linear-interpolation which assumes uniform distri-

bution within each bin. For example, to re-group a 7-bin histogram

to 10 bins, we approximate that the first new boundary is at 0.7
of the first original bin; the second new boundary is at 0.4 of the
second original bin, and so on. Lastly, to encode a histogram, we

propose to use a size-N vector where each element corresponds

to a bin and is marked with the satisfiability of the predicate. For

example, suppose we have a histogram with 𝑁 = 5 bins and bounds

as (1987, 1999, 2003, 2004, 2006, 2010). For predicate 𝑦𝑒𝑎𝑟 < 2000,

the query region covers the first bin and a quarter of the second bin

( 2000−19992003−1999 = 0.25). The histogram encoding is 𝐸ℎ = [1, 0.25, 0, 0, 0].
As such, we can encode any predicate using a size-𝑁 vector. Em-

pirically, we found 𝑁 = 50 works well for all tasks.

Incorporating histogram information into predicate encoding

can improve both interpolation and extrapolation accuracy of the

model. Recall the example at the beginning of this section. With

the histogram encoding, the model can identify if the number of

tuples in 1990 < 𝑦𝑒𝑎𝑟 ≤ 2000 is very different from those in

2000 < 𝑦𝑒𝑎𝑟 ≤ 2003, because the histogram representation can

automatically reflect the difference.

The attribute-value-independence (AVI) assumption made in

purely histogram-based methods often does not hold in practice

and it will lead to inaccurate estimates [15]. Different from these

methods, our method does not make the independence assumption

between columns. We encode the query region for columns in

the predicates, and use machine learning to model the correlation

between columns. We also note that there exists tons of works

on more advanced histogram construction [7, 11, 24, 32], which is

orthogonal to our method. Our encoding can be applied to other

histogram designs.

4.3.2 Sample. Following the previous work [12, 30], we maintain

𝑚 sample tuples randomly drawn from each table. Next, for each

predicate in the query node, we evaluate the satisfiability of each

tuple, and represent the predicate as a𝑚-bit bitmap as 𝐸𝑠 . We set

𝑚 = 1000 by following [12, 30]. Sample bitmap encoding is helpful

in predicate encoding, as the bitmap indicates the percentage of

satisfied tuples.

4.4 Final Encoding Formulation

Using the methods discussed above, we encode individual com-

ponents of a query plan node, including operator, join, table and

predicates, as vectors which are denoted by 𝐸𝑜 , 𝐸 𝑗 , 𝐸𝑡 , and 𝐸𝑝 , re-
spectively. We denote the histogram and sample bitmap by 𝐸ℎ and

𝐸𝑠 , respectively. Next, we feed each component to a specific linear

layer, so that they are transformed to vectors with desired sizes.
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Lastly, we concatenate the individual parts together as one vector.

Specifically the embeddings are combined as

𝐸 =
��𝐿𝑖𝑛𝑒𝑎𝑟𝑖 (𝐸𝑖 ), 𝑖 ∈ {𝑜, 𝑗, 𝑡, 𝑝, ℎ, 𝑠} (1)

where
�� represents concatenation, 𝐿𝑖𝑛𝑒𝑎𝑟𝑖 is the specific linear layer

designed for each component and 𝐸 is the final embedding for a

node representation. For nodes without predicate or join conditions,

such as ‘Hash’ node, we pad these field positions with zeros. As

such, the encoder module encodes any operator type to a same size.

After encoding each node in a physical plan, the tree of vectors is

then taken as input for the QueryFormer model.

5 QUERYFORMER MODEL

To tackles the challenges in parent-children dependency (Challenge

C2) and long paths of information flow (Challenge C3), we propose

a representation model – QueryFormer. In this section, we first

introduce briefly the Transformer architecture, as a main build-

ing block of QueryFormer. Next, we present the modifications to

Transformer to incorporate the tree structure specific to physical

plans. Last, we discuss the model training and the advantages of

QueryFormer compared with existing methods.

5.1 Preliminary: Transformer Basics

Transformer consists of a composition of identical attention blocks.

Each attention block consists of two sub-layers: a self-attention

module, followed by a position-wise Feed-Forward Network (FFN).

The input to an attention block is a list of vectors, e.g., a sequence of

word embeddings, and the output is a list of vectors with the same

dimension. The core operation is a self-attention module, which

encodes each element in the list by incorporating information from

other elements [33]. The FFN consists of two linear layers, which

are applied to each position of the vectors separately [33].

Self-attentionModule. At high level, self-attention module allows

the model to selectively focus on correlated parts of the input.

Specifically, for an input 𝐻 ∈ R𝑛×𝑑 where 𝑑 is the embedding

dimension and 𝑛 is the number of elements in the list, self-attention

first projects it to 3 vectors, denoted by 𝑄 , 𝐾 and 𝑉 (queries, keys

and values). They are obtained by multiplying 𝐻 with the learned

matrices𝑊𝑄 ∈ R𝑑×𝑑𝑄 ,𝑊𝐾 ∈ R𝑑×𝑑𝐾 and𝑊𝑉 ∈ R𝑑×𝑑𝑉 , respectively.

Next, the Scaled Dot-Product Attention, defined as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇√
𝑑𝑘

)𝑉 , (2)

Attention essentially computes the ‘compatibility scores’ between

queries 𝑄 and keys 𝐾 , and use the normalized scores to multiply

with values 𝑉 .
√
𝑑𝑘 is the scaling term designed for more stable

gradients during training. The output is the encoded representation

of the input elements. If we break down the matrix form in Equation

2, the unnormalized attention score between 2 arbitrary tokens 𝑖
and 𝑗 before softmax function is:

𝐴𝑖 𝑗 =
𝑄𝑖𝐾

𝑇
𝑗√

𝑑𝑘
=

(𝐻𝑖𝑊𝑄 ) (𝐻 𝑗𝑊𝐾 )
𝑇

√
𝑑𝑘

, (3)

where 𝐻𝑖 , 𝑄𝑖 , 𝐾𝑖 are the input vector, query and key for token 𝑖 .
As such, when encoding token 𝑖 , Equation 2 essentially computes
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Figure 3: QueryFormer architecture.

the attention scores between token 𝑖 and all tokens in the list, and

use the attention scores to compute a weighted sum of 𝑉 as the

encoded representation for token 𝑖 .
A powerful extension to self-attention module is the multi-head

attention. In particular, input 𝐻 is projected to ℎ sets of different 𝑄 ,
𝐾 and 𝑉 (called ℎ heads), and performs self-attention ℎ times. The

output from each head is combined together as the final output.

Therefore, self-attention is performed on ℎ different ‘representation
subspaces’. The multi-head attention is widely used in Transformer

variants for better performance [8, 34, 35]. We also use the multi-

head extension in the implementation of our QueryFormer.

Positional Encoding: Unlike RNNs which processes the input se-

quence in order, the self-attention module does not account for any

ordering information of a given input sequence. To inject the order-

ing information, a positional encoding is added to each token of the

input sequence [33]. Positional encodings can be either obtained

from a pre-defined function [33], or learned embeddings [8].

5.2 QueryFormer

We proceed to present our proposed modifications on Transformer,

to accept query plans (i.e., tree of vectors) as input. The goal is to

incorporate the tree structure information of a physical query plan.

Specifically, we aim to capture parent-children dependencies and

long paths of information flow from leaf nodes to root node.

Figure 3 shows an overview of the model architecture of Query-

Former. On top of Transformer, we develop three new components:

height encoding, tree-bias attention and Super node. For clarity, we do

not show components that are the same as the original Transformer,

such as multi-head extension, softmax function, scaling factors, etc.

5.2.1 Height Encoding. The height of a node is defined as the length

of the longest downward path from the node to a leaf in the query
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plan, i.e., all leaf nodes have height 0, and the root node has the

largest height, as shown at the bottom of Figure 3. Intuitively, the

height information of a node is useful as it tells whether a node is

close to a leaf node (which is often a scan operation), or it works

on intermediate results. For example, a node of height 5 means it

has at least 1 path that contains 4 operations from a leaf node.

Height information implicitly encodes the parent-children de-

pendency and the paths of information flow as well, because a

parent always has higher height than the nodes in its sub-trees.

Inspired by the Positional Encoding method, we incorporate the

height information into the node embedding. As illustrated in Fig-

ure 3, the learned height embedding for each height 𝐸ℎ is added to

the node features before they are fed into the attention block. This

process can be formalized as follow:

𝑥 ′𝑖 = 𝑥𝑖 + 𝐸ℎ, (4)

where 𝑥𝑖 is the node embedding, and 𝐸ℎ is the learned embedding

for heightℎ. Similar to how positional encoding allows Transformer

to differentiate the order of tokens in a sequence, height encoding

givesQueryFormer the position information of nodes in a tree.

5.2.2 Tree-bias Attention. To model a query plan, we should allow

information flow from bottom to top in order to capture the two

types of dependencies, namely parent-child dependencies, and long

paths of information flows, which are the two challenges we would

like to attack. However, in standard self-attention module (in Equa-

tion 3), a node in the input can ‘attend to’ all other nodes. While

this behavior makes sense in language models, it does not match

the dependencies in query plan representation.

To this end, we introduce Tree-bias Attention as a modification

to the original self-attention module. The goal is to use the tree

structure to control the information flow in the self-attention mod-

ule. Specifically, the idea is to mask out illegal information paths,

and to account for the relative positions for legal information paths

in self-attention module. For example, a node should not attend to

nodes from other branches or its parent; It should probably attend

more to its direct children than its far descendent nodes.

Tree-bias Attention works as follows. First, we compute the pair-

wise distance of all nodes in a query plan, i.e., 𝑑𝑖 𝑗 denotes the
distance from node 𝑖 to node 𝑗 in the query plan DAG, if node 𝑗 is
reachable from 𝑖 . Otherwise, 𝑑𝑖 𝑗 is marked as unreachable. There-

fore, only parent nodes can attend to children nodes in a query

plan, but not the other way around. Next, we associate each possi-

ble distance value with a learnable scalar 𝑏𝑑 , i.e., a scalar for each
distance. We bias the attention score between every pair of nodes

using the learned scalar value by modifying Equation 3 as follows:

𝐴′
𝑖 𝑗 = 𝐴𝑖 𝑗 + 𝑏𝑑 (5)

where 𝐴′
𝑖 𝑗 is the new biased attention score and 𝑏𝑑 is the learnable

scalar bias for distance 𝑑 from 𝑖 to 𝑗 . As shown in Equation 5, the

semantic compatibility between nodes (the first term) and the tree-

structural bias (the second term) are combined together and both

contribute to the new attention score, as illustrated in Figure 3.

This formulation allows QueryFormer to effectively control the

attention score using the structural information of query plan,

inspired by [35]. To illustrate, the distance for a parent node 𝑖

to its child node 𝑗 is always 1. The model can learn to use a large

value for 𝑏1 to ensure the new attention score 𝐴′
𝑖 𝑗 between node

𝑖 and node 𝑗 is always large. Similarly, the model can learn small

negative numbers to block attention between far away nodes.

The benefit of Tree-bias Attention is that it automatically deter-

mines the best way to model the information flow from bottom to

top with just a few parameters (a scalar value for each distance).

For example, the model may choose to use decreasing bias values

for increasing distances, which means that a node always attends

more to its near children, and attends less for far away descendent

nodes. The model may also choose to set equal bias terms for all

distances, which means a node can attend to all of its descendent

nodes equally. Tree-bias Attention automatically learns the most

suitable bias values. When QueryFormer is trained in a different

database task, the model may learn to use a different set of bias

values that suits the best for the task.

5.2.3 Super Node. The output from the attention blocks is a tree of

feature vectors, each corresponding to a node in the query plan. It

is challenging to obtain a representation of the whole query plan as

off-the-shelf methods can hardly capture all important information.

Firstly, Tree-CNN methods [16, 17] use the average or dynamic

pooling method to aggregate features from nodes. These pooling

operations down-sample information in a brute force manner which

will cause information loss. For example, average pooling treats all

nodes equally regardless of their data and execution cost. However,

the contribution from each node to the final query characteristic is

not necessary equal. For dynamic pooling, on the other extreme, it

only uses the largest value at each dimension. This may result in

some interesting features being pruned and thereby degrading the

solution’s quality. Secondly, Tree-RNN methods [19, 30, 37] take

the root node as the representation of the whole query. However,

this method cannot well capture the complicated dependencies

between nodes. For example, consider the task of cost estimation, it

is difficult for the root node representation to capture cost-related

features for all descendent nodes, and the node itself.

To overcome the challenge above, we propose a strategy to collate

features from all important nodes. Particularly, we add an artificial

Super node at the input, as illustrated in Figure 3. Super node has a

learnable node feature embedding and height embedding, which

can be updated just like other tree nodes during training. Super

node is set to be directly connected to all nodes in the query plan,

so that it can ‘attend’ to all other nodes in the attention layers, and

selectively focus on important nodes. The output vector for the

Super node is treated as the whole tree’s representation.

The benefit of using Super node is it can gather useful informa-

tion from all nodes gracefully via the layers of attention calculation,

and effectively produce an overall representation of a query plan.

This idea is conceptually similar to the [𝐶𝐿𝑆] node in BERT [8].

5.3 Model Training

5.3.1 Training Pipeline. QueryFormer model can be trained in an

end to end fashion for a given machine learning for database task.

We next illustrate this with cost estimation as an example, and it

follows the same logic for any other task. We first encode training

data (query plan trees) using the encoder module and feed the tree

of vectors toQueryFormer. Next, the vector representation of the

1664



Super node is used as the input to the estimation model, such as

Multi-layer Perceptron (MLP) for cost estimation task [30]. The loss

associated with the task back-propagates to learnable parameters

inQueryFormer, and is used to update these parameters. We simply

follow the loss functions used by the specific machine learning

model for a database task. We further discuss the application of

QueryFormer in different tasks in Section 6.

5.3.2 Batch Training. Batch Training with QueryFormer is easy

because the model design is embarrassingly parallel, i.e., each mini-

batch is simply a list of nodes and adjacency matrices, and thus

query plans with different size and shape can be processed simul-

taneously. Existing methods, however, generally require special

treatments on query plans. For example, E2E-Cost [30] performs

the batch training by processing nodes level by level in topological

order, so that different tree structures can appear in the same batch.

Similarly, Tree-CNN models such as BAO [16] perform batching

by computing and tracking positions indexes of all nodes, so that

the correct neighbors of nodes can be located in the convolutional

layers.

5.3.3 Model Complexity. For a query plan with 𝑁 nodes,Query-

Former’s computational complexity for each layer is 𝑂 (𝑑 · 𝑁 2),

where 𝑑 is the hidden dimension for node representation, as it

computes pair-wise attention between nodes.

5.3.4 Learnable Parameters. The parameters of QueryFormer in-

clude the weights of embeddings in encoder module, height em-

bedding, Super node embedding, tree-bias attention, and other

parameters in a standard Transformer architecture.

5.3.5 Hyper-parameters. The hyper-parameters of QueryFormer

include the sizes of learned embeddings in encoder module, num-

ber of sample points, number of histogram bins and other standard

Transformer hyper-parameters, such as number of attention heads,

attention layers, etc. For all tasks, we set embedding size of encoder

modules to 32, 1000 sample points, 50 histogram bins. For the Trans-

former backbone, we set number of heads to 12, attention layers to

8, and attention dropout to 0.1. We train all the tasks using Adam

optimizer with learning rate of 0.001 until convergence. The impor-

tant hyper-parameters are sample points, histogram bins, learning

rate and dropout. The performance is not sensitive to most other

hyper-parameters if they are varied in a reasonable range.

5.4 Remarks

Compare to existing representation methods using Tree-CNN or

Tree-LSTM,QueryFormer have several benefits: (1)QueryFormer

can model the parent-child dependencies and long dependencies,

whereas Tree-CNN and Tree-LSTM have limitations as discussed

in Section 2.2. (2) QueryFormer is a more natural model to process

query plan tree, as it can take query plans of any shape directly

as input, whereas Tree-CNN methods [16, 17, 39] and Tree-LSTM

methods [30, 36] assume strictly binary tree: each node must have

zero or two children nodes. However, for query plans, nodes with

only one child are very common (e.g., aggregating), and may have

more than two children (e.g., multi-unions). Thus, they have to add

a ‘null node’ for each single child branch, and split branches with

more than two children [16, 17].

6 EXPERIMENTS

To evaluate the effectiveness of QueryFormer, we conduct experi-

ments on four machine learning for database tasks: cost estimation,

cardinality estimation, index recommendation, and query optimizer.

We replace the query plan representation component of these so-

lutions with the result of QueryFormer. For each task, we choose

a state of the art baseline method, and adopt the same setting as

the original method to ensure fairness. The selected baselines span

different categories of existing solutions in terms of query plan

representation. We run all experiments on a machine with Intel(R)

i9-10900X and GeForce RTX 2080TI.

6.1 Cost Estimation

A fundamental challenge in database management systems is to

predict the cost of a query plan. One major drawback of tradi-

tional methods is that they cannot learn from previous mistakes to

improve their accuracy. To this end, machine learning based cost

estimators have been proposed [30, 39].

6.1.1 Experimental Setting. For this task, we follow the setting

of the recent work E2E-Cost [30]. Specifically, we only replace

the representation methods of E2E-Cost [30] with QueryFormer,

which takes the query plan as input. We follow the other parts

of E2E-Cost [30], including a Multi-layer Perceptron (MLP) with

Sigmoid activation function for normalized latency prediction. In

addition, E2E-Cost [30] also proposes a multi-task learning frame-

work, where a query plan representation can be used to predict

both cost and cardinality simultaneously by connecting to two sep-

arate prediction models. We experiment QueryFormer on the same

multi-task learning method as well. Specifically, we connect the

output of QueryFormer to two separate MLP networks to predict

cost and cardinality simultaneously. We compare the performance

of QueryFormer with E2E-Cost on the multi-task setting.

Dataset We use real-life dataset IMDB [15] with 100,000 queries

as training data, and use workload Synthetic and JOB-light [12] for

evaluation. The IMDB dataset contains a snapshot of movie data

and has 22 tables. It has skewed distributions within columns and

correlations between tables, which make it notably more difficult

than benchmark datasets like TPC-H and TPC-DS for cost estima-

tion. The 100,000 queries are split to training and validation set

with 9 : 1 ratio. The test set Synthetic workload reflects the so-called

‘in-distribution’ performance, as the queries are generated using

the same script as the training data with a different seed. The test

set JOB-light workload reflects ‘out-of-distribution’ performance,

which are manually designed queries. We summarize the statistics

of query plan sizes in Table 2, including the maximum and average

number of nodes, and the depth of query plans. We also include

datasets for subsequent tasks in the same table. We execute the

queries on PostgreSQL to obtain the query plans and latencies.

Evaluation Metrics Following [29], we report Pearson correlation

coefficient of predicted costs and actual costs in logarithmic scale.

Thismeasures the goodness of fit between predicted costs and actual

costs. We also report Q-Error following [30], which measures the

error in ratio [20]: 𝑄 (𝑐) =𝑚𝑎𝑥
(

𝑎𝑐𝑡𝑢𝑎𝑙 (𝑐)
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑐) ,

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑐)
𝑎𝑐𝑡𝑢𝑎𝑙 (𝑐)

)
, where

𝑐 is the cost of a query.
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Table 2: Query plan sizes in datasets.

Dataset Max Nodes Avg Nodes Max Depth Avg Depth

JOB-light 14 8.44 10 5.75

Synthetic 10 4.9 7 3.65

TPC-H 26 16.8 15 10.2

TPC-DS 143 44.4 20 15.2

JOB-extend 35 21.2 19 12.2

Algorithms QF is the proposed QueryFormer and is used to re-

place the query representation module of E2E-Cost. QF (no-hist)

is a simplified version of QueryFormer without histogram encod-

ing. The purpose of including QF (no-hist) is to show the effect of

incorporating histogram in our method. QF (simple) encodes only

the operator, cost and cardinality estimates, which are the feature

sets used in AIMeetsAI and BAO as described in Section 4.1. We

include QF (simple) to show the effectiveness of our feature selec-

tion strategy in Encoder Module. QF-Multi represents the result

from multi-task training on both cost estimation and cardinality

estimation, and is the counterpart of E2E-Multi [30]. For reference

purpose, we also show the results of PostgreSQL and MSCN [12].

6.1.2 Results. The experimental results based on Q-Error and Pear-

son correlation are shown in Table 3.

Table 3: Cost estimation results.

Synthetic Q-Error Corr

Mean Median 90%

PostgreSQL 12.94 3.78 16.48 0.84

MSCN 1.65 1.17 3.67 0.94

E2E-Cost 4.96 1.81 6.13 0.93

E2E-Multi 2.40 1.55 4.24 0.95

QF (no-hist) 1.61 1.09 2.16 0.98

QF (simple) 2.16 1.21 3.40 0.97

QF 1.48 1.08 1.92 0.992

QF-Multi 1.49 1.07 1.94 0.994

JOB-light Q-Error Corr

Mean Median 90%

PostgreSQL 25.57 2.74 20.90 0.86

MSCN 25.94 3.43 25.53 0.84

E2E-Cost 45.37 3.39 21.80 0.86

E2E-Multi 21.53 4.84 28.21 0.88

QF (no-hist) 17.86 1.52 28.48 0.86

QF (simple) 15.12 2.47 18.40 0.88

QF 10.43 1.50 15.46 0.91

QF-Multi 11.41 1.74 17.77 0.90

Effectiveness of QueryFormer for cost estimation The only

difference between QF and E2E-Cost is thatQueryFormer is used to

replace the query plan representation part of E2E-Cost. By compar-

ing QF and E2E-Cost, we can observe the effectiveness of Query-

Former in improving the accuracy of E2E-Cost. The improvement

of QueryFormer on E2E-Cost is significant on both datasets in

terms of both Q-Error and Pearson Correlation. QueryFormer out-

performs E2E-Cost by more than 230% in terms of mean Q-Error

on the Synthetic workload, indicating it learns a better mapping

(a) QueryFormer (b) E2E-Cost

Figure 4: Median Q-Error against training sizes.

from a query plan to cost value. QueryFormer also outperforms

E2E-Cost significantly on out-of-distribution workload JOB-light,

which indicates it is able to generalize and adapt to shifted work-

load. Similarly, we can also compare QF-Multi with its counterpart

E2E-Multi, which uses multi-task Learning for both cost estimation

and cardinality estimation. We observe that QueryFormer is still

able to improve the performance of E2E-Multi when replacing its

query plan representation component.

In addition, we include PostgreSQL and MSCN [12] in Table 3

for reference purpose. However, it is not our objective to compare

with other baselines since our objective is only to see whether

QueryFormer can improve E2E-Cost by replacing its query plan

representation part.

Effectiveness of Model Components To see the effect of his-

togram, we compare QF and QF (no-hist). They have similar perfor-

mance on Synthetic workload as shown in Table 3. This is because

QF (no-hist) already can work well for in-distribution workload

without histogram information. However, on JOB-light workload,

adding histogram can increase the mean and tail Q-Error by almost

80%, while the median Q-Error remains similar. This shows that

both models perform similarly for at least half of the queries in the

workload, and histogram mostly improves performance on hard

queries. Similarly, we compare QF with QF (simple) to see the effect

of our Encoder Module design. It shows that QF performs better in

all metrics, demonstrating the effectiveness of our Encoder Module.

Sensitivity Study To study the sensitivity of model performance

on training data size, we vary the training data size from 100 to

90,000 and plot the median Q-Error on the Synthetic and Job-light

in Figure 4. We observe that the Q-error results of QueryFormer

become reasonably good when the size of training data reaches

around 6,000. However, the performance of E2E-Cost appears to be

very unstable when the training data size is less than 10,000. We

also observe that for each training size, QueryFormer consistently

outperforms E2E-Cost by a large margin.

Efficiency The total pre-processing and training time for Query-

Former is 2,652.2s, and inference takes 0.010s. E2E-Cost as its coun-

terpart takes 13,659s for training and on average 0.032s for inference.

QueryFormer is faster because it does not have recurrent steps.

6.2 Cardinality Estimation

Cardinality estimation aims to estimate the number of output rows

for a query. It is a critical component in database systems [3].
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6.2.1 Experimental Setting. We follow the setting of E2E-Cost [30]

for the task of cardinality estimation. We only replace the represen-

tation methods, similar to Section 6.1.1. We use the same datasets,

and evaluation metrics as those for Cost Estimation task in Section

6.1.1. We experiment on both single-task and multi-task setting. We

compare E2E-Cost [30] and QF to evaluate if the propose Query-

Former can improve E2E-Cost for cardinality estimation. Similarly,

we compare E2E-Multi [30] and QF-Multi, which use multi-task

training. We also report results of PostgreSQL [2], MSCN [12] for

reference purpose.

6.2.2 Results. The purpose of this experiment is to evaluatewhether

the proposedQueryFormer (QF) is able to improve the cardinality

estimation function of E2E-Cost [30] by replacing its the query

representation module. The efficiency results are similar to that for

cost estimation and are omitted.

Table 4: Cardinality estimation result.

Synthetic Q-Error Corr

Mean Median 90%

PostgreSQL 25.44 2.10 13.56 0.94

MSCN 2.89 1.18 3.32 0.992

E2E-Cost 8.30 2.06 9.84 0.95

E2E-Multi 5.30 2.19 7.97 0.95

QF (no-hist) 3.09 1.25 3.87 0.986

QF (simple) 8.42 1.84 19.97 0.94

QF 2.72 1.11 3.34 0.996

QF-Multi 2.64 1.14 3.22 0.997

JOB-light Q-Error Corr

Mean Median 90%

PostgreSQL 162.34 7.95 157.70 0.88

MSCN 57.90 3.82 78.40 0.81

E2E-Cost 56.85 2.43 39.29 0.89

E2E-Multi 31.63 3.18 30.61 0.89

QF (no-hist) 47.04 3.03 35.57 0.84

QF (simple) 26.42 5.34 54.94 0.89

QF 29.50 2.26 38.74 0.91

QF-Multi 31.34 1.98 26.53 0.92

Effectiveness of QueryFormer As shown in Table 4, QF im-

proves E2E-Cost significantly in terms of both Q-Error and Pearson

correlation for both workloads. Specifically, QueryFormer outper-

forms E2E-Cost more than 90% in terms of mean Q-Error for both

workloads, indicating its ability to capture relevant features to the

cardinality of a query plan. Similarly, QF-Multi performs better

than its counterpart E2E-Multi, which is a multi-task learning set-

ting for both cost and cardinality estimation. QF-Multi outperforms

E2E-Multi by more than 60% in terms of median Q-Error, showing

QueryFormer performs much better for most of the queries. We

also include PostgreSQL and MSCN [12] in Table 4 for reference.

Effectiveness of Model ComponentsWe observe that the inte-

gration of histogram improves the performance of QueryFormer

significantly on both workloads, by comparing QF with QF (no-hist)

in Table 4. This is because histogram provides a detailed synopsis

of the data distribution of tables, which is important to cardinality

estimation. Next, we compare QF with QF (simple), as the ablation

study for encoder module. We observe QF performs better than

QF (simple) in most metrics. For example, the median Q-Error of

QF outperforms QF (simple) by more than 65% on both datasets.

This shows our encoder module can capture important features for

cardinality estimation.

6.3 Index Recommendation

Index recommendation is an important task and it is challenging

to determine the optimal set of indexes for a workload [13]. A key

component in most index tuners is to compare the estimated costs

of query plans of a query under different index configurations.

Commercial database systems [6, 40] depend on optimizer’s cost

estimates to make the comparisons. The recent work AIMeetsAI [9]

states that constructing an accurate cost estimator is challenging

for both traditional and machine learning approaches. It proposes

to train a classifier to compare two query plans of a given query.

6.3.1 Experimental Setting. AIMeetsAI [9] represents a query plan

as a set of feature vectors. The feature vectors from two query

plans are combined as a ‘plan pair’ by taking their differences. The

combined vector is fed to a machine learning model for a ternary

classification task with labels: IMPROVE, NO-DIFF, and REGRESS

respectively. The threshold for IMPROVE and REGRESS is set at 20%.

If the difference of the two plans is smaller, the label is NO-DIFF,

where the difference of the two plans are considered to be negligible.

AIMeetsAI [9] explores various machine learning models for the

classification task, such as deep neural networks (DNN).

We follow the setting of AIMeetsAI, and only replace the query

plan representation from feature vectors toQueryFormermodel.We

use DNN for classification for convenience, because QueryFormer

requires loss signals to train its parameters, and DNN is the only

option for an end-to-end trainable system. Specifically, we compute

the difference of query plan representations as a plan pair, and

feed it to 4-layer fully-connected networks with skip connections

to predict the class labels, as AIMeetsAI describes. We use Cross

Entropy loss to train the model.

DatasetWe use benchmarks TPC-H [26] and TPC-DS [23], both

with scale factor of 10. We do not use IMDB [15] because there are

very few index candidates for each query in JOB workload, which

makes index selection task trivial. We use the toolkit from [13] to

generate the candidate index configurations for each query. We

have on average 6.4 different plans for each query in TPC-H, and

71.9 different plans for each query in TPC-DS. We summarize the

sizes of query plans in Table 2. It can be observed that TPC-DS is

more complicated than TPC-H, with 150%more nodes and 50%more

depths in query plans. We execute the query with the materialized

index configurations to obtain the query plans and their latencies.

Following AIMeetsAI [9], we split the query plan pairs using

3 strategies, which are in ascending order of difficulty: (1) Pair:

all plan pairs are divided into disjoint sets. (2) Plan: the model is

trained only on a subset of query plans for each query, and test on

plan pairs constructed with at least one unseen plan. This simulates

the real-life index tuner setting. (3) Query: the model is trained on

query plans from a subset of queries and test on the other subset.

We notice that some queries are much easier than other queries in

both TPC-H and TPC-DS, and it is unfair to put these queries in

either training or test set when we perform splitting by Query. To
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this end, we split the queries randomly multiple times and report

the average score.

Evaluation Metrics Following AIMeetsAI [9], we evaluate the

performance in two aspects: the classification accuracy and the

quality of the final index configuration selected. The classifier is to

correctly predict if a query plan is better than the other, and is the

key component proposed by AIMeetsAI. We measure classification

with accuracy and average F1 score. We evaluate the index configu-

ration quality by measuring the relative time of executing a query

compared to execution without any materialized index.

Algorithms QF is the classifier with QueryFormer as query repre-

sentation module, and the other parts the same as DNN of AIMeet-

sAI [9]. Similar to previous tasks, we also include QF (no-hist) and

QF (simple) for ablation study. QF (simple), as a counter-part to QF,

is to demonstrate the effectiveness of Encoder Module, while QF

(no-hist) is to demonstrate the benefits of histogram. AIMeetsAI

follows the original paper exactly. We also report PostgreSQL for

reference and its classification accuracy is based on its own cost

estimates.

6.3.2 Results. We present the classification results of each model

with different splitting strategies in Table 5.

Table 5: Index classification accuracy.

TPC-H by Pair by Plan by Query

Acc F1 Acc F1 Acc F1

AIMeetsAI 0.95 0.948 0.77 0.76 0.67 0.61

PostgreSQL 0.59 0.59 0.59 0.59 0.59 0.59

QF (simple) 0.992 0.991 0.92 0.91 0.59 0.49

QF (no-hist) 0.993 0.992 0.92 0.92 0.72 0.70

QF (Ours) 0.993 0.993 0.93 0.92 0.79 0.77

TPC-DS by Pair by Plan by Query

Acc F1 Acc F1 Acc F1

AIMeetsAI 0.836 0.820 0.73 0.68 0.62 0.52

PostgreSQL 0.68 0.669 0.68 0.67 0.68 0.67

QF (simple) 0.934 0.929 0.87 0.87 0.67 0.60

QF (no-hist) 0.945 0.941 0.90 0.91 0.71 0.65

QF (Ours) 0.953 0.950 0.91 0.91 0.77 0.71

Effectiveness of QueryFormer in Plan Pair Classification

QueryFormer is able to improve AIMeetsAI significantly for all

splitting strategies on both datasets. For TPC-H, QueryFormer out-

performs AIMeetsAI by more than 15% for both accuracy and F1

score in split by query, which is the most difficult splitting strategy.

QueryFormer performs better in easier splitting as well, when com-

pared with AIMeetsAI, which only differ with QueryFormer in the

query plan representation component. For TPC-DS,QueryFormer

outperforms AIMeetsAI by more than 20% in split by query for both

accuracy and F1 score as well. This showsQueryFormer performs

well on unseen queries as well. This could be becauseQueryFormer

captures important features from all query plan nodes and can

model the information flow between nodes.

Effectiveness of Model Components QF (simple) ablates the

encoder module, which performs only slightly worse than QF on

easy splitting strategies (by pair and by plan) on both datasets.

However, its accuracy and F1 score drops by 20% for TPC-H, and

10% for TPC-DS on spit by query. This shows that QueryFormer

without our encoder module suffers from serious overfitting prob-

lem, and cannot predict correctly for unseen queries. On the other

hand, QueryFormer with our encoder module is able to capture

and encode useful features that are general across different queries.

Next, we compare QF with QF (no-hist) to see the importance of

histogram. Similarly, QF (no-hist) performs well compared to QF

on easy splitting, but degrades on split by query. This shows the

generalization power of QueryFormer drops without histogram

and predicts less accurately for unseen queries.

Usefulness of QueryFormer in improving Index Recommen-

dation Quality We compare the quality of index configuration

selected by integrating the classifier to an index tuner, so that we can

evaluate how the classification accuracy translates to index quality.

Following AIMeetsAI, we adopt split by plan strategy which would

resemble a real-life index tuning scenario, where model is trained

on a subset of query plans. We apply the per-query level tuning, a

common scenario for Database Administrator (DBA) to tune each

query separately and to get the best index configuration for a query.

This setting is the same as described in AIMeetsAI [9].

(a) TPC-DS (b) TPC-H

Figure 5: Index selection relative runtime.

We report the results in Figure 5, which depicts the relative ex-

ecution time of each query with the chosen index configuration

compared to execution without any index. For TPC-DS, we omit the

queries where AIMeetsAI and QueryFormer has less than 20% dif-

ference for clarity, because the classification threshold is set at 20%.

As shown Figure 5, QueryFormer performs better than AIMeetsAI

and selects index configuration with the same or faster run time for

most of the queries on both datasets. In total,QueryFormer chooses

queries with 25% faster execution on average for TPC-DS, and 20%

for TPC-H, compared to AIMeetsAI. An important requirement for

index tuner is to not create indexes that cause query performance

regression [9]. The number of queries with regression for AIMeetsAI

is 3 in TPC-DS and 1 in TPC-H, but the number is 0 for Query-

Former on both datasets, as the relative time forQueryFormer is

always smaller or equal to 1.0. The outstanding result of Query-

Former is unsurprising, asQueryFormer has higher classification

accuracy when comparing index configurations. Indeed, it is shown

that the high performance in classification translates to better index

configurations.

Efficiency QueryFormer takes 695.1s for pre-processing and train-

ing, 0.027s for inference. AIMeetsAI takes 137.1s for pre-processing
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and training, 0.009s for inference. AIMeetsAI is faster due to its

simpler encoding and model design.

6.4 Query Optimizer

The recent work BAO [16] proposes to build upon traditional query

optimizer since it is more challenging to build machine learning

based query optimizer from scratch. Specifically, it proposes to

provide per-query ‘hints’ to the traditional query optimizer using

reinforcement learning, so that the optimizer can produce a better

query plan for each query. Such a task is called ‘steering optimizer’.

This experiment is to evaluate whether QueryFormer can im-

prove the task of steering optimizer if we replace the query plan

representation module of BAO [16] withQueryFormer.

6.4.1 Experimental Setting. Given a sequence of queries to be ex-

ecuted by the database system. For each query, BAO requests a

set of query plans from the database optimizer with respect to a

set of hints, e.g., disable_mergejoin. BAO then evaluates the query

plans based on a value network, and select a query plan. After

that, the database system executes the query using selected query

plan and BAO records the rewards in terms of the latency of query

execution. Periodically, BAO retrains its value network using the

record history. As such, BAO becomes more and more reliable over

constant workload, and adapts to workload shift automatically.

In BAO’s value network, it encodes the operator, cost and car-

dinality estimation of each node, and uses Tree-CNN model to

learn a represent for a complete query plan. We replace the query

representation module withQueryFormer, and evaluate whether

QueryFormer can improve the performance of BAO. We follow the

setting of BAO for all other parts of the system.

Dataset By following BAO [16], we use the IMDB dataset with JOB-

extend workload, which includes 113 queries from original JOB,

and additional 2,240 queries derived from the same query templates

as JOB. The statistics for all query plans in JOB-extend are shown

in Table 2. We follow the time-series split strategy for training and

testing: queries from new templates are introduced incrementally.

We evaluate the performance on the latency of next unseen query.

AlgorithmsWe compare the execution time of query plans selected

by the original BAO, and by BAO using QueryFormer for plan

representation. We also report QF (no-hist) and QF (simple). Similar

to previous task settings, QF (simple) uses BAO’s encoding, and is to

ablate our encoder module, while QF (no-hist) is to ablate histogram.

We include the execution time of queries with PostgreSQL without

any hint from BAO for reference. Last, we execute all candidate

plans from BAO’s hint sets for each query, and record the best

possible execution time of the query. We denote the best possible

solution as Optimal.

6.4.2 Results. We follow the settings of BAO. Specifically, we exe-

cute the 2,353 queries in the same order using different algorithms,

and compare the execution time. The results are shown in Figure 6.

Figure 6a depicts the number of queries completed versus elapsed

time. The blue line shows the all queries are completed in about

48 minutes with PostgreSQL, whereas the dotted line shows the

optimal total execution time is less than 30 minutes if the best hint

set for each query is always chosen.

(a) Number of executed

queries over time.
(b) Total time for executing

queries.

Figure 6: Query execution time for different algorithms.

Effectiveness of QueryFormer in reducing running time Fig-

ure 6a shows that QueryFormer outperforms original BAO and

finishes executing all queries with less time. Figure 6b shows the

total execution time for the first 1500 queries and last 853 queries.

QueryFormer performs similarly with BAO for the first 1500 queries.

However, for the last 853 queries,QueryFormer significantly out-

performs BAO by 18% (less running time). Surprisingly, this is

comparable with the improvement of BAO over PostgreSQL, which

is 16%!

Effectiveness of Model ComponentsWe compare QF with QF

(simple) to study the effectiveness of our encoder module design.

As shown in Figure 6a, Our encoding is more effective as QF fin-

ishes executing queries faster. Interestingly, QF (simple), which has

the same encoder module as BAO, performs better than BAO. This

suggests that the attention-based QueryFormer architecture can

outperform Tree-CNN, even with BAO’s node encodings. Last, we

compare QF with QF (no-hist). It can be seen that QueryFormer

degrades significantly without histogram, especially for the first

1500 queries if we look at Figure 6b. This is because without his-

togram, it is much harder to learn the information of predicates

from limited amount of training data.

Efficiency Training time at each iteration for QueryFormer and

BAO are 9.82s and 9.72s respectively. QueryFormer takes 0.011s for

inference while BAO takes 0.021s.

7 CONCLUSION

In this paper, we consider the problem of query plan representation,

which is a fundamental building block for machine learning for

database algorithms. We proposeQueryFormer, a tree-structured

Transformer architecture which effectively capture the node de-

pendencies and information flow in a query plan. We evaluate the

effectiveness of QueryFormer by extensive experiments on 4 query

plan based machine learning for database tasks: cost estimation, car-

dinality estimation, index selection and query optimizer. The results

show that QueryFormer significantly improves the performance of

existing methods by replacing their query plan representation.
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